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1 Introduction
Water treatment is essential owing to the unavailability 
of drinking water and its lack in developing countries in 
Africa, which is mainly due to human and industrial pol-
lution. Water treatment requires specific attention to be 
in agreement with the standards of consumption.1 It in-
cludes several methods, such as coagulation-flocculation, 
sedimentation or flotation, filtration and disinfection, etc.2 
Among these processes, coagulation-flocculation has been 
classified as the best available technology for large-scale 
drinking water production.3 It has played and will contin-
ue to play an important role, directly or indirectly, in the 
control of particles, microorganisms, natural organic matter 
(NOM), synthetic organic carbon, disinfection by-product 
precursors (DBP), and certain inorganic ions and metals, 
and finally, in the control of drinking water quality.4 Coagu-
lation is a process of destabilisation of particles in water by 
neutralising the negative charge on the particle surface, fol-
lowed by the agglomeration of the neutralised micro-flakes 
to form settleable and filterable macro-flocculants.5,6 The 
coagulation process is primarily used to remove turbidity 

in a water treatment plant.7 It is used in more than half of 
the water purification plants in Algeria. Coagulation effi-
ciency depends on the water characteristics, such as col-
our, turbidity, temperature, pH, alkalinity, dissolved salts 
not least the influence of mineralisation.8 It also depends 
on the treatment itself, such as the nature and dosage of 
coagulant, the conditions of agitation, as well as on the 
treatment conditions.9 Jar tests are generally conducted to 
determine optimal coagulant doses,10,11 with the goal of 
reducing costly chemical wastage and operating costs, and 
achieving drinking water quality objectives.12 However, to 
date, this process poses a difficult control problem because 
it is non-linear and complex. Several studies have been 
conducted to apply different control strategies to the co-
agulation process.13–15 In recent years, mathematical mod-
els have emerged as a viable method to model complex 
processes of water treatment.16 These models have been 
very successful in modelling and predicting environmental 
parameters, and in predicting coagulant quantity as a func-
tion of many physicochemical parameters.17 For example, 
a study was focused on the use of Moringa oleifera seed as a 
coagulant for the treatment of surface water using response 
surface methodology (RSM).18 Four parameters were var-
ied viz. stabilisation time, stirring time, stirring speed, and 
concentration of Moringa oleifera seed extract (MOSE). 
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The model predicts the lowest turbidity of 5.49 NTU with 
optimal conditions of 120 min settling time, stirring speed 
of 100 rpm, 10 min stirring time, and 3 g l−1 concentration 
of MOSE. The condition was verified in aftershocks and a 
turbidity of 5.51 NTU was obtained.18 

Other works reported the effectiveness of three coagulants, 
CuSO4, FeCl3, and CuSO4 + FeCl3 (the two salts mixed in 
1 : 1 ratio (v/v)) for the treatment of wastewater from the 
effluent treatment plant of an oil refinery by coagulation 
and flocculation process.19 Independent parameters, such 
as pH and coagulant dosage, were optimised using the re-
sponse surface methodology with central composite design 
technique considering final pH, COD reduction, turbidity, 
TDS, and colour as dependent variables.19 Results showed 
that the mixed coagulant CuSO4 + FeCl3 gave better results 
than CuSO4 and FeCl3 individually. CuSO4 + FeCl3 along 
with adsorption and sweep flocculation, forms tribasic 
copper chloride (TBCC) as an intermediate in the pH range 
5 to 7. TBCC formation improved flocculation by destabi-
lising colloidal and suspended particles due to its structural 
catalytic, bleaching, and octahedral properties. A max-
imum reduction in COD (76.77 %), turbidity (89.47 %), 
TDS (94.16  %), and colour (95.29  %) were observed at 
pH 7.12 and dosage 0.20 g l−1 of CuSO4 + FeCl3 coagu-
lant. The final pH of the solution under optimal conditions 
for all three coagulants was below the removal limits.19 

Another application by the response surface method (RSM) 
was to find the optimal combination of coagulant dose and 
pH relative to the highest removal efficiency of turbidity 
and dissolved organic carbon (COD).20 The results ob-
tained with polyaluminum chloride (PACl) were compared 
with those obtained using a conventional coagulant such 
as alum. Quadratic models developed for both responses 
(turbidity removal and DOC removal) indicated the opti-
mal conditions for a PAC1 concentration of 0.11 mM at 
pH 7.4 and alum concentration of 0.15 mM at pH 6.6. 
The compromise to optimise both responses simultaneous-
ly resulted in 91.4 % turbidity removal and 31.2 % DOC 
removal using PACl, while 86.3  % turbidity and 34.3  % 
DOC. CODs were removed using alum.20

Another study was conducted to predict both turbidity and 
removal of dissolved organic matter (DOM) during the co-
agulation process at Akron Water Treatment Plant (Akron, 
Ohio, USA) with four different neural network models.21 
DOM was monitored and characterised using fluorescence 
spectroscopy and parallel factor analysis (PARAFAC), build-
ing on previous research that identified three fluorescence 
components (C1, C2, and C3). Neural network models 
were constructed using operational data to predict each 
of the components of fluorescence and turbidity after co-
agulation as a function of variable raw water quality and 
chemical doses. Correlation coefficients between meas-
ured and model-predicted values for final turbidity mod-
els, C1, C2, and C3, on an invisible test data set were 0.91, 
0.95, 0.97, and 0.51, respectively.21

Other researchers used extreme machine learning (ELM) 
coupled with radial base function (RBF) neural networks to 
predict coagulation doses.22 The coagulation data was divid-
ed into two categories based on low and high turbidity. The 
optimal number of input parameters for low turbidity water 

coagulation modelling was found to be 3, while the optimal 
number of input parameters for turbidity water coagulation 
modelling were found to be 4. Re-selection of the num-
ber of input parameters was necessary, since the alkalinity 
of the raw water was an important factor in improving the 
performance of the high turbidity model. The low turbidity 
model was able to predict coagulant dosage with a correla-
tion coefficient greater than 0.97.22 The high turbidity mod-
el was able to predict coagulation dosage with a reasonably 
acceptable correlation coefficient of at least 0.80.22

Another study was performed by a hybrid of k-signifies an 
adaptive neuro-fuzzy inference system (k-means-ANFIS) 
for the turbidity of settled water prediction and optimal 
determination of the coagulant dose using historical data at 
large scale.23 To construct a well adaptive model to differ-
ent states of inflow water process, raw water quality data 
was classified into four groups according to its properties 
by a k-means clustering technique. The sub-models were 
developed individually based on each clustered data set. 
The results revealed that the sub-models constructed by a 
k-means-ANFIS hybrid perform better than only a single 
ANFIS model, but also seasonal artificial neural network 
(ANN) models. The finally completed model composed 
of sub-models shows more precise and consistent predic-
tion capacity than a single ANFIS model and a single ANN 
model based on all five evaluation indices.23

In another report, they used artificial neural network 
(ANN) and adaptive network-based fuzzy inference sys-
tem (ANFIS) models to model the dosage of polyalumi-
num chloride (PAC) of surface water in northern Taiwan.24 
Each of them was built based on 819 data sets controlled 
by the processes. Input parameters included yesterday’s 
PAC dosage, the day before yesterday’s PAC dosage, and 
temperature, turbidity, colour, pH in each raw water, floc-
culation, sedimentation, and treated water.24 The ANN 
model was better than the ANFIS model in achieving the 
optimal prediction model for the optimal dosage of PAC in 
real time when storm water brought high turbidity to the 
source water.24

In this work, response surface methodology (RSM), ar-
tificial neural networks (ANN), machine vector support 
(SVM), and adaptive neuro-fuzzy inference system (ANFIS) 
were selected to predict coagulant doses as a function of 
physical and chemical parameters, and to compare them 
to select the most efficient one. Indeed, to our knowledge, 
the ANN, SVM, and ANFIS models have never been used 
in this kind of data-based study built from RSM. In addi-
tion, such a comparison has not been made so far.

2 Materials and methods
2.1 Data preparation

2.1.1 Jar test

Aluminum salt was used in this study as coagulant. The jar 
tests were carried out using beakers that were filled with 1 l 
of water, namely raw waters collected in different localities 
of the Médéa region, with various turbidity levels, which 
were adjusted with humic acid. Considering that acidic 
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and oligotrophic waters often have a brown to yellow “tea” 
tint,25 in particular due to humic acids (humic acids are one 
of the most important fractions of humus, thanks to their 
hydrophilic functions of the carboxylic acid type), they can 
retain about fifteen times their weight in water, and thus 
play a fundamental role in water retention and the useful 
water reserve of a soil.26

After having created turbidity with humic acid, the wa-
ter takes on a “tea” hue, not to mention that the turbidity 
contains various mineral and organic matter in suspension 
or in solution. Dissolved and colloidal matter alone con-
stitutes 60 to 80  % of the organic load (humic acids). If 
we manage to remove turbidity, we can say that we have 
removed organic and mineral matter (complexation),27–29 
because the removal of the colour created by humic acid 
means the removal of organic and dissolved colloidal or-
ganics and micropollutants.30

The samples were mixed at 180 rpm for 2 min after addi-
tion of coagulant to provide mixing; the speed was then 
reduced to 40  rpm for 30  min to ensure flocculation.31 
The time and speed of mixing were set with an automatic 
controller. After 45 min of settling, the supernatant from 
each pot was removed from the port sample and analysed 
for pH, temperature, turbidity, conductivity, and total alkali 
metric titre (TAC). The pH, conductivity, temperature, and 
turbidity were measured. TAC was analysed immediately 
following the assay method described by Rodier.32

2.2 Database

The data used in this study were those obtained from the 
analysis of samples purified with different doses of coag-
ulant that were collected during several campaigns con-
ducted in the Médéa region. The database that was built 
by RSM was used for the other models (ANN, SVM, and 
ANFIS), in order to be able to compare them.

The dependent variable was the coagulant dose. The inde-
pendent variables were the physicochemical parameters: 
pH, temperature, conductivity, turbidity, and total alkalin-
ity titre (TAC).

2.3 Prediction methods

Several methods have been applied to solve problems re-
lated to the prediction and modelling of complex non-lin-
ear systems. These methods are particularly useful when 
such systems are difficult to model using conventional 
methods.33 In this study, four methods were tested for pre-
dicting coagulant doses from physicochemical water pa-
rameters, namely RSM, ANN, SVM, and ANFIS.

After constructing the database according to RSM, the da-
tabase was normalised in the interval [−1,+1] by using the 
mapminmax function (Eq. 1) in MATLAB software.34 It was 
also divided in two parts for the three other models (ANN, 
SVM, and ANFIS): 70 % of the dataset for training and the 
remaining 30 % of the samples, which did not participate 

in model learning, were used for validation and prediction 
performances of the models:35,36 

min
N max min min

max min

( ) x xx y y y
x x

 −
= − + − 

(1)

where xN is the data value after normalisation, xmax and xmin 
are the maximum and minimum of data, respectively; ymax 
and ymin are taken as −1 and 1; x represents the original 
value.

The correlation coefficient (R), determination coefficient 
(R2), adjusted coefficient of determination (R2

adj), root mean 
square error (RMSE), mean square error (MSE), mean abso-
lute error (MAE), error standard prediction (ESP), and error 
prediction model (EPM) were used to estimate the perfor-
mances of each model.36–41

2.3.1 RSM

The principle of RSM has been described by Khuri and 
Cornell20 as a set of mathematical and statistical methods 
for evaluating the relationships between a group of inde-
pendent variables and one or more responses.42 To obtain 
adequate and reliable measures of the responses of inter-
est, the design of the experiment is necessary. Normally, 
the relationship between the response and the independ-
ent variables cannot be well modelled by a linear function.

A model that incorporates curvature is generally necessary 
to approximate the response in the region close to optimal, 
and in most cases a second-order model is adequate.43 A 
central composite design (CCD) is considered, which is a 
very effective design tool for fitting second-order models.43 
This technique is generally used when there are several 
input parameters affecting the output (response). The CCD 
was selected for use in this study.43 Two levels, a value of 
a = 1 and 5 repetitions at the centre point were consid-
ered. Finally, the input variables were coded in intervals 
[−1, +1] (Table 1).

The number of experiments is determined according to 
Eq. (2)42:

2 2kN k c= + + (2)

where k is the number of independent variables, 2k is num-
ber of the factorial experiments, 2k is the number of axial 
experiments, and c is the number of experiments in the 
centre point.44 The model used to predict the responses 
and describe the relationship between the independent 
variables was the second-order polynomial (Eq. (3))42.

2
0

k k k

i i ii ij i j
i i ij

Y B B X B X B X X E= + + + +∑ ∑ ∑ (3)

where, Y represents the response functions (in our case, it 
is force compression): B0 is a constant coefficient; Bi, Bii, 
and Bij are the coefficients of the linear, quadratic, and in-
teractive terms, respectively.45
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Table 1 – Coding and real levels for CCD model

Variables Symbol Unit Code Factor Levels
−1 0 +1

pH X1 –   7.25     8.02   8.78
temperature X2 °C 10.65   19.48 28.30
conductivity X3 µS cm−1 106 988 1871

turbidity X4 NTU   0.86 519.93 1039
TAC X5 °F 12.00   18.20 24.4

2.3.2 Artificial neural network

In this work, the optimisation of the ANN architecture us-
ing MATLAB R2013a software is described by a flowchart 
shown in Fig. 1.36,46,47

2.3.3 Support vector machine

Support vector machine was developed by Vapnik in the 
1990s, and is based on the statistical learning theory (SLT) 
tools and structural risk minimisation (SRM) theory.48 It was 
mainly used for non-linear classification and regression 
analysis.49 In this approach, a training data set of N points 
(Xi, Yi) is considered, with i = 1, ..., N. X represents the 
inputs of the model, and Y its output. A SVM model takes 
the form:

(4)

where ϕ(.): Rn → Rm is a non-linear function that maps the 
finite dimensional space entry into a higher dimensional 

space that is implicitly created, ω is a weight vector, and b 
is the bias.50,51

SVM problems are solved using quadratic programming 
techniques, which however show some drawbacks:52

1.	 They are practically difficult to use.
2.	 They are time-consuming.
3.	 They require large memory and CPU time.

In this article, SVM was used for non-linear modelling us-
ing the different functions of the kernel, since there is no 
guarantee that a given kernel appears more efficient than 
another one regarding the specific data. From this, it is nec-
essary to optimise different kernel functions and test their 
performances. These kernel functions can be found in the 
MATLAB Toolbox R2018a.53

The kernel functions selected in this article were as fol-
lows:53

Poly (polynomial) 

( ), ( )T d
i jk X X ax c= + (5)

Linear 

( ), T
i jk X X x y c= + (6)

Gaussian

(7)

with C = BOxConstraint, ε = epsilon, d = Polynomial or-
der, and σ2 = sigma, where d, c, ε, and σ2 are user-defined 
kernel parameters.

Fig. 1 – Organisation chart for the development and optimisation of the ANN ar-
chitecture
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2.3.4 Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS was developed by Jang.54 The architecture of AN-
FIS is shown in Fig. 3. It consists of six key components: in-
put and output data, data division unit, algorithm unit, fuzzy 
generating system, fuzzy inference system, and adaptive 
network neuron representing the fuzzy system. After divid-
ing the processing data, each set of training and validation 
data is assigned to the clusters formed by the algorithm.23,24 
Each algorithm is formed independently with training and 
validation together by ANFIS to obtain the optimal fuzzy in-
ference system.23 In addition, ANFIS is composed of 5 layers 
– each layer can include different nodes.55

Layer 1: Each neuron calculates the degree to which X and 
Y inputs belong to the different fuzzy sets (Eqs. 8 and 9).56 

The parameters inherent to these sets are called premise 
network parameters. For this system, we have:

    for k = 1 and 2 (8)

    for k = 3 and 4 (9)

Layer 2: is used to calculate the degree of activation of the 
premises. Each neuron in this layer receives the outputs of 
the previous fuzzification neurons and calculates its activa-
tion. The conjunction of the antecedents is performed with 
the product operator, which uses the derivability constraint 
to deploy the learning algorithms. Each node performs a 
fuzzy T-norm.

(10)

or, Ant(2,k) indicating the antecedent nodes of node (2,k).

Layer 3: Each neuron calculates the normalised degree of 
truth of a given fuzzy rule. The value obtained represents 
the contribution of the fuzzy rule to the final result.

(11)

Layer 4: Each i neuron of this layer is connected to a nor-
malisation neuron corresponding to the initial inputs of the 
network. The link in this layer fulfils the role of the conse-
quence part of the rules; each node calculates the standard 
degree of truth of a given fuzzy rule. The value obtained 
represents the contribution of the fuzzy rule to the final 
result.

[ ]4, 3, 0 1 2k k k k kX X m m X m Y= + ⋅ + ⋅ (12)

where the parameters mk0, mk1 and mk2, are called neural 
fuzzy-system consequential parameters.

Layer 5: This is the output layer comprising a single neuron 
that provides the output of ANFIS by calculating the sum of 
the outputs of all output neurons.

[ ]4, 3, 0 1 2k k k k kX X m m X m Y= + ⋅ + ⋅ (13)

Fig. 3 – Structure of ANFIS

Fig. 2 – Organisation chart for the development and optimisation of the SVM model
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3 Results and discussion
RSM, ANN, SVM, and ANFIS are the four approaches that 
were used for the prediction of coagulant dose from phys-
icochemical water parameters. All four methods were per-
formed, evaluated, and compared.

3.1 RSM

A statistical analysis by RSM was performed using the “JMP 
13” software on the entire database software. This meth-
od allowed finding the mathematical relationship (Eq. (14)) 
between the coagulant doses and the independent vari-
ables that corresponded to the physicochemical parame-
ters. Firstly, the equation took into account all 5 variables 
(Table 2), even those that did not seem to have a significant 
impact on the dependent variable. Therefore, the relation-
ship obtained was evaluated in order to keep only the in-
dependent variables characterised by a high probability 
value (Table 2).

Table 2 – Values of βi and characterisation of independent vari-
ables of the RSM

i Term βi
Standard 

error t ratio Pr

0 Intercept 29.44685 2.01046 14.64676 4.40 · 10−8

1 X1 −3.88888 1.58898 −2.44740 0.03441
2 X2 −2.55555 1.58898 −1.60829 0.13884
3 X3 −11.94440 1.58898 −7.51703 2.02 · 10−5

4 X4 16.38888 1.58898 10.31406 1.20 · 10−6

5 X5 4.16666 1.58898 2.62222 0.02550
6 X1X2 5.81250 1.68537 3.44879 0.00623
7 X1X3 6.68750 1.68537 3.96796 0.00265
8 X2X3 −7.56250 1.68537 −4.48713 0.00116
9 X1X4 2.06250 1.68537 1.22376 0.24909

10 X2X4 −14.18750 1.68537 −8.41802 7.52 · 10−6

11 X3X4 −1.31250 1.68537 −0.77875 0.45415
12 X1X5 4.68750 1.68537 2.78128 0.01940
13 X2X5 −2.56250 1.68537 −1.52043 0.15936
14 X3X5 1.56250 1.68537 0.92709 0.37571
15 X4X5 6.18750 1.68537 3.67129 0.00430
16 X1X1 3.02386 4.29938 0.70332 0.49790
17 X2X2 −5.97613 4.29938 −1.38999 0.19469
18 X3X3 20.52386 4.29938 4.77367 0.00075
19 X4X4 8.52386 4.29938 1.98257 0.07554
20 X5X5 −13.47613 4.29938 −3.13443 0.01061

(14)

Next, only 13 independent variables having high ex-
planatory power for the dependent variable were tak-
en (Pr  <  0.05); so the relationship could be reduced to 
Eq. (15):

(15)

The value of the coefficient of determination decreased 
slightly, but the equation became simpler after removal of 
the variables with little explanatory power from the de-
pendent variable. This coefficient R = 0.98691 means that 
the model’s correlation was moderately positive (Fig.  5). 
The probability (Pr < 0001) was strictly less than 0.5 %, 
confirming that the model was significant.

The significance level value p and the F ratio value, which 
provide a measure of the statistical significance of the re-
gression model, were also determined. A high value of F 
with a minimum value of p means that the equation is sig-
nificant.57

The proposed model can infer the effect of the factors (Xi), 
their interactions, and their quadratic effects simultaneous-
ly. Table 2 shows the effects of each independent factor, its 
interaction with the other factors, and its quadratic effect 
on the coagulant dose (Y).

Indeed, the coefficients of each factor in the model allow 
to assess the impact of each factor on the response.58 Thus, 
it is evident that changes in turbidity and TAC in the treat-
ed effluent increased the dose of the coagulant (Fig.  4). 
On the other hand, changes in pH and conductivity had a 
negative effect on the dose of coagulant (Fig. 4).

Fig. 4 – Effects of the operating factors and their interactions
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The interactions and quadratic effects of the factors show 
that the relationship between the response and the factors 
is not always linear.58 Used at different levels in the co-
agulation process and when several factors are modified 
simultaneously, one factor can produce different degrees 
of response. Thus, interactions between the factors (pH – 
temperature, pH – conductivity, pH – TAC and turbidity 
– TAC) showed positive effects on coagulant doses (Fig. 4), 
whereas the interactions between factors (temperature – 
conductivity and temperature – turbidity) had negative ef-
fects on coagulant doses (Fig.  4). In addition, the results 
showed two factors with interesting quadratic effects, 
namely, conductivity and TAC, indicating positive and neg-
ative quadratic effects, respectively (Fig. 4).

In light of the obtained results, it appears that with each 
increase in pH (7.25 to 8.78) and temperature (10.65 to 
28.3  °C), the dose of coagulant used for treatment de-
creased from 109.51 to 83.15  mg  l−1 for pH, and from 
109.15 to 78.28 mg l−1 for temperature. The dose of co-
agulant also decreased (from 109.51 to 75.24 mg l−1) with 
increasing conductivity (from 106 µS to 1243.54 µS cm−1), 
and then increased to 85.51 mg l−1 at 1871 µS cm−1. On 
the other hand, the results obtained show an increase in 
the dose of coagulant (from 47.16 to 109.51 mg l−1) when 
the turbidity increased (from 0.86 NTU to 1039 NTU). Fi-
nally, it can be noted that the effect of TAC on the coagulant 

dose was not linear. Thus, the dose of coagulant used for 
effluent treatment increased (from 88.55 to 109.51 mg l−1) 
for TAC values ranging from 88.55 to 19.71 °F; then de-
creased (101.88 g l−1) at 24.4 °F. These results confirm the 
effect of the factors in this study, namely, pH, temperature, 
conductivity, turbidity, and TAC during the coagulation 
process.8,59–61

For an optimal chosen coagulant dose equal to 
109.50 mg l−1, water with the following properties: pH 7.25, 
temperature 10.65 °C, conductivity 106 µS cm−1, turbidity 
1039 NTU, and TAC = 19.71 °F, provided 99.96 % effec-
tive treatment.

The results of the RSM performance in terms of all errors 
and in terms of agreement vector values (R, slope: α, and 
intercept: β) are given in Table 3.

3.2 ANN

In this part, we optimised 3 activation functions with the 
number of hidden neurons (from 3 to 10). The results of 
these tests are presented in Table 4.

Table  4 presents the best architectures found. It shows 
the correlation coefficients and the error for each learning 
and validation according to the number of neurons in the 
hidden layer and the network topology. It also shows the 
activation functions of the hidden layer and the output lay-
er. Architecture 1 (Table 4) seems to be the most relevant 
ANN model for predicting coagulant doses. Since the cor-
relation coefficient and RMSE were almost equal between 
architectures 1 and 3, the lowest number of neurons of 
the hidden layer was chosen in order to have the lowest 
possible number of parameters.

Table 4 – Performances of the different tested ANN architec-
tures

ANN Activation function Coefficient of 
correlation RMSE

Nbr Neurons per 
layer

Hidden 
layer

Output 
layer Total Total

1 [5-6-1] logsig purelin   0.99750 1.7954
2 [5-9-1] tansig purelin   0.99744 1.8132
3 [5-10-1] tansig tansig   0.99751 1.7908

Once the architecture of the ANN was synthesized, it was 
validated. The predicted values (estimated values) were 
compared to the experimental ones in the two stages of 

Fig. 5 – Relation between the observed dose of coagulant and 
those estimated by the RSM model

Table 3 – RSM performances 

RMSE ⁄ mg l−1 MSE ⁄ mg l−1 ESP ⁄ % EPM ⁄ % MAE ⁄ mg l−1 R α β
all 3.82890 14.66053 10.41194 1.47823 3.82890 0.98691 0.97399 0.95615
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Fig. 6 – Relation between the observed dose of coagulant and those estimated by the ANN model

Table 5 – Performances of prediction using ANN

RMSE ⁄ mg l−1 MSE ⁄ mg l−1 ESP ⁄ % EPM ⁄ % MAE ⁄ mg l−1 R α β

all 1.79535 3.22331 4.83966 0.28386 0.67928 0.99750 0.99403 0.20004

training 2.12626 4.52101 6.25372 0.19098 0.91414 0.99612 0.99011 0.24250

validation 0.22616 0.05115 0.50634 0.00428 0.10519 0.99978 0.99317 0.18521
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the learning and validation phases, and the corresponding 
results are given in Fig. 6. The results were denormalised to 
actual values in view of comparison with the other models.

The results of the ANN performance in terms of all errors 
and in terms of agreement vector values (R, slope: α, and 
y-intercept: β) are given in Table 5.

3.3 SVM

In this part, we optimised 3 kernel functions, each kernel 
synthesised by parameters that must also be optimised:

The linear function synthesised by BOxConstraint, epsilon 
and sigma; the Gaussian function synthesised by BOxCon-
straint, epsilon and sigma; the polynomial function syn-
thesized by BOxConstraint, epsilon and PolynomialOrder, 
knowing that the PolynomialOrder was optimised from 2 
to 5 .

Once the result of the learning phase was obtained, it 
was validated by the validation database. The obtained 
results (predicted values) were compared with the ex-
perimental values in the two stages (learning phase and 
validation phase) in order to obtain the correlation coef-
ficient and RMSE. The results of these tests are shown in  

Fig. 7 – Relation between the observed dose of coagulant and those estimated by the SVM model
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Table 6. It should be noted that the results were denor-
malised to the actual values to compare to the other 
models.

It is obvious that the Gaussian function gives better results 
in terms of correlation coefficient and RMSE; this result has 
been graphically schematised in Fig. 7.

The results of the SVM performance in terms of all errors 
and in terms of agreement vector values (R, slope: α and 
intercept: β) are given in Table 7.

3.4 ANFIS

In this work, we optimised the weighting algorithms, the 
functions (trimf, trapmf, gbellmf, gaussmf, gauss2mf, pimf, 
dsigmf and psigmf) for the input and (constant and linear) 
for the output and many of the nodes for each input to 
obtain the most accurate result. It should be noted that 
these algorithms and functions could be found in Matlab 
R2013 toolbox .

As described previously, two steps were followed for the 
ANFIS modelling, where two sets of data were used, the 
training and verification data, respectively. Firstly, the train-

Table 6 – Performances of the different tested SVM Kernel functions

Kernel function C ε σ2 d Quantity of support vectors Coefficients of correlation RMSE ⁄ mg l−1

Total Total
Linear 846 0.0032 / / 22 0.66564 19.04920

Gaussian 479.0010 2.5551 · 10−4 2.3000 / 22 0.99668  2.08927
Polynomial 816 0.0052 / 2 22 0.92786  9.54540
Polynomial 23 0.0035 / 2.5 22 0.93081 9.3885
Polynomial 102 0.0012 / 3 22 0.98170 4.87540
Polynomial 614 0.0013 / 3.5 22 0.98311 4.67220
Polynomial 623 0.001 / 4 22 0.98672 4.17170
Polynomial 731 5.8782 · 10−4 / 4.5 22 0.99272 3.16830
Polynomial 855 4.3554 · 10−4 / 5 22 0.99474 0.9947

Table 7 – Performances of prediction using SVM

RMSE ⁄ mg l−1 MSE ⁄ mg l−1 ESP ⁄ % EPM ⁄ % MAE ⁄ mg l−1 R α β
all 2.08927 4.36505 5.63194 0.58983 0.98625 0.99668 0.99017 0.68643

training 0.06292 0.00395 0.15571 0.01155 0.05477 0.99999 1.00050 −0.01719

validation 3.87627 15.02550 13.36646 0.16488 3.26318 0.96448 0.92988 3.13381

Table 8 – Performances of the different tested ANFIS architectures

ANFIS Membership function type Train FIS Coefficient of 
correlation RMSE ⁄ mg l−1

No. No. of membership 
functions Input Output  Optimisation method Total Total

1 [2 2 2 2 2] trimf linear hybrid 0.93691 9.24210
2 [2 2 2 2 2] trapmf linear hybrid 0.95284 7.83380
3 [2 2 2 2 2] gbellmf linear hybrid 0.97137 6.14477
4 [2 2 2 2 2] gaussmf linear hybrid 0.96934 6.35520
5 [2 2 2 2 2] gauss2mf linear hybrid 0.96842 6.45090
6 [2 2 2 2 2] pimf linear hybrid 0.96839 6.45360
7 [2 2 2 2 2] dsigmf linear hybrid 0.96875 6.42420
8 [2 2 2 2 2] psigmf linear hybrid 0.96875 6.42420
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ing was performed using the training dataset. Secondly, 
verification of the dataset was considered to check the ac-
curacy and effectiveness of the ANFIS model. 

Two criteria were adopted for optimising the ANFIS mod-
el: the number of membership functions assigned to the 
inputs and output and the RMSE value. In addition, the fol-
lowing four aspects were considered for the ANFIS learn-

ing phase, which were the number of used membership 
functions, the membership functions type, the overfitting 
and the training options.

The results of these tests are presented in Table 8. The best 
results obtained are illustrated in Fig. 8 by denormalising 
the values to the actual values.

Fig. 8 – Relation between the observed dose of coagulant and those estimated by the ANFIS model



  H. TAHRAOUI et al.: Optimisation and Prediction of the Coagulant Dose for the Elimination..., Kem. Ind. 70 (11-12) (2021) 675−691686

The results of the ANFIS performances in terms of all errors 
and in terms of agreement vector values (R, slope: α, and 
intercept: β) are given in Table 9.

3.5 Comparison of the models

The comparison of the coefficients of correlation, determi-
nation, adjustment and statistical indicators (RMSE, MSE, 
ESP, EPM, and MAE) obtained by the four models, RSM, 
ANN, SVM and ANFIS, for all data is presented in Table 10. 
The coefficients calculated by the model ANN was slightly 
higher than those obtained by the SVM model, and sig-
nificantly higher than those obtained by the RSM and the 
ANFIS models. These results were also confirmed by the 
statistical indicators, since those given by the ANN model 
were slightly lower than those obtained by the SVM model, 
followed by the RSM model and finally the ANFIS model.

The comparison of the different models is illustrated in 
Fig.  9, confirming the superiority of the ANN and SVM 
models over the other models (RSM, ANFIS) with a very 
good superposition of the experimental values and those 
given by the models. Despite the fact that the ANN and 
SVM models were almost equal, the ANN model was 
slightly superior. The correlation coefficient and the sta-
tistical indicators of the apprenticeship phase of the ANN 
model were almost equal to those given by the SVM model 
with slight superiority of the SVM model (Tables 5 and 7). 
However, in the validation phase, the correlation coeffi-
cient was very high and the statistical indicators were very 
small for the ANN model (R = 0.99978, RMSE = 0.22616, 
MSE  =  0.05115, ESP  =  0.50634, EPM  =  0.00428 
and MAE  =  0.10519) compared to the SVM mod-
el (R  =  0.96448, RMSE  =  3.87627, MSE  =  15.02550, 
ESP = 13.36646, EPM = 0.16488, and MAE = 3.26318) 
(Tables 5 and 7). However, in terms of reducing economic 

costs, the SVM model was superior, since the number of 
parameters of this model was 22, which is almost half the 
number of parameters of the ANN model (43 parameters). 
To reduce the economic costs further, we can also use the 
RSM model, which remains very useful because of its high 
coefficients (R = 0.98691, R2 = 0.97399, R2

adj = 0.96878) 
compared to the number of parameters, namely 13. In 
addition, the statistic indicators remained acceptable for 
the RSM model (RMSE  =  3.82890, MSE  =  14.66053, 
ESP = 10.441194, EPM = 1.47823, and MAE = 3.82890) 
if related to the number of model parameters.

Finally, the ANFIS model, which was acceptable from 
the point of view of coefficients and statistical indica-
tors (R  =  0.97137, R2  =  0.94355, R2

adj  =  0.93227, 
RMSE  =  6.14477, MSE  =  37.75828, ESP  =  16.56418, 
EPM = 2.81801, and MAE = 2.71994), appeared very ex-
pensive because the number of parameters was very high 
(309 parameters) and results less accurate compared to 
other models.

3.6 Residues study

Residue analysis is an efficient way to reveal the perfor-
mances of the optimised model. It consists of the measure-
ment of the absolute or relative error between experimen-
tal and predicted values.55 Residue analysis methods are 
mainly graphical analysis methods. Fig. 10 shows the re-
siduals related to each model (RSM, ANN, SVM, and AN-
FIS). This figure shows that the residuals obtained by the 
neural network method were less scattered (close to zero) 
compared to those obtained by the other models. Again, 
this result shows the accuracy and robustness of the ANN 
model compared to the other models, and justifies the use 
of the ANN approach in the prediction of coagulant doses.

Table 9 – Performances of prediction using ANFIS

RMSE ⁄ mg l−1 MSE ⁄ mg l−1 ESP ⁄ % EPM ⁄ % MAE ⁄ mg l−1 R α β

all 6.14477   37.75828   16.56418 2.81801 2.71994 0.97137 0.93672   3.53417

training   1.29246     1.67045   4.03893 0.09475 0.05000 0.99809 0.99618   0.12218

validation 11.22376 125.97298 22.64886 0.77937 8.14644 0.94454 0.79847 14.07516

Table 10 – Comparison of the predictive performance of the RSM, ANN, SVM and ANFIS models for all data

Model RMSE ⁄ mg l−1 MSE ⁄ mg l−1 ESP ⁄ % EPM ⁄ % MAE ⁄ mg l−1 R α β R2 R2
adj

No. of
parameters

RSM 3.82890 14.66053 10.41194 1.47823 3.82890 0.98691 0.97399 0.95615 0.97399 0.96878   13

ANN 1.79535   3.22331   4.83966 0.28386 0.67928 0.99750 0.99403 0.20004 0.99500 0.99400   43

SVM 2.08927   4.36505   5.63194 0.58983 0.98625 0.99668 0.99017 0.68643 0.99337 0.99204   22

ANFIS 6.14477 37.75828 16.56418 2.81801 2.71994 0.97137 0.93672 3.53417 0.94355 0.93227 309
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4 Conclusion
In this study, four mathematical models (RSM, ANN, SVM, 
and ANFIS) were used to build models capable of predict-
ing the dose of coagulant for removing organic components 
and turbidity, as well as to reduce the waste of expensive 
chemicals and operating costs, and achieve drinking wa-
ter quality objectives. The results obtained from the RSM, 
ANN, SVM, and ANFIS models proved to be useful and ef-

fective models for predicting the coagulant doses from the 
point of view of coefficients and statistical indicators. How-
ever, the ANN model appeared to be the most effective 
model, as it led to the highest coefficient (R2

adj = 0.99400) 
and the lowest error indicator (RMSE  =  1.79535) com-
pared to the other models. Followed by the SVM mod-
el (R2

adj = 0.99204, RMSE = 2.08927), the RSM model 
(R2

adj = 0.96878, RMSE = 3.82890), and finally the ANFIS 
model (R2

adj = 0.93227, RMSE = 6.14477). Furthermore, 

RSM Model

SVM Model

ANN Model

ANFIS Model

Fig. 9 – Relationship between experimental data and the predicted data of samples using RSM, ANN, SVM, and ANFIS modelling
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from an economic point of view, only three models ap-
peared relevant: the ANN model which involved 43, the 
SVM model which was almost similar to the ANN model in 
terms of coefficients and statistical indicators but involved 
only 22 parameters, and finally the RSM model, which is 
very useful in terms of reducing economic costs due to its 
high coefficient (R2

adj = 0.96878) if related to the number 
of parameters, only 13. In addition, it led to acceptable 
statistical indicators. Contrarily, the ANFIS model was con-
sidered unacceptable, owing to the very high number of 
parameters, 309.
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SAŽETAK
Optimizacija i predviđanje doze koagulanta za uklanjanje organskih 

mikrozagađivala na temelju podataka o zamućenju
Hichem Tahraoui,a* Abd-Elmouneïm Belhadj,a Nassim Moula,b  

Saliha Bouranene,c and Abdeltif Amrane d

Četiri različita matematička modela primijenjena su za predviđanje doze koagulanta u svrhu ukla-
njanja zamućenja: model odzivne površine (RSM), umjetna neuronska mreža (ANN), model pot-
pornih vektora (SVM) i model prilagodljivog sustava neizrazitog zaključivanja zasnovanog na neu-
ronskoj mreži (ANFIS). Rezultati su pokazali da svi modeli točno opisuju eksperimentalne podatke, 
iako je ANN model bio nešto bolji. SVM model imao je sličnu podudarnost kao i ANN model no 
razlika je bila u validaciji modela gdje je ANN model ostvario vrlo visoke vrijednosti koeficijenta 
korelacije te niske vrijednosti statističkih pokazatelja. No s ekonomskog gledišta, SVM model je 
prikladniji od ANN modela, budući da je njegov broj parametara 22 što je gotovo upola manje 
od broja parametara ANN modela (43 parametra), dok su rezultati bili slični. Dodatno smanjenje 
ekonomskih troškova može se ostvariti primjenom RSM modela koji je ostvario visoke vrijednosti 
koeficijenata s obzirom na svega 13 parametara. Uz to, RSM model imao je prihvatljive statističke 
pokazatelje.

Ključne riječi 
Koagulacija, fizikalno-kemijska analiza, metodologija odzivnih površina,  
umjetne neuronske mreže, metoda potpornih vektora, ANFIS
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