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THE DYNAMICAL INVERSE PROBLEM FOR A LAME
TYPE SYSTEM (THE BC METHOD)

V. G. Fomenko* UDC 517.958, 517.956.32

In the paper, for a Lamé type system the inverse problem of recovering the fast and slow wave
velocities from the boundary dynamical data (the response operator) is solved. The wvelocities
are determined in a near-boundary domain, the depth of determination being proportional to the
observation time. The BC-method, which is an approach to inverse problems based on their
connections with boundary control theory, is used. Bibliography: 20 titles.

1. INTRODUCTION

About the paper. In [3], it was solved the inverse problem of restoring the velocities of fast
(p-) and slow (s-) waves in a model Lamé type system, using dynamical boundary data. The
approach was based on the division of boundary controls into two classes. The controls from
these classes initiate only p-waves or only s-waves, respectively. Such an approach cannot
be applied to the full Lamé system (with the variable density and lower terms), because the
division of controls is impossible in it.

Later on, in [10] it was suggested an approach that does not use the division of controls. This
approach, as such, is more perspective for the work with the full system, but the corresponding
inverse problem has not been solved as yet.

In the present paper, for a Lamé type system we suggest another approach based on the
ideas of paper [8], which also does not use the division of controls. We are pinning our hopes
for a progress in solving the problem for the full Lamé system on this paper.

Similarly to the previous ones, the new approach is a version of the boundary control method
(the BC method), making use of controllability properties of dynamical systems for solving
the inverse problems. For the Lamé system, these properties were established in [9].

The main result. We consider a dynamical Lamé type system in which there are wave modes
of two types (p-waves and s-waves) and the velocities of the modes ¢, and ¢y depend on the
point, but ¢, > ¢, everywhere. It is assumed that the density in the domain is constant (p = 1).

The main result of the paper is the recovery of the velocities ¢, and ¢, in a near-boundary
(regular) domain from the response operator, and the depth of determination is proportional
to the observation time.

2. GEOMETRY

2.1. Metrics. Let Q C R? be a bounded domain with smooth! boundary T'. In ©, smooth
functions (velocities) ¢, = co(z) (@ = p,s) such that 0 < ¢5 < ¢, are given. In , they
determine conformally Euclidean metrics
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where |dz| is a Euclidean length element in R3. By 7,(x,y) we denote distances in these
metrics. The quantities T := max Ta(-,T) are called filling times.

For a subset A C Q we define its metric neighborhoods
Ol [4] = {SL‘EQ‘TQ(QT,A)<7“}, r >0,
and by Q7 := QF [I'] we denote the neighborhoods of the boundary (the near-boundary lay-
ers of thickness 7). From the relation for velocities it follows that 7,(z,y) < 7s(x,y) and
Qi[A] c Qp[A] for any 2,y € Q (z # y), A C Q, and 7 > 0. The term “filling times” is
motivated by the relations T = inf{r > 0 | Qf, = Q}.
For A C Q2 we define the equidistant surfaces
I A = {z € Q| ra(z,A) =1}, r >0,
and denote by I'l, := I',[I'] the equidistant curves of the boundary.

2.2. The regular domain. With a point z € Q we associate the sets v,(z) := {y € T
Ta(2,7) = Ta(z,T)} of nearest points of the boundary. As is known, for » > 0 small enough,
for any x € QF, the sets 7, (x) consist of a single point, and the system of semigeodesic (ray)
coordinates with the base I' is regular in €,. Let T5°® be the least upper bounds of those r
for which such regularity holds. The near-boundary layers 07" are called regular domains of
the respective metrics.

We define 77 := min{7;*®, Ts**} and the common regular domain Q7™ := Q"™ All
further considerations will be conducted in this common regular domain.

2.3. The influence domains. In the sequel, the variable t > 0 plays the role of time. We
fix T > 0 and denote by

QT = x(0,7), > =T x[0,T]

the space-time cylinder and its lateral area.
For a point (zg,ty) € QT = Q x [0,T] we define the influence cones

KT [(z0,t0)] = {(x,t) € QT | 1a(, z0) < t—to}.
For B C QT the subdomain
KiBl = |J KZl(xo to)]

(:C(),t())EB

is called the influence domain of the set B.
From the definitions it is seen that the cross-section ¢ = ¢ of the influence domain K [%7]
coincides with the £-neighborhood of the respective metric I' in :

{zeQ|(x8eKIET} =05, o0<e<T (2.2)

2.4. Functions and fields. We consider the following sets of real number and vector (R3-

valued) functions. These latter are called fields.
The space H. The space of fields

H := Ly(%R?)

with scalar product
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where is the standard scalar product in R3, plays the main role. For measurable A C ©Q,
we define the subspace

HI[A] = {y eEH ‘ suppy C A}.
In the space ‘H we distinguish the subspaces
(1) of solenoidal fields
J={yeH|divy=0 inQ} (2.3)
(the operation div is meant in the sense of distributions); the set of smooth fields
JN COO(Q;R3) is dense in J;
(2) of potential fields

G:={heH|h=Vy, oWy Q), ¢Ir =0} (2.4)

the set of smooth fields G N C*°(; ]R3) is dense in G. The subspaces of J and G consisting of
fields localized in A are denoted by J[A] and G[A].
The following relation (Weyl decomposition) is valid:

H=JdG (2.5)
(for example, see [11,15,16]).
The space F'. Define the space F! := Ly(XT;R3) with scalar product

(f.9)5r = / F(nt) - gyt dT dt,
nT

where dI' is the Euclidean area element on I'. The class of smooth fields
MT = {re C®(xT,R3) |supp f C T x (0,77}

is dense in FT'. Note that the fields from M7 vanish near ¢t = 0.
With a subset B C X7 we associate the subspace

FIB):={feF" |supp f C B}.

It involves the dense set of smooth fields M [B] :== MT N FT[B].
A vector a € R3 at a point of the boundary is decomposed into the sum

a=a,+ap=a"v+ ay, (2.6)

where v is the Euclidean external unit normal to I', a¥ = a - v; a, and agy are the normal and
tangential components. This decomposition will also be written as

a:<i>. (2.7)

Consider the scalar and vector spaces
Fy =L, Fl={feF" | (v Nir=0}.
Their subspaces FL[B] (o = p, s) consist of elements with supports in B; denote
MTB] == MT n FI (B, (2.8)

which are smooth functions and fields vanishing near ¢ = 0.
In accordance with (2.7) we write
T
T _ "Tp
= ()
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3. A LAME TYPE SYSTEM

3.1. An initial boundary value problem. Let Q C R? be a bounded domain with smooth

boundary I'. Fix T € (0,00), and denote s := 012, and p := c2.

Consider the initial boundary value problem

uy = Vaedivu — rot prot u in Q7, (3.1)
ult=0 = Utlt=0 = 0 in Q, (3.2)
u=f on ¥ (3.3)

with smooth variable coefficients p = p(z) > 0, 2 = »(x) > 0 in Q. Note that s = A + 2
(A and p are standard Lamé coefficients). We call this system the a Lamé type system and
denote it by the symbol a. Equation (3.1) is obtained from the full ? Lamé equation, which
describes the wave propagation in an elastic medium, by retaining higher terms (with respect to
the order of differentiation); moreover, we assume that the density p = 1 in the domain (see [3]).
Note that the main properties of the full system (the regularity of solutions, controllability) [9]
remain valid for a Lamé type system [10].

An R3-valued function f = f(v,t) is called a (Dirichlet) boundary control. It describes
the displacements of the points of the boundary initiating a wave process in 2. A solution
u = uf(z,t) (wave) is an R3-valued function describing the displacements of the points of a
medium in Q. For controls of the class MT, problem (3.1)—(3.3) has a unique classical smooth
solution u/.

The map f — u/ from FT to Ly((0,T); La(S;R3)) is continuous (see [9]). Consequently,
it can be extended from M’ to controls in F' by continuity. By a (generalized) solution of
problem (3.1)—(3.3) for controls of this class we mean the image of f under this extension.

3.2. Finiteness of the influence domain. The functions

Cp:\/%v Cs:\/M

(0 < ¢s < ¢p) have the meaning of the velocities of longitudinal (fast) and transverse (slow)
waves. The velocities determine two conformally Euclidean metrics (2.1). Each of them
specifies its own distances, neighborhoods, geodesics, influence domains, and so on (see Sec. 2).

The equation of the Lamé type is hyperbolic and has two families of characteristics yo(z,t) =

2
const in QT determined by known equations (agt") —c% |Vxal? =0 (a = p, s.) Since problem

(3.1)—(3.3) is hyperbolic, we have the relation
suppu/ C K]'[supp f], (3.4)

which is referred to as the finiteness principle of the influence domain. It shows that the waves
in a Lamé type system propagate with velocity not exceeding the velocity of the fast mode c,,.
Let f € FT[2T], i.e., the control f acts from I'. In view of (2.2), relation (3.4) implies that

suppu’ (-,t) C QL t>0. (3.5)

2The full Lamé equation in coordinate-free form is pury = V(A + 2u)dive — rotprotu +
2{(Vp, V)u —divu Vu + Vu x rot u} (see [14]).
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3.3. The system o’. Henceforth we regard problem (3.1)-(3.3) as a dynamical system and
endow it with attributes of control theory — spaces and operators.

The space of controls F7 is called the external space of the system a”. A solution uf is
interpreted as a trajectory of the system, and u/ (-,t) is its state at the time ¢. The space H
is said to be internal. By the property of Lo-regularity of solutions (see the end of Sec. 3.1),
all the waves uf(-,t) are its elements.

By (3.5), the relation f € F7[ST] implies that uf(-,¢) € H[Q] for all 0 <t < T, i.c., the
trajectory uf of the system a” does not leave the subspace H[Qg].

3.4. The response operator. On the fields of the class H2(2) (henceforth H¥(...) are
vector Sobolev classes), we introduce the operator

L := V3 div —rot prot,

which determines the evolution of the system a’. Integrating by parts, for smooth u and v
we get the relation (Green’s formula)

» divu VY u? » divv
(Lu,v)H—(u, LU)H:/ Ku rot u x 1/> ’ <v9> B <ue> ’ <u rotvxu)]dr
T
= (Nu, Dv)LQ(F;R?’) - (Du, Nv)LQ(F;R?’) 3

we have used the agreement about the representation (2.6)-(2.7) and have denoted

Du := <29> ; Nu := < » divu > on I (3.6)

protu X v

The “input-output” correspondence in the dynamical system o’ is described by the response
operator RT: FI' — FT' Dom RT = MT .

RTf = Nu/ on 2T (3.7)

where N is the (Neumann) operator defined by the second formula in (3.6). The response op-

erator is well defined in view of the remark at the end of Sec. 3.1. Its action on a control vector
14

f= ‘;6 , in accordance with the definition (3.7) and the agreement on the representation

(2.6)—(2.7), can be written in the form [3]:

T s divuf T
R f = <N rotufxu> on X°. (3.8)

Note that R can be extracted from the measurements on the boundary I' upon interaction
with it of the waves generated by the controls f (see [14]). The response operator is adequate
to the information that is available to the external observer who studies the dynamical system
using its mapping “input—output.”

3.5. The inverse problem. The statement of the dynamical inverse problem is as follows.
Using the response operator R?T given for fixed T > 0, it is required to find the velocities
of waves: ¢, in the domain QIT; and ¢, in the domain Q7. This statement is adequate to the
finiteness property of the data influence domain (see [3,5,8]). The problem will be solved
under the additional assumption T' < T8, i.e., in the regular domain.
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3.6. Controllability. In the system o, the set of states (waves)
UET = {u! (. T)| f e MT[ET]}
is said to be reachable (from the boundary I" in time t = T"). By (3.5), we have the embedding
UST cHQ,  T>0. (3.9)

Properties of reachable sets and the character of embeddings of the type (3.9) are central
questions of boundary control theory. We mention here a result of this sort established in [9]
for the full Lamé equation® with the use of the fundamental theorem on the uniqueness of the
extension of the solution across a noncharacteristic surface [13].

Let X! be an (orthogonal) projection in H onto H[Q1]. Its action is reduced to cutting off
the vector fields to the subdomain Q7

y in QF,
Xly= . .
0 in Q\QF.

The relation
XTUET) = H[QL], T >0, (3.10)
is valid (the closure is taken in the metric of H).

From (3.10) it follows that any vector field y € Ls (QL;R?) localized in the subdomain
captured by the slow mode can be approximated (with any precision) by the wave uf (-, T for
an appropriate choice of the control f € MT[X7]. In control theory this property is interpreted
as approximate boundary controllability of the system o in the domain Q7.

To the final instant of time ¢t = T, the waves initiated by the controls f € FT[£7T] fill the
domain Q]:,F containing the subdomain Q7. Roughly speaking, relation (3.10) means that the

shape of the wave u/(-,T) in Q' may be arbitrary. At the same time, this is certainly not
the case in the subdomain QI\QT (see [9,10]).

3.7. The subsystem ag. In a Lamé type system, two subsystems, acoustic and Mazwell,
stand out naturally.
Consider the scalar initial boundary value problem

o = cf, Ap in QT (3.11)
Pli=o = ¢tli=0 =0 in Q, (3.12)
p=a on X7, (3.13)

where ¢, = /». For controls of the class M;,F (see (2.8)), it has a unique classical smooth
solution ¢ = ¢%(x,t). The correspondence a — ¢ is continuous from F' to Ls ((0,T); L2(92)),
which enables one to define solutions for a € F (see [5]).

The corresponding dynamical system is said to be acoustic and is denoted by ag. Its external

and internal spaces are pr and L2(2). Since the influence domain for the wave equation (3.11)
is finite, we have the relation

supp¢® C K [suppal

and its simple consequence

supp p”(-,t) C QL, t>0.

3The result is also valid for a Lamé type system (see [3,10]).
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The acoustic system is approximately controllable from the boundary. We define the reach-
able sets

[xT] = {¢*(-,T)| a e MI[ZT]} .
With the help of the Holmgren—John—Tataru theorem [4-6], the relation
D[ET] = Ly[Q)] (3.14)

can be proved (the closure in Ly(£2)), which is valid for all 77 > 0. We give a consequence of
the property (3.14), which will be used in the sequel. Denote

VO] :={Ve*(-,T)| a € MJ[S"]} .
Let T' < T"8; the following relation is valid (see [10]):

2.4
VoxXT] = {Vq{ q € W), suppgq C Qr, qIr = 0} = Q[Qg] (3.15)

(the closure in H). It means the completeness of the gradients of waves in the space of potential
fields localized in Qg.

3.8. The subsystem af. Consider the vector initial boundary value problem

Yy = —Cg rot rot ¢ in QT, (3.16)
Ylt=0 = Ytft=0 =0 in Q, (3.17)
YXv=>b on ©7T, (3.18)

where ¢, = \/u < ¢, X is the vector product in R3. For controls b € M7 (see (2.8)), it has
a unique classical smooth solution 1) = 1*(z,t). Note that the mapping b — ¢°, defined on
the smooth class MY, is not continuous from FI to L? ((0,7); L2(;R?)) (see [12]). But this
complication is of a technical nature, and in the sequel we shall be able to get by with smooth
controls and solutions.

The corresponding dynamical system is called Mazwell and is denoted by al. Its external
space is fsT . It is convenient to regard the space H as an internal one, but the following is
essential.

The quantity dive? is the integral of the movement of the system al, and, by the initial
conditions (3.17), we have divy)®(-,t) = 0 for all ¢ > 0. For this reason, the waves are
solenoidal fields and the trajectory of the system lies in the subspace J (see (2.3)).

Equation (3.16) is derived from the full system of Maxwell equations by removing one of the
components (the magnetic field). Since the influence domain for Maxwell equations is finite,
we have the relation

supp ¢’ C K [suppb]
and its consequence
suppi/Jb(-,t) c Qf t > 0.

The system o is approximately controllable from the boundary in the following sense. We
define the reachable sets

W] = {o’ (-, 1) | b e MT[ST]}
and introduce the subspace

TN = {y e J| suppy c QT}.
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Using the uniqueness of the extension of the solution of Maxwell equations across a nonchar-
acteristic surface [13], one can obtain the relation

V[xT] = J107] (3.19)

(the closure in H), which is valid for all 7' > 0 (see [6, Theorem 3]).
Now we give a consequence of the property (3.19), which will be used in the next section.
Denote

rot U[n7] = {rot (-, T) | be MST[ET]} .
The following relations are valid:
rot U[XT] = {roty‘ y € Wi (Q;R3), suppy C QST} = J[ot. (3.20)

The first relation in (3.20) is derived with the help of (3.19) (see [10]), and the second one is
a consequence of the density of the rotors of smooth fields in J[QI] (see [16]).
Thus we have (see (3.19) and (3.20)):

U[ET] = rot U[XT] = J[Q]. (3.21)

3.9. The relationship between the trajectories. In system (3.1)-(3.3), we choose a con-
trol f € MT and set

ay 1= [% divuf} ‘ET € Mg, by = [,u(rotuf)g X 1/}|2T € MST
As shown in [3], the following representation is valid:
w = Ve +roty®  in QT (3.22)

it relates the trajectories of the system a’ and its subsystems ag and ol It means that the
waves in a Lamé type system split into potential and solenoidal components.
On the other hand, for arbitrary a € Mg and b € MY the fields Vo® = uf" and rot ¢ = u/”

are trajectories of the system o’ that correspond to the controls

= v-V? "_ v - rot yP
Ve )’ (rot )g )’
and thus V¢® + roty? = w + uf” = wf'*+" These relations and (3.22) imply that the
following representation in algebraic sum form is valid:

U = voisT] + rot [u7].
Using (3.15) and (3.21) and passing to the closures, one can easily obtain
_ T T
UXT] = G, ] + J18%]. (3.23)
Note that the terms in this sum have a nonzero intersection.
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4. THE ACOUSTIC SUBSYSTEM

In Sec. 4, we consider the objects (velocity, eikonal, geodesics, normals, divergences, wave
fronts) that are related only to the fast metric

2 |dz|?
ds, = 2 (4.1)

(1998}

and, simplifying the notation, we omit the subscript “p” in all quantities. Thus, we shall
denote the fast velocity by ¢ := ¢,, the distance between the points  and y of the domain
by 7(z,y) := 1p(z,y), the eikonal by 7(x) := 7,(2,I"), the equidistant curves of the boundary
by I'" :=T7, and so on. Note that dynamically the eikonal 7(x) at a point x is equal to the
time of traveling the fast waves from the boundary I' to this point, and its level surfaces I'"
correspond to wave front sets.

4.1. Semigeodesic coordinates. We fix T : 0 < T < T™®. To each point = of the regu-
lar domain Q7 = Qg there corresponds a unique point y(z) of the boundary nearest to x:
T(z,v(x)) = 7(x). The pair (y(x),7(x)) =:i(x) is called the semigeodesic coordinates of the
point x with the base I', and the set

oT .=i(nT) (4.2)
is said to be the pattern of the subdomain Q7.

Agreement 4.1 (about the notation). (1) The point of the reqular domain with geodesic
coordinates (v, ) is denoted by x(v,T);

(2) if ¢ is a scalar or vector-valued function on QT then we denote by the same sym-
bol ¢ the function p o i~t defined on ©T (so that p(v,7) = @(z(v,7))); if ¥ is
given on OT, then by the same symbol 1) we denote the function ¥ oi on QT (so
that (x) == ¢(v(x), 7(x)));

(3) the writing o(x) = ¥(vy,7) implies two relations: @(x(y,7)) = ¥(y,7) on ©T and
o(2) = Y1 (@), 7(x)) in O

Take x € QT and choose local coordinates 7', 72 in a neighborhood o C T of the point ().
The functions Y*(+) :=*(y(+)), a« = 1,2; 7 = 7(-) form a system of semigeodesic coordinates
on the following set (tube) containing x:

Bl = {2 cQl|y(2)) €0, 0<7(a)) <T}. (4.3)
In a system of semigeodesic coordinates, the Euclidean elements of length and volume have
the known form?
J
|dz|? = gapdy®dy’ + Pdr?; dx = cJdy'dy*dr = cdT"dr = ¢ [ drdr, (4.4)
0
where J(v,7) == (det{gag})é, Jo(v,7) := J(7,0), dI'" and dI" are Euclidean surface elements

on I'" and I". The length element of the fast metric in the semigeodesic coordinates has the
form

ds? = hagdy®dy® + dr?; (4.5)
comparing (4.4) and (4.5) and taking (4.1) into account, we obtain
1
hag = 02 gaﬁ . (46)

4Henceforth summation is implied over the repeating indices «a, § = 1, 2.
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4.2. Recovery of the velocity from the tensor h. Here we prepare one of the fragments
of the procedure solving the inverse problem. Let T' < T"°¢. By this assumption, the pattern
(4.2) of the subdomain Q7 is ©7 =T x [0,T). The mapping i : QT — O induces on the
pattern two metrics (two tensors) g and h such that i1 is the isometry (07, g) on QT with the
Euclidean metric and the isometry (©7,h) on QT with the fast metric. By (4.1), the metrics
g and h are conformally equivalent: h = ¢~2g. Assume that we know the velocity ¢ = c(v,7)
on ©T. The following statement is valid (see [8]).

Theorem 4.1. The velocity ¢ = c(v,7) on the pattern ©F =T x [0,T) uniquely determines
the velocity c(x) in QF.

Proof. The velocity ¢ = ¢(v,7) on the pattern ©7 uniquely determines the tensor h on O7,
which enables one to find the Euclidean metric: g = c?h.

The tensor g determines the correspondence i~ ': ©T — QT Indeed, let z!, 22, 23 be
Carlesian coordinates in Q7. Since they are harmonic, we have

Agm‘k =0 on OF (4.7)

(A4 is the Laplacian in the g metric). Since z* and aaxj are known on I', the elliptic equa-
tion (4.7) determines the functions z* = z*(y,7) on ©T uniquely. The correspondence i~ is
the mapping (y,7) — @(v,7) = {z'(7,7),2%(7,7), 2% (7, 7)}.

The velocity in Q7 is restored in accordance with the formula

1/2

3 2
Oxk (v, 1) T
c(;v)—lz< P , xet,
k=1
(see Agreement 4.1). The theorem is proved. O

4.3. Representation of fields. In the regular domain, the eikonal is smooth; it determines
the field of Euclidean normals to the surfaces I'" :

Vr(x)
v(z) = ,
V7 ()]
Note that v|r is the internal normal to the boundary.
Any vector field y in Q7 can be represented in the form

reQl, 0<T <Tr8.

Yy=%Y% + Y,

where y, := (y - v)v and yp := y — y,, are the longitudinal and transverse components of y.
Let » = r(x) be the radius vector of the point z = z(v,7); 7',7%, 7 are semigeodesic
coordinates in the tube BI (see (4.3)) containing z; for a = 1,2 we denote

S or — or
a (9")/0" 0-= or’

the vectors 1 and r9 are tangent and the vector rq is normal to the surface I'". The field y in
the tube can be represented in the form

y=4"a+y"r0=1yo+y"ro.
Agreement 4.2. We shall use the matriz representation, identifying y = y°ro + yg with the

0
column <y ) .
Yo

401



0

We say that a field v is longitudinal if v = v"r( (i.e., v9 = 0). We recall known relations for

the Euclidean metric tensor:

Gap = Ta " T3; goo =70 To = . (4'8)

4.4. Parallel translation. Below we shall use the parallel translation in the metric (4.1).
Let Bl be a tube covered by the system ~v',~2 7 of semigeodesic coordinates; assume that
v(z) = v°(2)ro(z) be the vector at a point © € BI orthogonal to the surface I™(*). Denote
00 :=v%(z); the vector

[v(2)]" := v'ro(y(2))

is the result of parallel translation of the initial vector v(z) from the point € T7(*) to the
point y(z) € I' along the geodesic of the fast metric; obviously, it is orthogonal to I

The fast and Euclidean metrics are conformally equivalent; the scalar product in the fast
metric is invariant relative to the parallel translation. From the above it follows that for any
two longitudinal vectors u and v, the relation

CQ(x)u(x) -v() = [u(m)]/\ ’ [U(l‘)]/\ (4.9)

is valid.

4.5. The mapping 7. Let T < T, and let v be a longitudinal field in Q7. We associate
with it a field on the pattern ©7 i.e., a function of (7,7) the values of which are vectors
orthogonal to the surface I', in accordance with the rule

(Fv)(77 T) = ['U(.’L‘(’y, T))]/\7 (’Y, 7') corl.

The following properties of the mapping 7w are easy consequences of the definition:
(1) let ¢ be a scalar function in Qf. We denote by the same symbol the operation of
multiplication of fields by . The relation

T = QT (4.10)

is valid (here Agreement 4.1 is implied).
(2) Denote co(7,7) := ¢(7,0). As is easily seen from (4.9), the mapping v — [7v is a
pointwise isometry in the sense of the Euclidean norm:

() n

(3) Let £ be the covariant derivative (in the fast metric). On smooth fields we have the
relation

= |o(a(y,7))l,  (v,7) €O (4.11)

T=7 . (4.12)
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4.6. The operator II17. The field v := 7 is defined in QT (T < T"°8). It determines the

= V7]
decomposition
HT =H[Q =% o 2T,
in which
L ={we LR |w-v=0 in QT}, (4.13)
LT = {we Ly QR Joxv=0 in Q} (4.14)

are subspaces of transverse and longitudinal (with respect to v) fields.
On the pattern ©F =T x [0,T) we consider the Hilbert space of fields normal to I':

FIL={fe LiET;R®) | fxvyg=0 on ©T} (4.15)
(with measure dI'd7), where vy(v,7) := v(7,0). Recall the notation
JO(’Ya T) = '](77 0)7 CO(’Ya T) = 0(77 O)

and define a function x = k(v,7) on ©7:

c J
= . 4.16
" Co \/c Jo (4.16)

Introduce the operator 17 : £ — FI'

7y := krw. (4.17)

Lemma 4.1. The operator I possesses the following properties:
(1) TI" is unitary;
(2) for bounded scalar functions x, the relation IITx = xIIT holds;
(3) the operator 1T retains smoothness:

N7z no>~ QT = FL no>(eT).

Proof. All the functions that occur in the right-hand side of the definition of x are smooth and
positive on O For arbitrary u,v € £ we have

(u,v) gr = /u'vdaz (L /u(m(’y, 7)) - v(z(y,7)) <cjo>(fy,7') dl dr
or or

(w9 @l (Sru) e (Sav) un (e ) Gumyaras

(4.17) (HT% HTU) s

i.e., II” is an isometry. It is easy to see that Ran II” = F!. Property (2) follows from the
definitions and (4.10); property (3) is an easy consequence of the fact that the mapping i is a
diffeomorphism. The lemma is proved. 0

4.7. Projection in the space of potential fields. In the space of potential fields (2.4)
G={heH|h=Vep, peW;(Q), plr =0},
we separate out a chain of subspaces
gézz{heg‘supphCQﬁ}, 0<ELST;
we mention some properties of their elements (see [2]).
Proposition 4.1. Let T < T*%8, and let £ € (0,T) be fized.
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(1) The trace h|pe-o of a field h € G& smooth in QS is a field normal to T'S.
(2) Any smooth normal field on T is the trace of a field from G& smooth in QS.

Denote by Q¢ the projection in G onto G¢ (T < T*®). One can show that the family {Q¢}
is continuous:
s QT =Qf 0<e<sT; Q" =0gr; Q" =Igr.
T

Let T < T8, We describe a representation for ng GT — G¢. Choose a smooth field
h=hg+h, =Ve= (V) + gfl/ € G, fix ¢ € (0,T), and consider the problem

Ar =0 in QF, (4.18)
(Vr)o =hg = (V)a in I¢, / g; dré =0, (4.19)
T¢é
r=20 on T (4.20)
The first condition in (4.19) is equivalent to the relation
r = ¢ + const on T (4.21)

The second condition enables one to find the constant in (4.21) uniquely. This implies that
problem (4.18)—(4.20) is solvable in a unique way; its solution r = r¢(x) is a function smooth
in QF.

Lemma 4.2. For any smooth field h € GT, the following representation holds:

h—Vrt in Qf
$h= ’ 4.22
@ {0 in QT\QE, (4.22)
here r¢ is the solution of problem (4.18)—(4.20).

Proof. Let
e h—Vré in QF,
0 in QT\Q¢.
Denote hi = h — h%, so that
h=hs +hs. (4.23)
We mention the following properties of h¢:
(1) i =h—Vré =V — Vrt = V(e —7r¢) in QF;
(4.19)
(2) hg‘pg—o = (h - vr&)@‘pg—o = h@‘pg—o - (vrg)O‘Fﬁ—o ="0;
(3) hylp = (h— Vré)e|, = 0.
Properties (1)—(3) imply the inclusion k¢ € G¢.
Next, for any w € G¢ N C™(Q€; R3) that can be represented in the form w = Vi) : wp =0,
w‘ré = 0, we have

(hi,w)H:/Vrg-wdx = /V?“g'V’QZJdZL‘
9 Q¢

= /(Vrﬁ)vw dr + /(Vrg)”qp dré — /Afr’gw da (4.18);(4.19) 0.

T IN3 Q¢

Thus, (hi, w)y = 0 and, since the smooth w’s in G¢ are dense, we get hi eglegt e, in
(4.23) all terms are orthogonal. The lemma is proved. O
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We note an important fact: generally speaking, the field Q¢ h is discontinuous on I'é, and
the discontinuity Q¢ h‘rg,o is a field normal to T'¢:

QS hlpeo U2 (ho + by — (VP9 — (Vi) e 2 (hy — (V1)) e (424)

4.8. The Calderén operator. We fix £ : 0 < £ < T < T8 and introduce the operator
AS: Ly(T¢) — Lo(T¢), Dom A = C°°(T¢), acting by the rule

0
Atg= 85 o
where ¢ is a solution of the problem
Ag=0 in QF,
q=g onl%,
q=0 onI.

This is the known Calderdén operator. We cite some of its properties (see [8]):
(1) there is an estimate for the norm: [|(A%)7!|| < C¢, 0 < € < T'; moreover, we define

A= 0. (4.25)
(2) The operator A¢ is self-adjoint:
/ ASpp dT¢ = / @ASe) dTe, (4.26)
re ré

and for £ > 0 it is positive,
(Aggag)Lg(Ff) > 07 g 7& 07

and thus injective.
(3) The operator A¢ retains smoothness: AS C®(I'¢) = C®(I'¢), £ > 0.
(4) The following estimate is valid:

1A gl rey < CEllgllirrey, 0<EST (4.27)

(HY(...):=WJ}(...) is the Sobolev class).
(5) Af is an elliptic pseudodifferential operator of the first order with the principal symbol
|k|g (see [18]), where

g == (g™ (7" 7%, ) kakp) /s (4.28)
here k1 and ko are variables dual to the variables 4! and 72; v = (y',~4?) € I.

4.9. The operator A. We fix T' < T"® and mention the representation

0T = U Ts.

0<E<T

In the space of scalar functions Ly(Q27) we define an operator A, Dom A = C*(QT), acting in
layers (in accordance with the representation) by the rule

(ASD)‘Fé = Ag[@‘p&]a 0<¢<T.

We cite some of its properties:
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(1) the operator A is unbounded and injective; it is not local, i.e., it does not preserve the
support of a function in Q7. At the same time, the inclusion supp ¢ € 95"\95, implies
the inclusion supp Ap € QE"\Q¢ (0< ¢ <¢" <T);

(2) using the smooth character of the dependence of AS on ¢ and the property (3) in
Sec. 4.8, one can prove that

AC®(QT) Cc O (QT);
(3) by (4.25), for smooth ¢ we have
(Ago)‘r =0.

Lemma 4.3.
A = cAc. (4.29)

Proof. For any smooth ¢ and 1, we have

(Ap, ) L, @m) /Agm/;dm—/dT/cA W dl7

T
/dT/gpAT c))dl'™ = /dT/ cgpiAT(chJ) arm
0 T

= /QO cAC'lb dZE = (@7 cAcw)LQ(QT) = (QO, A*'l/})LQ(QT)'
Qr
The lemma is proved. O

4.10. N7'-transformation. In the description of the operators introduced below, we use
semigeodesic coordinates (assume that 7' < T78). Recall that Eg is the space of transverse
vector fields (4.13). We express the gradient and divergence in semigeodesic coordinates:

o) = [(o#2 25 Jra+ (457 o] e (4:30)

@i =| L2, onen) ) (431
1

where {g®%} is the matrix inverse to {9ap}, ¢%° = 23 Y =Yra + yrg. We define

(cJy®) +

e the transverse gradient Vy: Ly(QT) — LI acting on the functions smooth in Q7 by the rule

(Vop)(z) = [(9”5 5;2)7'4(% 7);

e the transverse divergence divg: L} — Lo(QT) that acts on the smooth transverse fields
v = vr, by the rule

(iva)a) = | L o2 (30 o).

We emphasize their layerwise character: the relations cp‘rg =0, v‘ré = 0 imply (VG‘P)|F§ =0
and (divg v){r6 = 0. The following relation is valid:

(V%Oa U)[,g = - (907 divg U)LQ(QT) ) (432)
which is easily derived by integration by parts in layers.
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We restrict the transverse divergence to the set of smooth potential fields projected onto
the subspace .,%T; for this operator we keep the same notation divy.

Also we consider the operator div,': Lo(Q7) — L7, which acts (in layers) on functions
smooth in Q7 and is connected with the transverse divergence:

divgodiv, ' = Id,

where Id is the identity operator in Ly(Q7).
The family of projections {Q¢} introduced in Sec. 4.7 defines an operator N7 : GT — £T;

Dom NT = GT' nC>(QT;R?) in accordance with the rule
NTh=Q%|c s onTS 0<E<T <T

Thus, the image NTh is composed of the discontinuities that arise on the surfaces I'* when
projecting h to Gt.
By (4.24), for h = hg + h, we have a layerwise representation

3
/\fTh:h,,—(Vrg),,:h,,—<ar >V on I'¢,
al/ ré

0<&<T < T8,

(4.33)

With the family of problems (4.18)—(4.20) we associate the operator V! : £ — Lo(Q7) acting
on the transverse components hg of smooth field h € G* by the rule

V;lhg = r¢ onTI¥, 0<ELT,

as is easily seen, nge_l = idy (idg is the identity operator in D%T). Using the operator A, we
can write the representation (4.33) in the form

NTh =h, — (AV, hg) v. (4.34)
Proposition 4.2. The transformation N is an isometry of G onto L.

This fact was established in [2].
Recall the Weyl decomposition

H =J" e g"; (4.35)
let PZ is the projection in H* = H[Q”] onto GT.

Lemma 4.4. The adjoint operator (NT)* is well defined on smooth longitudinal fields v € LT
and admits the representation

Ny o =PE (v+divy! [eHAcv”]), (4.36)
where V¥ = v - v.

Proof. For smooth h = hg+ h, € GT and v € .L”VT, we have

4.34 — *\—1 A%, v
W 0) g "2V (hy = (MY, ho)v,0) g1 = (T, 0) g — (ha, (V) A0 )y

LD, 0) g+ (g, divg e Aev®]) g

= (hg + hy,v 4+ divg [ Acv”))yr = (h, 735 (v+ dive_l[c_lAcv”]))gT .
The lemma, is proved. U
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4.11. The operator Vi div. We return to the acoustic subsystem ag and apply the operator
V to both sides of relations (3.11)—(3.13). Denoting h := V¢, we obtain the system

hy = Ve2divh in Q7, (4.37)
h|t:0 = ht|t:0 =0 in Q, (4.38)
h=f on X1, (4.39)

a. dp”
ot =504 - (3557 - ().
On the fields of the class H?(2) we introduce the operator
L :=Vec? div, (4.40)
determining the evolution of system (4.37)—(4.39).

Lemma 4.5. In the subdomain QT covered by the system of pseudogeodesic coordinates, for a
smooth field y = y°ry + yo we have the representation’

(Ly)° 012 8‘97 g [gchO + ¢J divyg yg}
Vo § [687 cJy° + cJ divg yp)

Proof. Using the expressions (4.30) and (4.31) of the gradient and the divergence in the semi-

geodesic coordinates and taking into account the fact that %0 = 612, we obtain

0 1 0
Vo= g00 S01"0 + Vo 2 divy = 2 chO + divgyg ) ;
or cJ Ot
10 Jy +c*d
Ly (44 )Vc divy = (JaTc Y ¢ lVeye) + Vo ¢9 ch0+c2diV9y9 .
c2 or Jor
The lemma, is proved. U

4.12. The operator N7 (Vs div)(NT)*. By (4.34) and (4.36), for any smooth h € GT and

ve Ll we get v /\/’T< > < 1AV ><h0> (4.42)
ho ) '

(N o = (NT)* < ) <le9 [”_OlAC%OO (4.43)

(we used the fact that v = |:g| = lrg and v¥ = 10rg| = ).
Let w be an arbitrary smooth field in Q7. By the Weyl decomposition (4.35), we get
w = Piw + Phw, (4.44)
where PgT is the projection in H' onto GT and 77?} is the projection in H” onto J7'; we note
that the projection PgT maintains the smoothness:
PEC>(QT;R?) € T N C™(QT;R?)
(see [11]). On smooth fields, we have
LPE = L. (4.45)
Indeed,
EPgw (420 Ve div Pgw A g2 div(w — Pgw) 2 L.
SHenceforth, we use Agreement 4.2 about the matrix notation.
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0

Lemma 4.6. On smooth fields v = <U ) € LT the following representation is valid:

0
1 8 1 cC 8
T\ * B N o
./\/'T (N ) TO_ <C287- CA> J<8TCJ+JAC>’U Q. (446)
Proof.
* (4 43) T (4£5) UO
o < > ﬁpg <dw9 HemtAe? UO]> - <dive_1[c_1A02 v0]>
(4.41) cl2 867 § [aTCJv + ¢J divg divg™ 1[ —1Ae2 UOH
VoS [ 2 e + cJ divg divg e~ Ac? Y]]
c2orJ [887—CJ + JACQ] Y
Vo§ [gred +IAC]
J + JAc ]
« (VO (4.42) sdelfe
NTLNT) <0> 4
Vo § aTcJ + JAP] o0
= (01287_ (88 J—I—JAC
= g |
The lemma, is proved. .

4.13. Images. The operators II” and AT are unitary; their composition
T = NT (4.47)

is a unitary operator from G1 onto F! (0 < T < T*®). We call ZT the image operator;
h =TI7Th is called the image of the field h; the image is the field on the pattern ©7 normal to
I'. The operator Z© will play an important role in the inverse problem.

Let

T :={g€ Ly(T,R?) | g x v =0}

be the space of normal fields on T' (v is an external normal to I'). The space . (4.15) can be
regarded as a space of 7-valued functions of the variable 7 € [0, T:

F) = Ly([0,T); T); (4.48)
A family of projections that are cut-off functions acts in it:

(XEP)(r) = {(ff”’ S
(0<E<T).
Lemma 4.7. The following relation is valid:
77Q = X417, (4.49)
Proof. In the space of longitudinal fields .Z | we separate out an expanding family of subspaces
L5 ={ve LT |suppv C QE}, 0<EST < T8,
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by Y& we denote the projection in .2/ onto ,,2”5; its action is reduced to cutting off a field to
the subdomain ©¢. One can show [2] that

NTQS =YNT, 0<e<T < T8,

Now, relation (4.49) is a consequence of this relation and the definitions of the operators
I =TTNT and IT (see (4.17)). The lemma is proved. O

In addition, we note that by property (3) of Lemma 4.1, the correspondence “field-image”
preserves smoothness:
76T nC>(QT)]) = FL nCc>(e7);
moreover, the relation
(ITh)|T:0 = KOhuh" (4.50)
with ko := k|r = y/co holds; it is a consequence of the relation®

_ —0
and the definition of the operator II7.

We define an operator £r. gt — QT, Dom £T = g7 n C>(QT), which acts on smooth
potential fields h by the rule
LTh == L£h = VA divh.

The transformation Z7 induces in F. the operator
£l = a@" et (z")* (4.51)
with the domain of definition Dom £7 = FINC>=(OT). For the inverse problem, of importance

is the representation of LT that is described below.
We say that an operator S: FI — FI is a layer operator if it is determined by a family of
operators S(7): T — T(0 < 7 < T) and acts in accordance with the rule”

(Sf)(r) =5(r)f(7), 7 €[0,T].
Next, let ¢ C T be a neighborhood covered by local coordinates v!, 42; let 7y be a base field
in o x [0,7] € ©T that does not depend on 7 and is defined by the relation

?0(77 T) =70 (77 O)a
a field f € FI is representable on o x [0,7] in the form f = fO7.

Theorem 4.2. For 0 < T < T8, for a smooth normal field f = f°Tg on o x [0,T)] the
following representation is valid:

L' = ((aafz —07\2) ! 0) +5f, (4.52)

~ J c _
where A = 7I‘\/ Ac \/J 7Y and S is a layer pseudodifferential operator on the pattern ©7
c

of order not exceeding 1.

Before proving the theorem, we state several lemmas. We recall that an operator K in
Lo(Q7) is said to be a layer operator if it acts by the rule

(Kgp)‘rﬁ = K(f)[‘p‘pé]v 0<E<T,
where the K (£) are operators in Lo(T'¢).

61t follows from property (3): see Sec. 4.9.
"Here, in view of the representation (4.48), f is meant as a 7-valued function of 7.

410



Lemma 4.8. For a function x smooth in QT the following representation is valid:
0 0
Ax—A =K 4.53
where K is a layer operator such that all of the K (&) are pseudodifferential operators of order 1.

Omitting the proof, we note that the representation (4.53) is justified with the help of
standard results of elliptic theory [17]. We also clarify that the operator K proves to be
pseudodifferential, because the Calderén operators determining A are the same: each A¢ is a
pseudodifferential operator of order 1 (for example, see [18]).

0

Lemma 4.9. For any smooth field v = <%> c LT,

? -
NTLENT ) v = <af2 B A2> L (4.54)
0

where A := A*c= _Ac® and S is a layer pseudodifferential operator of order not exceeding 1.

Proof. In the calculations given below, by ~ we denote the passages with removing the oper-
ators of lesser order.
T « 0. (a46) (1 0 1 c (0 2\ o
NTLTNTY* 0y = <c287'_cA 7 8TCJ+JAC VT
B < 10 co 10 1 ¢ o0

J A — A
0287'J87'C +c287'c ¢ c J@Tc

~ <1 0 20 1o A — 1Ac2 o - 1AcAc2> w97
c c

1
J — AcAc2> 07
c

2or or " cor or
o
~ < 4 + 1 [aACQ—Ac2 8} — 1AcAc2> Org
c

or?  c|or or
453) (02 1
( ~ ) <87’2 — cAcAc2> 07p.

Denoting A := ! Ac? and recalling that A* = iAc, we obtain (4.54). The lemma is proved. [

Now we are ready to complete the proof of Theorem 4.2. By definition (4.17), the operator
0t . £ — FI acts as follows:

7y = ko, (4.55)
where, by (4.16),
& J
= . 4.56
"o \/CJO (4.56)

Using the fact that I is unitary, we get
ZT (421) (IT)ET(IT)* (4é7) HTNTﬁT(N'T)*(HT)* (425) KWN/TﬁT(N/T)*W_llQ_l.

It remains to use Lemma 4.9. We have

~; 2 —
LT = kn <88 , — A2> el (1) S(Th)*. (4.57)
T
Since 62 = 887 on the longitudinal fields, relation (4.12) takes the form 887 T= (,?T . Therefore
82 I 82 . 82
R g o K =Hg oK~ gy (4.58)
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Next we denote

A2 = A2 1t 2 A2 L (4.59)

— _ B A 1
A:=7mrAr 1771 (426) 7ved A ! a1 é \/ Ac\/
Ved

Considering (4.58) and (4.59) and denoting S := (ZT)S(ZT)* in (4.57), we obtain (4.52)
(f = f0):

where

2
LTf = <8872 — A2> fO07 + Sf. (4.60)
It is easy to see that S is a layer pseudodifferential operator on the pattern of order not
exceeding 1. Theorem 4.2 is proved.

Note that A is a layer operator in which each AS, by (4.28), is a pseudodifferential operator
of the first order with principal symbol |k|,. Using this fact, as well as properties of principal
symbols under composition of operators and multiplication of them by functions, we conclude
that the result of Theorem 4.2 admits an invariant statement in terms of pseudodifferential
operators.

Theorem 4.3. The following representation is valid:
2

J 8872 + H, (4.61)
where H 1is a layer operator such that each
H(r): T -7, 0<7<T,
is a pseudodifferential operator of the second order with principal symbol
Symb gr(r) (7, k1, k2) = =2 (v, 7|k} 1dy = —[k]} Tdy; (4.62)

here ki1 and ko are variables dual to v* and v?; 1d is the identity operator on the cotangent
space TYT'; |k, = (hB (Y 42, Tk k) /2.

5. DYNAMICS

5.1. Forward problem. The control operator. We fix an arbitrary 7' > 0 and consider
the problem (4.37)—(4.38) with control h, on X7 (as shown in [3], hy is uniquely determined
by h, and the response operator RT on X7):

hi — Lh =0 in QT, (5.1)
h|t:0 = ht|t:0 =0 in Q, (52)
hy, = f on X7, (5.3)

here, £ := Vc2div, v is an external normal, h, = (h-v)v, f € FI' C F' is a control. Its
solution h = hf(x,t) can be regarded as a G”-valued function dependent on time.

In the dynamical system described by problem (5.1)—(5.3), the correspondence “input-state”
is realized by the control operator

W r7f = GT DomWT = FI nmT,
WIf =i (-, T). (5.4)
It admits closure, and for T < T*% it is injective: Ker WT = {0} (see [9]).
8We recall that T™ is the time of filling 2 with waves traveling from the boundary: see Sec. 2.1.
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5.2. Controllability. The set
GT .= RanWT c gT
is said to be reachable to the instant of time T
Proposition 5.1. For T' < T8, the relation
GT = g* (5.5)
is valid (closure in the metric of H).

It is derived similarly to relation (3.15).

From (5.5) it follows that any potential field in the subdomain Q7 can be approximated by
waves hf (+,7) in Ly-norm. In control theory, this property is referred to as an approzimate
controllability of system (5.1)—(5.3).

In the external space ., we consider a family of subspaces
FIC={feF | f(-)=0,0<t<T—¢}, 0<E<T, (5.6)

formed by delayed controls (.7-",?’0 = {O},}",,T”T = FI). The delay of a control leads to the
delay of the wave: since supph/(-,£) C Q¢ (0 < &€ < T) and system (5.1)~(5.3) is stationary

(the independence of £ from time), for f € FI¥ we have the inclusion supphf (-, T) C Q| i.e.,
h (-, T) C GE.
Consider an extending family of reachable sets

Gt = WIFELS c gt

The projections P¢ in GT on G¢ are called wave projections; the complementary projections
are

Pt =Tlgr — PS. (5.7)
The fact that the system is stationary and relation (5.5) imply the relation
Gt = G¢, (5.8)
which, in turn, yields
PC=@Qf Pi=Qf (0<¢{<T<T™®) (5.9)

(Q£ is the projection in G* onto GS: see Sec. 4.7).
Of course, both Q¢ and P¢ are determined by the behavior of the velocity ¢, but their
coincidence is a consequence of the controllability of the system.

5.3. Discontinuities in the forward problem. Considerations in this and the next sections
concern a known property of hyperbolic systems: discontinuous controls generate discontinuous
waves. The description of discontinuities of waves is the subject matter of geometric optics;
relevant formulas play a key role in the BC method.

We fix T:0<T < T8 and £ € (0,7); denote

, 0, t < 0;
0(t) =< 4 -
o t>0
(j=0,1,...;0%¢) is the Heaviside function). We set
6i(t) :== @/(t —s), s,teR.
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We take a normal field a € 7 N C>(T,R?) and consider system (5.1)—(5.3):

hi — Lh =0 in QT, (5.10)
h‘t:O = ht‘t:O =0 in Q, (511)
h, = 9%_5(1 on ©7, (5.12)

with a control of a special form:
f=fnt) =0t —(T —¢€))aly).

It is a delayed control: 9%_5(1 ¥ ’5, and it is discontinuous for ¢ = T — £. Since the velocity
of wave propagation is finite, we have

supp h¥7-c0 € {(z,) € QT [t > 7(w) + (T — &) };

the characteristic surface that confines the support

X = {(a 1) € QT [t = 7(2) + (T = &)}

proves to be the discontinuity surface of the solution
Wz, 7(x) + T — € +0) = A(@)[aly(2))]", (5.13)

where A := (Cgfo ) 2 is the amplitude factor, [a(vy(z))]" is the result of parallel translation (in
the fast metric) of the vector a from the point y(x) € T to the point z € QT along the geodesic
ly(a) (see [1]).

The description of discontinuities and the derivation of formulas of the type (5.13) are
substantially simplified in passing to images [8]. It can be shown that the operator Z! can
be extended by g7 to the set of solutions of problem (5.1)—(5.3); for this operator we keep
the same notation Z7. In accordance with the representation (4.48), we regard the image of
the wave h = Z7h as a T-valued function of the variable T € [0,T] dependent on time as a
parameter; by the representation ! = Ly((0,7);7), the controls are 7-valued functions of
time ¢ € [0, T]. Applying the operator Z* in problem (5.10)(5.12), taking into account relation
(4.50) and the representation (4.61), we obtain the system

hit — her — H(T)h = 0 (1,t) € (0,T) x (0,7), (5.14)
hli—o = hyl—o = 0 e (0,7), (5.15)
ylr—o = 09_ckoa. (5.16)

Acting in accordance with the ray method [1,19], we seek a solution of the system in the
form “anzatz + residual”:

N
h(rt) = > 0 (t — 7)A;(7) + dnia(7,t). (5.17)
j=0

The substitution of (5.17) in (5.14) leads to known transport equations for 7-valued “ampli-

0A;

2
or

5?2
—|:6T2+H(T):|Aj_120, 3=01,...;

A_1 := 0. Successively solving them with regard to the conditions Ay(0) = kga (see (5.16)),
A;(0)=0,5=1,2,..., we find
1 T
Ay(T) = koa, Ay(1) = 9 /[H(S)/ioa] ds....
0
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Restricting ourselves to the case N = 1, we obtain the representation
R “(1,t) = 6% ¢(t = T)Koa + 0% e(t—1) / s)koa] ds + da(T,t), (5.18)
0

and for the residual we have the estimate
‘d2 (Ta t)‘ < Ce%—ﬁ(t - T)a (T7 t) S [07 T] X [07 T]7 (519)

which can be derived in the same way as in the case of the wave equation [19,20]. From (5.18),
we can get the formula of geometric optics

-4 -0,T) = kow; (5.20)
d Eeg—éa(r, T) — koa B .
2 i €7 e = H(&)koa; (5.21)

formula (5.20) is in essence another form of relation (5.13).

~n0
Turning back to the initial definition of the image, the solution RIT-¢% can be interpreted
as a wave traveling across the pattern ©7; to the instant of time ¢ (¢t > T — £), it covers part
of the pattern

supp R'4=¢"(1) C T x [0.1 — (T ~ &)}
the representation (5.18) describes the shape of the wave in a neighborhood of its leading front
set T x{r=t— (T —¢)}.

5.4. The dual system. The system

wy — Lw =0 in Q7, (5.22)
Wl=r =0, Wi|t=1 =y in Q, (5.23)
w, =0 on ©7. (5.24)

is said to be dual to system (5.1)—(5.3); its solution w = w¥(x,t) possesses the following
properties:
(1) let y € GT N C§(NT;R?); in this case, the problem has a unique classical solution
w? € C%(QT; R?);
(2) for y € G, a solution w¥ € C([0,T];G") is well defined, and the map y — wY is
continuous in the respective norms;
(3) the hyperbolicity of Eq. (5.22) on potential fields leads to the known property of finite-
ness of the influence domain: the solution w¥ on the set {(z,t) € QT | 7(z) < t} is
determined by the values y|or (does not depend on the behavior of y in Q\ Q7).

Lemma 5.1. If f and y are such that the solutions hf and wY are smooth in QT, then the
duality relation

(W (-, T),y)g = (f, divw! v)zr. (5.25)
holds.

Proof. Integrating by part in the identity, we have
0= / [hg;(x,t) — V(¢ divh)| - w¥ du dt
QT
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T
:!{ [hf(az,t)-wy(x,t) —hf(z,t) - wy (x, t +O/hf cwi(z,t) dt}d

T
_//kwmﬂm#m—wﬂmmmwﬂmoﬂa
0o r

T
—!!%WW%ﬁwM@ﬁwﬁ

/T/ hf. Voe divw?](y,t) dl dt — /hfxT) w(z,T) dr.
0T

%/—/
y(z)
Thus,
/hf(az,T) cy(x)de = /(f - divwY v)(y,t) dL dt.
Q »T
The lemma, is proved. 0

The map O: y — » divw? v|syr is well defined on smooth y € GT'; the closability of the map
f — R/, property (2) of the solution of system (5.22)—(5.24), and relation (5.25) enable one
to extend it to a continuous map from G7 to FI. Denote O := O|gr. The following result
is derived from the same duality relation.

Proposition 5.2. The following relation is valid:
o = (wWh)".
The operator OT is called the observation operator.

5.5. The response operator R’. The correspondence “input-output” in system (5.1)—(5.3)
is realized by the response operator R' : .7-',? — .7:5, DomR” = .7-',? AMT,

RTf = <”dg”ﬁ>. (5.26)

It is simply connected with the response operator of the system of the Lamé type (see (3.8)):
for any f € FLAMT, RTf = RT(h/|sr) on 27 (see the remark at the beginning of Sec. 5.1).
The response operator is unbounded.

Consider system (5.1)-(5.3) with doubled final instant of time 27’; let R?” be the corre-
sponding response operator. Since the velocity of wave propagation is finite, this operator
depends on s = ¢ locally: R?" is determined by the values of » in Q7 and does not depend
on its behavior in Q\Q7.

Below, the operator R?*T will play the role of data of the inverse problem.

5.6. Discontinuities in the dual system. Let y € G7 be a smooth field; we choose & €
(0,T), T < T, and consider a system of the form (5.22)—(5.24):

wy — Lw =0 in Q7
W= =0, wilt=1 = Pfy in Q,
wy, =0 on X7
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(the projection Pf is defined by formula (5.7)). The action of the projection leads to the
appearance of a discontinuity in the Cauchy data on the equidistant curve I'é. Discontinuous

data initiate a discontinuous wave w?1¥. The discontinuity of the wave propagates (in the
reverse time) along the space-time rays forming the characteristic X7°¢, and for t =T — € it
interacts with the boundary. As a result, the trace observable on I

[% divwPiv V] ‘ET: OTPE?J

proves to be discontinuous for ¢ = T — &; our nearest aim is to describe this discontinuity.
We recall that the operator OT: g7 — F,/T is defined by the relation

W' f,y)gr = (f,0"y) £ (5.27)

Here it is convenient to us to regard OTPfy as a 7-valued function of time ¢ € [0,T]; the
product <((9TPfy)(t), a)T is defined for a € 7 and is square-summable with respect to t.

Proposition 5.3. The following inclusion holds:
supp OTPfy c 0, T —¢]. (5.28)
Indeed, for delayed controls f € FLE we have
(f, 0T Piy)er = W' f, Piy)gr = 0
(because WTFLS c GE), which is equivalent to (5.28).

Lemma 5.2. Fory € GT NC>(QT;R3) and a € TNC>(T,R3) the following relation is valid:

T—¢
Jim o [ ((O"Pia), dt = (i) a)r (5:29)
T-¢t—§

here, £ € (0,T) and §j = Iy is the image of the field y.

Proof. Take a small 6 > 0; consider a control 9%_5_5(1 € FI': supp 9%—5—55‘ C[T-¢-9,T).
By the location of supports (5.28), we have

T—¢

(OT Py, 09 ¢ sa)pr = / OTPjy )(t), )T dt. (5.30)
T ¢-6

Let Xi =1- Xi is the projection in F! cutting the elements to the interval [T' — &,T7]; by
(4.49), the relation Z'Q¢ = X¢Z" holds. Hence, using (5.9) (P = Q%), we derive that

7Pt = X577 (5.31)
By (5.18) and (5.19) for the image 797-¢-5% we have the representation
Br-e-s(7,T) = 0°(€ + 6 — 7)koa + dy (7, T) (5.32)

with the estimate
\dy (7, T)| < CO' (€ + 6 — 7). (5.33)
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Next, the following relations are valid:

5.27
(O" Py, 04 _c_sa)zy "2 (PLy. W' 105 __sal)gr

5.31 0 4
= (I" Py, T"WT 109 _¢_sa]) £ 20 (X§ G, W5 ( 7))
. (5.34)

"2 [oat dn )5 2 s 7€), 0)r + o)

3

(we have used the unitary property of the operator Z'). Combining (5.30) and (5.34), we get
(5.29). The lemma is proved. 0

In view of property (5.28), the result obtained can be interpreted as a description of the
discontinuity of the function (OTPfy)(t) for t =T — & We agree to write (5.29) in the form

(OTPSy)(T —€—0) = (ko ZTy)(€), 0<E<T, (5.35)

interpreting the limit in the sense of the lemma. By arguments of a dynamical nature, given
at the beginning of the section, relation (5.35) represents the image of a field as a collection
of discontinuities passed through the medium filling Q7 and detected on the boundary I'. We
call (5.35) the amplitude formula [5].

5.7. Connecting operator. The operator CT: FI' — FI'
e = (W wr,

is called the connecting operator of system (5.1)—(5.3). This name is explained by the fact that
for f, g € FI' we have

€T f,9)rr = W W g)gr = (W (1), W9 (-, T))gr, (5.36)

i.e., CT connects the scalar products of the external and internal spaces of the dynamical
system. This is a continuous operator nonnegative in F. .

It is important that the connecting operator can be calculated from the response operator.
Consider the operator of odd extension ST: Fl — F2T

f('at)¢ 0<t<Ty

(STH(t) = {—f(-,QT ), T <t<oT:

and the operator of integration J27: F2T — F2T
t
(T*T£)(t) = /f(-,s) ds, 0<t<2T.
0

Denote ML := FI' N MT and ML° .= {f € MT | STf € M2"}. We mention the inclusion
STMZ”O C Dom R?*T and the relation

(1) F)(H = FCH)—=f(2T—1), 0<t<2T,
Lemma 5.3. For fields of the class ML the following representation is valid:
1
¢t = Q(ST)*j2TR2TST. (5.37)
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The proof is quite similar to that given in [9]. As seen from (5.37), to find CT it is sufficient
to have the values of R?T only on STMLP

The operator CT enables one to find the images of waves, using the so-called wave bases.
In the subspace F.** C FI we choose a complete system of controls {ff} Lin{fjg} = F4 9,

(CTffaff)fVT = 0ij.

By property (5.8) and in view of (5.36), the corresponding system of waves forms an or-
thonormal basis in the subspace G¢.

Take f € MT; for the wave h'/ (-, T) = WT f we have the representation

PEWTf=WIf =% WL WT g WT £
J

(5 36) WTf Z CTf ff WTff (538)

Next, in the external space F we take an Ly-orthonormal basic {gx}. We have the relations
(OTPIWTf, gi) sz = (PIWT £, W gp)gr

5.38
C2D W E W g)gr — SCT L 1) OV W gi)gr

J

" Foge)rr =Y (CTF ) rr (CT 5 gk) Fr

J

(5.36)

They yield the relation

OTPIWT f =Y (0T PYW £, g1) 1 an
k

= Z (€ g1 = (CTF )7 (CT F5 90) r ¢ 9 (5.39)
J
In the amplitude formula (5.35), we set y = h = W' f:
(OTPER)(T — € = 0) = (O"PIWT F)(T =€ = 0) = (ko T"W" )(€) = roh? (€, 7).
Calculating the left-hand side of the relation
“HOTPIWT )T — € —0) = hF (£, T) (5.40)

with the help of the representation (5.39), we restore the image of the wave ht.

8. Recovery of the velocities. Assume that we possess the following data concerning
the Lamé type system (3 1)—(3.3); its response operator R?T is given for fixed T > 0 and the
functions Ca|r‘, o !F = p,s) are known. The inverse problem consists of recovery of the
velocities ¢s in Q1 and ¢, in QZ from these data. We give our main result.

Theorem 5.1. For any positive T < T8, the data of the inverse problem determine the

velocities colqr (v = p,s) in a unique way.
«@

9Lin is a linear span.
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Proof. To prove the theorem, it suffices to sum up the previous considerations. Using them,
we present a general plan of solving the inverse problem:

(1) the response operator R?” determines the response operator R?? of system (5.1)(5.3):
R f = RQT(hf‘zT) for any f € F2T' n M?T,

(2) Using R*T, we find the connecting operator CT of system (5.1)—(5.3) (Lemma 5.3).

(3) Making use of chosen a € 7 N C*®(I',R?) and ¢ € (0,T), we find

koh"1=5"(7,T) = (OT PTWT [6}_ca])(T — 7 — 0)
in accordance with (5.40).
(4) By (5.20), we have x = |a|_1|m0h99f—€a(£ —0,7)]. Thus, the function kg = Ko(y) is
determined.
(5) By (5.21), we find H(§)ko a; changing a and &, we restore the family of operators H (§),
0<¢&<T.
(6) In accordance with (4.62), the operators H(¢) determine the matrix {h%%(v,£)} and a

function ¢, (7, £) on the pattern ©F, from which the fast velocity ¢, () is uniquely determined
in the subdomain Q]:,F (Theorem 4.1).

The recovery of the slow velocity cs in QI from the response operator R3] of the Maxwell
subsystem (3.16)—(3.18), which is defined by the relation R2? f = R?T (p/ {ZT) on the controls

of the class M?” that are tangent to I, is conducted in [8]. Note that in this case, the main
space is H” and its subspace JT of solenoidal fields.

Steps (2)—(5) of our proof are in essence steps (i)—(vi) of paper [8]. Using the family of
operators H (), 0 < & < T, corresponding to the Maxwell subsystem, we first determine the
tensor {has} of the slow metric and only after that the velocity c;(v,£) on ©T. To this end
we consider the so-called Jamabé problem the solution of which is reduced to the solution of a
certain elliptic equation. For this equation to have a unique solution, it is necessary to know
also the values of ¢s and %‘;S on I' (Theorem 1.1 in [8]). Using cs(7,&) on ©F, we restore the
slow velocity cs(x) in Q1 (Theorem 4.1). The theorem is proved. O

The author is grateful to M. 1. Belishev for statement of the problem and for his help in the
work.

Translated by N. B. Lebedinskaya.
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