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Abstract. Recorded geoacoustic signals often contain noise and interference.
Their appearance is caused by various reasons, e.g. of propagation environment
heterogeneity, weather condition influence, human activity, etc. So, geoacoustic
emission signals contain a persistent background noise that changes in intensity
over time. This noise significantly distorts the geoacoustic pulse waveforms
and thus complicates analysis of the signal characteristics. The article presents
results of estimating the geoacoustic signal background noise. On the basis
of these estimates, a method of adaptive wavelet thresholding is proposed to
remove noise from the signal and recovery the single pulse waveforms. In con-
clusion, the results of a computational experiment are presented. They confirm
effectiveness of using the chosen method for the geoacoustic signal preprocess-
ing. The work was carried out as part of the implementation of the state task
AAAA-A21-121011290003-0.

1 Introduction

Some of the most common problems faced by researchers in applied science are distortion and
noisiness of recorded signals. These problems are typical for different signals, e.g. for acous-
tic, electrical, electromagnetic ones. In practice, a signal waveform is influenced by natural
noise, artificial interference, nonlinearity of receive path, dynamic range limitations, quanti-
zation errors, primary hardware processing, etc. At the same time, many promising analysis
methods (time-frequency transformations, sparse approximation, classification, clustering,
etc.) are sensitive to signal waveform distortions. It negatively affects quality and accuracy
of analysis results.

The presented article is devoted to denoising of geoacoustic emission signals (Fig. 1a).
It is assumed that the methods of geoacoustic signal secondary processing and analysis

are applied to undistorted or slightly distorted pulses [1]. Therefore, it is important to denoise
the signal before its processing.

2 Estimation of background noise parameters

The author studied the geoacoustic background noise before choosing a denoising method.
For this purpose, fragments without pulses were selected from the geoacoustic signal
recorded in good weather conditions (no precipitation and strong wind) at “Karymshina”
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Figure 1. Geoacoustic emission signals: a — pulsed signal; b — background noise.

site (52.83◦ N, 158.13◦ E). Thus, a signal containing only background noise was gener-
ated (Fig. 1b). This signal was scaled and shifted so that the mean was µ = 0 and the
standard deviation was σ = 1.

There are several ways to estimate the distribution law of a random variable. The simplest
ones used at the first stage of the study are a histogram and a quantile-quantile plot (Q-Q plot).
Using them, we can visually assess similarity of the distribution with one of the known laws.
Figure 2a shows histogram of the noise signal amplitude distribution. The number of intervals
k is chosen according to the Sturgess rule

k = 1 + log2 N,

where N is a number of random variable measurements. Figure 2b shows Q-Q plot which
compared the noise signal amplitudes on the vertical axis to a standard normal distribution
values on the horizontal axis.

Figure 2. Estimation of noise signal amplitude distribution: a — histogram; b — Q-Q plot.

Visually, the distribution of noise signal amplitudes is similar to the normal one. How-
ever, the normality hypothesis H0 requires confirmation. The results of testing the statistical
hypothesis H0 (the noise signal amplitudes have the normal distribution N(µ, σ), where µ and
σ are estimated from the tested data) using Pearson’s chi-squared test [2], Anderson–Darling
test [3] and Lilliefors test [4] are given in Table 1. H1 is an alternative hypothesis.

2

EPJ Web of Conferences 254, 02004 (2021) 
STRPEP 2021

https://doi.org/10.1051/epjconf/202125402004



Table 1. Results of applying various statistical tests.

Test Significance Sample Accepted hypothesis,
level, α size, N H0 or H1

Pearson 0.05 500 H0
0.05 1000 H0

Anderson–Darling 0.05 500 H0
0.05 1000 H1

Lilliefors 0.05 500 H0
0.05 1000 H1

When the sample size increases, most of the statistical tests reject the hypothesis H0.
This effect can be explained by quantization errors of the geoacoustic signal. The analog-
to-digital converter used in the signal registration system has a resolution of 16 bits (65536
levels, values from −1 to 1). According to calculations, dynamic range of the background
noise signal contains 112 levels (values from −0.00189 to 0.001526). It is supported by the
Q-Q plot (Fig. 2b), its points form a stepped line.

To test this assumption, a Gaussian noise signal was generated. The signal was digitized
so that its dynamic range contains 112 levels. The distributions of amplitudes of the real and
model signals were compared using the Wilcoxon–Mann–Whitney test [5].

At significance level α = 0.05 for sample sizes N = 500 and N = 1000, the Wilcoxon–
Mann–Whitney test confirmed the hypothesis H0 (the distributions of both samples are equal).
This result is invariant to changes of the Gaussian noise generator seed. The conducted
research shows that the background noise of geoacoustic signal is similar in structure to the
roughly digitized Gaussian noise.

3 Wavelet thresholding as denoising method

A wavelet thresholding is one of the popular methods for removing noise, including Gaussian
one, from a signal and separating an informative signal component. There is a large number of
studies showing effectiveness of the wavelet thresholding method to remove high-frequency
noise from signals of different nature [6–9]. The wavelet thresholding process consists of
three stages: forward wavelet transform, thresholding, and inverse wavelet transform.

Denoising consists in thresholding of detail wavelet coefficients. The most common are
soft and hard thresholds [10]. There are various strategies for choosing a threshold value: the
Universal threshold [10], the Stein Unbiased Risk Estimator (SURE) [11], the Block James-
Stein estimator (BlockJS) [12], the False Discovery Rate threshold (FDR) [13], the Empirical
Bayes method [14], the Minimax principle [10], etc.

To select the most appropriate algorithm for calculating a threshold value, a computa-
tional experiment was carried out on a model geoacoustic signal. The signal containing 100
pulses with amplitudes from 0.05 to 1 relative units was generated. Gaussian noise of var-
ious amplitudes was artificially superimposed on the pulses so that the signal-to-noise ratio
(S NR) was varied from −10 to 40 dB. The average relative error of wavelet thresholding was
calculated for each S NR value by the formula

ε =
1
N

N∑
i=1

∥si(t) − ŝi(t)∥
∥si(t)∥

, (1)

where si(t) is the undistorted pulse; ŝi(t) is the pulse processed by wavelet thresholding; N is
the total number of processed pulses, N = 100.
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Dependences of the error ε on S NR for the considered threshold calculation methods are
shown in Fig. 3.

Figure 3. ε(S NR) plots for different threshold calculation methods.

The best results were obtained using the Empirical Bayes and SURE methods. The Bayes
method works more accurately on highly noisy signals (S NR less than −5 dB).

4 Wavelet family selection

Orthogonal and biorthogonal wavelets are most often used in noise reduction tasks. In the
presented article, the following wavelet families are considered [15]: the Daubechies wavelets
(Fig. 4a), the symlets (Fig. 4b), and the coiflets (Fig. 4c).

Experiment on model data show that the most accurate results are obtained using the
fourth-order coiflets, and the high-order Daubechies wavelets and symlets (from the eighth
order and higher). Figure 5 shows the ε(S NR) plots obtained by the Empirical Bayes method
using various wavelet families.

5 Approbation of adaptive wavelet thresholding on real data

According to the results obtained on model data, the Empirical Bayes method (the detail
wavelet coefficients are estimated by the posterior mean value) and the fourth-order coiflets
were chosen for geoacoustic signal recovering and denoising. Figure 6a–e shows the process-
ing results obtained for the geoacoustic pulses of various waveforms (all ones were recorded
in January, 2017). The processed signals are smoothed and denoised. The degree of denois-
ing depends on the noise level. For example, the processing of highly noisy pulses is shown
in Fig. 6a,c. The processing of undistorted one is shown in Fig. 6b. And Fig. 6d–f shows
denoising of pulses with average noise level.

6 Conclusion

Registered geoacoustic signals are often highly distorted and noisy, while the noise level
is constantly changing. It significantly complicates the processes of identification, analysis
and classification of these signals. Study of the background noise shows that it is similar
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Figure 4. Mother wavelets ψ(t) and scaling functions ϕ(t): a — eighth-order Daubechies wavelet, db8;
b — eighth-order symlet, sym8; c — forth-order coiflet, coi f4.

Figure 5. ε(S NR) plots obtained by the Empirical Bayes method using various wavelet families.

in structure to the roughly digitized Gaussian noise. Therefore, the author proposes to use
an adaptive wavelet thresholding as a signal preprocessing method. Experiments on model
data show that the best noise reduction quality is achieved using the Empirical Bayes method
and the fourth-order coiflets. The results of real data processing confirm effectiveness of the
selected method for the geoacoustic signal preprocessing.
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Figure 6. Applying Empirical Bayes method to geoacoustic pulses.

References

[1] Yu. V. Marapulets, Yu. I. Senkevich, O. O. Lukovenkova, A. A. Solodchuk, I. A. Lari-
onov, M. A. Mishchenko, E. I. Malkin, A. O. Shcherbina, M. I. Gapeev, Complex analysis
of acoustic and electromagnetic signals to assess seismic hazard level (Dalnauka, Vladi-
vostok, 2020) 120 p.

[2] P. E. Greenwood, M. S. Nikulin, A guide to chi-squared testing (Wiley, New York, 1996)
280 p.

[3] T. W. Anderson, D. A. Darling, Ann. Math. Stat., 23, 193–212 (1952)
[4] H. W. Lilliefors, J. Am. Stat. Assoc., 62, 399–402 (1967)

6

EPJ Web of Conferences 254, 02004 (2021) 
STRPEP 2021

https://doi.org/10.1051/epjconf/202125402004



[5] M. Hollander, D. A. Wolfe, Nonparametric Statistical Methods (John Wiley & Sons, Inc.,
Hoboken, NJ, 1999) 779 p.

[6] T. W. Anderson, D. A. Darling, IEEE Trans. Image Process., 9, 1532–1546 (2000)
[7] M. Alfaouri, K. Daqrouq, Am. J. Appl. Sci., 5, 276–281 (2008)
[8] M. Srivastava, C. L. Anderson, J. H. Freed, IEEE Access, 4, 3862–3877 (2016)
[9] G. Srikar, Ch. R. Prasad, Adv. Comput. Sci. Tech., 10, 3111–3121 (2017)
[10] G. Luo, D. Zhang, Wavelet Denoising, Advances in Wavelet Theory and Their Applica-

tions in Engineering, Physics and Technology (IntechOpen, 2012) 24 p.
[11] D. L. Donoho, IEEE Trans. Inf. Theory, 41, 613–627 (1995)
[12] T. T. Cai, Stat. Sin., 12, 1241–1273 (2002)
[13] F. Abramovich, Y. Benjamini, D. L. Donoho, I. M. Johnstone, Ann. Stat., 34, 584–653

(2006)
[14] I. M. Johnstone, B. W. Silverman, Ann. Stat., 32, 1594–1649 (2004)
[15] I. Daubechies, Ten lectures on wavelets (SIAM, Philadelphia, Pa, 1992) 377 p.

7

EPJ Web of Conferences 254, 02004 (2021) 
STRPEP 2021

https://doi.org/10.1051/epjconf/202125402004


