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This study addresses a series of methodological questions that arise when modeling

inflectional morphology with Linear Discriminative Learning. Taking the semi-productive

German noun system as example, we illustrate how decisions made about the

representation of form and meaning influence model performance. We clarify that for

modeling frequency effects in learning, it is essential to make use of incremental learning

rather than the end-state of learning. We also discuss how the model can be set up to

approximate the learning of inflected words in context. In addition, we illustrate how in

this approach the wug task can be modeled. The model provides an excellent memory

for known words, but appropriately shows more limited performance for unseen data, in

line with the semi-productivity of German noun inflection and generalization performance

of native German speakers.

Keywords: German nouns, linear discriminative learning, semi-productivity, multivariate multiple regression,

Widrow-Hoff learning, frequency of occurrence, semantic roles, wug task

1. INTRODUCTION

Computational models of morphology fall into two broad classes. The first class addresses the
question of how to produce a morphologically complex word given a morphologically related form
(often a stem, or an identifier of a stem or lexeme) and a set of inflectional or derivational features.
We refer to these models as form-oriented models. The second class comprises models seeking to
understand the relation between words’ forms and their meanings. We refer to these models as
meaning-oriented models.

Prominent form-oriented models comprise Analogical Modeling of Language (AML; Skousen,
1989, 2002) and Memory Based Learning (MBL; Daelemans and Van den Bosch, 2005), which are
nearest-neighbor classifiers. Input to thesemodels are tables with observations (words) in rows, and
factorial predictors and a factorial response in columns. The response specifies an observation’s
outcome class (e.g., an allomorph), and the model is given the task to predict the outcome
classes from the other predictor variables (for allomorphy, specifications of words’ phonological
make-up). Predictions are based on sets of nearest neighbors, serving as constrained exemplar
sets for generalization. These models have clarified morphological phenomena ranging from the
allomorphy of the Dutch diminutive (Daelemans et al., 1995) to stress assignment in English
(Arndt-Lappe, 2011).

Ernestus and Baayen (2003) compared the performance of the MBL, AML, and Generalized
Linear Models (GLM), as well as a recursive partitioning tree (Breiman et al., 1984), on the task
of predicting whether word-final obstruents in Dutch alternate with respect to their voicing.
They observed similar performance across all models, with the best performance, surprisingly,
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for the only parameter-free model, AML. Their results suggest
that the quantitative structure of morphological datasets may be
straightforward to discover for any reasonably decent classifier.
The model proposed by Belth et al. (2021) is a recent example of
a classifier based on recursive partitioning.

Minimum Generalization Learning (MGL; Albright and
Hayes, 2003) offers an algorithm for rule induction (for
comparison with nearest neighbor methods, see Keuleers et al.,
2007). The model finds rules by an iterative process of minimal
generalization that combines specific rules into ever more general
rules. Each rule comes with a measure of prediction accuracy,
and the rule with the highest accuracy is selected for predicting
a word’s form.

All models discussed thus far are exemplar-based, in the
sense that the input to any of these models consists of a
table with exemplars, exemplar features selected on the basis of
domain knowledge, and a categorical response variable specifying
targeted morphological form changes. In other words, all these
models are classifiers that absolve the analyst from hand-
engineering lexical entries, rules or constraints operating on these
lexical entries, and theoretical constructs such as inflectional
classes. In this respect, they differ fundamentally from the second
group of the following computational methods.

The DATR language (Evans and Gazdar, 1996) defines non-
monotonic inheritance networks for knowledge representation.
This language is optimized for removing redundancy from
lexical descriptions. A DATR model requires the analyst to set
up lexical entries that specify information about, for instance,
inflectional class, gender, the forms of exponents, and various
kinds of phonological information. The lexicon is designed in
such a way that the network is kept as small as possible, while still
allowing the model, through its mechanism of inheritance, to
correctly predict all inflected variants. Realizational morphology
(RM; Stump, 2001) sets up rules for realizing bundles of
inflectional and lexical features in phonological form. This
theory can also be defined as a formal language (a finite-
state transducer) that provides mappings from underlying
representations onto their corresponding surface forms and
vice versa (Karttunen, 2003). The Gradual Learning Algorithm
(GLA; Boersma, 1998; Boersma and Hayes, 2001) works within
the framework of optimality theory (Prince and Smolensky,
2008). The algorithm is initialized with a set of constraints and
gradually learns an optimal constraint ranking by incrementally
moving through the training data, and upgrading or
downgrading constraints.

The third group of form-oriented computational models
comprises connectionist models. The past-tense model of
Rumelhart and McClelland (1986) was trained to produce
English past-tense forms given the corresponding present-tense
form. An early enhancement of this model was proposed by
MacWhinney and Leinbach (1991), for an overview of the
many follow-up models, see Kirov and Cotterell (2018). Kirov
and Cotterell proposed a sequence-to-sequence deep learning
network, the Encoder-Decoder (ED) learner, that they argue does
not suffer from the drawbacks noted by Pinker and Prince (1988)
for the original paste-tense model. Malouf (2017) introduced
a recurrent deep learning model trained to predict upcoming

segments, showing that this model has high accuracy for
predicting paradigm forms given the lexeme and the inflectional
specifications of the desired paradigm cell.

In summary, the class of form-oriented models comprises
three subsets: statistical classifiers (AML, MBL, GLM, recursive
partitioning), generators based on linguistic knowledge
engineering (DATR, RM, GLA), and connectionist models
(paste-tense model, ED learner). The models just referenced
presuppose that when speakers use a morphologically complex
form, this form is derived on the fly from its underlying form.
The sole exception is the model of Malouf (2017), which takes
the lexeme and its inflectional features as point of departure.
As pointed out by Blevins (2016), the focus on how to create
one form from another has its origin in pedagogical grammars,
which face the task of clarifying to a second language learner how
to create inflected variants. Unsurprisingly, applications within
natural language processing also have need of systems that can
generate inflected and derived words.

However, it is far from self-evident that native speakers of
English would create past-tense forms from present-tense forms.
Meaning-oriented models argue that in comprehension, the
listener or reader can go straight from the auditory or visual
input to the intended meaning, without having to go through a
pipeline requiring initial identification of underlying forms and
exponents. Likewise, speakers are argued to start from meaning,
and realize this meaning directly in written or spoken form.

The class of meaning-oriented models comprises both
symbolic and subsymbolic models. The symbolic models of Dell
(1986) and Levelt et al. (1999) implement a form of realizational
morphology. Concepts and inflectional features activate stems
and exponents, which are subsequently combined into syllables.
Both models hold that the production of morphologically
complex words is a compositional process in which units are
assembled together and ordered for articulation at various
hierarchically ordered levels. These models have been worked out
only for English, and to our knowledge have not been applied to
languages with richer morphological systems.

The subsymbolic model of Harm and Seidenberg (2004) sets
up multi-layer networks between orthographic, phonological,
and semantic units. No attempt is made to define morphemes,
stems, or exponents. To the extent that such units have any
reality, they are assumed to arise, statistically, at the hidden
layers. Mirković et al. (2005) argue for Serbian that gender is
an emergent property of the network that arises from statistical
regularities governing both words’ forms and their meanings (see
Corbett, 1991, for discussion of semantic motivations for gender
systems). The model for auditory comprehension of Gaskell and
Marslen-Wilson (1997) uses a three-layer recurrent network to
map speech input onto distributed semantic representations,
again without attempting to isolate units such as phonemes or
morphemes.

The naive discrimination learning (NDL) model proposed by
Baayen et al. (2011) represents words’ forms sub-symbolically,
but words’ meanings symbolically. The modeling set-up
that we discuss in the remainder of this study, that of
linear discriminative learning (LDL, Baayen et al., 2019),
replaces the symbolic representation of word meaning in
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NDL by sub-symbolic representations building on distributional
semantics (Landauer and Dumais, 1997; Mikolov et al., 2013b).

LDL is an implementation of Word and Paradigm
Morphology (Matthews, 1974; Blevins, 2016). Sublexical
units such as stems and exponents play no role. Semantic
representations in LDL, however, are analytical: the semantic
vector (word embedding, i.e., a distributed representation of
meaning) of an inflected word is constructed from the semantic
vector of the lexeme and the semantic vectors of the pertinent
inflectional functions. Both NDL and LDL make use of the
simplest possible networks: networks with only input and output
layers, and no hidden layers.

At this point, the distinctionmade by Breiman (2001) between
statistical models and machine learning is relevant. Statistical
models aim to provide insight into the mechanisms that generate
the data. Machine learning, on the other hand, aims to optimize
prediction accuracy, and it is not an issue whether or not the
algorithms are interpretable. LDL is much closer to statistical
modeling than to the black boxes of machine learning. All input
and output representations can be set up in a theoretically
transparent way (Baayen et al., 2019). Furthermore, because LDL
implements multivariate multiple regression, its mathematical
properties are well-understood. Importantly, modeling results do
not depend on the choice of hyper-parameters (e.g., the numbers
of LSTM layers and LSTM units), instead, they are completely
determined by the representations chosen by the analyst.

The goals of this study are, first, to clarify how such choices
of representation affect LDL model performance; second, to
illustrate what can be achieved simply with multivariate multiple
regression; and third, to call attention to the kind of problems
that are encountered when word meaning is integrated into
morphology. Our working example is the comprehension and
production of German nouns. In what follows, we first introduce
the German noun system, and review models that have been
proposed for German nouns. We then introduce LDL, after
which we present a systematic overview of modeling choices,
covering the representation of form, the representation of
meaning, and the learning algorithm (incremental learning vs.
the regression “end-state of learning” solution).

2. GERMAN NOUN MORPHOLOGY

The German noun system is both highly irregular and semi-
productive, featuring three different genders, two numbers and
four cases. In this section, we will give an overview over this
system, show where irregularity and semi-productivity arise,
and which (non-computational) models have been employed to
account for it.

Plural forms are marked with one of four suffixes (-(e)n, -
er, -e, -s) or without adding a suffix [∅; a “zero” morpheme
(Köpcke, 1988, p. 306)], three of which can pair with stem vowel
fronting [e.g., a (/a/) → ä (/E/)] (e.g., Köpcke, 1988) (Table 1).
There are additional suffixes which usually apply to words with
foreign origin, such as -i (e.g., Cello → Celli, “cellos”) (Cahill
and Gazdar, 1999). Cahill and Gazdar (1999) sub-categorize
the nouns into 11 classes, based on whether singulars have a

different suffix than plurals (Album → Alben, “albums”). Nakisa
and Hahn (1996) distinguish between no less than 60 inflection
classes. No plural class is prevalent overall (Köpcke, 1988), and
it is impossible to fully predict plural class from gender, syntax,
phonology or semantics (Köpcke, 1988; Cahill and Gazdar, 1999;
Trommer, 2021). Further complications arise when case is taken
into account. German has four cases: nominative, genitive, dative,
and accusative, which are marked with two exponents (applied
additional to the plural markers): -(e)n and -(e)s (Schulz and
Griesbach, 1981). Case forms are also not fully predictable
from gender, phonology or meaning. Since many forms do not
receive a separate marker, the system has been described as
“degenerate” (Bierwisch, 2018, p. 245) (see Table 2). German
speakers do, however, get additional disambiguing information
from the definite and indefinite articles which accompany nouns
and likewise encode gender, number, and case. Table 2 shows the
definite articles for all genders. Additionally, there are indefinite
articles available for singular forms which also express case in
their endings (e.g., Gen. sg. m./n./f. eines, Dat. sg. m./n. einem,
Dat. sg. f. einer).

Unsurprisingly, it has been the subject of a long-standing
debate whether a distinction between regular and irregular nouns
is useful for German (the debate has mostly focused on the
formation of the nominative plural which we accordingly also

TABLE 1 | Plural classes of German nouns (relative frequencies from Gaeta,
2008).

Plural class Example Type frequency (%)

-(e)n Tasse → Tassen “cup(s)” 56.5

(uml+)-e Tag → Tage “day(s)”

Topf → Töpfe “pot(s)” 23.9

(uml+)-er Brett → Bretter “board(s)”

Glas → Gläser “glass(es)” 2.3

(uml+)∅ Daumen → Daumen “thumb(s)”

Apfel → Äpfel “apple(s)” 13.3

-s Kamera → Kameras “camera(s)” 2.6

Most of the classes can appear with both masculine and neuter nouns. Feminine nouns

belong mostly to the -(e)n class (97%; Gaeta, 2008).

TABLE 2 | German noun declension.

Case and number Masculin I Masculin II Neutral Feminin

Nom. sg. der Freund der Mensch das Kind die Mutter

Gen. sg. des Freundes des Menschen des Kindes der Mutter

Dat. sg. dem Freund dem Menschen dem Kind der Mutter

Acc. sg. den Freund den Menschen das Kind die Mutter

Nom. pl. die Freunde die Menschen die Kinder die Mütter

Gen. pl. der Freunde der Menschen der Kinder der Mütter

Dat. pl. den Freunden den Menschen den Kindern den Müttern

Acc. pl. die Freunde die Menschen die Kinder die Mütter

Plural endings vary with declension class. Table adapted from Schulz and Griesbach

(1981, p. 105).
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focus on here). It is also unsurprising that the system shows
limited productivity. Several so-called “wug” studies, where
participants are asked to inflect nonce words, have clarified that
German native speakers struggle with predicting unseen plurals.
Köpcke (1988), Zaretsky et al. (2013), and McCurdy et al. (2020)
reported high variability across speakers with respect to the
plural forms produced. Köpcke (1988) took this as evidence for
a “modified schema model” of German noun inflection, arguing
that plural forms are generated based not only on a speaker’s
experience with the German noun system, but also on the “cue
validity” of the plural markers. For example, -(e)n is a good cue
for plurality, as it does not occur with many singular forms. By
contrast, -er has low cue validity for plurality, as it occurs with
many singulars.

Köpcke (1988) also observed that -s is used slightly more in
his wug experiments than would be expected from corpus data.
Marcus et al. (1995) and Clahsen (1999) therefore argued that -s
serves as the regular default plural marker in German, contrasting
with all other plural markers that are described as irregular.
Others, however, have argued that an -s default rule does not
provide any additional explanatory value (Nakisa and Hahn,
1996; Behrens and Tomasello, 1999; Indefrey, 1999; Zaretsky and
Lange, 2015).

Despite the irregularity and variability in the system,
some sub-regularities within the German noun system have
also been pointed out (Wiese, 1999; Wunderlich, 1999). For
instance, Wunderlich (1999, p. 7f.) reports a set of rules that
German nouns adhere to, which can be overridden on an
item-by-item basis through “lexical storage.” For example, he
notes that

a. Masculines ending in schwa are weakly inflected (and thus
also have n-plurals).

b. Non-umlauting feminine have an n-plural.
c. Non-feminines ending in a consonant have a @-plural. [. . . ]
e. All atypical nouns have an s-plural. [. . . ]

He also allows for semantics to co-determine class membership.
For instance, masculine animate nouns show a tendency
to belong to the -n plural class (see also Gaeta, 2008).
A further remarkable aspect of the German noun system,
especially for second language learners, is that whereas
it is remarkably difficult to learn to produce the proper
case-inflected forms, understanding these forms in context
is straightforward.

In the light of these considerations, the challenges for
computational modeling of German noun inflection, specifically
from a cognitive perspective, are the following:

1. To construct a memory for a highly irregular, “degenerate,”
semi-productive system,

2. To ensure that this memory shows some moderate
productivity for novel forms, but with all the uncertainties
that characterize the generalization capacities of German
native speakers,

3. To furthermore ensure that the performance of the mappings
from form to meaning, and from meaning to form, within the

framework of the discriminative lexicon (Baayen et al., 2019),
are properly asymmetric with respect to comprehension and
production accuracy (see also Chuang et al., 2020a).

2.1. Computational Models for German
Nouns
The complexity of the German declension system has inspired
many computational models. The DATR model of Cahill and
Gazdar (1999) belongs to the class of generating models based on
linguistic knowledge engineering. It assigns lexemes to carefully
designed hierarchically ordered declension classes. Each class
inherits the properties from classes further up in the hierarchy,
but will override some of these properties. This model provides
a successful and succinct formal model for German noun
declension. Other models from this class include GERTWOL
which is based on finite-state operations (Haapalainen and
Majorin, 1994), as well as the model of Trommer (2021) which
draws on Optimality Theory (OT) and likewise requires careful
hand-crafting and constraint ranking (but does not currently
have a computational implementation).

Belth et al. (2021) propose a statistical classifier based
on recursive partitioning, with as response variable the
morphological change required to transform a singular into
a plural, and as predictors the final segments of the lexeme,
number, and case. At each node, nouns are divided by their
features, with one branch comprising the most frequent plural
ending (which will inevitably include some nouns with a different
plural ending, labeled as exceptions), and with the other branch
including the remainder of the nouns. Each leaf node of the
resulting tree is said to be productive if a criterion for node
homogeneity is met. An older model, also a classifier building up
rules inductively, was developed 20 years earlier by Albright and
Hayes (2003).

Connectionist models for the German noun system include
a model using a simple recurrent network (Goebel and
Indefrey, 2000), and a deep learning model implementing a
sequence-to-sequence encoder-decoder (McCurdy et al., 2020).
The latter model takes letter-based representations of German
nouns in their nominative singular form as input, together
with information on the grammatical gender of the noun.
The model is given the task to produce the corresponding
nominative plural form. The model learned the task with high
accuracy on held out data (close to 90%), but was more
locked in on the “correct” forms compared to native speakers,
who in a wug task showed substantially more variability in
their choices.

The models discussed above also differ with respect to how
they generate predictions for novel nouns. The sequence-to-
sequence deep learning model of (McCurdy et al., 2020) can
do so relatively easily, straight from a word’s form and its
gender specification but its inner workings are not immediately
interpretable (though recent work has started to gain some
insights, see e.g., Linzen and Baroni, 2021, for syntactic structure
in deep learning). By contrast, the linguistically more transparent
DATR model can only generate a novel word’s inflectional
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variants once this word has been assigned to an inflectional
class. This may to some extent be possible given its principal
parts (Finkel and Stump, 2007), but clearly requires additional
mechanisms to be in place.

In what follows, we introduce the LDL model. LDL is a
model of human lexical processing, with all its limitations and
constraints, rather than an optimized computational system
for generating (or understanding) morphologically complex
words. It implements a simple linear mapping between
form and meaning, where form is represented as a binary
vector of sublexical cues, and meaning is represented in a
distributed fashion.

By applying LDL to the modeling of the German noun system
(including its case forms), we address a question that has thus far
not been addressed computationally, namely the incorporation of
semantics. Semantic subregularities in the German noun system
have been noted by several authors (e.g., Wunderlich, 1999;
Gaeta, 2008), and although deep learning models can be set
up that incorporate semantics (see e.g., Malouf, 2017), LDL by
design must take semantics into account.

The next section introduces the LDL model. The following
sections proceed with an overview of the many modeling
decisions that have to be made. An important part of this
overview is devoted to moving beyond the modeling of isolated
words, as words come into their own only in context (Elman,
2009), and case labels do not correspond to contentful semantics,
but instead are summary devices for syntactic distribution classes
(Blevins, 2016; Baayen et al., 2019).

3. LINEAR DISCRIMINATIVE LEARNING

LDL is the computational engine of the discriminative lexicon
model (DLM) proposed by Baayen et al. (2019). The DLM
implements mappings between form and meaning for both
reading and listening, and mappings from meaning to form
for production. It also allows for multiple routes operating in
parallel. For reading in English, for instance, it sets up a direct
route from form to meaning, in combination with an indirect
route from visual input to a phonological representation that
in turn is mapped onto the semantics (cf. Coltheart et al.,
1993). In what follows, we restrict ourselves to the mappings
from form onto meaning (comprehension) and from meaning
onto form (production). Mappings can be obtained either
with trial-to-trial learning, or by estimating the end-state of
learning. In the former case, the model implements incremental
regression using the learning rule of Widrow and Hoff (1960);
in the latter case, it implements multivariate multiple linear
regression, which is mathematically equivalent to a simple
network with input units, output units, no hidden layers,
and simple summation of incoming activation without using
thresholding or squashing functions.

Each word form of interest is represented by a set of cues. For
example, wordform1 might feature the cues cue1, cue2, and
cue3, while wordform2 could be marked by cue1, cue4, and
cue5. We can thus express a word form as a binary vector, where

1 denotes presence and 0 absence. This information is coded in
the cue matrix C:

C =

(

cue1 cue2 cue3 cue4 cue5

wordform1 1 1 1 0 0
wordform2 1 0 0 1 1

)

Words’ meanings are also represented by numeric vectors. The
dimensions of these vectors can have a discrete interpretation,
or have a latent interpretation (see section 4.2 below for detailed
discussion). In the following example, wordform1 has strong
negative support for semantic dimensions S3 and S5, while
wordform2 has strong positive support for S4 and S5. This
information is brought together in a semantic matrix S:

S =

(

S1 S2 S3 S4 S5

wordform1 0.1 0.004 −1.95 0.03 −0.54
wordform2 −0.49 −0.32 0.03 1.06 0.98

)

Comprehension and production in LDL are modeled by means
of simple linear mappings from the form matrix C to the
semantic matrix S, and vice versa. These mappings specify how
strongly input nodes are associated with output nodes. The
weight matrix for a given mapping can be obtained in two ways.
First, using the mathematics of multivariate multiple regression,
a comprehension weight matrix F is obtained by solving F from

S = C · F,

and a production weight matrix G is obtained by solving G from

C = S · G.

As for linear regression modeling, the predicted row vectors are
approximate. Borrowing notation from statistics, we write

Ŝ = C · F

for predicted semantic vectors (row vectors of Ŝ), and

Ĉ = S · G

for predicted form vectors (row vectors of Ĉ).
These equations amount to estimating multiple outcomes

from multiple variables, which in statistics is referred to as
multivariate multiple regression. In simple linear regression, a
single value y is estimated from a value x via an intercept β0 and
a weighing of x with scalar β1:

ŷ = β0 + β1x (1)

which can easily be expanded to estimating y from a vector x
(multiple linear regression), using a vector of beta coefficients
βi ∈ β to weigh each value xi ∈ x:

ŷ = β0 + x1β1 + x2β2 + ...+ xnβn (2)
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Finally, to estimate a vector y from a vector x (multivariate
multiple regression), we need an entire matrix of beta coefficients
βij ∈ B. A single value yi ∈ y is then estimated via

ŷi = β0i + x1β1i + x2β2i + . . . + xpβpi (3)

Thus, estimating the mappings F and G in LDL amounts to
computing the coefficients matrix B for mappings from C to S

and vice versa. As such, each value in a predicted semantic vector
ŝ (form vector ĉ) is a linear combination (i.e., weighted sum) of
the values in the corresponding form vector c (semantic vector
s) it is predicted from. This means that LDL is mathematically
highly constrained: it cannot handle non-linearities that even
shallow connectionist models (e.g., Goldsmith and O’Brien,
2006) can take in their stride. Nevertheless, we have found that
these simple linear mappings result in high accuracies (e.g.,
Baayen et al., 2018, 2019) suggesting that morphological systems
are surprisingly simple. Cases where model predictions are less
precise due to the limitations of linearity become indicative of
learning bottlenecks.

Furthermore, note that estimating the mappings F and G

using the matrix algebra of multivariate multiple regression
provides optimal estimates, in the least squares sense, of
the connection weights (or equivalently, beta coefficients) for
datasets that are type-based, in the sense that each pair of row
vectors c of C and s of S is unique. Having multiple instances of
the same pair of row vectors in the dataset does not make sense,
as it renders the input completely singular and does not add
any further information. Thus, models based on the regression
estimates of F and G are comparable to type-based models such
as AML, MBL, MGL, and models using recursive partitioning.

Making the estimates of the mappings sensitive to frequency
of use requires incremental learning, updating weights after each
word token that is presented for learning. Incremental learning is
implemented using the learning rule of Widrow and Hoff (1960)
and Milin et al. (2020), which defines the matrix W

t+1 with
updated weights at time t + 1 as the weight matrix W

t at time
t, modified as follows:

W
t+1 = W

t + c · (oT − c
T ·Wt) · η,

where c is the current cue (vector), o the current outcome vector,
and η the learning rate. Conceptually, this means that after each
newly encountered word token, the weight matrix is changed
such that the next time that the same cue vector has to be mapped
onto its associated outcome vector, it will be slightly closer
to the target outcome vector than it was before. The learning
rule of Widrow-Hoff implements incremental regression. As the
number of times that a model is trained again and again on a
training set increases (training epochs), the network’s weights
will converge to the matrix of beta coefficients obtained by
approaching the estimation problem with multivariate multiple
regression (see e.g., Evert and Arppe, 2015; Chuang et al.,
2020a; Shafaei-Bajestan et al., 2021). As a consequence, the
regression-based estimates pertain to the “end-state of learning,”
at which the data have been worked through infinitely many
times. Unsurprisingly, effects of frequency and order of learning

are not reflected in model predictions based on the regression
estimates. Such effects do emerge with incremental learning (see
section 4.5).

Comprehension accuracy for a given word ω is assessed by
comparing its predicted semantic vector ŝω with all gold standard
semantic vectors in S (the creation of gold standard semantic
vectors will be described in subsequent sections), using either the
cosine similarity measure or the Pearson correlation r. In what
follows, we use r, and select as the meaning that is recognized
that gold standard row vector smax of S that shows the highest
correlation with ŝω. If smax is the targeted semantic vector, the
model’s prediction is classified as correct, otherwise, it is taken to
be incorrect.

For the modeling of production, a supplementary algorithm
is required for constructing actual word forms. The predicted
vectors ĉ provide information about the amount of support that
form cues receive from the semantics. However, information
about the amount of support received by the full set of cues
does not provide information about the order in which a subset
of these cues have to be woven together into actual words.
Algorithms that construct words from form cues make use of the
insight that when form cues are defined as n-grams (n > 1), the
cues contain implicit information about order. For instance, for
digraph cues, cues ab and bc can be combined into the string
abc, whereas cues ab and cd cannot be merged. Therefore,
when n-grams are used as cues, directed edges can be set up in
a graph with n-grams as vertices, for any pair of n-grams that
properly overlap. A word form is uniquely defined by a path
in such a graph starting with an initial n-gram (starting with
an initial word edge symbol, typically a # is used) and ending
at a final n-gram (ending with #). This raises the question of
how to find word paths in the graph. This is accomplished by
first discarding n-grams with low support from the semantics
below a threshold θ1, then calculating all possible remaining
paths, and finally selecting for articulation that path for which the
corresponding predicted semantic vector (obtained by mapping
its corresponding cue vector c onto s using comprehension
matrix F) best matches the semantic vector that is the target for
articulation. This implements “synthesis by analysis,” see Baayen
et al. (2018, 2019) for further details and theoretical motivation.
For a discussion of the cognitive plausibility of this method, see
Chuang et al. (2020b).

The first algorithm that was used to enumerate possible paths
made use of a shortest-paths algorithm from graph theory.
This works well for small datasets, but becomes prohibitively
expensive for large datasets. The JudiLing package (Luo et al.,
2021) offers a new algorithm that scales up better. This algorithm
is first trained to predict, from either the Ĉ or the S matrix, for
each possible word position, which cues are best supported at that
position. All possible paths with the top k best-supported cues are
then calculated, and subjected to synthesis by analysis. Details
about this algorithm, implemented in julia in the JudiLing

package as the function learn_paths can be found in Luo
(2021). The learn_paths function is used throughout the

1This is a simple cut-off point for n-grams with low support, not to be confused
with thresholds as often used in deep learning.
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FIGURE 1 | Options when modeling a language’s morphology with LDL. Examples with options in italics are discussed in the present study.

remainder of this study. A word form is judged to be produced
correctly when it exactly matches the targeted word form.

4. MODELING CONSIDERATIONS

When modeling a language’s morphology within the framework
of the DLM, the analyst is faced with a range of choices, illustrated
in Figure 1. From left to right, choices are listed for representing
form, for the unit of analysis, for the representation of semantics,
for the handling of context, and for the learning regime.

With respect to form representations, the kind of n-gram
has to be selected, setting n, deciding on phonological or
orthographic grams, and specifying how stress or lexical tone
are represented. With respect to the unit of analysis, the
analyst has to decide whether to model isolated words, or
words in phrasal contexts. A third set of choices concerns what
semantic representations to use: simulated representations, or
word embeddings such as word2vec (Mikolov et al., 2013b), or
grounded vectors (Shahmohammadi et al., in press). A further
set of choices for languages with case concerns how to handle
case labels, as these typically refer to syntactic distribution classes
rather than contentful inflectional features (Blevins, 2016).
Finally, a selection needs to be made with respect to whether
incremental learning is used, or instead the end-state of learning
using regression-based estimation. In what follows, we illustrate
several of these choice points using examples addressing the
German noun system.

The dataset on German noun inflection that we use for our
worked examples was compiled as follows. First, we extracted all
monomorphemic nouns and their inflections with a frequency
of at least 1 from CELEX (Baayen et al., 1995), resulting in a
dataset of about 6,000 word forms. Of these we retained the 5,486
word forms for which we could retrieve grammatical gender
from Wiktionary, thus including word forms of 2,732 different
lemmas. The resulting data was expanded such that each attested
word form was listed once for each possible paradigm cell it
could belong to. For instance, Aal (“eel”) is listed once as singular
nominative, once as dative and once as accusative (Table 3).
This resulted in a dataset with 18,147 entries, with word form
frequencies ranging from 1 to 5,828, (M log frequency 2.56,
SD 1.77). Word forms are represented in their DISC notation,
which represents German phones with single characters2.Table 3
clarifies that there are many homophones. As a consequence, the

2Data and code are available in the Supplementary Materials at https://osf.io/
zrw2v/

TABLE 3 | Representation of the paradigm for Aal “eel” in our dataset.

Word

form

Pronunciation Lemma Case Number Frequency Gender

Aal al Aal Nominative Singular 29 M

Aal al Aal Dative Singular 29 M

Aal al Aal Accusative Singular 29 M

Aale al@ Aal Nominative Plural 34 M

Aale al@ Aal Genitive Plural 34 M

Aalen al@n Aal Dative Plural 17 M

Aalen al@n Aal Accusative Plural 17 M

Genitive singular (Aals) is not included as it has a frequency of 0 in CELEX.

actual number of distinct word forms in our dataset is only 5,486,
which amounts to on average about two word forms per lemma.

There are many ways in which model performance can be
evaluated. First, we may be interested in how well the model
performs as a memory. How well does the model learn to
understand and produce words it has encountered before? Note
that because the model is not a list of forms, this is not a
trivial question. For evaluation of the model as a memory,
we consider its performance on the training data (henceforth
train). Second, we may be interested in the extent to which the
memory is productive. Does it generalize so that new forms can
be understood or produced? Above, we observed that the German
noun system is semi-regular, and that German native speakers
are unsure about what the proper plural is of words they have
not encountered before (McCurdy et al., 2020). If our modeling
approach properly mirrors human limitations on generalization
from data with only partial regularities, evaluation on unseen,
held-out data of German should not be perfect. At this point,
however, several issues arise that require careful thought.

For one, from the perspective of the linguistic system, it seems
unreasonable to assume that any held-out form can be properly
produced (or understood) if some of the principal parts (Finkel
and Stump, 2007) of the lexeme are missing in the training data.
In what follows, we will make the simplifying assumption that
under cross-validation with sufficient training data, this situation
will not arise.

A further question that arises is how to evaluate held-
out words that have homophones in the training data. Such
homophones present novel combinations of a form vector
(shared with another data point in the training data) and a
semantic vector (not attested for this form in the training data).
We may want to impose a strict evaluation criterion requiring
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TABLE 4 | Types of model evaluation.

Evaluation type

Simple Blind evaluation of all held-out data val_all

Nuanced Evaluation on novel forms only val_newform

Evaluation on homophones Strict val_strict

Lenient val_lenient

that the model gets the semantic vector exactly right. However,
when presented with a homophone in isolation, a human listener
cannot predict which of a potentially large set of paradigm
cells is the targeted one (the problem of modeling words in
isolation). We may therefore want to use a lenient evaluation
criterion for comprehension according to which comprehension
is judged to be accurate when the predicted semantic vector ŝ is
associated with one of a homophonic word’s possible semantic
interpretations. Yet a further possible evaluation metric is to see
how well the model performs on words with forms that have
not been encountered in the training data. These possibilities
are summarized in Table 4. Below, in section 4.3.1, we consider
further complications that can arise in the context of testing the
model on unseen forms.

For evaluating the productivity of the model, we split the full
dataset into 80% training data and 20% validation data, with
14,518 and 3,629 word forms, respectively. In the validation
data, 3,309 forms are also present in the training data (i.e.,
homophones), and 320 are new forms. Among the 320 new
forms, 8 have novel lemmas that are absent in the training
data. Since it is unrealistic to expect the model to understand
or produce inflected forms of completely new words, these 8
words are excluded from the validation dataset for new forms,
although they are taken into consideration when calculating the
overall accuracy for the validation data. The same training and
validation data are used for all the simulations reported below,
unless indicated otherwise.

4.1. Representing Words’ Forms
Decisions about how to represent words’ forms depend on the
modality that is to be modeled. For auditory comprehension,
Arnold et al. (2017) and Shafaei-Bajestan et al. (2021) explore
ways in which form vectors can be derived from the audio signal.
Instead of using low-level audio features, one can also use more
abstract symbolic representations such as phone n-grams3. For
visual word recognition, one may use letter n-grams, or, as lower-
level visual cues, for instance, features derived from histograms
of oriented gradients (Dalal and Triggs, 2005; Linke et al., 2017).
In what follows, we use binary vectors indicating the presence or
absence of phonological phone or syllable n-grams.

4.1.1. Phone-Based Representations
Sublexical phone cues can be of different granularity, such as
biphones and triphones. For the word Aale (pronunciation al@),

3Other work (e.g., Joanisse and Seidenberg, 1999) has used slot-coding for
representing phonology, but we do not think that this representation is optimal,
since, for example, we are not sure how prefixation is to be modeled without
hand-engineering (details in Heitmeier and Baayen, 2020).

the biphone cues are #a, al, l@, and @#, and the triphone cues
are #al, al@, and l@#. The number of unique cues (and hence
the dimensionality of the form vectors) increases as granularity
decreases. For the present dataset, there are 931 unique biphone
cues, but 4,656 triphone cues. For quadraphones, there are no
less than 9,068 unique cues. Although model performance tends
to become better with more unique cues, we also run the risk
of overfitting. That is, the model does not generalize and thus
performs worse on validation data. The choice of granularity
therefore determines the balance of having a precise memory on
the one hand and a productive memory on the other hand. In
the simulation examples with n-phones that follow, we made use
of simulated semantic vectors. Details on the different kinds of
semantic vectors that can be used are presented in section 4.2.1.

Accuracy for n-phones is presented in the first three rows
of Table 5. For the training data, comprehension accuracy is
high with both triphones and quadraphones. For biphones,
the small number of unique cues clearly does not offer
sufficient discriminatory power to distinguish word meanings.
Under strict evaluation, unsurprisingly given the large number
of homophones in German noun paradigms, comprehension
accuracy plummets substantially to 8, 33, and 35% for biphone,
triphone, and quadraphone models, respectively. Given that
there is no way to tell the meanings of homophones apart without
further contextual information, we do not provide further details
for strict evaluation. However, in section 4.1.1 we will address
the problem of homophony by incorporating further contextual
information into the model.

With regards to model accuracy for validation data, we see
that overall accuracy (val_all) is quite low for biphones, while
it remains high for both triphones and quadraphones. Closer
inspection reveals that this high accuracy is mainly contributed
by homophones (val_lenient). Since these forms are already
present in the training data, a high comprehension accuracy
under lenient evaluation is unsurprising. As for unseen forms
(i.e., val_newform), quadraphones perform slightly better
than triphones.

Production accuracy, presented in the right half of Table 5, is
highly sensitive to the threshold θ used by the learn_paths
algorithm. Given that usually only a relatively small number of
cues receive strong support from a given meaning, we therefore
set the threshold such that the algorithm does not need to
take into account large numbers of irrelevant cues. Depending
on the form and meaning representations selected, some fine-
tuning is generally required to obtain a threshold value that
optimally balances both accuracy and computation time. Once
the threshold is fine-tuned for the training data, the same
threshold is used for the validation data.

Production accuracy is similar to comprehension accuracy,
albeit systematically slightly lower. Triphones and quadraphones
again outperform biphones by a large margin. For the training
data, triphones are somewhat less accurate than quadraphones.
Interestingly, in order to predict new forms in the validation data,
triphones outperform quadraphones. Clearly, triphones offer
better generalizability compared to quadraphones, suggesting
that we are overfitting when modeling with quadraphones as
cues. Accuracy under the val_newform criterion is quite low,
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TABLE 5 | Comprehension and production accuracy for train and validation datasets, with biphones, triphones, quadraphones, and bisyllables as cues.

Comprehension Production

Train (%) val_all (%) val_lenient (%) val_newform (%) Train (%) val_all (%) val_lenient (%) val_newform (%)

Biphone 22 16 17 8 48 31 33 12

Triphone 93 88 92 51 84 64 68 21

Quadraphone 97 93 97 53 91 67 73 11

Bisyllable 99 93 99 20 95 63 69 0.3

word2vec 87 72 79 0.3 97 88 94 25

For the first four rows, we used simulated semantic vectors. For the last row, cues are triphones, and semantic vectors are word2vec embeddings (discussed in section 4.2.2). For the

learn_paths algorithm, the threshold θ was set to 0.05, 0.008, 0.005, 0.005, and 0.008, respectively.

which is perhaps not unexpected given the uncertainty that
characterizes native speakers’ intuitions about the forms of novel
words (McCurdy et al., 2020). In section 4.3.2, we return to
this low accuracy, and consider in further detail generated novel
forms and the best supported top candidates.

4.1.2. Syllable-Based Representations
Instead of using n-phones, the unit of analysis can be a
combination of n syllables. The motivation for using syllables
is that some suprasegmental features, such as lexical stress in
German, are bound to syllables. Although stress information
is not considered in the current simulation experiments,
suprasegmental cues can be incorporated (see Chuang et al.,
2020a, for an implementation).

As for n-phones, when using n-syllables, we have to choose
a value for the unit size n. For the word Aale, the bi-syllable
cues are #-a, a-l@, and l@-#, with “-” indicating syllable
boundary. When unit size equals two, there are in total 8,401
unique bi-syllable cues. For tri-syllables, the total number of
unique cues increases to 10,482. Above, we observed that the
model was already overfitting with 9,068 unique quadraphone
cues. We therefore do not consider tri-syllable cues, and only
present modeling results for bi-syllable cues4.

As shown in the fourth row of Table 5, comprehension
accuracy (for bi-syllables) for the training data is almost error-
free, 99%, the highest among all the cue representations. For
the validation data, the overall accuracy is also high, 93%.
This is again due to the high accuracy for the seen forms
(val_lenient = 99%). Only one fifth of the unseen forms,
however, is recognized successfully (val_newform = 20%).
Production accuracies for the training and validation data are
95 and 63%, respectively. The model again performs well for
homophones (val_lenient = 69%) but fails to produce
unseen forms (val_newform = 0.3%). This extremely low
accuracy is in part due to the large number of cues that appear
only in the validation dataset (325 for bisyllables, but only 23
for triphones). Since such novel cues do not receive any training,
words with such cues are less likely to be produced correctly. We

4Even though the number of bi-syllables is close to that of quadraphones, the fact
that quadraphones still outnumber bi-syllables suggests that quadraphones have
captured within-syllable phone collocations that are not available in bi-syllable
cues. These further fine-grained cues might include, for example, consonant
clusters, as in Sprache “language.”

will come back to the issue of novel cues in section 4.3.1. For now,
we conclude that triphone-based form vectors are a good choice
as they show a good balance of comprehension and production
accuracy on training and validation data.

4.2. Semantic Representation
There are many ways in which words’ meanings can be
represented numerically. The simplest method is to use one-hot
encoding (i.e., a binary vector where a single value/bit is set to
one), as implemented in the naive discriminative learning model
proposed by Baayen et al. (2011). One-hot encoding, however,
misses out on the semantic similarities between lemmas: all
lemmas receive meaning representations that are orthogonal.
Instead of using one-hot encoding, semantic vectors can also be
derived by turning words’ taxonomies in WordNet into binary
vectors with multiple bits on (details in Chuang et al., 2020a).
In what follows, however, we work with real-valued semantic
vectors, known as “word embeddings” in natural language
processing. Semantic vectors can either be simulated, or derived
from corpora using methods from distributional semantics (see
e.g., Landauer and Dumais, 1997; Mikolov et al., 2013b).

4.2.1. Simulated Semantic Vectors
When corpus-based semantic vectors are unavailable, semantic
vectors can be simulated. The JudiLing package enables the
user to simulate such vectors using normally distributed random
numbers for content lexemes and for inflectional functions.
By default, the dimension of the semantic vectors is set to be
identical to that of the form vectors.

The semantic vector for an inflected word is obtained by
summing the vector of its lexeme and the vectors of all the
pertinent inflectional functions. As a consequence, all vectors
sharing a certain inflectional feature are shifted in the same
direction in semantic space. By way of example, consider the
German plural dative of Aal “eel,” Aalen. We compute its
semantic vector by adding the semantic vector for PLURAL and

DATIVE to the lemma vector
−→
Aallemma:

−−−→
Aalendat.pl =

−→
Aallemma +

−−−−→
PLURAL +

−−−−→
DATIVE

The corresponding singular dative Aal can be coded as:

−→
Aaldat.sg. =

−→
Aallemma +

−−−−−−→
SINGULAR +

−−−−→
DATIVE
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Alternatively, the singular form could be coded as unmarked,
following a privative opposition approach:

−→
Aaldat.sg. =

−→
Aallemma +

−−−−→
DATIVE

For the remainder of the paper, we treat number as an equipollent
opposition. Finally, a small amount of random noise is added to
each semantic vector (M 0, SD 1; compare this to M 0, SD 4 for
lexeme and inflectional vectors), as an approximation of further
semantic differences in word use other than number and case [see
Sinclair (1991, e.g., p.44ff.)5, Tognini-Bonelli (2001) and further
discussion below]. The results reported thus far were all obtained
with simulated vectors.

It is worth noting that when working with simulated semantic
vectors, the meanings of lexemes will still be orthogonal, and
that as a consequence, all similarities between semantic vectors
originate exclusively from the semantic structure that comes from
the inflectional system.

4.2.2. Empirical Semantic Vectors
A second possibility for obtaining semantic vectors is to derive
them from corpora. Baayen et al. (2019) constructed semantic
vectors from the TASA corpus (Ivens and Koslin, 1991), in such
a way that semantic vectors were obtained not only for lexemes
but also for inflectional functions. With their semantic vectors,
the semantic vector ofAalen can be straightforwardly constructed
from the semantic vectors of Aal, PLURAL, and DATIVE.

However, semantic vectors that are created with standard
methods from machine learning, such as word2vec (Mikolov
et al., 2013a), fasttext (Bojanowski et al., 2017), or GloVe
(Pennington et al., 2014), can also be used (albeit without
semantic vectors for inflectional features; see below). In what
follows, we illustrate this for 300-dimensional vectors generated
with word2vec, trained on the German Wikipedia (Yamada et al.,
2020). For representing words’ forms, we used triphones.

The model in general performs well for the training data
(Table 5). For the validation data, while the homophones are
easy to recognize and produce, the unseen forms are again
prohibitively difficult. Interestingly, if we compare the current
results with the results of simulated vectors (cf. second row,
Table 5), we observe that while the train and val_all
accuracies are fairly comparable for the two vector types,
their val_newform accuracies nonetheless differ. Specifically,
understanding new forms is substantially more accurate with
simulated vectors (51 vs. 0.3%), whereas word2vec embeddings
yield slightly better results for producing new forms (21 vs. 25%).

To understand why these differences arise, we note, first,
that lexemes are more similar to each other than is the case
for simulated vectors (in which case lexemes are orthogonal),
and second, that word2vec semantic vectors are exactly the
same for each set of homophones within a paradigm, so that
inflectional structure is much less precisely represented. This lack

5Our approach of adding small semantic differences to individual word forms
does probably not do justice to Sinclair (1991)’s view that word forms can have
completely idiosyncratic meanings, since we still assume commonalities across
word forms such as e.g., a shared meaning of plurality. We hope to be able to
address this issue in future research.

of inflectional structure may underlie the inability of the model
to understand novel inflected forms correctly. Furthermore,
the lack of differentiation between homophones simplifies the
mapping from meaning to form, leading to more support from
the semantics for the relevant triphones, which in turn facilitates
synthesis by analysis.

In addition, we took the word2vec vectors, and reconstructed
from these vectors the vectors of the lexemes and of the
inflectional functions. For a given lexeme, we created its lexeme
vector by averaging over the vectors of its inflectional variants6.
For plurality, we averaged over all vectors of forms that can be
plural forms. Using these new vectors, we constructed semantic
vectors for a given paradigm cell by adding the semantic vector
of the lexeme and the semantic vectors for its number and
case values. The mean correlation between the new “analytical”
word2vec vectors and the original empirical vectors was 0.79
(sd = 0.076). Apparently, there is considerable variability
in how German inflected words are actually used in texts, a
finding that has also emerged from corpus linguistics (Sinclair,
1991; Tognini-Bonelli, 2001). The idiosyncracies in the use of
individual inflected forms renders the comprehension of an
unseen, but nevertheless also idiosyncratic, inflected word form
extremely difficult. From this we conclude that the small amount
of noise that we added to the simulated semantic vectors is likely
to be unrealistically small compared to real language use.

Interestingly, semantic similarity facilitates the production of
unseen forms. A Linear Discriminant Analysis (LDA) predicting
nine plural classes (the eight sub-classes presented in Table 1

plus one “other” class) from the word2vec semantic vectors
has a prediction accuracy of 62.7% (50.5% under leave-one-
out cross validation). Conducting 10-fold cross-validation with
Support Vector Machine (SVM) yields an average accuracy of
56.7%, considerably higher than the percentage of the majority
choice (the -n plural class, 35.6%). Apparently, semantically
similar words tend to inflect similarly. When a novel meaning
is encountered in the validation set, it is therefore possible
to predict to some extent its general form class. Given the
similarities between LDA and regression, the same kind of
information is likely captured by LDL.

4.3. Missing Forms and Missing Semantics
Evaluation on held-out data is a means for assessing the
productivity of the network. However, it often happens during
testing that the model is confronted with novel, unseen cues, or
with novel, unseen semantics. Here, linguistically and cognitively
motivated choices are required.

4.3.1. Novel Cues
For the cross-validation results presented thus far, the validation
data comprise a random selection of words. As a consequence,
there often are novel cues in the validation data that the model
has never encountered during training. The presence of such
novel cues is especially harmful for production. As mentioned in
section 4.1.2, the model with bi-syllables as cues fails to produce

6Note that these vectors are not sense-disambiguated, so that the they can cover
homophonous forms from various paradigm cells.
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TABLE 6 | Comprehension and production accuracy for train and validation datasets, which are split in such a way that no novel cues are present in the validation set.

Comprehension Production

Train (%) val_all (%) val_lenient (%) val_newform (%) Train (%) val_all (%) val_lenient (%) val_newform (%)

Triphone 93 88 91 52 85 63 67 17

Bisyllable 99 99 99 61 95 52 52 12

Both the triphone and bisyllable models make use of simulated semantic vectors.

unseen forms, due to the large number of novel cues in the
validation data.

What is the theoretical status of novel cues? To answer this
question, first consider that actual speakers rarely encounter new
phones or new phone combinations in their native languages.
Furthermore, novel sounds encountered in loan words are
typically assimilated into the speaker’s native phonology7. Also,
many cues that are novel for the model actually occur not only in
the held-out nouns, but also in verbs, adjectives, and compounds
that the model has no experience with. Thus, the presence of
novel cues is in part a consequence of modeling only part of the
German lexicon.

Since novel cues have zero weights on their efferent
connections (or, equivalently, zero beta coefficients), they are
completely inert for prediction. One way to address this issue is
to select the held-out data with care. Instead of randomly holding
out words, we make sure that in the validation data all cues are
already present in the training data. We therefore split the dataset
into 80% training and 20% validation data, but now making sure
that there are no novel triphone cues in the validation dataset.
Among the 3,629 validation words, 3,331 are homophones, and
298 are unseen forms. We note that changing the kind of cues
used typically has consequences for how many datapoints are
available for validation. When bi-syllables are used instead of
triphones, due to the sparsity of bi-syllable cues, we have to
increase the percentage of validation data to include sufficient
numbers of unseen forms. Even for 65% training data and 35%
validation data, the majority of validation data are homophones
(98.5%), and only 76 cases represent unseen forms (with only
known cues).

For the triphone model (top row, Table 6), for both
comprehension and production, the train, val_all,
and val_lenient accuracies are similar to the results
presented previously (Table 5). For the evaluation of unseen
forms (val_newform), there is only a slight improvement
for comprehension (from 51 to 52%); for other datasets,
the improvement can be larger. However, for production,
val_newform becomes worse (decreasing from 21 to 17%).
The reason is that even though all triphone cues of the validation
words are present in the training data, they obtain insufficient

7Note that such assimilation effects could bemodeled using real acoustic input (i.e.,
audio files) with LDL-AURIS (Shafaei-Bajestan et al., 2021). Here, unseen sounds
would presumably be assimilated to the closest seen sounds, similar to human
performance. Of course, given sufficient training data, such a model would over
time also be able to acquire the new sounds. We have, however, restricted ourselves
to modeling using letter/phone representations.

support from the semantics. The solution here is to allow a small
number of triphone cues with weak support (below the threshold
θ) to be taken into account by the algorithm that orders triphones
into words. This requires turning on the tolerance mode
in the learn_paths function of the JudiLing package. By
allowing at most two weakly supported triphones to be taken into
account, production accuracy for unseen forms increases to 57%.

The bi-syllable model benefits more from the removal of novel
cues in the validation data. Especially for comprehension, the
accuracy of unseen forms reaches 61%, compared to 20% with
random selection. For production, we observe a non-negligible
improvement as well (from 0.3 to 12%). Further improvements
are expected when tolerance mode is used, but given the large
number of bi-syllables, this comes at considerable computation
costs. In other words, bi-syllables provide a model that is an
excellent memory, but a memory with very limited productivity
specifically for production.

4.3.2. Unseen Semantics
In real language, speakers seldom encounter words that are
completely devoid of meaning: even novel words are typically
encountered in contexts which narrow down their interpretation.
In the wug task, by contrast, participants are often confronted
with novel words presented without any indication of their
meaning, as, for instance, in the experiment on German nouns
reported by McCurdy et al. (2020). Within the framework of the
discriminative lexicon, this raises the question of how to model
the wug task, as the model has no way to produce inflected
variants without semantics.

For modeling the wug task, and comparing model
performance with that of German native speakers, we begin with
observing that the comprehension system generates meanings
for non-words. Chuang et al. (2020c) showed that measures
derived from the semantic vectors of non-words were predictive
for both reaction times in an auditory lexical decision task and
for non-words’ acoustic durations in a reading task. In order to
model the wug task, we therefore proceeded as follows:

1. We first simulated a speaker’s lexical knowledge prior to the
experiment by training a comprehension matrix using all the
words described in section 4. Here, we made use of simulated
semantic vectors.

2. We then used the resulting comprehension network to obtain
semantic vectors snom.sg for the nominative singular forms of
the non-words by mapping their cue vectors into the semantic
space, resulting in semantic vectors snom.sg.
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3. Next, we created the production mapping from meaning to
form, using not only all real words but also the non-words
(known only in their nominative singular form).

4. Then, we created the semantic vectors for the plurals
(snom.pl) of the non-words by adding the plural vector
to their nominative singular vectors while subtracting the
singular vector.

5. Finally, these plural semantic vectors were mapped onto form
vectors (ĉnom.pl) using the production matrix, in combination
with the learn_paths algorithm that orders triphones for
articulation.

We applied these modeling steps to a subset of the experimental
materials provided by Marcus et al. (1995) (reused by McCurdy
et al., 2020), in order to compare model predictions with the
results of McCurdy et al. (2020). The full materials of Marcus
et al. (1995) contained non-words that were set up such that only
half of them had an existing rhyme in German. We restricted
ourselves to the non-words with existing rhymes, first, because
non-rhyme words have many cues that are not in the training
data; and second, because, as noted by Zaretsky and Lange
(2015), many of the non-rhyme words have unusual orthography
and thus are strange even for German speakers. Furthermore,
many of the non-rhyme non-words share endings and therefore
do not provide strong data for testing model predictions.

McCurdy et al. (2020) presented non-words visually and
asked participants to write down their plural form. To make
our simulation more comparable to their experiment, in the
following we made use of letter trigrams rather than triphones.
We represented words without their articles, as the wug task
implemented by McCurdy et al. (2020) presented the plural
article as a prompt for the plural form; participants thus
produced bare plural forms. For assessing what forms are
potential candidates for production, we examined the set of
candidate forms, ranked by how well their internally projected
meanings (obtained with the synthesis-by-analysis algorithm, see
section 3), correlated with the targeted meaning snom.pl. We then
examined the best supported candidates as possible alternative
plural forms.

The model provided a plausible plural form as the best
candidate in 7 out of 12 cases. Five of these belonged to the -en
class. A further plausible candidate was also only provided in 5 of
the cases. The lack of diversity as well as the bias for -en plurals
does not correspond to the responses given by German speakers
in McCurdy et al. (2020).

Upon closer inspection, it turns out that a more variegated
wug performance can be obtained by changing two parameters.
First, we replaced letter trigrams by letter bigrams. This
substantially reduces the number of n-grams that are present
in the non-words but that do not occur in the training data.
Second, we made a small but important change to how semantic
vectors were simulated. The default parameter settings provided
with the JudiLing package generate semantic vectors with the
same standard deviation for both content words and inflectional
features. Therefore, the magnitudes of the values in semantic
vectors is very similar for content words and inflectional features.
Since words are inflected for case and number, their semantic
vectors are numerically dominated by the inflectional vectors.
To enhance the importance of the lexemes, and to reduce
the dominance of the inflectional functions, we reduced the
standard deviation (by a factor of 1

10 ) when generating the
semantic vectors for number and case. As a consequence, the
mean of the absolute values in the plural vector decreased
from 3.25 to 0.32. (Technical details are provided in the
Supplementary Materials.) With these two changes, the model
generated a more diverse set of plural non-word candidates
(Table 7). Model performance is now much closer to the
performance of native speakers as reported by Zaretsky et al.
(2013); McCurdy et al. (2020).

The model also produces some implausible plural candidates,
all of which however are phonotactically legal; these are marked
with an asterisk in Table 7. Sometimes a plural marker is
interfixed instead of suffixed (e.g., Spand, Span-en-d; Pund, Pun-
en-d). Almost all words have a candidate which shows double
plural marking (e.g., Bral, Bral-en-en; Nuhl, Nuhl-er-e; Pind,
Pind-er-n; cf. Dutch kind-er-en), or a mixture of both (e.g., Span,
Span-en-d-e; Spert, Sper-er-t-en). For Klot, doubling of the -
t can be observed, as this form is presumably more plausible
in German [e.g., Motte (“moth”), Gott (“god”), Schrott (“scrap,
rubbish”)]. One plural has been attracted to an existing singular
(Spand, Spaten-d). Apparently, by downgrading the strength
(or more precisely, the L1-norm) of the semantic vectors of
inflectional functions, the model moves in the direction of
interfixation-like changes.

The model does not produce a single plural form with an
umlaut, even though in corpora umlauted plurals are relatively
frequent (see e.g., Gaeta, 2008). Interestingly, the German
speakers inMcCurdy (2019) also tended to avoid umlauted forms
(with the exception of Kach→ Kächer). Interestingly, children at
the age of 5 also tend to avoid umlauts when producing plurals

TABLE 7 | First five candidates for the plural forms of non-words.

Bral Kach Klot Mur Nuhl Pind Pisch Pund Raun Spand Spert Vag

Bralen Kachen Klot Muren Nuhlen Pinden Pischen Punden Raunen *Spanend Sperten Vag

Bral Kach *Klotten Murn Nuhl Pind Pisch *Punend Raun Spand Sperte Vagen

*Bralenen Kacher *Klotte Mur Nuhle Pinder Pischer Pund *Raunern *Spanende Sperter Vage

*Bralern Kache *Klotter *Murnen *Nuhlern Pinde Pische Punde Rauner *Spanenden *Spererten Vager

Braler *Kachern *Klieloten Murer *Nuhlere *Pindern *Pischern *Pundene Raune *Spatend *Spererte *Vagern

Forms that are implausible as plurals are marked with an asterisk. Non-words are taken from Marcus et al. (1995).
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for German non-words, but usage increases for 7-year-olds and
adults (Van de Vijver and Baer-Henney, 2014).

Finally, most non-words have a plural in -en as one of the
candidates (10 out of 12 cases), with as runners-up the -e plural
(8 out of 12 cases), and the -er plural (8 out of 12). There is
not a single instance of an -s plural, which fits well with the
low prevalence (around 5%) of -s plurals in the experiment of
McCurdy et al. (2020).

This simulation study shows that it is possible to make
considerable headway with respect to modeling the wug task for
German. The model is not perfect, unsurprisingly, given that
we have worked with simulated semantic vectors and estimates
of non-words’ meanings. It is intriguing that a strong weight
imposed on the stem shifts model performance in the direction of
interfixation-like morphology. However, the model has no access
to information about words’ frequency of use, and hence is blind
to an important factor shaping human learning (see section 4.5
for further discussion). Nevertheless, the model does appear to
mirror the uncertainties of German speakers fairly well.

4.4. Words in Context
Thus far, we have modeled words in isolation. However, in
German, case and number information is to a large extent carried
by preceding determiners. In addition, in actual language use, a
given grammatical case denotes one of a wide range of different
possible semantic roles. The simplifying assumption that an
inflectional function can be represented by a single vector, which
may be reasonable for grammatical number, is not at all justified
for grammatical case. In this section, we therefore explore how
context can be taken into account. We first present modeling
results of nouns learned together with their articles. Next, we
break down grammatical cases into actual semantic functions,
and show howwe can begin tomodel the noun declension system
with more informed semantic representations.

4.4.1. Articles
We first consider definite articles. Depending on gender and case,
a noun can follow one of the six definite articles in German—der,
die, das, dem, den, des. We added these articles, transcribed in
DISC notation, before the nouns. Although in writing articles and
nouns are separated by a space character (e.g., der Aal), to model
auditory comprehension we removed the space character (e.g.,
deral). By adding the articles to the noun forms, the number of
homophones in our dataset was reduced to a substantial extent,

whereas the number of unique word forms more than doubled
(from 5,427 to 12,798).

In the first set of simulations we used the same semantic
vectors as we did previously for modeling isolated words. That
is, the meanings of the definite articles are not taken into account
in the semantic vectors, as all forms would be shifted in semantic
space in the exactly the same way. After including articles, the
validation data now only contained 3,982 homophones, but the
number of unseen forms increased to 3,260. Using triphones
as cues, we ran two models, one with simulated vectors and
the other with word2vec semantic vectors. For simulated vectors
the results (Table 8) are generally similar to those obtained
without articles (Table 5). However, if we look at the evaluation
of comprehension with the strict criterion (according to which
recognizing a homophone is considered incorrect), without
articles val_strict is 6%, whereas it is 34% with articles.
The generalizability of the model also improves as the number
of homophones in the dataset decreases. Even though there are
more unseen forms in the current dataset with articles than
in the original one without articles, the val_newform for
comprehension increases by 12% from 51 to 63%.

When using word2vec embeddings, adding articles to form
representations also improved the comprehension of unseen
forms: the val_newform astonishingly increased from 0.3
to 58%. Without articles, homophones all shared the same
form representations and exactly the same word2vec vectors.
As a consequence, many triphone cues were superfluous
and not well-positioned to discriminate between lemma or
inflectional meanings. Now, with the addition of articles, the
form space is better discriminated. With an increased number of
triphone cues, the model is now able to predict and generalize
more accurately for comprehension. However, for production,
model performance is generally worse when articles have to
be produced. For the training data, for instance, production
accuracy drops from 97% (without articles) to 48%. This is of
course unsurprising. In the simulation with articles, the semantic
representations remain the same, but now identical semantic
vectors have to predict more variegated triphone vectors. The
learning task has become more challenging, and inevitably
resulted in less accurate performance. Replacing the contextually
unawareword2vec vectors by contextually aware vectors obtained
using language models such as BERT (Corbett et al., 2019;
Miaschi and Dell’Orletta, 2020) should alleviate this problem.

We can test the model on more challenging data by including
indefinite articles (ein, eine, einem, einen, einer, eines), and

TABLE 8 | Comprehension and production accuracy for train and validation datasets with articles.

Comprehension Production

Train (%) val_all (%) val_lenient (%) val_newform (%) Train (%) val_all (%) val_lenient (%) val_newform (%)

Simulated 94 76 92 63 81 37 57 19

word2vec 91 69 81 58 48 14 28 1

def + indef 94 80 93 64 82 40 60 15

All three simulations use triphones as cues. The first two rows present results with simulated vectors and word2vec embeddings as semantic representations. The simulation presented

in the bottom row also makes use of simulated vectors, but includes both definite and indefinite articles.
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creating two additional semantic vectors, one for definiteness
and one for indefiniteness. This doubles the size of our dataset:
half of the words are preceded by definite articles, and the other
half by indefinite articles. However, because German indefinite
articles are restricted to singular forms, only indefinite singular
forms are preceded by indefinite articles. On the meaning side,
the

−−−−−−→
DEFINITE vector is added to the semantic vectors of words

preceded by definite articles, and the
−−−−−−−→
INDEFINITE vector is added

to vectors for words preceded by either indefinite articles in the
singular, or no article in the plural.

The validation data of this dataset confronts the model with in
total 3,982 homophones and 3,260 unseen forms. Homophones
comprise slightly more words with indefinite articles (57%)
whereas unseen forms comprise slightly more definite articles
(59%). The results, presented in the bottom row of Table 8,
are very similar to those with only definite articles (top row).
Closer inspection of the results for the validation data shows
that for comprehension, accuracies do not differ much across
definite and indefinite forms. For production, however, especially
for unseen forms, the accuracy for definite articles is twice
higher than that for indefinite articles (20 and 9%, averaging
out to 15%). This is a straightforward consequence of the
much more diverse realizations of indefinite nouns. For definite
nouns, the possible triphone cues at the first two positions in
the word are always limited to the triphone cues of the six
definite articles. For indefiniteness, however, in addition to the six
indefinite articles, initial triphone cues also originate from words’
stems—indefinite plural forms are realized without articles. The
mappings for production are thus faced with amore complex task
for indefinites, and the model is therefore more likely to fail on
indefinite forms.

4.4.2. Semantic Roles
The simulation studies thus far suggest it is not straightforward
to correctly comprehend a novel German word form in isolation,
even when articles are provided. This is perhaps not that
surprising, as in natural language use, inflected words appear
in context, and usually realize not some abstract case ending,
but a specific semantic role (also called thematic role, see e.g.,
Harley, 2010). For example, a word in the nominative singular
might express a theme, as der Apfel in Der Apfel fällt vom Baum.
(“The apple falls from the tree”), or it might express an agent
as der Junge in Der Junge isst den Apfel. (“The boy eats the
apple.”). Exactly the same lemma, used with exactly the same
case and number, may still realize very different semantic roles.
Consider the two sentences Ich bin bei der Freundin (“I’m at the
friend’s”) and Ich gebe der Freundin das Buch (“I give the book
to the friend”). der Freundin is dative singular in both cases,
but in the first sentence, it expresses a location while in the
second it represents the beneficiary or receiver. Semantic roles
can also be reflected in a word’s form, independently of case
markers. For example, German nouns ending in -er are so-called
“Nomina Agentis” (Baeskow, 2011). As pointed out by Blevins
(2016), case endings are no more (or less) than markers for the
intersection of form variation and a distribution class of semantic
roles. Since within the framework of the DLM, the aim is to
provide mappings between form and meaning, a case label is not

a proper representation of a word’s actual meaning. All it does is
specify a range of meanings that the form can have, depending
on context. Therefore, even though we can get the mechanics
of the model to work with case specifications, doing so clashes
with the “discriminative modeling” approach. In what follows,
we therefore implement mappings with somewhat more realistic
semantic representations of German inflected nouns.

Our starting point is that in German, different cases can realize
a wide range of semantic roles. For our simulations, we restrict
ourselves to some of the most prominent semantic roles for each
case (Table 9). Even though these clearly do not reflect the full
richness of the semantics of German cases, they suffice for a
proof-of-concept simulation.

In order to obtain a dataset with variegated semantic roles, we
expanded the previous dataset, with each word form (including
its article) appearing with a specification of its semantic role,
according to the probabilities presented in Table 9. The resulting
dataset had 45,605 entries, which we randomly split into 80%
training data and 20% validation data. For generating the
semantic matrix, we again used number, but instead of a case
label, we provided the semantic role as inflectional feature.
Comprehension accuracy on this data is comparable to the
previous simulations: 89% for the training data train, and 85%
val_lenient. Comprehension accuracy on the validation set
drops dramatically when we use strict evaluation (4% accuracy).
This is unsurprising given that it is impossible for the model to
know which semantic role is intended when only being exposed
to the word form and its article in isolation, without syntactic
context. Production accuracy is likewise comparable to previous
simulations with train at 78% and val_lenient at 61%
(val_newform 25%). This simple result clarifies that in order
to properly model German nouns, it is necessary to take the
syntactic context in which a noun occurs into account. Future
research will also have to face the challenge of integrating words’
individual usage profiles into the model (see also section 4.2.1
above).

4.5. Incremental Learning vs. the End-State
of Learning
In the simulation studies presented thus far, we made use of the
regression method to estimate the mappings between form and
meaning. The regression method is strictly type based: the data
on which a model is trained and evaluated consists of all unique
combinations of form vectors c and semantic vectors s. In this

TABLE 9 | Probabilities of semantic roles by cases in the German noun system.

Case Semantic roles

Nominative Agent (50%), theme (40%), patient (10%)

Genitive Possessive (90%), partitive (10%)

Dative Beneficiary (50%), location (50%)

Accusative Patient (40%), motion (30%), experiencer (30%)

Semantic roles are informed by Schulz and Griesbach (1981). Percentages are simulated

and do not necessarily reflect corpus-frequencies of the respective semantic role.
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respect, the regression method is very similar to models such as
AML, MBL, MGL, and to statistical analyses with the GLM or
recursive partioning methods. However, word types (understood
as unique sets {c, s}) are not uniformly distributed in language,
and there is ample evidence that the frequencies with which word
types occur co-determines lexical processing (see e.g., Baayen
et al., 1997, 2007, 2016; Tomaschek et al., 2018). While some
formal theorists flatly deny that word frequency effects exist for
inflected words (Yang, 2016), others have argued that there is no
problem with integrating frequency of use into formal theories of
the lexicon (Jackendoff, 1975; Jackendoff andAudring, 2019), and
yet others have argued that it is absolutely essential to incorporate
frequency into any meaningful account of language in action
(Langacker, 1987; Bybee, 2010).

Within the present approach, effects of frequency of
occurrence can be incorporated seamlessly by using incremental
learning instead of the end-state of learning as defined by
the regression equations (see Danks, 2003; Evert and Arppe,
2015; Shafaei-Bajestan et al., 2021, for the convergence over
learning time of incremental learing to the regression end-state of
learning). We illustrate this for our German nouns dataset with
number and semantic role as crucial constructors of simulated
semantic vectors.

We begin with noting that word forms usually do not
instantiate all possible semantic roles equally frequently. For
instance, a word such as der Doktor (“doctor”) will presumably
occur mostly as agent in the nominative singular form, rather
than as theme or patient. If the model is informed about the
probability distributions of semantic roles in actual language
use (both in language generally, and lexeme-specific), it may be
expected to make more informed decisions when coming across
new forms, for instance, by opting for the best match given its
past experience.

Incremental learning with the learning rule of Widrow-
Hoff makes it possible to start approximating human word-to-
word learning as a function of experience. As a consequence,
the more frequent a word type occurs in language use, the
better it can be learned: practice makes perfect. This sets the
following simulation study apart from models such as proposed
by McCurdy et al. (2020) or Belth et al. (2021), who base their
training regimes strictly on types rather than tokens.

In the absence of empirical frequencies with which
combinations of semantic roles and German nouns co-occur,
we simulated frequencies of use8. To do so, we proceeded as
follows. First, we collected token frequencies for all our word
forms from CELEX. Next, we assigned an equal part freqp of
this frequency count to each case/number cell realizing this
word form. Third, for each paradigm cell, we randomly set to
zero some semantic roles, drawing from a binomial distribution
with n = 1, p = 1

K , with K the number of semantic roles for
the paradigm cell (see Table 9). In this way, on average, one
semantic role was omitted per paradigm cell. Finally, given a

8Though there are several semantic role labelers available for English [e.g., arising
from the CoNLL-2004 and 2005 Shared Tasks (https://www.cs.upc.edu/~srlconll/
home.html)], there are—to our knowledge—currently no suitable taggers for
German.

proportional frequency count freqp, the semantic roles associated
with a paradigm cell received frequencies proportional to the
percentages given in Table 9. Further details on this procedure
are available in the Supplementary Materials, a full example can
be found in Table 10.

Having obtained simulated frequencies, we proceeded by
randomly selecting 274 different lemmas (1,274 distinct word
forms with definite articles included), in order to keep the size
of the simulation down— simulating with the Widrow-Hoff rule
is computationally expensive. The total number of tokens in this
study was 4,470. For the form vectors, we used triphones. The
dimension of the simulated semantic vectors was identical to that
of the cue vectors. As before, the data was split into 80% training
and 20% validation data. We followed the same procedure as in
the previous experiments, but instead of computing the mapping
matrices in their closed form (i.e., end-state) solution, we used
incremental learning.

While for comprehension, the implementation of the learning
algorithm is relatively straightforward, this is not the case
for production. The learn_paths algorithm calculates the
support for each of the n-grams, for each possible position in a
word. In the current implementation of JudiLing, the calculation
of positional support is not implemented for incremental
learning. Therefore, we do not consider incremental learning of
production here.

Comprehension accuracy was similar to that observed for
previous experiments. Training accuracy when taking into
account homophones was 85%, validation accuracy on the
full data was 79% (val_lenient). Without considering
homophones, validation accuracy drops substantially
(val_strict 7%). This is unsurprising given that from the
form alone it is impossible to predict the proper semantic role.

The accuracy of the model’s predictions is also closely linked
to the frequencies with which words’ form+role combinations
are encountered in the training data. If a word’s form+role
combination is very frequent, it is learned better. Figure 2

presents the correlations of words’ predicted and targeted
semantic vectors against their frequency of occurrence. The
left panel presents the results for the incrementally learned

TABLE 10 | Example of simulated frequencies for combinations of case and
semantic role for the word form “Adresse.”

Word

form

Lemma Case Number Semantic

role

Form

frequency

Form+role

frequency

Adresse Adresse Nominative Singular Agent 137 20

Adresse Adresse Nominative Singular Theme 137 16

Adresse Adresse Nominative Singular Patient 137 0

Adresse Adresse Genitive Singular Possessive 137 0

Adresse Adresse Genitive Singular Partitive 137 35

Adresse Adresse Dative Singular Beneficiary 137 18

Adresse Adresse Dative Singular Location 137 18

Adresse Adresse Accusative Singular Patient 137 0

Adresse Adresse Accusative Singular Motion 137 0

Adresse Adresse Accusative Singular Experiencer 137 35
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FIGURE 2 | Correlation between the simulated frequency and correlation of the predicted semantic vector with its target. Generally, the more frequent a word form is,
the more accurate its semantic vector is predicted. The blue line indicates a loess smooth with a 0.95 confidence interval. (A) Incremental learning. (B) End-state of
learning.

model, the right panel for the end-state of learning. Clearly,
after incremental learning the model predicts the semantics of
more frequent form+role combinations more accurately. For the
end-state of learning on the other hand, no such effect can be
observed. These results clearly illustrate the difference between a
token-based model and a typed-based model.

The effect of frequency of use on the kind of errors made
by the model is also revealing. We zoom in on those cases
where the model was able to correctly identify the lemma and
paradigm cell of the word form, but did not get the semantic
role right. Figure 3 provides scatterplots graphing the number of
times a semantic role was (incorrectly) understood against the
frequency of the form’s semantic role, cross-classified by training
method (incremental, left panels; end-state of learning, right
panels) and by evaluation set (top panels: training data, bottom
panels: validation data). For incremental learning, there is a
positive correlation between the number of times a semantic role
was (incorrectly) identified and the frequency of the semantic
role in the training data. Note that the relation is not linear,
but curvilinear. A linear relation would have implied that a
fixed proportion of word forms would be incorrectly recognized,
across all semantic roles. What we see, by contrast, is that
greater exposure in language use has an increasingly detrimental
effect on learning, with more probable semantic roles being
over-identified. Importantly, for the end-state of learning, this
curvilinear effect of frequency on learning is absent, with the
PATIENT role representing an atypical outlier. This outlier status
is due to the patient semantic role being realized by two cases:
nominative and accusative. As a consequence, it is not only
frequent, but it is also predicted by many more different cues

(especially cues from the articles) than is the case for other
semantic roles.

In other words, with incremental learning, strong frequency
effects emerge, hand in hand with overgeneralization of semantic
roles (the study by Ramscar et al., 2013 makes the same point
for irregular English noun plurals). By contrast, for the end-state
of learning, such effects are absent. Mathematically, this makes
sense: as experience (i.e., volume of training data) goes to infinity,
all forms are learned an infinite number of times, and frequency
is no longer distinctive.

With incremental learning, it is also possible to follow the
learning trajectory of the model. Figure 4 presents this trajectory
at 10 evaluation points. Learning proceeds rapidly during
the first 15,000 learning events and slows down afterwards.
Validation accuracy val_lenient closely follows training
accuracy, which is a straightforward consequence of the large
numbers of homophones. val_newforms on the other hand
stays relatively low, in accordance with the semi-productivity of
the German declension system.

Note that in this simulation we only pass through the
data once. If a word form has a form+role frequency of 1,
it is only seen a single time during training. As such, it is
not possible for the model to reach accuracies as high as
at the end-state of learning (indicated as dots in Figure 4),
which would be reached eventually after an infinite number
of passes through the data (Danks, 2003; Evert and Arppe,
2015; Shafaei-Bajestan et al., 2021). This sets our approach
apart from deep learning, where models are trained on many
iterations through the data set until the loss function reaches
a local minimum. Whereas such a procedure makes sense
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FIGURE 3 | Counts of overgeneralization errors of semantic roles for training (top) and test data (bottom), for incremental learning (left) and the end-state of learning
(right), conditional on the model having understood lexeme, number, and case correctly. (A) Training: incremental learning. (B) Training: end-state of learning. (C)
Validation: incremental learning. (D) Validation: end-state of learning.

for language engineering, it does not make sense for human
learning: we don’t relive the same exposure to data multiple
times, and for healthy people, there is no point in learning after
which performance degrades. For instance, vocabulary learning
is a continuous process straight into old age (Keuleers et al.,
2015).

Note finally, that even though incremental learning is
certainly superior for modeling realistic frequency effects, there
are also cases where the end-state of learning can be the

preferred choice of modeling. Incremental learning is muchmore
computationally expensive which becomes a problem especially
if the training set is large and frequencies are high. Moreover,
in cases where simulated speakers are expected to have learned
a phenomenon well enough, the end-state simulation might
be sufficient.

In summary, the present modeling framework offers the
possibility to approximate incremental human learning and
the consequences of frequency of exposure for learning in a
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cognitively motivated way (see also Chuang et al., 2020a, for
learning in a multilingual setting).

4.6. Model Complexity
LDL mappings are costly in the number of connection weights,
or equivalently, the number of beta coefficients. For example,
the mapping matrix F for the dataset discussed in section 4.4.2
has 35 million weights (5,913 × 5,913 dimensions), rendering
it much more costly in terms of the number of weights than
deep-learning models, models such as AML, MBL, and recursive
partitioning methods.

Inspection of the distribution of weights, however, clarifies
that many weights are very close to zero. Apparently, many cues
have low discriminative value. This suggests their connections
can be pruned without seriously affecting model performance.
This can be tested by selecting a threshold ϑ and setting all
absolute values in the mapping matrix that fall below this

FIGURE 4 | Comprehension accuracy over the course of learning. After a very
fast increase in accuracy over the first 15,000 learning events, the amount of
learning levels off. Points indicate the accuracy at the end-state of learning
which the incremental model would reach eventually after an infinite number of
learning events.

threshold to zero. Figure 5 shows, for varying ϑ , that up to
40% of the small weights can be pruned without substantially
impacting model performance with end-state of learning. As
neural pruning is part and parcel of human cortical development
(see e.g., Gogtay et al., 2004), an interesting topic for further
research is to integrate incremental learning with neural pruning
of uninformative connections.

5. DISCUSSION

In this study, we illustrated the methodological consequences
of the many different choices that have to be made when
modeling morphological systems within the discriminative
lexicon framework, using LDL asmodeling engine.We illustrated
these choices for the German noun system. This system is
“degenerate,” as many of its paradigm cells share the same word
forms (homophones). This system is also in many ways irregular:
a noun’s declension class can often not be fully predicted by
its phonology, gender, or semantics (Köpcke, 1988). The results
we obtained with LDL reflect this complexity. The model can
learn word forms very well, achieving accuracies of more than
90% on both comprehension and production when evaluated on
training data. It can also generalize very well to new paradigm
cells when it comes to word forms it has already seen, thanks
to the ubiquitous homophony that characterizes German noun
paradigms. However, it also mirrors the unpredictability of
German inflections when it comes to word forms it has not
seen before. Accuracies for both comprehension and production
suffer. Nevertheless, the model shows some semi-productivity
and succeeds in generalizing to many of the sub-regularities
found in the German noun system (Wunderlich, 1999), reaching
accuracies of 50% on comprehension and 20% on production.
Since German speakers encounter similar problems with new
German word forms, as has been demonstrated in various wug
studies (Zaretsky et al., 2013; McCurdy et al., 2020), our model
properly exhibits the limitations that are also characteristic for
native speakers.

FIGURE 5 | (A) Distribution of weights in the mapping matrix from form to meaning for the dataset with semantic roles. (B) Accuracy of the end-state model as a
function of the proportion of connection weights close to zero are pruned. About 40% of the weights can be set to zero without seriously affecting the performance of
the model.
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In this study, we also probed the modeling of German
nouns in context. The rampant homophony that characterizes
German noun paradigms is a straightforward consequence of
considering words in isolation. The amount of homophony can
be substantially reduced by including articles, in which case
the model still performs well. In context, case-inflected words
typically do not realize a specific case meaning, but rather a
specific semantic role. As case endings typically do not stand in
a one-to-one relation with semantic roles, we also examined to
what extent we can make the model more realistic by replacing
semantic vectors for cases with semantic vectors for a variety of
semantic roles. For the simulated dataset that we constructed, the
model again performed well.

For this dataset, we also demonstrated how the consequences
of frequency of occurrence can be brought into the model,
namely, by moving from the end-state of learning (estimated
with regression) to incremental learning using the Widrow-Hoff
learning rule.

One limitation of the present approach is that most models
have been using very high-level abstract representations. The
phone-based representation, for example, involves tremendous
simplifications compared to real speech, as variability in
pronunciations is enormous (Ernestus et al., 2002; Johnson, 2004;
Shafaei-Bajestan et al., 2021). On the meaning side, traditional
case labels have no intrinsic semantic content, and although
we can replace cases with semantic roles, these too are still
too simplistic to be able to capture the full complexity of the
semantics of words in context. However, we note that even
with the present high-level representations, the model can still
generate useful predictions. We note here that various other
studies carried out within this framework have successfully
modeled a range of aspects of human lexical processing (see
Chuang and Baayen, 2021, for further details). In summary, even
though the current framework undoubtedly misses out on a
great number of nuanced but potentially informative features of
forms and meanings in real language use, it can still serve as a
useful linguistic tool to explore the strengths and weaknesses of
morphological systems.

A question that inevitably arises in the context of
computational modeling is how cognitively plausible a model
is. In the introduction, we called attention to the distinction
made by Breiman (2001) between statistical models and machine
learning models. We view LDL primarily as a statistical model
that enables us to clarify, at a functional level of analysis,
quantitative structure in the lexicon as well as understand the
challenges a language processing system faces, without claiming
that our model is cognitive reality. However, it is worth noting
that LDL helps incorporate biologically and psychologically
plausible learning into linguistic theory by making use of the
principle of error-driven learning (when training the model
incrementally). The very simple learning rules of Widrow-Hoff
and Rescorla-Wagner have been shown to excellently explain
phenomena from a range of domains in e.g., biology and
psychology (see e.g., Rescorla, 1988; Schultz, 1998; Marsolek,
2008; Oppenheim et al., 2010; Trimmer et al., 2012).

It is possible to take the model as point of departure for
addressing questions at the level of neural organization in the

brain. For instance, Heitmeier and Baayen (2020) were interested
in clarifying whether the framework of the discriminative lexicon
properly predicts the dissociations of form andmeaning observed
for aphasic speakers producing English regular and irregular
past-tense forms, following Joanisse and Seidenberg (1999). They
took the unordered banks of units of form and meaning (the
column dimensions of the C and Smatrices) and projected them
onto two-dimensional surfaces approximating, however crudely,
cortical maps. This made it possible to lesion the network in a
topologically cohesive way, rather than by randomly taking out
connections across the whole network. For projection, they made
use of an algorithm from physics (http://www.schmuhl.org/
graphopt/) for displaying graphs, but temporal self-organizing
maps (TSOMs, Ferro et al., 2011; Chersi et al., 2014) offer
a much more fine-grained and principled way for modeling
morphological organization that builds on principles of error-
driven learning.

Deep learning algorithms provide the analyst with powerful
modeling tools, but it seems they are too powerful (see e.g.,
McCurdy et al., 2020) for understanding not only the strengths
but also the weaknesses and the frailties of human lexical
memory and lexical processing. However, linguistic models are
in a different way also too powerful on the one hand, and
too underspecified on the other hand. Paradigms are typically
constructed to accommodate any contrast between forms and
inflectional functions, even when a contrast is attested only for
a few forms in the language. The result is an overabundance
of homophones, which are severely underspecified with respect
to their real meanings in actual language use (such as their
semantic roles). Furthermore, in actual language use, inflected
forms can occur at very different frequencies and some are never
encountered at all (Karlsson, 1986; Janda and Tyers, 2018), which
in turn has demonstrable consequences for lexical processing
(Lõo et al., 2018)9. An interesting challenge for further research is
to clarify how different degrees of paradigm economy (Ackerman
and Malouf, 2013) are reflected in the matrices that define
mappings between form and meaning within the framework of
the discriminative lexicon.

In this study, we have provided an overview of the many
choice points that arise in modeling with LDL, each of which
requires knowledge of morphology and morphological theory.
The implications of our approach to psycho-computational
modeling for morphological theory depends on the specifics
of a given specific theory of morphology. Our approach is
broadly consistent with usage-based approaches to morphology
(Bybee, 1985, 2010), and with Word and Paradigm Morphology
(Blevins, 2016). It is less clear whether our modeling approach
is informative for theories that are only interested in defining
possible words. With this methodological study, we have shed
some light on the many questions and issues that do not arise
in formal theories of morphology, but that have to be addressed

9Note that we do not claim that rare inflected word forms cannot be processed.
Generally, the more regular a morphological system, the more easily the model
can predict new forms (e.g., in Estonian, Chuang et al., 2020b), while in semi-
productive cases such as German or Maltese (Nieder et al., 2021) generalization
is much more difficult.
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in a linguistically informed way when the goal of one’s theory is
to better understand, and predict, in all its complexity, human
lexical processing across comprehension and production.
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