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THE DYNAMICAL INVERSE PROBLEM FOR A LAMÉ
TYPE SYSTEM (THE BC METHOD)

V. G. Fomenko∗ UDC 517.958, 517.956.32

In the paper, for a Lamé type system the inverse problem of recovering the fast and slow wave
velocities from the boundary dynamical data (the response operator) is solved. The velocities
are determined in a near-boundary domain, the depth of determination being proportional to the
observation time. The BC-method, which is an approach to inverse problems based on their
connections with boundary control theory, is used. Bibliography: 20 titles.

1. Introduction

About the paper. In [3], it was solved the inverse problem of restoring the velocities of fast
(p -) and slow (s -) waves in a model Lamé type system, using dynamical boundary data. The
approach was based on the division of boundary controls into two classes. The controls from
these classes initiate only p-waves or only s-waves, respectively. Such an approach cannot
be applied to the full Lamé system (with the variable density and lower terms), because the
division of controls is impossible in it.

Later on, in [10] it was suggested an approach that does not use the division of controls. This
approach, as such, is more perspective for the work with the full system, but the corresponding
inverse problem has not been solved as yet.

In the present paper, for a Lamé type system we suggest another approach based on the
ideas of paper [8], which also does not use the division of controls. We are pinning our hopes
for a progress in solving the problem for the full Lamé system on this paper.

Similarly to the previous ones, the new approach is a version of the boundary control method
(the BC method), making use of controllability properties of dynamical systems for solving
the inverse problems. For the Lamé system, these properties were established in [9].

The main result. We consider a dynamical Lamé type system in which there are wave modes
of two types (p-waves and s-waves) and the velocities of the modes cp and cs depend on the
point, but cp > cs everywhere. It is assumed that the density in the domain is constant (ρ = 1).

The main result of the paper is the recovery of the velocities cp and cs in a near-boundary
(regular) domain from the response operator, and the depth of determination is proportional
to the observation time.

2. Geometry

2.1. Metrics. Let Ω ⊂ R
3 be a bounded domain with smooth1 boundary Γ. In Ω, smooth

functions (velocities) cα = cα(x) (α = p, s) such that 0 < cs < cp are given. In Ω, they
determine conformally Euclidean metrics

ds2
α :=

|dx|2
c2
α

, (2.1)
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where |dx| is a Euclidean length element in R
3. By τα(x, y) we denote distances in these

metrics. The quantities T ∗
α := max

Ω
τα( · ,Γ) are called filling times.

For a subset A ⊂ Ω we define its metric neighborhoods

Ωr
α[A] :=

{
x ∈ Ω

∣∣ τα(x,A) < r
}

, r > 0,

and by Ωr
α := Ωr

α[Γ] we denote the neighborhoods of the boundary (the near-boundary lay-
ers of thickness r). From the relation for velocities it follows that τp(x, y) < τs(x, y) and
Ωr

s[A] ⊂ Ωr
p[A] for any x, y ∈ Ω (x �= y), A ⊂ Ω, and r > 0. The term “filling times” is

motivated by the relations T ∗
α = inf{r > 0

∣
∣ Ωr

α = Ω}.
For A ⊂ Ω we define the equidistant surfaces

Γr
α[A] :=

{
x ∈ Ω

∣
∣ τα(x,A) = r

}
, r > 0,

and denote by Γr
α := Γr

α[Γ] the equidistant curves of the boundary.

2.2. The regular domain. With a point x ∈ Ω we associate the sets γα(x) := {γ ∈ Γ
∣
∣

τα(x, γ) = τα(x,Γ)} of nearest points of the boundary. As is known, for r > 0 small enough,
for any x ∈ Ωr

α the sets γα(x) consist of a single point, and the system of semigeodesic (ray)
coordinates with the base Γ is regular in Ωr

α. Let T reg
α be the least upper bounds of those r

for which such regularity holds. The near-boundary layers ΩT reg
α are called regular domains of

the respective metrics.
We define T reg := min{T reg

p , T reg
s } and the common regular domain ΩT reg

:= ΩT reg

p . All
further considerations will be conducted in this common regular domain.

2.3. The influence domains. In the sequel, the variable t ≥ 0 plays the role of time. We
fix T > 0 and denote by

QT := Ω × (0, T ) , ΣT := Γ × [0, T ]

the space-time cylinder and its lateral area.
For a point (x0, t0) ∈ QT = Ω × [0, T ] we define the influence cones

KT
α [(x0, t0)] :=

{
(x, t) ∈ QT | τα(x, x0) ≤ t − t0

}
.

For B ⊂ QT , the subdomain

KT
α [B] :=

⋃

(x0,t0)∈B

KT
α [(x0, t0)]

is called the influence domain of the set B.
From the definitions it is seen that the cross-section t = ξ of the influence domain KT

α [ΣT ]
coincides with the ξ-neighborhood of the respective metric Γ in Ω:

{
x ∈ Ω | (x, ξ) ∈ KT

α [ΣT ]
}

= Ωξ
α , 0 < ξ ≤ T. (2.2)

2.4. Functions and fields. We consider the following sets of real number and vector (R3-
valued) functions. These latter are called fields.
The space H. The space of fields

H := L2(Ω; R3)

with scalar product

(y, v)H :=
∫

Ω

y(x) · v(x) dx,
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where “·” is the standard scalar product in R
3, plays the main role. For measurable A ⊂ Ω,

we define the subspace
H[A] :=

{
y ∈ H

∣
∣ supp y ⊂ A

}
.

In the space H we distinguish the subspaces
(1) of solenoidal fields

J := {y ∈ H | div y = 0 in Ω} (2.3)
(the operation div is meant in the sense of distributions); the set of smooth fields
J ∩ C∞(Ω; R3) is dense in J ;

(2) of potential fields

G := {h ∈ H | h = ∇ϕ, ϕ ∈ W 1
2 (Ω), ϕ|Γ = 0}; (2.4)

the set of smooth fields G ∩C∞(Ω; R3) is dense in G. The subspaces of J and G consisting of
fields localized in A are denoted by J [A] and G[A].

The following relation (Weyl decomposition) is valid:

H = J ⊕ G (2.5)

(for example, see [11,15,16]).
The space FT . Define the space FT := L2(ΣT ; R3) with scalar product

(f, g)FT :=
∫

ΣT

f(γ, t) · g(γ, t) dΓ dt,

where dΓ is the Euclidean area element on Γ. The class of smooth fields

MT :=
{
f ∈ C∞(ΣT ; R3) | suppf ⊂ Γ × (0, T ]

}

is dense in FT . Note that the fields from MT vanish near t = 0.
With a subset B ⊂ ΣT we associate the subspace

FT [B] :=
{
f ∈ FT | supp f ⊂ B

}
.

It involves the dense set of smooth fields MT [B] := MT ∩ FT [B].
A vector a ∈ R

3 at a point of the boundary is decomposed into the sum

a = aν + aθ = aν ν + aθ, (2.6)

where ν is the Euclidean external unit normal to Γ, aν = a · ν; aν and aθ are the normal and
tangential components. This decomposition will also be written as

a =
(

aν

aθ

)
. (2.7)

Consider the scalar and vector spaces

FT
p := L2(ΣT ), FT

s :=
{
f ∈ FT | (ν · f)|Γ = 0

}
.

Their subspaces FT
α [B] (α = p, s) consist of elements with supports in B; denote

MT
α [B] := MT ∩ FT

α [B], (2.8)

which are smooth functions and fields vanishing near t = 0.
In accordance with (2.7) we write

FT =
(
FT

p

FT
s

)
.
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3. A Lamé type system

3.1. An initial boundary value problem. Let Ω ⊂ R
3 be a bounded domain with smooth

boundary Γ. Fix T ∈ (0,∞), and denote κ := c2
p and μ := c2

s.
Consider the initial boundary value problem

utt = ∇κ div u − rotμ rot u in QT , (3.1)

u|t=0 = ut|t=0 = 0 in Ω, (3.2)

u = f on ΣT , (3.3)

with smooth variable coefficients μ = μ(x) > 0, κ = κ(x) > 0 in Ω. Note that κ = λ + 2μ
(λ and μ are standard Lamé coefficients). We call this system the a Lamé type system and
denote it by the symbol αT . Equation (3.1) is obtained from the full 2 Lamé equation, which
describes the wave propagation in an elastic medium, by retaining higher terms (with respect to
the order of differentiation); moreover, we assume that the density ρ = 1 in the domain (see [3]).
Note that the main properties of the full system (the regularity of solutions, controllability) [9]
remain valid for a Lamé type system [10].

An R
3-valued function f = f(γ, t) is called a (Dirichlet) boundary control. It describes

the displacements of the points of the boundary initiating a wave process in Ω. A solution
u = uf (x, t) (wave) is an R

3-valued function describing the displacements of the points of a
medium in Ω. For controls of the class MT , problem (3.1)–(3.3) has a unique classical smooth
solution uf .

The map f �→ uf from FT to L2((0, T ); L2(Ω; R3)) is continuous (see [9]). Consequently,
it can be extended from MT to controls in FT by continuity. By a (generalized) solution of
problem (3.1)–(3.3) for controls of this class we mean the image of f under this extension.

3.2. Finiteness of the influence domain. The functions

cp =
√

κ, cs =
√

μ

(0 < cs < cp) have the meaning of the velocities of longitudinal (fast) and transverse (slow)
waves. The velocities determine two conformally Euclidean metrics (2.1). Each of them
specifies its own distances, neighborhoods, geodesics, influence domains, and so on (see Sec. 2).

The equation of the Lamé type is hyperbolic and has two families of characteristics χα(x, t) =

const in QT determined by known equations
(

∂χα

∂t

)2
−c2

α |∇χα|2 = 0 (α = p, s.) Since problem
(3.1)–(3.3) is hyperbolic, we have the relation

suppuf ⊂ KT
p [supp f ] , (3.4)

which is referred to as the finiteness principle of the influence domain. It shows that the waves
in a Lamé type system propagate with velocity not exceeding the velocity of the fast mode cp.

Let f ∈ FT [ΣT ], i.e., the control f acts from Γ. In view of (2.2), relation (3.4) implies that

suppuf ( · , t) ⊂ Ωt
p, t > 0 . (3.5)

2The full Lamé equation in coordinate-free form is ρutt = ∇(λ + 2μ) div u − rot μ rot u +
2 {(∇μ,∇)u − div u∇μ + ∇μ × rot u} (see [14]).
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3.3. The system αT . Henceforth we regard problem (3.1)–(3.3) as a dynamical system and
endow it with attributes of control theory – spaces and operators.

The space of controls FT is called the external space of the system αT . A solution uf is
interpreted as a trajectory of the system, and uf ( · , t) is its state at the time t. The space H
is said to be internal. By the property of L2-regularity of solutions (see the end of Sec. 3.1),
all the waves uf ( · , t) are its elements.

By (3.5), the relation f ∈ FT [ΣT ] implies that uf ( · , t) ∈ H[Ωt
p] for all 0 < t ≤ T , i.e., the

trajectory uf of the system αT does not leave the subspace H[ΩT
p ].

3.4. The response operator. On the fields of the class H2(Ω) (henceforth Hk(. . . ) are
vector Sobolev classes), we introduce the operator

L := ∇κ div− rot μ rot,

which determines the evolution of the system αT . Integrating by parts, for smooth u and v
we get the relation (Green’s formula)

(
Lu, v

)
H−

(
u,Lv

)
H=

∫

Γ

[(
κ div u

μ rot u × ν

)
·
(

vν

vθ

)
−
(

uν

uθ

)
·
(

κ div v
μ rot v×ν

)]
dΓ

= (Nu,Dv)L2(Γ;R3) − (Du,Nv)L2(Γ;R3) ;

we have used the agreement about the representation (2.6)–(2.7) and have denoted

Du :=
(

uν

uθ

)
, Nu :=

(
κ div u

μ rotu × ν

)
on Γ. (3.6)

The “input–output” correspondence in the dynamical system αT is described by the response
operator RT : FT → FT , Dom RT = MT :

RT f := Nuf on ΣT , (3.7)

where N is the (Neumann) operator defined by the second formula in (3.6). The response op-
erator is well defined in view of the remark at the end of Sec. 3.1. Its action on a control vector

f =
(

f ν

fθ

)
, in accordance with the definition (3.7) and the agreement on the representation

(2.6)–(2.7), can be written in the form [3]:

RT f :=
(

κ div uf

μ rot uf × ν

)
on ΣT . (3.8)

Note that RT can be extracted from the measurements on the boundary Γ upon interaction
with it of the waves generated by the controls f (see [14]). The response operator is adequate
to the information that is available to the external observer who studies the dynamical system
using its mapping “input–output.”

3.5. The inverse problem. The statement of the dynamical inverse problem is as follows.
Using the response operator R2T given for fixed T > 0, it is required to find the velocities
of waves: cp in the domain ΩT

p and cs in the domain ΩT
s . This statement is adequate to the

finiteness property of the data influence domain (see [3, 5, 8]). The problem will be solved
under the additional assumption T < T reg, i.e., in the regular domain.
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3.6. Controllability. In the system αT , the set of states (waves)

U [ΣT ] := {uf ( · , T ) | f ∈ MT [ΣT ]}
is said to be reachable (from the boundary Γ in time t = T ). By (3.5), we have the embedding

U [ΣT ] ⊂ H[ΩT
p ], T > 0 . (3.9)

Properties of reachable sets and the character of embeddings of the type (3.9) are central
questions of boundary control theory. We mention here a result of this sort established in [9]
for the full Lamé equation3 with the use of the fundamental theorem on the uniqueness of the
extension of the solution across a noncharacteristic surface [13].

Let XT
s be an (orthogonal) projection in H onto H[ΩT

s ]. Its action is reduced to cutting off
the vector fields to the subdomain ΩT

s :

XT
s y =

{
y in ΩT

s ,

0 in Ω\ΩT
s .

The relation
XT

s U [ΣT ] = H[ΩT
s ] , T > 0, (3.10)

is valid (the closure is taken in the metric of H).
From (3.10) it follows that any vector field y ∈ L2

(
ΩT

s ; R3
)

localized in the subdomain
captured by the slow mode can be approximated (with any precision) by the wave uf ( · , T ) for
an appropriate choice of the control f ∈ MT [ΣT ]. In control theory this property is interpreted
as approximate boundary controllability of the system αT in the domain ΩT

s .
To the final instant of time t = T , the waves initiated by the controls f ∈ FT [ΣT ] fill the

domain ΩT
p containing the subdomain ΩT

s . Roughly speaking, relation (3.10) means that the
shape of the wave uf ( · , T ) in ΩT

s may be arbitrary. At the same time, this is certainly not
the case in the subdomain ΩT

p \ΩT
s (see [9, 10]).

3.7. The subsystem αT
p . In a Lamé type system, two subsystems, acoustic and Maxwell,

stand out naturally.
Consider the scalar initial boundary value problem

ϕtt = c2
p Δϕ in QT , (3.11)

ϕ|t=0 = ϕt|t=0 = 0 in Ω , (3.12)

ϕ = a on ΣT , (3.13)

where cp =
√

κ. For controls of the class MT
p (see (2.8)), it has a unique classical smooth

solution ϕ = ϕa(x, t). The correspondence a �→ ϕa is continuous from FT to L2 ((0, T );L2(Ω)),
which enables one to define solutions for a ∈ FT

p (see [5]).
The corresponding dynamical system is said to be acoustic and is denoted by αT

p . Its external
and internal spaces are FT

p and L2(Ω). Since the influence domain for the wave equation (3.11)
is finite, we have the relation

suppϕa ⊂ KT
p [suppa]

and its simple consequence

suppϕa( · , t) ⊂ Ωt
p, t > 0 .

3The result is also valid for a Lamé type system (see [3,10]).
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The acoustic system is approximately controllable from the boundary. We define the reach-
able sets

Φ[ΣT ] :=
{
ϕa( · , T )

∣
∣ a ∈ MT

p [ΣT ]
}

.

With the help of the Holmgren–John–Tataru theorem [4–6], the relation

Φ[ΣT ] = L2[ΩT
p ] (3.14)

can be proved (the closure in L2(Ω)), which is valid for all T > 0. We give a consequence of
the property (3.14), which will be used in the sequel. Denote

∇Φ[ΣT ] :=
{
∇ϕa( · , T )

∣
∣ a ∈ MT

p [ΣT ]
}

.

Let T < T reg; the following relation is valid (see [10]):

∇Φ[ΣT ] =
{
∇q
∣∣ q ∈ W 1

2 (Ω), supp q ⊂ ΩT
p , q|Γ = 0

}
(2.4)
= G[ΩT

p ] (3.15)

(the closure in H). It means the completeness of the gradients of waves in the space of potential
fields localized in ΩT

p .

3.8. The subsystem αT
s . Consider the vector initial boundary value problem

ψtt = −c2
s rot rot ψ in QT , (3.16)

ψ|t=0 = ψt|t=0 = 0 in Ω , (3.17)

ψ × ν = b on ΣT , (3.18)

where cs =
√

μ < cp , × is the vector product in R
3. For controls b ∈ MT

s (see (2.8)), it has
a unique classical smooth solution ψ = ψb(x, t). Note that the mapping b �→ ψb, defined on
the smooth class MT

s , is not continuous from FT
s to L2

(
(0, T );L2(Ω; R3)

)
(see [12]). But this

complication is of a technical nature, and in the sequel we shall be able to get by with smooth
controls and solutions.

The corresponding dynamical system is called Maxwell and is denoted by αT
s . Its external

space is FT
s . It is convenient to regard the space H as an internal one, but the following is

essential.
The quantity div ψb is the integral of the movement of the system αT

s , and, by the initial
conditions (3.17), we have div ψb( · , t) = 0 for all t ≥ 0. For this reason, the waves are
solenoidal fields and the trajectory of the system lies in the subspace J (see (2.3)).

Equation (3.16) is derived from the full system of Maxwell equations by removing one of the
components (the magnetic field). Since the influence domain for Maxwell equations is finite,
we have the relation

suppψb ⊂ KT
s [supp b]

and its consequence
suppψb( · , t) ⊂ Ωt

s, t > 0.

The system αT
s is approximately controllable from the boundary in the following sense. We

define the reachable sets

Ψ[ΣT ] :=
{

ψb( · , T )
∣∣ b ∈ MT

s [ΣT ]
}

and introduce the subspace

J [ΩT
s ] := {y ∈ J

∣∣ supp y ⊂ ΩT
s } .
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Using the uniqueness of the extension of the solution of Maxwell equations across a nonchar-
acteristic surface [13], one can obtain the relation

Ψ[ΣT ] = J [ΩT
s ] (3.19)

(the closure in H), which is valid for all T > 0 (see [6, Theorem 3]).
Now we give a consequence of the property (3.19), which will be used in the next section.

Denote

rotΨ[ΣT ] :=
{
rot ψb( · , T )

∣∣ b ∈ MT
s [ΣT ]

}
.

The following relations are valid:

rot Ψ[ΣT ] =
{
rot y

∣
∣ y ∈ W 1

2 (Ω; R3), suppy ⊂ ΩT
s

}
= J [ΩT

s ] . (3.20)

The first relation in (3.20) is derived with the help of (3.19) (see [10]), and the second one is
a consequence of the density of the rotors of smooth fields in J [ΩT

s ] (see [16]).
Thus we have (see (3.19) and (3.20)):

Ψ[ΣT ] = rot Ψ[ΣT ] = J [ΩT
s ] . (3.21)

3.9. The relationship between the trajectories. In system (3.1)–(3.3), we choose a con-
trol f ∈ MT and set

att :=
[
κ div uf

]∣∣
ΣT ∈ MT

p , btt :=
[
μ (rot uf )θ × ν

]∣∣
ΣT ∈ MT

s .

As shown in [3], the following representation is valid:

uf = ∇ϕa + rot ψb in QT ; (3.22)

it relates the trajectories of the system αT and its subsystems αT
p and αT

s . It means that the
waves in a Lamé type system split into potential and solenoidal components.

On the other hand, for arbitrary a ∈ MT
p and b ∈ MT

s the fields ∇ϕa = uf ′
and rotψb = uf ′′

are trajectories of the system αT that correspond to the controls

f ′ =
(

ν · ∇ϕa

(∇ϕa)θ

)
, f ′′ =

(
ν · rot ψb

(rot ψb)θ

)
,

and thus ∇ϕa + rotψb = uf ′
+ uf ′′

= uf ′+f ′′
. These relations and (3.22) imply that the

following representation in algebraic sum form is valid:

U [ΣT ] = ∇Φ[ΣT ] + rotΨ[ΣT ] .

Using (3.15) and (3.21) and passing to the closures, one can easily obtain

U [ΣT ] = G[ΩT
p ] + J [ΩT

s ] . (3.23)

Note that the terms in this sum have a nonzero intersection.
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4. The acoustic subsystem

In Sec. 4, we consider the objects (velocity, eikonal, geodesics, normals, divergences, wave
fronts) that are related only to the fast metric

ds2
p =

|dx|2
c2
p

(4.1)

and, simplifying the notation, we omit the subscript “p” in all quantities. Thus, we shall
denote the fast velocity by c := cp, the distance between the points x and y of the domain
by τ(x, y) := τp(x, y), the eikonal by τ(x) := τp(x,Γ), the equidistant curves of the boundary
by Γr := Γr

p, and so on. Note that dynamically the eikonal τ(x) at a point x is equal to the
time of traveling the fast waves from the boundary Γ to this point, and its level surfaces Γτ

correspond to wave front sets.

4.1. Semigeodesic coordinates. We fix T : 0 < T < T reg. To each point x of the regu-
lar domain ΩT := ΩT

p there corresponds a unique point γ(x) of the boundary nearest to x:
τ(x, γ(x)) = τ(x). The pair (γ(x), τ(x)) =: i(x) is called the semigeodesic coordinates of the
point x with the base Γ, and the set

ΘT := i(ΩT ) (4.2)

is said to be the pattern of the subdomain ΩT .

Agreement 4.1 (about the notation). (1) The point of the regular domain with geodesic
coordinates (γ, τ) is denoted by x(γ, τ);

(2) if ϕ is a scalar or vector-valued function on ΩT , then we denote by the same sym-
bol ϕ the function ϕ ◦ i−1 defined on ΘT (so that ϕ(γ, τ) := ϕ(x(γ, τ))); if ψ is
given on ΘT , then by the same symbol ψ we denote the function ψ ◦ i on ΩT (so
that ψ(x) := ψ(γ(x), τ(x)));

(3) the writing ϕ(x) = ψ(γ, τ) implies two relations: ϕ(x(γ, τ)) = ψ(γ, τ) on ΘT and
ϕ(x) = ψ(γ(x), τ(x)) in ΩT .

Take x ∈ ΩT and choose local coordinates γ̃1, γ̃2 in a neighborhood σ ⊂ Γ of the point γ(x).
The functions γ̃α(·) := γ̃α(γ(·)), α = 1, 2; τ = τ(·) form a system of semigeodesic coordinates
on the following set (tube) containing x:

BT
σ := {x′ ∈ ΩT | γ(x′) ∈ σ, 0 ≤ τ(x′) < T}. (4.3)

In a system of semigeodesic coordinates, the Euclidean elements of length and volume have
the known form4

|dx|2 = gαβdγαdγβ + c2dτ2; dx = cJdγ1dγ2dτ = cdΓτdτ = c
J

J0
dΓdτ, (4.4)

where J(γ, τ) := (det{gαβ})
1
2 , J0(γ, τ) := J(γ, 0), dΓτ and dΓ are Euclidean surface elements

on Γτ and Γ. The length element of the fast metric in the semigeodesic coordinates has the
form

ds2 = hαβdγαdγβ + dτ2 ; (4.5)
comparing (4.4) and (4.5) and taking (4.1) into account, we obtain

hαβ =
1
c2

gαβ . (4.6)

4Henceforth summation is implied over the repeating indices α, β = 1, 2.
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4.2. Recovery of the velocity from the tensor h. Here we prepare one of the fragments
of the procedure solving the inverse problem. Let T < T reg. By this assumption, the pattern
(4.2) of the subdomain ΩT is ΘT = Γ × [0, T ). The mapping i : ΩT → ΘT induces on the
pattern two metrics (two tensors) g and h such that i−1 is the isometry (ΘT , g) on ΩT with the
Euclidean metric and the isometry (ΘT , h) on ΩT with the fast metric. By (4.1), the metrics
g and h are conformally equivalent: h = c−2g. Assume that we know the velocity c = c(γ, τ)
on ΘT . The following statement is valid (see [8]).

Theorem 4.1. The velocity c = c(γ, τ) on the pattern ΘT = Γ × [0, T ) uniquely determines
the velocity c(x) in ΩT .

Proof. The velocity c = c(γ, τ) on the pattern ΘT uniquely determines the tensor h on ΘT ,
which enables one to find the Euclidean metric: g = c2h.

The tensor g determines the correspondence i−1 : ΘT → ΩT . Indeed, let x1, x2, x3 be
Carlesian coordinates in ΩT . Since they are harmonic, we have

Δgx
k = 0 on ΘT (4.7)

(Δg is the Laplacian in the g metric). Since xk and ∂xk

∂τ are known on Γ, the elliptic equa-
tion (4.7) determines the functions xk = xk(γ, τ) on ΘT uniquely. The correspondence i−1 is
the mapping (γ, τ) → x(γ, τ) = {x1(γ, τ), x2(γ, τ), x3(γ, τ)}.

The velocity in ΩT is restored in accordance with the formula

c(x) =

[
3∑

k=1

(
∂xk(γ, τ)

∂τ

)2
]1/2

, x ∈ ΩT ,

(see Agreement 4.1). The theorem is proved. �

4.3. Representation of fields. In the regular domain, the eikonal is smooth; it determines
the field of Euclidean normals to the surfaces Γτ :

ν(x) :=
∇τ(x)
|∇τ(x)| , x ∈ ΩT , 0 < T < T reg.

Note that ν|Γ is the internal normal to the boundary.
Any vector field y in ΩT can be represented in the form

y = yθ + yν ,

where yν := (y · ν)ν and yθ := y − yν are the longitudinal and transverse components of y.
Let r = r(x) be the radius vector of the point x = x(γ, τ); γ1, γ2, τ are semigeodesic

coordinates in the tube BT
σ (see (4.3)) containing x; for α = 1, 2 we denote

rα :=
∂r

∂γα
, r0 :=

∂r

∂τ
;

the vectors r1 and r2 are tangent and the vector r0 is normal to the surface Γτ . The field y in
the tube can be represented in the form

y = yαrα + y0r0 = yθ + y0r0 .

Agreement 4.2. We shall use the matrix representation, identifying y = y0r0 + yθ with the

column
(

y0

yθ

)
.
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We say that a field v is longitudinal if v = v0r0 (i.e., vθ = 0). We recall known relations for
the Euclidean metric tensor:

gαβ = rα · rβ ; g00 = r0 · r0 = c2 . (4.8)

4.4. Parallel translation. Below we shall use the parallel translation in the metric (4.1).
Let BT

σ be a tube covered by the system γ1, γ2, τ of semigeodesic coordinates; assume that
v(x) = v0(x)r0(x) be the vector at a point x ∈ BT

σ orthogonal to the surface Γτ(x). Denote
v0 := v0(x); the vector

[v(x)]∧ := v0r0(γ(x))

is the result of parallel translation of the initial vector v(x) from the point x ∈ Γτ(x) to the
point γ(x) ∈ Γ along the geodesic of the fast metric; obviously, it is orthogonal to Γ.

The fast and Euclidean metrics are conformally equivalent; the scalar product in the fast
metric is invariant relative to the parallel translation. From the above it follows that for any
two longitudinal vectors u and v, the relation

1
c2(x)

u(x) · v(x) =
1

c2(γ(x))
[u(x)]∧ · [v(x)]∧ (4.9)

is valid.

4.5. The mapping π. Let T < T reg, and let v be a longitudinal field in ΩT . We associate
with it a field on the pattern ΘT , i.e., a function of (γ, τ) the values of which are vectors
orthogonal to the surface Γ, in accordance with the rule

(πv)(γ, τ) := [v(x(γ, τ))]∧, (γ, τ) ∈ ΘT .

The following properties of the mapping π are easy consequences of the definition:
(1) let ϕ be a scalar function in ΩT . We denote by the same symbol the operation of

multiplication of fields by ϕ. The relation

πϕ = ϕπ (4.10)

is valid (here Agreement 4.1 is implied).
(2) Denote c0(γ, τ) := c(γ, 0). As is easily seen from (4.9), the mapping v → c

c0
πv is a

pointwise isometry in the sense of the Euclidean norm:
∣
∣
∣∣

(
c

c0
πv

)
(γ, τ)

∣
∣
∣∣ = |v(x(γ, τ))|, (γ, τ) ∈ ΘT . (4.11)

(3) Let D
dτ be the covariant derivative (in the fast metric). On smooth fields we have the

relation
∂

∂τ
π = π

D

dτ
. (4.12)
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4.6. The operator ΠT . The field ν := ∇τ
|∇τ | is defined in ΩT (T < T reg). It determines the

decomposition
HT := H[ΩT ] = L T

θ ⊕L T
ν ,

in which
L T

θ := {w ∈ L2(ΩT ; R3) | w · ν = 0 in ΩT}, (4.13)

L T
ν := {v ∈ L2(ΩT ; R3) | v × ν = 0 in ΩT} (4.14)

are subspaces of transverse and longitudinal (with respect to ν) fields.
On the pattern ΘT = Γ × [0, T ) we consider the Hilbert space of fields normal to Γ:

FT
ν := {f ∈ L2(ΣT ; R3) | f × ν0 = 0 on ΘT } (4.15)

(with measure dΓdτ), where ν0(γ, τ) := ν(γ, 0). Recall the notation

J0(γ, τ) := J(γ, 0), c0(γ, τ) := c(γ, 0)

and define a function κ = κ(γ, τ) on ΘT :

κ :=
c

c0

√

c
J

J0
. (4.16)

Introduce the operator ΠT : L T
ν → FT

ν ,

ΠT v := κπv. (4.17)

Lemma 4.1. The operator ΠT possesses the following properties:
(1) ΠT is unitary;
(2) for bounded scalar functions χ, the relation ΠT χ = χΠT holds;
(3) the operator ΠT retains smoothness:

ΠT [L T
ν ∩ C∞(ΩT )] = FT

ν ∩ C∞(ΘT ).

Proof. All the functions that occur in the right-hand side of the definition of κ are smooth and
positive on ΘT . For arbitrary u, v ∈ L T

ν we have

(u, v)L T
ν

=
∫

ΩT

u · v dx
(4.4)
=
∫

ΘT

u(x(γ, τ)) · v(x(γ, τ))
(

c
J

J0

)
(γ, τ) dΓ dτ

(4.9)
=

∫

ΘT

(
c

c0
πu

)
(γ, τ) ·

(
c

c0
πv

)
(γ, τ)

(
c

J

J0

)
(γ, τ) dΓ dτ

(4.17)
=

(
ΠT u,ΠT v

)
FT

ν
,

i.e., ΠT is an isometry. It is easy to see that Ran ΠT = FT
ν . Property (2) follows from the

definitions and (4.10); property (3) is an easy consequence of the fact that the mapping i is a
diffeomorphism. The lemma is proved. �

4.7. Projection in the space of potential fields. In the space of potential fields (2.4)

G = {h ∈ H | h = ∇ϕ, ϕ ∈ W 1
2 (Ω), ϕ|Γ = 0},

we separate out a chain of subspaces

Gξ :=
{

h ∈ G
∣∣ supph ⊂ Ωξ

}
, 0 ≤ ξ ≤ T ;

we mention some properties of their elements (see [2]).

Proposition 4.1. Let T < T reg, and let ξ ∈ (0, T ) be fixed.
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(1) The trace h|Γξ−0 of a field h ∈ Gξ smooth in Ωξ is a field normal to Γξ.
(2) Any smooth normal field on Γξ is the trace of a field from Gξ smooth in Ωξ.

Denote by Qξ the projection in GT onto Gξ (T < T reg). One can show that the family {Qξ}
is continuous:

s-lim
τ→ξ

Qτ = Qξ, 0 ≤ ξ ≤ T ; Q0 = OGT ; QT = IGT .

Let T < T reg. We describe a representation for Qξ : GT → Gξ. Choose a smooth field
h = hθ + hν = ∇ϕ = (∇ϕ)θ + ∂ϕ

∂ν ν ∈ GT , fix ξ ∈ (0, T ), and consider the problem

Δr = 0 in Ωξ, (4.18)

(∇r)θ = hθ = (∇ϕ)θ in Γξ,

∫

Γξ

∂r

∂ν
dΓξ = 0 , (4.19)

r = 0 on Γ. (4.20)

The first condition in (4.19) is equivalent to the relation

r = ϕ + const on Γξ; (4.21)

The second condition enables one to find the constant in (4.21) uniquely. This implies that
problem (4.18)–(4.20) is solvable in a unique way; its solution r = rξ(x) is a function smooth
in Ωξ.

Lemma 4.2. For any smooth field h ∈ GT , the following representation holds:

Qξ h =

{
h −∇rξ in Ωξ,

0 in ΩT \Ωξ,
(4.22)

here rξ is the solution of problem (4.18)–(4.20).

Proof. Let

hξ =

{
h −∇rξ in Ωξ,

0 in ΩT \Ωξ.

Denote hξ
⊥ := h − hξ, so that

h = hξ + hξ
⊥. (4.23)

We mention the following properties of hξ:
(1) hξ = h −∇rξ = ∇ϕ −∇rξ = ∇(ϕ − rξ) in Ωξ ;

(2) hξ
θ

∣
∣
Γξ−0 = (h −∇rξ)θ

∣
∣
Γξ−0 = hθ

∣
∣
Γξ−0 − (∇rξ)θ

∣
∣
Γξ−0

(4.19)
= 0 ;

(3) hξ
θ

∣∣
Γ

= (h −∇rξ)θ
∣∣
Γ

= 0.

Properties (1)–(3) imply the inclusion hξ ∈ Gξ .
Next, for any w ∈ Gξ ∩ C∞(Ωξ; R

3) that can be represented in the form w = ∇ψ : ψ
∣∣
Γ

= 0,
ψ
∣
∣
Γξ = 0, we have

(hξ
⊥, w)H =

∫

Ωξ

∇rξ · w dx =
∫

Ωξ

∇rξ · ∇ψ dx

=
∫

Γ

(∇rξ)νψ dΓ +
∫

Γξ

(∇rξ)νψ dΓξ −
∫

Ωξ

Δrξψ dx
(4.18)−(4.19)

= 0.

Thus, (hξ
⊥ , w)H = 0 and, since the smooth w’s in Gξ are dense, we get hξ

⊥ ∈ GT � Gξ, i.e., in
(4.23) all terms are orthogonal. The lemma is proved. �
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We note an important fact: generally speaking, the field Qξ h is discontinuous on Γξ, and
the discontinuity Qξ h

∣∣
Γξ−0 is a field normal to Γξ:

Qξ h
∣
∣
Γξ−0

(4.22)
= (hθ + hν − (∇rξ)θ − (∇rξ)ν)

∣
∣
Γξ

(4.19)
= (hν − (∇rξ)ν)

∣
∣
Γξ . (4.24)

4.8. The Calderón operator. We fix ξ : 0 < ξ ≤ T < T reg and introduce the operator
Λξ : L2(Γξ) → L2(Γξ), Dom Λξ = C∞(Γξ), acting by the rule

Λξ g =
∂q

∂ν

∣
∣∣
∣
Γξ−0

,

where q is a solution of the problem

Δ q = 0 in Ωξ ,

q = g on Γξ ,

q = 0 on Γ .

This is the known Calderón operator. We cite some of its properties (see [8]):
(1) there is an estimate for the norm: ‖(Λξ)−1‖ ≤ Cξ, 0 < ξ ≤ T ; moreover, we define

Λ0 := 0 . (4.25)

(2) The operator Λξ is self-adjoint:
∫

Γξ

Λξϕψ dΓξ =
∫

Γξ

ϕΛξψ dΓξ, (4.26)

and for ξ > 0 it is positive,

(Λξg, g)L2(Γξ) > 0, g �= 0,

and thus injective.
(3) The operator Λξ retains smoothness: Λξ C∞(Γξ) = C∞(Γξ), ξ > 0.
(4) The following estimate is valid:

‖(Λξ)−1 g‖H1(Γξ) ≤ Cξ‖g‖H1(Γξ) , 0 ≤ ξ ≤ T (4.27)

(H1(. . . ) := W 1
2 (. . . ) is the Sobolev class).

(5) Λξ is an elliptic pseudodifferential operator of the first order with the principal symbol
|k|g (see [18]), where

|k|g := (gαβ(γ1, γ2, ξ)kαkβ)1/2; (4.28)

here k1 and k2 are variables dual to the variables γ1 and γ2; γ = (γ1, γ2) ∈ Γ.

4.9. The operator Λ. We fix T < T reg and mention the representation

ΩT =
⋃

0≤ξ≤T

Γξ.

In the space of scalar functions L2(ΩT ) we define an operator Λ, Dom Λ = C∞(ΩT ), acting in
layers (in accordance with the representation) by the rule

(Λϕ)
∣
∣
Γξ := Λξ[ϕ

∣
∣
Γξ ], 0 ≤ ξ ≤ T.

We cite some of its properties:
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(1) the operator Λ is unbounded and injective; it is not local, i.e., it does not preserve the
support of a function in ΩT . At the same time, the inclusion suppϕ ∈ Ωξ′′\Ωξ′ implies
the inclusion suppΛϕ ∈ Ωξ′′\Ωξ′ (0 ≤ ξ′ ≤ ξ′′ ≤ T );

(2) using the smooth character of the dependence of Λξ on ξ and the property (3) in
Sec. 4.8, one can prove that

ΛC∞(ΩT ) ⊂ C∞(ΩT );

(3) by (4.25), for smooth ϕ we have

(Λϕ)
∣∣
Γ

= 0 .

Lemma 4.3.
Λ∗ = c−1Λ c . (4.29)

Proof. For any smooth ϕ and ψ, we have

(Λϕ,ψ)L2(ΩT ) =
∫

ΩT

Λϕψ dx =

T∫

0

dτ

∫

Γτ

cΛτϕψ dΓτ

(4.26)
=

T∫

0

dτ

∫

Γτ

ϕΛτ (cψ) dΓτ =

T∫

0

dτ

∫

Γτ

cϕ
1
c

Λτ (cψ) dΓτ

=
∫

ΩT

ϕ
1
c
Λcψ dx = (ϕ,

1
c
Λcψ)L2(ΩT ) = (ϕ,Λ∗ψ)L2(ΩT ).

The lemma is proved. �

4.10. N T -transformation. In the description of the operators introduced below, we use
semigeodesic coordinates (assume that T < T reg). Recall that LT

θ is the space of transverse
vector fields (4.13). We express the gradient and divergence in semigeodesic coordinates:

(∇ϕ)(x) =
[(

gαβ ∂ϕ

∂γβ

)
rα +

(
g00 ∂ϕ

∂τ

)
r0

]
(γ, τ); (4.30)

(div y)(x) =
[

1
cJ

∂

∂γα
(cJyα) +

1
cJ

∂

∂τ
(cJy0)

]
(γ, τ), (4.31)

where {gαβ} is the matrix inverse to {gαβ}, g00 = 1
c2

; y = yαrα + y0r0. We define
• the transverse gradient ∇θ : L2(ΩT ) → LT

θ acting on the functions smooth in ΩT by the rule

(∇θϕ)(x) =
[(

gαβ ∂ϕ

∂γβ

)
rα

]
(γ, τ);

• the transverse divergence divθ : LT
θ → L2(ΩT ) that acts on the smooth transverse fields

v = vαrα by the rule

(divθ v)(x) =
[

1
cJ

∂

∂γα
(cJvα)

]
(γ, τ).

We emphasize their layerwise character: the relations ϕ
∣
∣
Γξ = 0, v

∣
∣
Γξ = 0 imply (∇θϕ)

∣
∣
Γξ = 0

and (divθ v)
∣∣
Γξ = 0. The following relation is valid:

(∇θϕ, v)LT
θ

= − (ϕ,divθ v)L2(ΩT ) , (4.32)

which is easily derived by integration by parts in layers.
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We restrict the transverse divergence to the set of smooth potential fields projected onto
the subspace L T

θ ; for this operator we keep the same notation divθ.

Also we consider the operator div−1
θ : L2(ΩT ) → LT

θ , which acts (in layers) on functions
smooth in ΩT and is connected with the transverse divergence:

divθ ◦div−1
θ = Id,

where Id is the identity operator in L2(ΩT ).
The family of projections {Qξ} introduced in Sec. 4.7 defines an operator N T : GT → L T

ν ;
Dom N T = GT ∩ C∞(ΩT ; R3) in accordance with the rule

N T h = Qξh
∣
∣
Γξ−0 on Γξ, 0 < ξ ≤ T < T reg.

Thus, the image N T h is composed of the discontinuities that arise on the surfaces Γξ when
projecting h to Gξ.

By (4.24), for h = hθ + hν we have a layerwise representation

N T h = hν − (∇rξ)ν = hν −
(

∂rξ

∂ν

∣
∣∣
∣
Γξ

)
ν on Γξ,

0 < ξ ≤ T < T reg.

(4.33)

With the family of problems (4.18)–(4.20) we associate the operator ∇−1
θ : L T

θ →L2(ΩT ) acting
on the transverse components hθ of smooth field h ∈ GT by the rule

∇−1
θ hθ := rξ on Γξ, 0 < ξ ≤ T ;

as is easily seen, ∇θ∇−1
θ = idθ (idθ is the identity operator in L T

θ ). Using the operator Λ, we
can write the representation (4.33) in the form

N T h = hν −
(
Λ∇−1

θ hθ

)
ν . (4.34)

Proposition 4.2. The transformation N T is an isometry of GT onto L T
ν .

This fact was established in [2].
Recall the Weyl decomposition

HT = J T ⊕ GT ; (4.35)

let PT
G is the projection in HT = H[ΩT ] onto GT .

Lemma 4.4. The adjoint operator (N T )∗ is well defined on smooth longitudinal fields v ∈ LT
ν

and admits the representation

(N T )∗v = PT
G
(
v + div−1

θ

[
c−1Λc vν

])
, (4.36)

where vν = v · ν.

Proof. For smooth h = hθ + hν ∈ GT and v ∈ L T
ν , we have

(N T h, v)L T
ν

(4.34)
= (hν − (Λ∇−1

θ hθ)ν, v)L T
ν

= (hν , v)L T
ν
− (hθ, (∇∗

θ)
−1Λ∗ vν)L T

θ

(4.32),(4.29)
= (hν , v)L T

ν
+ (hθ,divθ

−1[c−1Λc vν ])L T
θ

= (hθ + hν , v + divθ
−1[c−1Λc vν ])HT =

(
h,PT

G
(
v + divθ

−1[c−1Λc vν ]
))

GT .

The lemma is proved. �
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4.11. The operator ∇κ div. We return to the acoustic subsystem αT
p and apply the operator

∇ to both sides of relations (3.11)–(3.13). Denoting h := ∇ϕ, we obtain the system

htt = ∇c 2 div h in QT , (4.37)

h|t=0 = ht|t=0 = 0 in Ω , (4.38)

h = f on ΣT , (4.39)

where f
∣
∣
ΣT = ∇ϕa

∣
∣
ΣT =

(
∇ϕa · ν
(∇ϕa)θ

)
=
(

∂ϕa

∂ν
∇θa

)
.

On the fields of the class H2(Ω) we introduce the operator

L := ∇c 2 div, (4.40)

determining the evolution of system (4.37)–(4.39).

Lemma 4.5. In the subdomain ΩT covered by the system of pseudogeodesic coordinates, for a
smooth field y = y0r0 + yθ we have the representation5

Ly =
(

(Ly)0

(Ly)θ

)
=

⎛

⎝
1
c2

∂
∂τ

c
J

[
∂
∂τ cJy0 + cJ divθ yθ

]

∇θ
c
J

[
∂
∂τ cJy0 + cJ divθ yθ

]

⎞

⎠ . (4.41)

Proof. Using the expressions (4.30) and (4.31) of the gradient and the divergence in the semi-
geodesic coordinates and taking into account the fact that g00 = 1

c2
, we obtain

∇ϕ = g00 ∂ϕ

∂τ
r0 + ∇θϕ; c2 div y = c2

(
1
cJ

∂

∂τ
cJy0 + divθ yθ

)
;

Ly
(4.40)
= ∇c2 div y =

1
c2

∂( c
J

∂
∂τ cJy0 + c2 divθ yθ)

∂τ
r0 + ∇θ

(
c

J

∂

∂τ
cJy0 + c2 divθ yθ

)
.

The lemma is proved. �
4.12. The operator N T (∇κ div)(N T )∗. By (4.34) and (4.36), for any smooth h ∈ GT and
v ∈ L T

ν we get

N T h = N T

(
h0

hθ

)
=
(

1 −1
c Λ∇−1

θ
0 0

)(
h0

hθ

)
, (4.42)

(N T )∗v = (N T )∗
(

v0

0

)
= PT

G

(
v0

divθ
−1[c−1Λc2 v0]

)
(4.43)

(we used the fact that ν = r0
|r0| = 1

c r0 and vν = v0|r0| = cv0).

Let w be an arbitrary smooth field in ΩT . By the Weyl decomposition (4.35), we get

w = PT
G w + PT

J w, (4.44)

where PT
G is the projection in HT onto GT and PT

J is the projection in HT onto J T ; we note
that the projection PT

G maintains the smoothness:

PT
G C∞(ΩT ; R3) ⊂ GT ∩ C∞(ΩT ; R3)

(see [11]). On smooth fields, we have

LPT
G = L. (4.45)

Indeed,

LPT
G w

(4.40)
= ∇c2 divPT

G w
(4.44)
= ∇c2 div(w − PT

J w)
(2.3)
= Lw.

5Henceforth, we use Agreement 4.2 about the matrix notation.
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Lemma 4.6. On smooth fields v =
(

v0

0

)
∈ L T

ν the following representation is valid:

N TL(N T )∗v0r0 =
(

1
c2

∂

∂τ
− 1

c
Λ
)

c

J

(
∂

∂τ
cJ + JΛc2

)
v0r0. (4.46)

Proof.

L(N T )∗
(

v0

0

)
(4.43)
= LPT

G

(
v0

divθ
−1[c−1Λc2 v0]

)
(4.45)
= L

(
v0

divθ
−1[c−1Λc2 v0]

)

(4.41)
=

⎛

⎝
1
c2

∂
∂τ

c
J

[
∂
∂τ cJv0 + cJ divθ divθ

−1[c−1Λc2 v0]
]

∇θ
c
J

[
∂
∂τ cJv0 + cJ divθ divθ

−1[c−1Λc2 v0]
]

⎞

⎠

=

⎛

⎝
1
c2

∂
∂τ

c
J

[
∂
∂τ cJ + JΛc2

]
v0

∇θ
c
J

[
∂
∂τ cJ + JΛc2

]
v0

⎞

⎠ ;

N TL(N T )∗
(

v0

0

)
(4.42)
=
(

1 −1
c Λ∇−1

θ
0 0

)⎛

⎝
1
c2

∂
∂τ

c
J

[
∂
∂τ cJ + JΛc2

]
v0

∇θ
c
J

[
∂
∂τ cJ + JΛc2

]
v0

⎞

⎠

=
((

1
c2

∂
∂τ − 1

c Λ
)

c
J

(
∂
∂τ cJ + JΛc2

)
v0

0

)
.

The lemma is proved. �

4.13. Images. The operators ΠT and N T are unitary; their composition

IT = ΠTN T (4.47)

is a unitary operator from GT onto FT
ν (0 < T < T reg). We call IT the image operator;

h̃ = IT h is called the image of the field h; the image is the field on the pattern ΘT normal to
Γ. The operator IT will play an important role in the inverse problem.

Let
T := {g ∈ L2(Γ, R3) | g × ν = 0}

be the space of normal fields on Γ (ν is an external normal to Γ). The space FT
ν (4.15) can be

regarded as a space of T -valued functions of the variable τ ∈ [0, T ]:

FT
ν = L2([0, T ];T ); (4.48)

A family of projections that are cut-off functions acts in it:

(Xξf)(τ) :=

{
f(τ), 0 ≤ τ ≤ ξ;
0, ξ < τ ≤ T

(0 ≤ ξ ≤ T ).

Lemma 4.7. The following relation is valid:

ITQξ = XξIT . (4.49)

Proof. In the space of longitudinal fields L T
ν , we separate out an expanding family of subspaces

L ξ
ν := {v ∈ L T

ν | supp v ⊂ Ωξ}, 0 ≤ ξ ≤ T < T reg;
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by Y ξ we denote the projection in L T
ν onto L ξ

ν ; its action is reduced to cutting off a field to
the subdomain Ωξ. One can show [2] that

N T Qξ = Y ξN T , 0 ≤ ξ ≤ T < T reg.

Now, relation (4.49) is a consequence of this relation and the definitions of the operators
IT = ΠTN T and ΠT (see (4.17)). The lemma is proved. �

In addition, we note that by property (3) of Lemma 4.1, the correspondence “field–image”
preserves smoothness:

IT [GT ∩ C∞(ΩT )] = FT
ν ∩ C∞(ΘT );

moreover, the relation
(ITh)|τ=0 = κ0hν |Γ (4.50)

with κ0 := κ|Γ =
√

c0 holds; it is a consequence of the relation6

(N T h)|Γξ = {hν −
(
Λ∇−1

θ hθ

)
ν}|Γξ

ξ→0−→ hν |Γ
and the definition of the operator ΠT .

We define an operator LT : GT → GT , Dom LT = GT ∩ C∞(ΩT ), which acts on smooth
potential fields h by the rule

LTh := Lh = ∇c2 div h.

The transformation IT induces in FT
ν the operator

L̃T := (IT )LT (IT )∗ (4.51)

with the domain of definition Dom L̃T = FT
ν ∩C∞(ΘT ). For the inverse problem, of importance

is the representation of L̃T that is described below.
We say that an operator S : FT

ν → FT
ν is a layer operator if it is determined by a family of

operators S(τ) : T → T (0 ≤ τ ≤ T ) and acts in accordance with the rule7

(Sf)(τ) = S(τ)f(τ), τ ∈ [0, T ].

Next, let σ ⊂ Γ be a neighborhood covered by local coordinates γ1, γ2; let r̃0 be a base field
in σ × [0, T ] ⊂ ΘT that does not depend on τ and is defined by the relation

r̃0(γ, τ) = r0(γ, 0);

a field f ∈ FT
ν is representable on σ × [0, T ] in the form f = f0r̃0.

Theorem 4.2. For 0 < T < T reg, for a smooth normal field f = f0r̃0 on σ × [0, T ] the
following representation is valid:

L̃T f =

((
∂2

∂τ2 − Λ̃2
)

f0

0

)

+ S̃f, (4.52)

where Λ̃ := π

√
J

c
Λc

√
c

J
π−1 and S̃ is a layer pseudodifferential operator on the pattern ΘT

of order not exceeding 1.

Before proving the theorem, we state several lemmas. We recall that an operator K in
L2(ΩT ) is said to be a layer operator if it acts by the rule

(Kϕ)
∣∣
Γξ = K(ξ)[ϕ

∣∣
Γξ ], 0 < ξ ≤ T,

where the K(ξ) are operators in L2(Γξ).
6It follows from property (3): see Sec. 4.9.
7Here, in view of the representation (4.48), f is meant as a T -valued function of τ .
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Lemma 4.8. For a function χ smooth in ΩT , the following representation is valid:
∂

∂τ
Λχ − Λχ

∂

∂τ
= K, (4.53)

where K is a layer operator such that all of the K(ξ) are pseudodifferential operators of order 1.

Omitting the proof, we note that the representation (4.53) is justified with the help of
standard results of elliptic theory [17]. We also clarify that the operator K proves to be
pseudodifferential, because the Calderón operators determining Λ are the same: each Λξ is a
pseudodifferential operator of order 1 (for example, see [18]).

Lemma 4.9. For any smooth field v =
(

v0

0

)
∈ L T

ν ,

N TLT (N T )∗v =

⎛

⎝

(
∂2

∂τ2
− Λ̄2

)
v0

0

⎞

⎠+ Sv, (4.54)

where Λ̄ := Λ∗c = 1
cΛc2 and S is a layer pseudodifferential operator of order not exceeding 1.

Proof. In the calculations given below, by ∼ we denote the passages with removing the oper-
ators of lesser order.

N TLT (N T )∗v0r0
(4.46)
=

(
1
c2

∂

∂τ
− 1

c
Λ
)

c

J

(
∂

∂τ
cJ + JΛc2

)
v0r0

=
(

1
c2

∂

∂τ

c

J

∂

∂τ
cJ +

1
c2

∂

∂τ
cΛc2 − 1

c
Λ

c

J

∂

∂τ
cJ − 1

c
ΛcΛc2

)
v0r0

∼
(

1
c2

∂

∂τ
c2 ∂

∂τ
+

1
c

∂

∂τ
Λc2 − 1

c
Λc2 ∂

∂τ
− 1

c
ΛcΛc2

)
v0r0

∼
(

∂2

∂τ2
+

1
c

[
∂

∂τ
Λc2 − Λc2 ∂

∂τ

]
− 1

c
ΛcΛc2

)
v0r0

(4.53)∼
(

∂2

∂τ2
− 1

c
ΛcΛc2

)
v0r0.

Denoting Λ̄ := 1
cΛc2 and recalling that Λ∗ = 1

cΛc, we obtain (4.54). The lemma is proved. �
Now we are ready to complete the proof of Theorem 4.2. By definition (4.17), the operator

ΠT : L T
ν → FT

ν acts as follows:
ΠT v = κπv, (4.55)

where, by (4.16),

κ =
c

c0

√

c
J

J0
. (4.56)

Using the fact that ΠT is unitary, we get

L̃T (4.51)
= (IT )LT (IT )∗

(4.47)
= ΠTN TLT (N T )∗(ΠT )∗

(4.55)
= κπN TLT (N T )∗π−1κ−1.

It remains to use Lemma 4.9. We have

L̃T = κπ

(
∂2

∂τ2
− Λ̄2

)
π−1κ−1 + (IT )S(IT )∗. (4.57)

Since D
∂τ = ∂

∂τ on the longitudinal fields, relation (4.12) takes the form ∂
∂τ π = π ∂

∂τ . Therefore

κπ
∂2

∂τ2
π−1κ−1 = κ

∂2

∂τ2
κ−1 ∼ ∂2

∂τ2
. (4.58)

411



Next we denote
Λ̃2 := κπΛ̄2π−1κ−1 (4.10)

= πκΛ̄2κ−1π−1, (4.59)
where

Λ̃ := πκΛ̄κ−1π−1 (4.56)
= π

√
cJ Λ̄

1√
cJ

π−1 Λ̄= 1
c
Λc2

= π

√
J

c
Λc

√
c

J
π−1.

Considering (4.58) and (4.59) and denoting S̃ := (IT )S(IT )∗ in (4.57), we obtain (4.52)
(f = f0r̃0):

L̃T f =
(

∂2

∂τ2
− Λ̃2

)
f0 r̃0 + S̃f. (4.60)

It is easy to see that S̃ is a layer pseudodifferential operator on the pattern of order not
exceeding 1. Theorem 4.2 is proved.

Note that Λ is a layer operator in which each Λξ, by (4.28), is a pseudodifferential operator
of the first order with principal symbol |k|g. Using this fact, as well as properties of principal
symbols under composition of operators and multiplication of them by functions, we conclude
that the result of Theorem 4.2 admits an invariant statement in terms of pseudodifferential
operators.

Theorem 4.3. The following representation is valid:

L̃T =
∂2

∂τ2
+ H, (4.61)

where H is a layer operator such that each

H(τ) : T → T , 0 < τ ≤ T,

is a pseudodifferential operator of the second order with principal symbol

SymbH(τ)(γ, k1, k2) = −c2(γ, τ)|k|2g Idγ = −|k|2h Idγ ; (4.62)

here k1 and k2 are variables dual to γ1 and γ2; Id is the identity operator on the cotangent
space T ∗

γ Γ; |k|h := (hαβ(γ1, γ2, τ)kαkβ)1/2.

5. Dynamics

5.1. Forward problem. The control operator. We fix an arbitrary T > 0 and consider
the problem (4.37)–(4.38) with control hν on ΣT (as shown in [3], hθ is uniquely determined
by hν and the response operator RT on ΣT ):

htt − Lh = 0 in QT , (5.1)

h|t=0 = ht|t=0 = 0 in Ω, (5.2)

hν = f on ΣT ; (5.3)

here, L := ∇c 2 div, ν is an external normal, hν = (h · ν)ν, f ∈ FT
ν ⊂ FT is a control. Its

solution h = hf (x, t) can be regarded as a GT -valued function dependent on time.
In the dynamical system described by problem (5.1)–(5.3), the correspondence “input-state”

is realized by the control operator

WT : FT
ν → GT , DomWT = FT

ν ∩MT ,

WTf = hf (· , T ). (5.4)
It admits closure, and for T < T ∗8 it is injective: KerWT = {0} (see [9]).

8We recall that T ∗ is the time of filling Ω with waves traveling from the boundary: see Sec. 2.1.
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5.2. Controllability. The set

GT := RanWT ⊂ GT

is said to be reachable to the instant of time T .

Proposition 5.1. For T < T reg, the relation

GT = GT (5.5)

is valid (closure in the metric of H).

It is derived similarly to relation (3.15).
From (5.5) it follows that any potential field in the subdomain ΩT can be approximated by

waves hf (· , T ) in L2-norm. In control theory, this property is referred to as an approximate
controllability of system (5.1)–(5.3).

In the external space FT
ν , we consider a family of subspaces

FT,ξ
ν := {f ∈ FT

ν

∣
∣ f(·, t) = 0, 0 ≤ t < T − ξ}, 0 ≤ ξ ≤ T, (5.6)

formed by delayed controls (FT,0
ν = {0},FT,T

ν = FT
ν ). The delay of a control leads to the

delay of the wave: since supphf (·, ξ) ⊂ Ωξ (0 < ξ ≤ T ) and system (5.1)–(5.3) is stationary
(the independence of L from time), for f ∈ FT,ξ

ν we have the inclusion supphf (·, T ) ⊂ Ωξ, i.e.,
hf (·, T ) ⊂ Gξ.

Consider an extending family of reachable sets

Gξ := WTFT,ξ
ν ⊂ Gξ.

The projections P ξ in GT on Gξ are called wave projections; the complementary projections
are

P ξ
⊥ := IGT − P ξ. (5.7)

The fact that the system is stationary and relation (5.5) imply the relation

Gξ = Gξ , (5.8)

which, in turn, yields

P ξ = Qξ, P ξ
⊥ = Qξ

⊥ (0 ≤ ξ ≤ T < T reg) (5.9)

(Qξ is the projection in GT onto Gξ: see Sec. 4.7).
Of course, both Qξ and P ξ are determined by the behavior of the velocity c, but their

coincidence is a consequence of the controllability of the system.

5.3. Discontinuities in the forward problem. Considerations in this and the next sections
concern a known property of hyperbolic systems: discontinuous controls generate discontinuous
waves. The description of discontinuities of waves is the subject matter of geometric optics;
relevant formulas play a key role in the BC method.

We fix T : 0 < T < T reg and ξ ∈ (0, T ); denote

θj(t) :=

{
0, t < 0;
tj

j! t ≥ 0

(j = 0, 1, . . . ; θ0(t) is the Heaviside function). We set

θj
s(t) := θj(t − s), s, t ∈ R.
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We take a normal field a ∈ T ∩ C∞(Γ, R3) and consider system (5.1)–(5.3):

htt − Lh = 0 in QT , (5.10)

h|t=0 = ht|t=0 = 0 in Ω, (5.11)

hν = θ0
T−ξa on ΣT , (5.12)

with a control of a special form:

f = f(γ, t) = θ0(t − (T − ξ))a(γ).

It is a delayed control: θ0
T−ξa ∈ FT,ξ

ν , and it is discontinuous for t = T − ξ. Since the velocity
of wave propagation is finite, we have

supphθ0T−ξa ⊂ {(x, t) ∈ QT | t ≥ τ(x) + (T − ξ)};
the characteristic surface that confines the support

χT,ξ := {(x, t) ∈ QT | t = τ(x) + (T − ξ)}
proves to be the discontinuity surface of the solution

hθ0T−ξa(x, τ(x) + T − ξ + 0) = A(x)[a(γ(x))]∨, (5.13)

where A :=
(

c0J0
cJ

)1/2
is the amplitude factor, [a(γ(x))]∨ is the result of parallel translation (in

the fast metric) of the vector a from the point γ(x) ∈ Γ to the point x ∈ ΩT along the geodesic
lγ(x) (see [1]).

The description of discontinuities and the derivation of formulas of the type (5.13) are
substantially simplified in passing to images [8]. It can be shown that the operator IT can
be extended by gT to the set of solutions of problem (5.1)–(5.3); for this operator we keep
the same notation IT . In accordance with the representation (4.48), we regard the image of
the wave h̃ = IT h as a T -valued function of the variable τ ∈ [0, T ] dependent on time as a
parameter; by the representation FT

ν = L2((0, T );T ), the controls are T -valued functions of
time t ∈ [0, T ]. Applying the operator IT in problem (5.10)–(5.12), taking into account relation
(4.50) and the representation (4.61), we obtain the system

h̃tt − h̃ττ − H(τ)h̃ = 0 (τ, t) ∈ (0, T ) × (0, T ), (5.14)

h̃|t=0 = h̃t|t=0 = 0 τ ∈ (0, T ), (5.15)

h̃ν |τ=0 = θ0
T−ξκ0a. (5.16)

Acting in accordance with the ray method [1, 19], we seek a solution of the system in the
form “anzatz + residual”:

h̃(τ, t) =
N∑

j=0

θj
T−ξ(t − τ)Aj(τ) + dN+1(τ, t). (5.17)

The substitution of (5.17) in (5.14) leads to known transport equations for T -valued “ampli-
tudes”:

2
∂Aj

∂τ
−
[

∂2

∂τ2
+ H(τ)

]
Aj−1 = 0, j = 0, 1, . . . ;

A−1 := 0. Successively solving them with regard to the conditions A0(0) = κ0a (see (5.16)),
Aj(0) = 0, j = 1, 2, . . . , we find

A0(τ) = κ0a, A1(τ) =
1
2

τ∫

0

[H(s)κ0a] ds . . . .
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Restricting ourselves to the case N = 1, we obtain the representation

h̃θ0T−ξa(τ, t) = θ0
T−ξ(t − τ)κ0a + θ1

T−ξ(t − τ)
1
2

τ∫

0

[H(s)κ0a] ds + d2(τ, t), (5.18)

and for the residual we have the estimate

|d2(τ, t)| ≤ Cθ2
T−ξ(t − τ), (τ, t) ∈ [0, T ] × [0, T ], (5.19)

which can be derived in the same way as in the case of the wave equation [19,20]. From (5.18),
we can get the formula of geometric optics

h̃θ0T−ξa(ξ − 0, T ) = κ0a; (5.20)

2
d

dξ

⎡

⎣ h̃θ0T−ξa(τ, T ) − κ0a

ξ − τ

∣∣
∣
∣∣
τ=ξ−0

⎤

⎦ = H(ξ)κ0a; (5.21)

formula (5.20) is in essence another form of relation (5.13).
Turning back to the initial definition of the image, the solution h̃θ0T−ξa can be interpreted

as a wave traveling across the pattern ΘT ; to the instant of time t (t ≥ T − ξ), it covers part
of the pattern

supp h̃θ0T−ξa(·, t) ⊂ Γ × [0, t − (T − ξ)];

the representation (5.18) describes the shape of the wave in a neighborhood of its leading front
set Γ × {τ = t − (T − ξ)}.

5.4. The dual system. The system

wtt − Lw = 0 in QT , (5.22)

w|t=T = 0, wt|t=T = y in Ω , (5.23)

wν = 0 on ΣT . (5.24)

is said to be dual to system (5.1)–(5.3); its solution w = wy(x, t) possesses the following
properties:

(1) let y ∈ GT ∩ C∞
0 (ΩT ; R3); in this case, the problem has a unique classical solution

wy ∈ C∞(QT ; R3);
(2) for y ∈ GT , a solution wy ∈ C([0, T ];GT ) is well defined, and the map y → wy is

continuous in the respective norms;
(3) the hyperbolicity of Eq. (5.22) on potential fields leads to the known property of finite-

ness of the influence domain: the solution wy on the set {(x, t) ∈ QT
∣∣ τ(x) < t} is

determined by the values y|ΩT (does not depend on the behavior of y in Ω \ ΩT ).

Lemma 5.1. If f and y are such that the solutions hf and wy are smooth in QT , then the
duality relation

(hf (· , T ), y)G = (f, κ div wy ν)FT
ν
. (5.25)

holds.

Proof. Integrating by part in the identity, we have

0 =
∫

QT

[
hf

tt(x, t) −∇(κ div hf )
]
· wy dx dt
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=
∫

Ω

{[
hf

t (x, t) · wy(x, t) − hf (x, t) · wy
t (x, t)

] ∣∣
∣
t=T

t=0
+

T∫

0

hf (x, t) · wy
tt(x, t) dt

}
dx

−
T∫

0

∫

Γ

[
(κ div hf )(wy · ν) − (hf · ν)(κ div wy)

]
(γ, t) dΓ dt

−
T∫

0

∫

Ω

[
hf · ∇(κ div wy)

]
(x, t) dx dt

=

T∫

0

∫

Γ

[( hf
︸︷︷︸

f

·ν)κ div wy](γ, t) dΓ dt −
∫

Ω

hf (x, T ) · wy
t (x, T )
︸ ︷︷ ︸

y(x)

dx.

Thus,
∫

Ω

hf (x, T ) · y(x) dx =
∫

ΣT

(f · κ div wy ν)(γ, t) dΓ dt.

The lemma is proved. �
The map O : y → κ div wy ν|ΣT is well defined on smooth y ∈ GT ; the closability of the map

f → hf , property (2) of the solution of system (5.22)–(5.24), and relation (5.25) enable one
to extend it to a continuous map from GT to FT

ν . Denote OT := O|GT . The following result
is derived from the same duality relation.

Proposition 5.2. The following relation is valid:

OT =
(
WT

)∗
.

The operator OT is called the observation operator.

5.5. The response operator RT . The correspondence “input-output” in system (5.1)–(5.3)
is realized by the response operator RT : FT

ν → FT
ν , DomRT = FT

ν ∩MT ,

RT f :=
(

κ div hf

0

)
. (5.26)

It is simply connected with the response operator of the system of the Lamé type (see (3.8)):
for any f ∈ FT

ν ∩MT , RT f = RT (hf |ΣT ) on ΣT (see the remark at the beginning of Sec. 5.1).
The response operator is unbounded.

Consider system (5.1)–(5.3) with doubled final instant of time 2T ; let R2T be the corre-
sponding response operator. Since the velocity of wave propagation is finite, this operator
depends on κ = c2 locally: R2T is determined by the values of κ in ΩT and does not depend
on its behavior in Ω\ΩT .

Below, the operator R2T will play the role of data of the inverse problem.

5.6. Discontinuities in the dual system. Let y ∈ GT be a smooth field; we choose ξ ∈
(0, T ), T < T reg, and consider a system of the form (5.22)–(5.24):

wtt − Lw = 0 in QT ,

w|t=T = 0, wt|t=T = P ξ
⊥y in Ω ,

wν = 0 on ΣT
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(the projection P ξ
⊥ is defined by formula (5.7)). The action of the projection leads to the

appearance of a discontinuity in the Cauchy data on the equidistant curve Γξ. Discontinuous
data initiate a discontinuous wave wP ξ

⊥y. The discontinuity of the wave propagates (in the
reverse time) along the space-time rays forming the characteristic X T,ξ, and for t = T − ξ it
interacts with the boundary. As a result, the trace observable on Γ

[
κ div wP ξ

⊥y ν
] ∣∣∣

ΣT
= OT P ξ

⊥y

proves to be discontinuous for t = T − ξ; our nearest aim is to describe this discontinuity.
We recall that the operator OT : GT → FT

ν is defined by the relation

(WT f, y)GT = (f,OT y)FT
ν
. (5.27)

Here it is convenient to us to regard OT P ξ
⊥y as a T -valued function of time t ∈ [0, T ]; the

product
(
(OT P ξ

⊥y)(t), a
)

T
is defined for a ∈ T and is square-summable with respect to t.

Proposition 5.3. The following inclusion holds:

suppOT P ξ
⊥y ⊂ [0, T − ξ]. (5.28)

Indeed, for delayed controls f ∈ FT,ξ
ν we have

(f,OT P ξ
⊥y)FT

ν
= (WT f, P ξ

⊥y)GT = 0

(because WTFT,ξ
ν ⊂ Gξ), which is equivalent to (5.28).

Lemma 5.2. For y ∈ GT ∩C∞(ΩT ; R3) and a ∈ T ∩C∞(Γ, R3) the following relation is valid:

lim
δ→+0

1
δ

T−ξ∫

T−ξ−δ

(
(OT P ξ

⊥y)(t), a
)

T
dt = (κ0ỹ(ξ), a)T ; (5.29)

here, ξ ∈ (0, T ) and ỹ = ITy is the image of the field y.

Proof. Take a small δ > 0; consider a control θ0
T−ξ−δa ∈ FT

ν : supp θ0
T−ξ−δa ⊂ [T − ξ − δ, T ].

By the location of supports (5.28), we have

(OT P ξ
⊥y, θ0

T−ξ−δa)FT
ν

=

T−ξ∫

T−ξ−δ

(
(OT P ξ

⊥y)(t), a
)

T
dt . (5.30)

Let Xξ
⊥ := I − Xξ

⊥ is the projection in FT
ν cutting the elements to the interval [T − ξ, T ]; by

(4.49), the relation ITQξ = XξIT holds. Hence, using (5.9) (P ξ = Qξ), we derive that

ITP ξ
⊥ = Xξ

⊥I
T . (5.31)

By (5.18) and (5.19) for the image h̃θ0T−ξ−δa we have the representation

h̃θ0T−ξ−δa(τ, T ) = θ0(ξ + δ − τ)κ0a + d1(τ, T ) (5.32)

with the estimate
|d1(τ, T )| ≤ Cθ1(ξ + δ − τ). (5.33)
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Next, the following relations are valid:

(OT P ξ
⊥y, θ0

T−ξ−δa)FT
ν

(5.27)
= (P ξ

⊥y,WT [θ0
T−ξ−δa])GT

= (IT P ξ
⊥y,ITWT [θ0

T−ξ−δa])FT
ν

(5.31)
= (Xξ

⊥ỹ, h̃θ0T−ξ−δa(·, T ))FT
ν

(5.32)
=

ξ+δ∫

ξ

(κ0 a + d1(τ, T ), ỹ(τ))T
(5.33)
= δ(κ0 ỹ(ξ), a)T + o(δ)

(5.34)

(we have used the unitary property of the operator IT ). Combining (5.30) and (5.34), we get
(5.29). The lemma is proved. �

In view of property (5.28), the result obtained can be interpreted as a description of the
discontinuity of the function (OT P ξ

⊥y)(t) for t = T − ξ. We agree to write (5.29) in the form

(OT P ξ
⊥y)(T − ξ − 0) = (κ0 ITy)(ξ), 0 < ξ < T, (5.35)

interpreting the limit in the sense of the lemma. By arguments of a dynamical nature, given
at the beginning of the section, relation (5.35) represents the image of a field as a collection
of discontinuities passed through the medium filling ΩT and detected on the boundary Γ. We
call (5.35) the amplitude formula [5].

5.7. Connecting operator. The operator CT : FT
ν → FT

ν ,

CT :=
(
WT

)∗ WT ,

is called the connecting operator of system (5.1)–(5.3). This name is explained by the fact that
for f , g ∈ FT

ν we have

(CT f, g)FT
ν

= (WT f,WT g)GT = (hf (·, T ), hg(·, T ))GT , (5.36)

i.e., CT connects the scalar products of the external and internal spaces of the dynamical
system. This is a continuous operator nonnegative in FT

ν .
It is important that the connecting operator can be calculated from the response operator.

Consider the operator of odd extension ST : FT
ν → F2T

ν ,

(ST f)(·, t) :=

{
f(·, t), 0 ≤ t < T ;
−f(·, 2T − t), T ≤ t ≤ 2T ;

and the operator of integration J 2T : F2T
ν → F2T

ν ,

(J 2T f)(·, t) :=

t∫

0

f(·, s) ds , 0 ≤ t ≤ 2T.

Denote MT
ν := FT

ν ∩ MT and MT,0
ν := {f ∈ MT

ν

∣∣ ST f ∈ M2T
ν }. We mention the inclusion

STMT,0
ν ⊂ Dom R2T and the relation

((
ST
)∗

f
)

(·, t) = f(·, t) − f(·, 2T − t), 0 ≤ t ≤ 2T.

Lemma 5.3. For fields of the class MT,0
ν the following representation is valid:

CT =
1
2
(ST )∗J 2TR2TST . (5.37)
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The proof is quite similar to that given in [9]. As seen from (5.37), to find CT it is sufficient
to have the values of R2T only on STMT,0

ν .

The operator CT enables one to find the images of waves, using the so-called wave bases.
In the subspace FT,ξ

ν ⊂ FT
ν we choose a complete system of controls {f ξ

j }: Lin{f ξ
j } = FT,ξ

ν
9;

(CT f ξ
i , f ξ

j )FT
ν

= δij .
By property (5.8) and in view of (5.36), the corresponding system of waves forms an or-

thonormal basis in the subspace Gξ.
Take f ∈ MT

ν ; for the wave hf (·, T ) = WT f we have the representation

P ξ
⊥W

T f = WT f −
∑

j

(WT f,WT f ξ
j )GT WT f ξ

j

(5.36)
= WT f −

∑

j

(CT f, f ξ
j )FT

ν
WT f ξ

j .
(5.38)

Next, in the external space FT
ν we take an L2-orthonormal basic {gk}. We have the relations

(OT P ξ
⊥W

T f, gk)FT
ν

= (P ξ
⊥W

T f,WT gk)GT

(5.38)
= (WT f,WT gk)GT −

∑

j

(CT f, f ξ
j )FT

ν
(WT f ξ

j ,WT gk)GT

(5.36)
= (CT f, gk)FT

ν
−
∑

j

(CT f, f ξ
j )FT

ν
(CT f ξ

j , gk)FT
ν

.

They yield the relation

OT P ξ
⊥W

T f =
∑

k

(OT P ξ
⊥W

T f, gk)FT
ν
gk

=
∑

k

⎧
⎨

⎩
(CT f, gk)FT

ν
−
∑

j

(CT f, f ξ
j )FT

ν
(CT f ξ

j , gk)FT
ν

⎫
⎬

⎭
gk. (5.39)

In the amplitude formula (5.35), we set y = h = WT f :

(OT P ξ
⊥h)(T − ξ − 0) = (OT P ξ

⊥W
T f)(T − ξ − 0) = (κ0 ITWT f)(ξ) = κ0h̃

f (ξ, T ).

Calculating the left-hand side of the relation

κ0
−1(OT P ξ

⊥W
T f)(T − ξ − 0) = h̃f (ξ, T ) (5.40)

with the help of the representation (5.39), we restore the image of the wave hf .

5.8. Recovery of the velocities. Assume that we possess the following data concerning
the Lamé type system (3.1)–(3.3); its response operator R2T is given for fixed T > 0 and the
functions cα|Γ, ∂cα

∂ν

∣∣
Γ

(α = p, s) are known. The inverse problem consists of recovery of the
velocities cs in ΩT

s and cp in ΩT
p from these data. We give our main result.

Theorem 5.1. For any positive T < T reg, the data of the inverse problem determine the
velocities cα|ΩT

α
(α = p, s) in a unique way.

9Lin is a linear span.
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Proof. To prove the theorem, it suffices to sum up the previous considerations. Using them,
we present a general plan of solving the inverse problem:

(1) the response operator R2T determines the response operator R2T of system (5.1)–(5.3):
R2T f = R2T (hf

∣∣
ΣT ) for any f ∈ F2T

ν ∩M2T .
(2) Using R2T , we find the connecting operator CT of system (5.1)–(5.3) (Lemma 5.3).
(3) Making use of chosen a ∈ T ∩ C∞(Γ, R3) and ξ ∈ (0, T ), we find

κ0h̃
θ0T−ξa(τ, T ) = (OT P τ

⊥WT [θ0
T−ξa])(T − τ − 0)

in accordance with (5.40).
(4) By (5.20), we have κ2

0 = |a|−1|κ0h̃
θ0T−ξa(ξ − 0, T )|. Thus, the function κ0 = κ0(γ) is

determined.
(5) By (5.21), we find H(ξ)κ0 a; changing a and ξ, we restore the family of operators H(ξ),

0 < ξ < T .
(6) In accordance with (4.62), the operators H(ξ) determine the matrix {hαβ(γ, ξ)} and a

function cp(γ, ξ) on the pattern ΘT , from which the fast velocity cp(x) is uniquely determined
in the subdomain ΩT

p (Theorem 4.1).

The recovery of the slow velocity cs in ΩT
s from the response operator R2T

m of the Maxwell
subsystem (3.16)–(3.18), which is defined by the relation R2T

m f = R2T (ψf
∣∣
ΣT ) on the controls

of the class M2T that are tangent to Γ, is conducted in [8]. Note that in this case, the main
space is HT and its subspace JT of solenoidal fields.

Steps (2)–(5) of our proof are in essence steps (i)–(vi) of paper [8]. Using the family of
operators H(ξ), 0 < ξ < T , corresponding to the Maxwell subsystem, we first determine the
tensor {hαβ} of the slow metric and only after that the velocity cs(γ, ξ) on ΘT . To this end
we consider the so-called Jamabé problem the solution of which is reduced to the solution of a
certain elliptic equation. For this equation to have a unique solution, it is necessary to know
also the values of cs and ∂cs

∂τ on Γ (Theorem 1.1 in [8]). Using cs(γ, ξ) on ΘT , we restore the
slow velocity cs(x) in ΩT

s (Theorem 4.1). The theorem is proved. �

The author is grateful to M. I. Belishev for statement of the problem and for his help in the
work.

Translated by N. B. Lebedinskaya.

REFERENCES

1. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of Diffraction of Short
Waves [in Russian], Nauka, Moscow (1972).

2. M. I. Belishev, “On a unitary transformation in the space L2(Ω; R3) associated with the
Weyl decomposition”, Zap. Nauchn. Semin. POMI, 275, 25–40 (2001).

3. M. I. Belishev, “Dynamical inverse problem for a Lame type system,” J. Inv. Ill-Posed
Problems, 14, No. 8, 751–766 (2006).

4. M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC
method),” Inv. Problems, 13, No. 5, R1–R45 (1997).

5. M. I. Belishev and A. S. Blagoveshchenskii, Dynamical Inverse Problems in Wave Theory
[in Russian], S. Peterb. Univ., St.Petersburg (1999).

6. M. I. Belishev, “Recent progress in the boundary control method,” Inverse Problems, 23,
No. 5, R1–R67 (2007).

7. M. I. Belishev and A. K. Glasman, “On projections in the space of solenoidal vector
spaces,” Zap. Nauchn. Semin. POMI, 257, 16–43 (1999).

420



8. M. I. Belishev and A. K. Glasman, “The dynamical inverse problem for the Maxwell
system: the restoration of the velocity in the regular domain (the BC method),” Algebra
Analiz, 12, No. 2, 131–187 (2000).

9. M. I. Belishev and I. Lasiecka, “The dynamical Lamé system: regularity of solutions,
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