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ABSTRACT.

Background: The prediction of anatomical axial intraocular lens position (ALP)

is one of the major challenges in cataract surgery. The purpose of this study was to

develop and test prediction algorithms for ALP based on deep learning strategies.

Methods: We evaluated a large data set of 1345 biometric measurements from

the IOLMaster 700 before and after cataract surgery. The target parameter was

the intraocular lens (IOL) equator plane at half the distance between anterior

and posterior apex. The relevant input parameters from preoperative biometry

were extracted using a principal component analysis. A selection of neural

network algorithms was tested using a 5-fold cross-validation procedure to avoid

overfitting. The results were then compared with a traditional multilinear

regression in terms of root mean squared prediction error (RMSE).

Results: Corneal radius of curvature, axial length, anterior chamber depth,

corneal thickness, lens thickness and patient age were identified as effective

predictive parameters, whereas pupil size, horizontal corneal diameter and

Chang–Waring chord did not enhance the model. From the tested algorithms, the

Gaussian prediction regression and the Support Vector Machine algorithms

performed best (RMSE = 0.2805 and 0.2731 mm), outperforming the multilin-

ear prediction model (0.3379 mm). The mean absolute prediction error yielded

0.1998, 0.1948 and 0.2415 mm for the respective models.

Conclusion: Modern prediction techniques may have the potential to outperform

traditionalmultilinear regression techniques as they can deal easily with nonlinear-

itiesbetween inputandoutputparameters.However, inall casesacross-validation is

mandatory to avoid overfitting and misinterpretation of the results.

Key words: anatomical lens position – axial IOL position – deep learning – optical bio-

metry – prediction model – regression model
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Background

Most of the classical IOL power
calculation formulae such as Haigis
(Haigis et al. 2000; Olsen 2007; Savini
et al. 2020; Scholtz et al. 2021), Hoffer
Q (Hoffer 1980; Hoffer 1993), Holla-
day1 (Holladay et al. 1988) or SRKT
(Retzlaff et al. 1990) mainly differ—
beside conversion of corneal radius of
curvature to dioptric power with a
keratometer index, offset values or
limiters for input parameters—in dif-
ferent prediction models for the axial
IOL position. This parameter is typi-
cally defined as the effective lens posi-
tion (ELP), which does not necessarily
coincide with the physical position of
the IOL front surface (Olsen 2006), the
IOL back surface or the image-side
principal plane of the lens (Olsen &
Hoffmann 2014).

The prediction of the axial position of
an intraocular lens implant (IOL) in the
eye after cataract surgery is one of the
most relevant challenges in obtaining
the target refraction. In a normal-sized
eye, a prediction error of 100 micron in
the axial lens position causes a predic-
tion error in refraction of around 0.13 to
0.14 dpt. For example, when using the
Javal Index (n = 1.3375) for the conver-
sion of corneal radius of front curvature
to dioptric power in the lens calculation
formula, the focal length of the cornea is
underestimated (or conversely, the
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corneal power is overestimated). This
has to be compensated with a larger
dioptric power of the lens implant or
alternatively with a slight displacement
of the lens (Norrby & Koranyi 1997;
Norrby 2004; Olsen & Hoffmann 2014)
towards the retina (larger ELP).

Some modern lens power calculation
concepts, such as the Olsen formula
(Olsen 2007) or the Castrop formula
(Langenbucher et al. 2021), tend
towards calculating the real physical
lens position (anatomical lens position
(ALP), Norrby & Koranyi 1997; Nor-
rby 2004) instead of the fictitious ELP
(Olsen 2006; Olsen & Hoffmann 2014).
For that task, the keratometer index
for conversion of corneal front surface
curvature to dioptric power is revised
or updated to better describe the
refracting properties of the cornea. In
some concepts, correction terms for the
axial length are used to consider the
proportion of the eye media, especially
in very long and short eyes (e.g. the
Cooke correction). The ALP is mostly
defined by the equatorial plane of the
pseudophakic capsular bag with the
implanted IOL with respect to the
corneal corneal epithelium front apex.
After cataract surgery, the ALP may be
estimated from the pseudophakic ante-
rior chamber depth and the central
IOL thickness (Olsen 2006). This can
be measured with good precision by
modern optical biometers (Hirnschall
et al. 2020). As a rough simplification,
we can assume that the equatorial IOL
plane is located at half the distance
between the front and back vertex of
the IOL. However, this could be
affected by the shape factor or a step
vault in the design. These are typically
used to avoid rapid development of
lens epithelial cell growth and posterior
capsule opacification (Olsen 2006; Pre-
ußner et al. 2008; Scholtz et al. 2021).
Modern lens power calculation con-
cepts use the ALP value as a baseline
and add slight (mostly constant)
amounts of shift to consider the indi-
vidual characteristics of IOL designs in
terms of haptic and optic concept,
refractive index and shape factor
(Olsen 2007).

The most important benefit of the
ALP comparedwithELP concept is that
the ALP can be directly validated after
surgery using anterior segment tomog-
raphers or biometers, whereas the ELP
as a fictitious value has to be calculated
from the biometric parameters prior to

cataract surgery, the power of the
implanted IOL, and the achieved refrac-
tion after cataract surgery. This back-
tracing of the ELP (Melles et al. 2019;
Savini et al. 2020) is routinely per-
formed using a formula constant opti-
misation strategy, in which the
biometric data, the power of the
implanted lens and the refractive out-
come of a sufficient number of clinical
cases are used to determine post hoc the
appropriate ELP and formula constant.

The purpose of this paper is to
derive biometric measures of the eye
prior to cataract surgery, using a large
data set containing data from cataract
surgeries from 1 clinical centre. The
data recorded include corneal radius of
curvature, axial length, central corneal
thickness, anterior chamber depth,
crystalline lens thickness, horizontal
corneal diameter, Chang–Waring
chord (as the difference between the
coaxial light reflex and the pupil centre)
in horizontal and vertical direction,
and the patient’s age and sex. These
were used to develop both a classical
regression-based prediction model and
a neural network-based algorithm for
predicting the axial position of the lens
equator plane after cataract surgery.

Methods

Data set for the prediction model

A data set of 2231 measurements of a
cataractous population before (at the
timepoint of biometry for IOL power
calculation) and 6 weeks to 3 months
after cataract surgery with the biometer
(IOLMaster 700, Carl-Zeiss Meditec,
Jena, Germany) was evaluated in this
study. Three hydrophobic monofocal
aspherical lenses were considered: Clar-
eon, Alcon, Fort Worth, USA; Vivinex,
Hoya Surgical, Tokyo, Japan; and
ZCB00, Johnson & Johnson, New
Brunswick, USA). These 3 lenses do
not differ significantly in the general
optical design or in the optimized for-
mula constants (Clareon119.1; ZCB00:
119.4; Vivinex: 119.2, data derived from
https://IOLCon.org at 12th October
2021).

All data were obtained from one
clinical centre (2 experienced surgeons,
Augen- und Laserklinik, Castrop-
Rauxel, Germany). This study was reg-
istered at the local Ethics Committee
(Ethikkommission der Ärztekammer
des Saarlandes with the registration

number 157/21). The data were anon-
ymised by the source and transferred to
a .csv data table using the software
module for batch data export. The data
tables were reduced to the relevant
parameters required for our data
analysis, consisting of the following
measurements extracted from the pre-
operative measurement: the patient’s
age (Age) in years as the time interval
from date of birth to the preoperative
measurement, the laterality (left or right
eye), sex (female or male), flat (R1) and
steep (R2) corneal radius of curvature
both in mm, axial length (AL) in mm,
central corneal thickness (CCT) in mm,
anterior chamber depth (ACD) in mm
(measured from corneal epithelium to
lens), central thickness of the crystalline
lens (LT) in mm, pupil diameter (PD),
horizontal corneal diameter (CD) in
mm, plus the Chang–Waring chord as
the distance between the light reflex
originating from a coaxial light source
(Purkinje reflex P I) and the pupil centre
(Chang & Waring GO 4th 2014, dis-
tance CWchord in mm and axis
CWchordA in °). From the postopera-
tive measurement, we extracted the
pseudophakic anterior chamber depth
(ACDpo) in mm and the central IOL
thickness (LTpo) in mm. Only one eye
from each subject was included in this
study. Where measurements of both
eyes were available, one eye was ran-
domly selected. Subjects with missing
data or datawith a ‘Failed’ or ‘Warning’
in the internal quality check of the
IOLMaster 700 for R1, R2, AL, CCT,
ACD, LT, PD, CD, CWchord,
CWchordA, ACDpo or LTpo were
excluded. After checking for ‘Success-
ful’ measurement for corneal front and
back surface curvature data, a data set
ofN = 1345measurements was used for
training, validation and test of our
prediction algorithm. The data were
transferred to Matlab (Matlab Version
2019b, MathWorks, Natick, USA) for
further processing.

Data preprocessing in Matlab

From the corneal curvature in the flat
and steep meridian, we derived the
mean corneal curvature R in mm as
R = 0.5�(R1 + R2). The Chang–War-
ing chord as given by the IOLMaster
700 in distance and direction was
converted to vector components in
the horizontal (CWX = CWchord�cos
(CWchordA)) and vertical (CWY =
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CWchord�sin(CWchordA)) axes, both
in mm. In addition, to consider the
laterality, the horizontal component of
CWX was flipped in sign for left eyes
CWXcor to get negative values for a
temporal shift and positive values for a
nasal shift. The equator plane of the
IOL (LEQ) in mm as target parameter
in our study was assumed to be located
at half the distance between the IOL
front and back apex (LEQ = ACDpo +
0.5�LTpo). The difference between
LEQ derived from the measured
ACDpo and LTpo and the LEQ pre-
dicted by our model (LEQpred) was
considered as the prediction error
(LEQ − LEQpred).

Modelling in Matlab

In a first step, a feature selection in terms
of a principal component analysis
(PCA) was used to identify the relevant
input parameters for our prediction
models (Herrmann 1997). PCA is a
commonly used strategy to decompose
the parameters in the parameter space
into an orthonormal basis in order to
extract the most relevant input para-
meters for dimensionality reduction in
explorative data analysis and prediction
models (Kleesiek et al. 2020). The order
of principal components within the
parameter space is chosen to maximize
the variance of the data set. In our setup,
we defined a benchmark of 99% of the
variance in the data to be preserved with
the PCA and dimensionality reduction.

In a second (qualification) step, a
selection of classical neural network
types (Bechtel 2008; Welsch et al. 2018;
Sramka et al. 2019; Carmona González
& Palomino Bautista 2021; Langen-
bucher et al. 2020) was tested on the
data set to determine the performance
in terms of predicting the LEQ from
the relevant input parameters identified
by the PCA. The following neural
network algorithms were tested:

• Regression models: 4 different
options were implemented with sim-
ple multilinear regression, multilin-
ear regression with interactions
between input parameters, a robust
setup with individual weighting of
the data points and a stepwise linear
fitting by including and excluding
components.

• Regression trees: 3 different options
were implemented. A tree with a
high resolution (fine tree) and plenty

of leaves with a minimum leaf size of
4, a tree with a normal resolution
(normal tree) and an average leaf
size of at least 12, and a tree with a
coarse resolution (coarse tree) with a
restriction to some large leaves with
a minimum leaf size of 36.

• Support vector machines (SVM): 4
different options were implemented.
SVM were considered with a linear
kernel, with a quadratic kernel, a
cubic kernel and a Gaussian kernel.
The preset kernel size was selected as
¼ of the square root of the number
of effective predictive parameters.

• Gaussian process regression (GPR):
3 different options were tested in our
setup: with a GPR with a squared
exponential function for the kernel,
with an exponential function for the
kernel, and a GPR with a rational
quadratic kernel, which allows a
flexible model fit with variation to
different scales.To evaluate the per-
formance of each algorithm under
test, we extracted the root mean
squared prediction error (Welsch
et al. 2018).

To avoid overfitting of the models,
the entire data set of N = 1345 mea-
surements was split randomly into 5
equally sized clusters (N = 269 each),
and with a 5-fold cross-validation
strategy, the neural network algorithms
were trained with the training set
(N = 1076, excluding the test set) and
validated with the test set (N = 269),
with permutations until each cluster
was excluded once (Bechtel 2008).

In a third step, the 2 most promising
neural network approaches from the
tested neural network types in terms of
smallest root mean squared prediction
error were analysed more in detail. For
reference, we defined a classical multi-
linear regression model having the
same input parameters, predicting
LEQ as the output parameter. To
ensure a fair comparison, we imple-
mented a cross-validation strategy for
the multilinear regression model using
the data partitions defined for the
neural network approaches.

Statistics

The input parameters and the target
parameter are shown in Table 1 with
mean, standard deviation, median and
90% confidence interval (5% and 95%
quantile). For the 3 prediction models

(the 2 neural network approaches with
the least root mean squared prediction
error and the classical multilinear
regression model), we provide the mean
prediction error (ME) with standard
deviation (SD), the mean absolute pre-
diction error (MAE), the 95% quantile
(CL90) of the absolute prediction error
(as the absolute prediction error shows
in general a one-sided distribution) and
the root mean squared prediction error
(RMSE). For the multivariate linear
prediction model, we used maximum
likelihood estimation with iterative
ECM algorithm (Meng et al. 1993; Sex-
ton&Swensen 2000), and the respective
results are described with the coefficient
of determination (CoD), Sigma and
LogL as the value of the log likelihood
objective function after the final itera-
tion.

Results

We included N = 1345 measurements
from 669 left eyes in this study (787
eyes from female patients). Table 1
shows a listing of the mean value,
standard deviation, median, minimum
and maximum, as well as the 90%
confidence intervals of biometric al
input and target parameters used for
our modelling. The CW chord shows a
trend towards the inferior direction
and a horizontal shift in the temporal
direction (which can be seen from the
data of CWXcor, but not from CWX).

In a first step, the feature selection in
terms of a PCA was applied to identify
the most relevant input parameters:
age, R, AL, CCT, ACD and LT were
included in the prediction models as
input parameters (or effective predic-
tive parameters), whereas the sex, PD,
CD, CWX and CWY were identified as
parameters, which did not significantly
improve the model performance.

In the second step of testing, the
performance of prediction models
using a selection of neural network
strategies we determined that the fam-
ily of regression networks yielded a
RMSE in a range between 0.32123 mm
(linear regression with interactions
between parameters) and 0.32801 mm
(robust linear regression). With the
family of regression trees, the RMSE
ranged between 0.33442 mm (coarse
tree) and 0.34588 mm (fine tree). With
the family of support vector machines,
we obtained a RMSE in the range of
0.28052 mm(SVM with a quadratic
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kernel) and 0.29421 mm (SVM with a
Gaussian kernel architecture), and for
the family of GPR algorithms, we
derived a range for RMSE between
0.27304 mm (GPR with exponential
kernel) and 0.29086 mm (GPR with
rational quadratic kernel). The 2 neural
network algorithms with the best per-
formance in terms of least root mean
squared prediction error were the GPR
with exponential kernel (RMSE =
0.27034 mm) and the SVM with a
quadratic kernel (RMSE = 0.28052
mm), and these were analysed in more
detail. The robust multilinear predic-
tion model with the input parameters
age, R, AL, CCT, ACD and LT
with 5-fold cross-validation showed a
performance of RMSE = 0.33794
mm (LogL = −593.5, Sigma = 0.1079,
CoD = 0.386). The overall multilinear
regression model is characterized with
the regression coefficients (from N =
1345 measurements) as follows:

LEQpred ¼ 1:1065−0:0003∙Age−
0:0935∙Rþ 0:0382∙AL−0:0430∙CCTþ
0:7070∙ACDþ 0:3614∙LT:

Table 2 shows the explorative per-
formance data of both neural network
algorithms and the multilinear regres-
sion model in terms of mean and
standard deviation of the prediction
error; the median prediction error,
mean absolute and root mean squared
prediction error, and the upper limit of
the 90% and 99% confidence interval
of the absolute prediction error.

The GPR algorithm that proved to
have the lowest root mean squared
prediction error on our data set showed
a MAE/RMSE, which was 19.3%/
19.2% lower compared with the respec-
tive prediction error of the multilinear

regression model. Figure 1 displays the
performance plot with the predicted
LEQ versus the LEQ derived from the
postoperative anterior chamber depth
and lens thickness for the GPR algo-
rithm with exponential kernel, the
SVM with quadratic kernel (Bech-
tel 2008) and the multilinear prediction
model all with a 5-fold cross-
validation. Data points on the diagonal
(as indicated by the red line) show no
prediction error.

Both neural network approaches
show a slightly flatter trend, meaning
that large values of LEQ are underes-
timated and small values overesti-
mated. In contrast, the multilinear
regression algorithm systematically
underestimates large LEQ values and
overestimates small LEQ values, with a
larger data scatter.

Discussion

The prediction of the axial IOL position
with preoperative biometric data is one
of the largest challenges in intraocular
lens power calculation (Norrby &
Koranyi 1997; Melles et al. 2019).
Many competing concepts for estimat-
ing the lens position have been pro-
posed. The simplest versions are based
on K readings derived from corneal
front surface curvature and axial
length, or on several other parameters
such as phakic anterior chamber depth,
lens thickness, horizontal corneal diam-
eter or patient age. However, we also
have to take into consideration that
most of the lens power calculation
concepts involve estimation of an
ELP, which does not match the
anatomical position of the IOL in the

Table 1. Explorative data of the input parameters and the target parameter for our prediction model in terms of mean value, standard deviation,

median and 90% confidence interval.

N

= 1345 Age in years

R in

mm

ACD in

mm

LT in

mm

CCT in

mm

CD in

mm

PD in

mm

CWX in

mm

CWXcor in

mm

CWY in

mm

LEQ in

mm

Mean 70.63 7.73 3.13 4.63 0.56 12.00 4.15 −0.03 −0.26 −0.11 5.14

Standard

deviation

9.72 0.28 0.42 0.46 0.04 0.42 1.23 0.34 0.22 0.20 0.43

Median 72.22 7.71 3.17 4.61 0.56 11.99 3.90 −0.03 −0.26 −0.11 5.12

5% quantile 52.57 7.30 2.42 3.88 0.50 11.36 2.54 −0.55 −0.60 −0.39 4.46

95% quantile 83.85 8.23 3.77 5.41 0.62 12.68 6.81 0.50 0.04 0.16 5.86

Age refers to the patient age at the timepoint of the biometric measurement before cataract surgery, R to the average corneal curvature (mean value of

corneal curvature in the flat and steep meridian), ACD to the phakic anterior chamber depth as the distance between the front corneal apex and the

front lens apex, LT to the central thickness of the crystalline lens, CCT to the central corneal thickness, CD to the horizontal corneal diameter, PD to

the pupil diameter, CWX and CWY to the horizontal and vertical component of the CW chord, CWXcor to the CWX where the sign was flipped for

left eyes, and LEQ to the axial position of the equator plane of the intraocular lens considered as half the distance between the anterior and posterior

apex of the intraocular lens.

Table 2. Descriptive performance data of the 2 neural network approaches with the least root

mean squared prediction error out of the selection of algorithms under test. All data were derived

with a 5-fold cross-validation strategy to avoid overfitting.

N = 1345 GPR with exponential kernel

SVM with

quadratic kernel

Multilinear

regression model

Mean prediction error ME in

mm

0.0007 −0.0260 −0.0001

SD of prediction error in mm 0.2732 0.2794 0.3380

Median prediction error in mm 0.0228 −0.0101 −0.0358
Mean absolute prediction error

MAE in mm

0.1948 0.1998 0.2415

Root mean squared prediction

error RMSE in mm

0.2731 0.2805 0.3379

95% quantile of absolute

prediction error in mm

0.5390 0.5698 0.6902

99.5% quantile of absolute

prediction error in mm

0.9675 0.9524 1.1496

GPR = Gaussian process regression neural network; SD = standard deviation; SVM = support

vector machine.

For the multilinear regression model, we used a robust ECM algorithm.
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eye (Olsen & Hoffmann 2014; Scholtz
et al. 2021). The ELP is back-calculated
from the preoperative biometric data,
the power of the inserted lens and the
postoperative refraction, and typically
covers all systematic errors of biometry,
lens power-labelling errors or errors in
refractometry (e.g. offset errors due to
the measurement lane distance). Some
modern formulae such as the Olsen
(Olsen 2007) or the Castrop formula
(Langenbucher et al. 2021) made a
paradigm change in considering the
‘true’ axial lens position, either as the
front apex plane or the equator plane of
the lens, instead of the ELP. However,
even with this ‘anatomical lens position’
(ALP), we cannot solve all problems in
IOL power calculation as, while
according to ISO 11979 standards, the
equivalent power is labelled on the lens,
the respective image-sided principal
plane is still unknown because the
shape of the lens is not provided by
the IOL manufacturer. However, using
a reliable concept for ALP (Nor-
rby 2004) prediction, valid for all lens
types and considering the lens optics
and haptics characteristics such as the
refractive index, the haptics shape and
angulation, (and the shape factor step
vault of the lens design) with a constant
or individual offset to the ALP, might
be a significant step towards better
prediction of the refractive outcome

Fig. 1. Performance plot of the 2 neural net-

work approaches with the lowest root mean

squared prediction error on our data set

(Gaussian prediction regression (GPR) with

an exponential kernel, upper graph; Support

Vector Machine (SVM) algorithm with a

quadratic kernel, middle graph) and the

respective performance plot for the multilinear

regression model (lower graph, also with 5-fold

cross-validation) together with the red diago-

nal line indicating data where the predicted

LEQ matches the LEQ derived from measured

ACD and LT after surgery. Both neural

network approaches show a trend, which is

slightly flatter compared with the red line. This

implies that large LEQ values are slightly

underestimated and small LEQ values are

slightly overestimated. In contrast, the multi-

linear regression shows a significantly flatter

trend with a underestimation/overestimation

of large/small LEQ values and a larger scatter

compared with the neural network

approaches.
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(Olsen 2006; Xin et al. 2020). As the
design data of IOLs on the market are
currently unavailable, we decided to use
a simple estimate for the IOL equator
plane, defining this as half the distance
between the lens front and back apex.
This definition might be refined if data
on the lens shape become available in
the future.

The simplest way of predicting the
ALP is based on a multilinear mod-
elling, provided a data set with preop-
erative biometric data and the
postoperative measurement of the axial
lens position is available. In this case,
the ALP is derived from a sum of
intercept and weighted input parame-
ters. Modern optical biometers are
capable of measuring all the distances
in the eye, not only for the phakic eye
prior to cataract surgery, but also in
the pseudophakic eye after cataract
surgery (Cheng et al. 2020). If we have
derived the IOL position—either the
IOL front apex or an estimate for the
lens equator as in this study—the
relevant predictive parameters to keep
the model simple and to avoid overfit-
ting must be identified (Bechtel 2008;
Welsch et al. 2018). In the present
study, the predictive parameters were
analysed using a feature selection strat-
egy based on a principal component
analysis. Alternatively, a stepwise iter-
ative fit strategy was used, initialized as
a constant model adding and subse-
quently removing potential parameters
in a stepwise fashion to refine the
model while explaining as much vari-
ance in the data set as possible. Sub-
sequently, a multilinear model is set up
with the relevant predictive parameters,
either in a simple version by minimiz-
ing the root mean squared prediction
error or in a more sophisticated version
with some robustness constraints as
was performed here with the ECM
algorithm (Meng et al. 1993; Sexton &
Swensen 2000).

In the last decade, traditional tech-
niques such as (multi-)linear models
have increasingly competed with mod-
ern machine learning strategies, as they
can easily adapt to nonlinear behaviour
of the target parameter with respect to
the input parameters, whereas linear
regression models mostly fail (Clarke &
Burmeister 1997; Sramka et al. 2019;
Carmona González & Palomino Bau-
tista 2021; Langenbucher et al. 2020;
Xia et al. 2020). The most complex
aspect of implementing such deep

learning techniques is in identifying
the most reliable prediction algorithm
from a large number of available algo-
rithms. It is also necessary to avoid
overfitting, which may result either
from considering too many input
parameters or from evaluating the
performance of the algorithm using
the same data set, which was used for
training. In the present study, to avoid
overfitting, we performed our PCA to
extract the relevant input parameters
and then implemented a cross-
validation procedure involving a strict
separation of training and test data
during the validation process. To make
cross-validation efficient, a 5-fold
cross-validation was used. In this strat-
egy, the data set is split into 5 parti-
tions, and one partition excluded
during training, to be used for testing
later on. This procedure is repeated
until all partitions have been used for
validation. Where very large data sets
are available, simpler strategies such as

holdout or random subsampling could
be applied as an alternative to cross-
validation. The effect of ignoring cross-
validation is shown for the multilinear
prediction model on the performance
plot in Fig. 2.

In generating this plot, we used the
same multilinear fit algorithm with iter-
ative ECM as was used to generate the
lowest graph in Fig. 1, but without
splitting the data into partitions for
training and validation. The respective
prediction error if all N = 1345 mea-
surements are used for training and
validation yields: mean prediction
error 0.0000 mm, standard deviation
0.3158 mm, median prediction error −
0.0355 mm, mean absolute prediction
error 0.2258 mm, root mean squared
prediction error of 0.3157 and the upper
limits of the 90% and 99% confidence
intervals of the absolute prediction
error 0.6437 and 1.0824 mm.

In the present study, we evaluated
several versions of regression networks,

Fig. 2. Performance plot of the multilinear regression model without cross-validation. The entire

data set of N = 1345 measurements was used both for training and validation. The performance of

the model is significantly better compared to the respective performance with 5-fold cross-

validation (compare Fig. 1 lowest graph) indicated by a lower scatter of the data. The red line

indicates data where the predicted LEQ matches the LEQ derived from measured ACD and LT

after surgery.
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regression trees, Support Vector
Machines and Gaussian process regres-
sion networks, as they are very popular
(Welsch et al. 2018). The root mean
squared prediction error was used as a
target criterion for evaluating the per-
formance of the algorithm and for
ranking. Ultimately, we identified the
Gaussian process regression network
with and exponential kernel and the
Support Vector Machine network with
a quadratic kernel as the algorithms
with the best performance. However,
such a selection cannot be generalized to
other applications as it mostly depends
on the data set and on the performance
criterion. The GPR algorithm outper-
formed the multilinear regression by
around 19% (MAE) to 20% (RMSE).
This does not, however, mean that the
prediction error of lens power calcula-
tion could be reduced by the same
amount, as the estimation of the axial
IOL position is only one (albeit very
important) determinant for predicting
the refractive outcome after cataract
surgery (Olsen 2006). Nevertheless, we
feel that for IOL power calculation
strategies, which use ALP instead of
ELP, this might be a step towards better
predictability of the refractive outcome.
However, the advantages of such deep
learning strategies for prediction of
ALP have to be carefully validated with
clinical studies.

In conclusion, in the present paper,
we have attempted to develop and
implement a strategy for predicting
the position of the lens equator plane
after cataract surgery derived from
postoperative biometric measurements
from biometric measurements before
cataract surgery, which is routinely
performed for lens power calculation.
Modern techniques of machine learn-
ing algorithms were compared with the
respective results of a traditional mul-
tilinear regression, and it seems that
lens position prediction could signifi-
cantly benefit from these deep learning
strategies in the future.
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