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Recently, the steady states of non-unitary free
fermion dynamics are found to exhibit novel
critical phases with power-law squared corre-
lations and a logarithmic subsystem entangle-
ment. In this work, we theoretically under-
stand the underlying physics by constructing
solvable static/Brownian quadratic Sachdev-Ye-
Kitaev chains with non-Hermitian dynamics. We
find the action of the replicated system generally
shows (one or infinite copies of) O(2) X O(2)
symmetries, which is broken to O(2) by the
saddle-point solution. This leads to an emergent
conformal field theory of the Goldstone modes.
We derive the effective action and obtain the uni-
versal critical behaviors of squared correlators.
Furthermore, the entanglement entropy of a sub-
system A with length L 4 corresponds to the
energy of the half-vortex pair S ~ pslogLa,
where p; is the total stiffness of the Goldstone
modes. We also discuss special limits with more
than one branch of Goldstone modes and com-
ment on interaction effects.

1 Introduction

Under unitary evolution, local quantum information
of a generic closed many-body system goes through
the process of scrambling and disperses into the en-
tire system. It has long been known that such a pro-
cess is closely related to thermalization, in which
the entanglement entropy of a small subsystem ap-
proaches thermal entropy with volume law scaling
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[1, 2]. Ever since then, systems that evade quantum
thermalization have been of special interest. Several
mechanisms have been proposed in an effort to real-
ize such systems, including many-body localization
[3, 4], prethermalization [5, 6], and non-unitary evo-
lution.

Among these mechanisms, the non-unitary evolu-
tion is especially natural since all experimental sys-
tems are inevitably open [7]. In a unitary dynamics
under repeated measurement, if we follow the quan-
tum trajectories, the steady state is non-thermal and
can exhibit entanglement phase transition from a vol-
ume law phase to an area law phase [8-25]. The un-
derlying mechanism also applies to other non-unitary
dynamics that host exotic non-thermal phases [26—
32]. For instance, in free fermion non-unitary sys-
tems, it is shown that a stable critical phase exists,
in which the entanglement entropy is logarithmic in
the subsystem size and the correlation functions in
the spatial direction exhibit power-law decay [25, 33—
35]. While these results have been corroborated in
numerous numerical simulations, concrete solvable
models, in which the entanglement entropy and cor-
relation function can be determined analytically, are
still lacking and will prove valuable in the under-
standing of the intimate relation between quantum
thermalization and non-Hermiticity.

The Sachdev-Ye-Kitaev, (SYK,) models [36-38]
describe N randomly interacting Majorana fermions
with infinite-range g-fermion interactions. It is found
to be solvable in the large-N limit where the en-
tanglement entropy and its quench dynamics can
be studied [35, 39-46]. Based on the original
SYK model, different generalizations have been con-
structed. In particular, SYK chains (i.e. coupled
SYK dots) have been proposed to understand vari-
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Figure 1: (a). Schematics of the non-Hermitian SYK,
chains studied in the work. The total Hamiltonian is
given by H = Hr—iH and the interaction can be either
static or Brownian, (b/c). The path-integral contour
for the squared correlator Fy/F>. Here the triangles
represent the contraction with the initial state |1o). The
crosses represent the insertion of Majorana operators.

ous dynamical problems in 1D [47-53]. In [54, 55],
the authors further consider introducing the tempo-
ral randomness into the SYK model, where the static
random interaction terms are replaced by Markovian
random interactions. This is known as the Brown-
ian SYK model, which is an analogy of the Brownian
circuit models [55-61].

In this work, combining ideas of non-Hermiticity
and the SYK models, we construct a set of concrete
non-Hermitian SYKs chains. We derive the dynam-
ical properties of the steady states in the large-N
limit. By analyzing the saddle-point equation, we ex-
plicitly show that for generic values of the coupling
parameters, the replicated system exhibits a replica
conformal symmetry due to the existence of Gold-
stone modes [62]. We demonstrate that the Goldstone
modes can be probed by the squared correlator, which
features the universal critical scaling. We then ar-
gue that the entanglement entropy for a subsystem A
with length L4 corresponds to the energy of a half-
vortex pair [25], given by S ~ pslog L 4, where py is
the stiffness of the Goldstone mode [63, 64]. We fi-
nally comment that when the interaction is added, the
Goldstone mode acquires a mass, leading to volume-
law scaling in the entanglement entropy, which can
again be understood from a domain wall picture.

2 Model and setup

We consider the non-Hermitian SYKs chain with a
Hamiltonian written in terms of

1
Hp =Y (i7" X+ iTixixd /2]
1]

Hy=3), [va XX +1Y,

x5

/2]

Here i = 1,2...N labels the Majorana modes on each
site. The total Hamiltonian for the chain reads H =
Hp —iHr. Random hopping parameters J;; ot ij’,
Vi =t . V;% are independent Gaussian Vanables with
Zero expectatlon values. We first focus on the case of

static correlations and take their variances as

(J5oh2 =
(V2 =

)

Ji/2N,
Vi /2N,

(JE)2 = J§/N,
(Vi2)2 = V§'/N.

The case of Brownian correlations will be considered
in the Appendix C.

We aim to understand the steady states under the
non-Hermitian dynamics. We consider preparing the
system in some initial state |t)g). For a given disorder
configuration, at time 7', the system is in the state

(D)) = e go)/ /w7 e tHT i)
3)
We are interested in understanding the emergence of
the criticality in the non-unitary dynamics [35, 65].
A natural object to study is the Keldysh equal-time

two-point function
<X N > <1/]0‘ ezH T zHT/QX?‘nX%e—iHT/Q |7Z}0>
o (tho| €T T =T [y

evaluated on the steady state with T" — oo. However,
in random systems, the disorder averaged correlator

<X§c X6> vanishes, and we should instead consider the
disorder averaged squared correlators. We define two
types of squared correlators as

A=Y (ad) /N, F= 3 |[(ad)| /.
ij ij
These correlators measure the fluctuation of two-
point functions over disorder realizations.

The computation of the correlation functions for
disordered quantum systems generally requires the
introduction of additional disorder replicas. How-
ever, for the SYK-like models in the large-N limit,
the saddle point solution is diagonal in the disorder
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replicas [37, 66, 67]. Consequently, F} and F> can be
represented as four-point functions on the replicated
partition function in a single disorder replica:

7% = (ol T e=HT [g)q))2. (4)

In the path-integral formulation of F7j o, there are
four branches of the evolution contour, as shown in
FIG. 1 (b-c). We label these four branches by 1-
4 where the evolution is forward on 1,3 and back-
ward on 2, 4. Following the standard SYK derivation,
the system is described by a bilocal G- action (see
Appendix A), which can then be treated within the
saddle-point approximation. The effective action that
governs the fluctuations around the saddle point can
be subsequently derived, which allows to determine
the squared correlators analytically. Moreover, the
entanglement calculation can be viewed as introduc-
ing defects on the boundary of the contour at time 7.
They excite the fluctuations with an energy increase
equal to the entanglement entropy.

3 Saddle point and symmetry

We begin with analyzing the saddle-point equation.
From now on, we keep the Majorana index ¢ implic-
itly. For SYK-like models, the saddle-point equation
is equivalent to the Schwinger-Dyson equation for
Gab(t,#') = (Xa(EXE(H)) with a,b € {1,2,3,4}
labeling Majorana fields on different branches of the
contour. Viewing GG as a matrix in both branch and
time space, we have

(~D)* g, — sl o G = 1. (5)
For our static model, the self-energy > reads
Gahy + GP2y

2 (6)
(~D)*INGE,

22 =(VE — (-1)"*J})
+ (V5 -

this equation contains large symmetries which are
rotations between the 1,3 or 2,4 branches. To
see this, we define the Fourier transformation as
G (wy,wo) = [dtdt’ e'wrtteat)Gab(g /). The
Schwinger-Dyson equation is then invariant un-
der G(wy,w2) — O(w1)G (w1, w2)0T (—ws), with
O(w) = exp(—y1383 — 712465,), here (7.a)® =
0acObd — Opclaq 1S @ 4 X 4 matrix in the branch
space. Consequently, there are infinite copies of the
0(2) x O(2) symmetry, labeled by the frequency w.

Similar symmetry appears when computing the spec-
tral form factor [68]. We note that there is an ad-
ditional time-reversal symmetry under ¢ — —t and
GOt ') — (—1)*+bGP=a5=b(—¢, —¢/) [69].

Now we present the solution of the saddle-point
equation away from the boundary ¢t = O ort = T.
Assuming sufficiently large 7', such that the system
reaches the steady state and the Green’s function be-
comes translationally invariant in both space and time
directions G2 (t,t') = G®(t — t') [70]. Since the
branches 1, 2 decouple from the branches 3, 4, we ex-
pect G% to be block diagonal with G1* = G4 =
GB = G?* = 0and G® = G*25*2 for a,b €

{1,2} [71]. In the low-energy limit || < —2
Gs(w) reads
11 w
Gs (w) - Tjga (7)
G2 (w) = _1 474 2
S

o2\ e T

together with G%(¢) —G(t) and G2 (t) =

—G12(t). Here we have defined J?> = JZ + JZ,
V2 = V@ + V2 For |w| > %2‘/2 we instead
have
w (1 - <v>)
1, _ - v
Gy (w) =i 2(J2 — V2) o (8)
GRw)=0
For each frequency |w| < 7%2‘/2, the solu-

tions (7) break the O(2) x O(2) symmetry but pre-
serve the time-reversal symmetry. The solutions
are only invariant under the symmetry transforma-
tion when 613 = 4. We denote the residue sym-
metry group by O(2)4, where the subscript repre-
sents the generator is 13 + 724. The Goldstone
mode lives in the coset space O(2) x O(2)/0(2)4+
space and is given by [Gs,vi3 — 724]. In terms
of the original bilocal fields, they correspond to
6GH o (w, —w) = 6G23 ) (w, —w). Here we have de-
fined the fluctuation of G fields as §G*(wy,ws) =
>, € 5GP (wy,wsy). This suggests there should
be a line of Goldstone modes labeled by frequency
w. Similar physics has also been observed in [25],
where only a single O(2) x O(2) group exists [72].
Special limits exist in which the symmetry of the
model is enlarged from O(2) x O(2). As explained
in the Appendix D, when J; = Vj = O or Jy =
V1 = 0, rotations between 14 or 23 branches are also
allowed, which leads to additional Goldstone modes
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at 6G'3 and 6G'*. The detailed analysis also shows
the mode is near k = w. However, as we will see
later, such modes are not excited when considering
a finite subsystem A, and thus does not contribute to
the entanglement entropy. Nevertheless, as will be
explained below, these modes can be probed by the
squared correlators.

4  Effective action and squared correla-
tors

We now consider fluctuations around the saddle-point
solution (7). The effective action for fluctuations is
given by expanding the G-X action around the low-
energy saddle-point solution (7). Since we are in-
terested on the low-energy limit, we focus on fluc-
tuations involving two replicas {(5G13, SGM, 6G?3,
5G?*}. These modes decouple from single-replica
modes at the quadratic level. Using the permuta-
tion symmetry between two replicas, we combine
them into symmetric and anti-symmetric components
bt = (oL, 0%) = %(6(?13 + 5G4, 6GM £0G?).
For general coupling parameters, only the symmetric
component ¢ is expected to be gapless due to the
existence of Goldstone mode.

We are interested in the long-range asymptotic be-
havior of correlators, which is determined by the ef-
fective action at small £ and w. Leaving details of
the expansion in Appendix B, we find that for the
static model the effective action of ¢ (w1, w2) takes
the form:

1
- eff/sz/
2 wiwsk

2V2 i(J2+V2)3/2 Q
¢+ i(J24V2)3/2 J24vy2 2 J2412)202 ¢+-
_ '12'J2) 0 4 s g2 4 ( +8J4)

(9)
Here we have defined 2 = w; + wo. As we expect,
there is a line of Goldstone modes at 2 = 0 labeled
by w = (w1 — w2)/2. Since the solution (7) is only
valid for |w;| < %2‘/2 the effective action (9) is
only valid below this cutoff. The theory is a con-
formal field theory with dynamical exponent z = 1,
as observed in previous numerics for Jy = V; = 0
[35]. It is also useful to reformulate the effective ac-
tion using the fields 6“(2) in the coset space. Using
G = 6G? = sin 0¥ ()G (w) ~ 6°(Q)GL2(w)

and integrating out qbi, we find

L 1 [ (JRHVE 5 P4V 5\ 2
N _5/ <J2+v2k Ve R ) 6% R
(10)

The effective action can also be inferred directly
from the symmetry perspective: When Q = k = 0,
the Goldstone modes 6G'* cost zero energy while
§G13 is gapped. Moreover, under the time-reversal
symmetry, we have Q@ — —Q and ¢; — 0.0,
which explains the off-diagonal terms that are linear
in frequency. Finally, one can add quadratic terms in
Q) and k allowed by symmetry, which leads to (9).
Consequently, we expect the form of the effective ac-
tion to be universal.

This leads to universal scaling for two-point func-
tions of ¢ . In the language of the original fermions,
they just correspond to squared correlators F} and Fb.
Working out the Fourier transformation, we find the
general scaling form

oo NGOy ke 1
- 2 c 02+ k2 22

= N <¢+2¢+>22 ~ /ezkx o i e ~ lOgLL'.
(11)
Here we have omitted parameters that depend on the
details of the models. F5 takes the same form as the
correlation function of 2.D massless bosons, while F}
acquires taking additional derivatives.  The result
(11) is under the assumption of disorder replica di-
agonal saddle-point solutions and the large-/V expan-
sion. Comparing to previous works, the scaling of I}
matches the result for the traditional squared correla-
tors evaluated on steady states at small N [8]. The
logrithmic divergence of F; reflects the fact that the
coset field 0 (2) has a scaling dimension which van-
ishes in the large-/NV limit: We consider computing
the two-point function of G12 + i6G* ~ G12ei”.
The result takes the form of 2722, where A o« 1/N
is the scaling dimension of ¢*”. Expanding in terms
of 1/N gives rise to the logrithmic behavior of F5.
The result of F; may be modified if additional
Goldstone modes exist. Following a similar route,
when there is an additional Goldstone mode at G''3
and G?* (at momentum 7) for special limits, we in-
stead find F; ~ (—1)* log z in the large- N limit.

5 Entanglement entropy

We finally turn to the study of the second Rényi en-
tanglement entropy of [)(T")). We choose the sub-
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Figure 2: A sketch for the calculation of the second
Rényi entanglement entropy on the steady state. (a).
The path-integral contour for the purity calculation. (b).
The effective theory is an XY model on a half-infinite
plane, with twisted boundary condition on the boundary
t = T. The energy increase due to the creation of the
half-vortex pair is equal to Sff)(oo).

system A as first L4 sites of the chain, and its re-
duced density matrix pa(T") = trp [¢(T)) (¢(T)] is
obtained by tracing out the remaining part B. We
consider

. . 2
tra (trp e T [go) (ol ')

trAp,%l = ] - 2
(ol ' TeHT ) )™ (1)
_ ZQ(T7 A)
- 21

and the second Rényi entropy is given by 51(42) (T) =
—logtra(pa(T))?%. Again, by assuming replica diag-
onality in the disorder replica space [37, 66, 67], one
has

SO(T) ~ log Z(T, A) —log Zo(T,0).  (13)

The calculation of entanglement entropy can be
mapped to the problem of computing the energy
of half-vortex pair that emerges due to the special
boundary conditions in the Rényi contour [25]. To
illustrate this, we consider the evolution time 7" to be
long enough and focus on the boundary at ¢ = T'. For
subsystem A, the twisted boundary conditions con-
nect branches 14 and 23 (see FIG. 2 (a)) which ex-
cites the Goldstone mode and effectively imposes a
6 = m/2 vortex on one boundary region of A and
a § = —m/2 antivortex on the other. On the con-
trary, for subsystem B, the boundary condition fa-
vors 6 = 0 according to previous analysis. Together

0 3 o xr= Jl/‘/l )
v = IV o
o T = Vl/Jl o -
o 0.2
S -
OO ol
Lo B0, B0,
0’1— o L CTTEPPPN, (cIE P o
05 1.0 1.5
X

Figure 3: Numerical result for the stiffness ps in the
static SYKs chain. The coupling parameters not men-
tioned in the plots are set to zero. The analytical ex-
pressions (14) is plotted in dashed lines for comparison.

with the effective action (10), the problem maps to
(infinite copies of) 2D XY models on a half-infinite
plane with additional pinning fields creating half-
vortex/antivortex on the boundaries. A sketch for this
system is shown in FIG. 2 (b). The entanglement en-
tropy (13) is equal to the energy of this half-vortex-
antivortex pair with spatial separation L 4, which is
known to be 51(42) x pslog L 4 [63, 64]; such a critical
behavior is consistent with previous numerics [35].
Similarly, the mutual information is equal to (the ab-
solute value of) the interaction energy between two
half-vortex pairs, which scales with 1/d? where d is
the distance between two subregions.

In the large-N limit, the XY model is at zero-
temperature and we can directly apply the mean-field
approximation. The stiffness (or the superfluid den-
sity) ps is given by summing up contributions from
different w, which gives

[ 72 2
Sf)ocpslogLAoc% leogLA. (14)

Specifically, for large J;/Vp and Jy = Vi = 0 the
result J; /Vylog L 4 is consistent with the numerical
observation in [35]. We further perform numerical
simulation to verify that the scaling form (14) holds
in a large parameter region with finite J and V'; the
numerical result for the stiffness p; is shown in Fig. 3
[73].

6 Connections to circuits at finite N

The non-unitary random dynamics of free fermion
models are also considered in [25, 33, 34] using
Gaussian fermionic circuits. In all these works, the
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steady states exhibit critical phases which have log-
arithmic entanglement entropy and are interpreted in
different approaches. In [33], authors propose a non-
linear master equation for squared correlators, which
predicts the 1/z2 scaling, consistent with the numer-
ics. In [25], authors argue the replicated random
fermionic circuits can be described by an effective
sine-Gordon theory. Different from our result, there
is only a single Goldstone mode when the system is in
the critical phase. This is due to the absence of energy
conservation, which couples fermion modes with dif-
ferent frequencies. Similar behavior can also be ob-
served if we consider the Brownian non-Hermitian
SYKj chains, and we leave this discussion in the Ap-
pendix C.

7 Discussions

In this work, we study the non-unitary dynamics
of the SYK5 chains for both the static model and
the Brownian model. In the replicated space, ei-
ther system shows (copies) of the O(2) x O(2) sym-
metry, which is broken into O(2), by the saddle-
point solution. The system then obtains an emergent
replica conformal symmetry from the fluctuation of
Goldstone modes, leading to the universal scaling of
squared correlators. The entanglement entropy of a
subsystem A can be understood as the energy of a
half-vortex pair, which is logarithmic in the subsys-
tem size.

There are a lot of interesting extensions of this
work. Firstly, our derivations can be directly ap-
plied to the higher dimensional SYKj lattices with
minor modifications. For 2D lattices, the result
is an XY model in 3D. Choosing subsystem A as
a circle with perimeter L4, the entanglement en-
tropy then corresponds to the energy of a half-vortex
ring, which is proportional to pgLlog L. Sec-
ondly, we can add interactions to our model. As
an example, consider adding a Brownian SYK, in-
teraction AHR = 37,501 » gfjkl(t)xixgxi’va. This
leads to an additional self-energy term —gd(t —
) (—1)*°Geb(t, )3, which breaks the O(2) x O(2)
symmetry explicitly. Consequently, the replicated
system becomes gapped, and there is no conformal
symmetry anymore. Furthermore, the entanglement
entropy corresponds to the energy of a domain wall
with length L 4, instead of a vortex pair, leading to
the volume law. Finally, it is also interesting to con-
struct models with entanglement transitions. Such a
model exists if we introduce two copies of the SYK

chain and add non-Hermiticity on the fermion parity
operator between two copies. The system shows a
transition between a critical phase and an area law
phase when there is no interaction. After adding
interactions, the system shows a second-order tran-
sition between a volume-law phase to an area-law
phase. These results will be presented in a separate
paper [74].
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A The path-integral representation of the replicated system

As explained in the main text, we focus on the path-integral representation of the replicated system. The time
evolution of a density matrix p is

p(t) = e~ peiflt (15)

and it does not preserve the normalization. To evaluate p(¢) using path integral, one needs two contours similar
to the Keldysh contour. Denoted by 1 and 2 for forward and backward evolution, the action on these two
contours schematically is

1 .
-4:/&Q@@W@ﬁ+@ﬂ%ﬂﬁ&h&ﬁd%k$+4W“%waﬁvww@)
(16)

where a = 1, 2 denotes two contours, and the superscript for Majorana species on each site is suppressed. After
introducing two replicas, we aim to compute

72 = ({tho| e~ HT [g)g))2. (17)

This basically doubles the action on the Keldysh contour. Namely, it requires four contours denoted by 1, 2, 3,
4. The effective action on these four contours after integrating out disorder is

I 1 atlgabg, _ yab L sabgab

(_1)a+b

1
+ V(G + VPGP G - ~—

3G + JpGeash )] (18)

where G and ¥ are the bilocal fields with time arguments ¢ and ¢ omitted, which characterize the two point
function of Majarana fermions or the corresponding seld-energy at a and b contours. As a result, the saddle
point equation is

[G;l]ab _ (_1)a+15abat _ Egb’ (19)
G+ G,

5 = Vi = ()P INGE + [VE — (—1) g 5

(20)

B The derivation of the effective action

The effective action is given by expanding the G — ¥ action (18) or (30) around the saddle-point solution. In
this section, we give a detailed derivation for the effective actions.

B.1 The effective action of the static model

We consider the saddle point fluctuations,

Yo(wi,wa) = Es(w1)2m0 (w1 + wa) + 08, (w1, w2). (21)
and similar for G, where we have used the convention X(ty,t5) = [ %2 %E(wl, wy)e~witi—iw2t2 for Fourier

transformation. The trace log term in (18) gives rise to [as the first line in (18) does not depend on lattice site,
we suppress lattice index  until we move on to evaluate the second line in (18)]

1
62ab(wl, w2)Gga (W1)GZC(*(A}2)6ECd(*W2, *wl). (22)

4 w1,w2
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where we have defined [ = [ g—;’ for conciseness. We will be interested in the correlation between 1, 2 and
3, 4, so we focus on these correlation functions. Assuming the symmetry E“b(tl, to) = —Eba(tg, t1), we can
bring the kernel into

wiw2 —f(w1) flwe) —iwif(wz) —iwaf(wr)

/ L (o, wa) —f(w1) f(w2) wiw2 —iwa f(w1)  —iw f(wz)

wiw 8T iw1 f(w2) iwa f (w1) —wiwz  f(w1)f(we)
iwa f(w1) iwif(w2)  flwr)flw2)  —wiwe

6(—wi, —wa),

(23)

where we have defined 6 = (6X13, %24 6314, 6%23) and f(w) = \/#‘7;2 — w2,

If one notices the coupling term —% [ £ G in (18), then it is a straightforward task to integrate out & field,
and the resultant action reads

/ (J2 +V?)?
w1 w2 8.J4
—wwy  f(wi)f(wz) iwif(ws) iwa f(wi)
. fw1)flw2) — —wiws iwa f(w1) iwy f(wa) s
Xgilw;w2) —iwy f(wz)  —iwa f(wr) wiws —f(w1) f(w2) —k (o, —w2),
—twa f(w1) —iwrf(w2) —f(wi)f(w2) wiwz
where g, = (6G2,6G3*,6GH*, 6G23). We restore the lattice index by going to the momentum space using

gL = % S, 9z€~ %% with L the number of sites.
The second line in (18) is simple, and leads to

(24)

VE—Jp 0 0 0
L 0 Vi = Ji 0 0 R
0 0 0 V2+J7

So the effective action is given by the sum of (24) and (25).

The fields 6G'* and §G?? are related to a Goldstone mode. More precisely, 6G'* 4 §G?3 is the Goldstone
mode, so they are gapless at zero frequency and momentum. Expanding the effetive action near zero frequency
and keeping the leading term, it reads

—Leff _

N

(J2+V2)2(w +w )2 i(J2+V2)3/2

1 ¢A5+ J? — Jl? ""Vj —&—2‘/;,;/2— ]8J7 — 22 (w1 +2W2)2 , , ng5+
2 Juwrwo —UI AV 2—;‘2/ ) (w1 + w2) —J? + ‘]lg -V2+ Vk2 + Y %J(ZJI—HUQ)

N LI R e N e e e ULV () — .
+¢— k,i(tj2+v2)3}€2 8.J% 9 2 22J2 2 ( 1(J2+V22))2(w —w )2 QZS—, (26)

T(WI_WZ) J+Jk+v +Vk_ 8J41 2

where we make the symmetrization and antisymmetrization of the fields (ﬁi = % (0GB L5G*, 6GM+£6G?3),
like the conventional Kelydsh rotation. And remember J? = JZ+J7 cos k, V2 = VZ +V{? cos k. Only keeping

the q§+ part and expand each element to the leading order in small k£ and w, we get the effective action presented
in the main text.

B.2 Relation to the entanglement entropy

Here we explain the boundary condition for § when computing the entanglement entropy. As discussed in the
main text, the entanglement entropy corresponds to

e = timyoctrg (wn(e™ 7 o) (ol ™ D tw(e™ 7 1) (vole ' 7)) 20
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In other words, for sites in the subsystem B, the boundary condition connects the forward and the backward
evolution in the same replica which favors G'2 # 0 and G'* = 0, while for sites in the subsystem A, the
boundary condition connects the forward and the backward evolution in different replicas which favors G2 = 0
and G # 0. This directly corresponds to the excitation of Goldstone modes. More explicitly, if we work out
the low-energy manifold

G cos(0)GL2 0 sin(6)GL2
| —cos(9)GL2 -Gl sin(0)G12 0
Galt) = 0 —sin(0)G12 Gl cos(0)G12 (28)
—sin(0)GL2 0 —cos(0)GL2 -Gl

Then in B/A subsystem, the boundary condition favors # = 0 or 7/2. Computing the entropy corresponds to
the calculation of the energy of two half-vortexes with opposite charge.

C The Brownian non-Hermitian SYK5 chains

We can also generalize our SYKy chain to the Brownian case. Now, we treat J; o+l I Vg’xﬂ, V2 as
time-dependent variables with

J1

TN )T 0) = 2]‘\/]5( ), JE(t)JE(0) = ]‘\;5(75), 20)
Vit OV o) = g0, VOV (0) = 800

Since the Hamiltonian is time-dependent, and we keep the time-ordering in (15) and (17) implicit. Following
similar steps, the result reads

1
_7_2 Trlog< #1509, — £ + / dtdt’ | - SGe

§ " . —1)atb5
+Z[VO(Gmb) + WG beJrl] (l

Here we have ommited the time arguments for bilocal fields as in the static case. The main difference compared

to the static case is the appearance of the additional 0 = d(¢; — ¢2) due to the lack of correlation in the time
direction. This gives

[G—l]ab — (_1)a+15ab8t _ Zgb’ (31)

Gac 1 + Ga;—i—l
2

Different from the static case, now there is only a single O(2) x O(2) symmetry, given by the transformation
G(t,t') — OG(t,t")OT with O = exp(—c13613 — ca4624). The saddle-point solution takes a simpler form

[Jo(GS)? + GG, (30)

S5 = 8[Vo — (~1)™ ]G + 8[Vi — (~1)"*7] (32

1w
w2 4+T12/4’

r/2

11 — e
Gs (w)_ w2+rg/4'

GPw) =~ (33)
HereI' = V +J = Vy+ V1 + Jo+ J1 is the quasi-particle decay rate. Similar to the static case, the saddle-point
solution also breaks the symmetry down to O(2)., leading to a single Goldstone mode.

Now we consider saddle-point fluctuations,
E(tl,tg) = Es(tl,tg) +5E(t1)(5(t12), G(tl,tQ) = Gs(tl,tz) +6G(t1,t2). (34)

We first evaluate the Trlog term and then the interaction terms. Expanding the Trlog term into second order,
we arrive at

1 1

j/wQTr [Gs(w + Q)OT(Q)Gs(w)dZ(—Q)] = Q/QUT(Q)MJFQ)’ 35)

)
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where [, = %, and we have used the Fourier transform §%(Q) = [ dté%(t)e™*. In evaluating the kernel,

we have used the symmetry of bilocal field ¥%°(¢1, t5) = —X%%(t5, 1), so there are four independent diagonal
fields and six independent off-diagonal fields. The full kernel implies that (a) off-diagonal fields decouple from
diagonal field and (b) four out of six independent off-diagonal fields have nontrivial interactions. We denote
these four nontrivial off-diagonal fields to be o = (6313, 6224 6514, 5232)T, and the corresponding kernel
reads

-1 -1 —i i
r -1 -1 —i 3
M=g@sm | « i 1 -1 (36)
- —i =1 1
It is easy to check that the kernel has two zero modes, and we can make redefinition of the fields

1 1 0 0

1 0 0 -1 1

0o 0 1 1

such that the last two fields are zero modes and the quadratic action for the first two fields are (we use ¢ to
denote the first two fields in the following)

1 __r i
5 [ #TOMup(-9), My =UMUT = ( I ) (38)
Q Q2412 Q2412

Now we are ready to integrate out ¢ fields. For the two zero modes, because they couple linearly to dG fields
in the action (30), integrating them out leads to two constraints.

SGB3(t,t) = 6G*(t,t),  SGM(t,t) = —6G32(t,1). (39)
For notational simplicity, we introduce another fields
$1(Q) = V2 / dt GV, 1), $a(Q) = — V2 / dt 5GM (1, 1), (40)
In terms of these field of interest w;, ¢;, i = 1, 2, the quadratic action reads

_% _ ;;/ﬂ (;wg(Q)MU%(_Q) - ‘2@ (62 () (— ) + soz(Q)qﬁx(—Q)])

-lé/ (Vi(d1,601,—k + P26P2,—k) — Je(D16P1,—k — P2kP2,—k)) - (41)
Qk

where we restore the space index and make Fourier transform to momentum space in the second line, ¢, =
% Dok ére™*®, L is the number of the site of the chain. And we also define J, = Jy + Jicosk, Vi =
Vo + Vi cos k, and one should distinguish it from the case of regular SYK9 model. It is then straightforward to
integrate out ¢ field to have

lg 1 J= T +V 4V —iQ
- == Q . —x(—9Q). 42
N 7 2 o O )( i0) A A (42)
Expanding each element to the leading order in small k£ and w, we get
Ig 1 2V 182
- == Q , Q). 4

In terms of the coset space variable 6(£2), this becomes the effective action of a single Goldstone mode

Ly _ 1 (J1+V1

N 2 Jok

1
2 2 2
R Q)|9(Q,k)] : (44)
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Figure 4: Numerical result for the stiffness p; in the Brownian SYKy chain. The coupling parameters not mentioned
in the plots are set to zero. The analytical expressions (45) is plotted in dashed lines for comparison.

which takes a similar form as the static case due to the time-reversal symmetry. Consequently, the universal
scaling of the squared correlators still applies and p, can be extracted from (44) to obtain

Brownian: Sf) x pslog Lo = ¢/ J1 ;VlNlog Ly. (45)

Such a scaling is again verified numerically; the numerical value of the stiftness ps is shown in Fig. 4.

D Discussions on special limits of the model

As mentioned in the main text, in special limits, the symmetry of the system can be larger and additional
Goldstone modes appear. In this section, we give a detailed discussions on these cases. We take the static case
as an example, and finally comment on the Brownian case.

For the saddle-point equation (19), we consider:

1. In special cases the symmetry of the equation can be larger than O(2) @ O(2) (for each frequency w). For
example, when we have purely Hermitian evolution with V5 = V; = 0, we can define Geb = (—1)“Gab.
The self-consistent equation then reads

.~ dws ~ ~

w1 G2 (wr, —wa) — 2—;’2;”(% —wg)Gg‘j(wg, —wo) = I"°§(w1 — wa),
/ ) (46)
G (w1, ws) + G2 (w1, w3)

S8 (wy, ws) = —J7 — J2GY (wy, w3).

2

The equation now becomes O(4) symmetric: G2 (wy, ws) — O(w1)G% (w1, ws)OT (—ws) with arbitrary
O(4) matrices O(w). The effective action now leads to diffusive behavior

1

<5G135G13> S <5G245G24> ~ T

(47)

where we have dropped non-universal coefficients.

2. There is additional symmetry between the forward and the backward evolution if Jy = 0 and V; = 0. The
reason is that if we consider two evolutions and neglect their boundary conditions

i H —iHpT— i H n T—
e zHTe'LHT:e iHRT H]TezHRT H;T (48)
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If we define x!, = x,(—1)*%, we find Hp — —Hp with H; unchanged. Consequently, There is an addi-
tional Goldstone mode with momentum . The mode appears at G}3__(w,w) and G2 _(w,w). Explicitly,

we have 1
§GPGT) = —— 4
(56266%) = (19)

3. Similar modes exists when we instead have ¥y = 0 and J; = 0. The idea is again to perform the
transformation G*¢ = (—1)*G**. The self-energy becomes:

B Gab ’ éab ’
S0 = o Palenen)+ G

— J3 G (w1, w3) (50)

Back to the evolution operator language, this corresponds to the self-consistent equation of

e*iHRTfH[T67iHRT+HITe*iHRTfH]Tef’iHRT+H[T (51)
Here we neglect boundary conditions. Now if we perform a momentum shift by x/, = xz(—1)*
for e “HIRTHHIT contours, then the path-integral show O(4) symmetry, and again we have modes on

G2 (w,—w) and G731 _(w, —w). Note that compared to the previous case, the frequency for the modes
are different. This leads to 1
GGy = — . 52
< > 02 + (k — 7T)2 (52)
4. The purely imaginary evolution with Jy = J; = 0 is also special. On the one hand, both contours are
symmetric and there should be O(4) symmetry. However, in this case we have G'? = 0 and there should

be no symmetry breaking and thus no Goldstone modes. Calculation gives

@(wlwg)

@(—wlwg)
k2 + Q|

(8G135G1) ~ Tl

(5G135G1) ~ (53)

For the Brownian model, similar analysis shows for Vj = 0 and J; = 0, there is a similar Goldstone mode at
G'3 and G?*. However, when Vi = 0 and Jy = 0, the mode does not appear due to the lack of correlation in the
time domain. Furthermore, different from the static model, G'2 is non-trivial even under the purely imaginary
evolution. Consequently, the result is the same as the general case, as mentioned in the main text.
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