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Abstract

Realistic evolutionary fitness landscapes are notoriously difficult to construct. A recent cut-

ting-edge model of virus assembly consists of a dodecahedral capsid with 12 corresponding

packaging signals in three affinity bands. This whole genome/phenotype space consisting

of 312 genomes has been explored via computationally expensive stochastic assembly mod-

els, giving a fitness landscape in terms of the assembly efficiency. Using latest machine-

learning techniques by establishing a neural network, we show that the intensive computa-

tion can be short-circuited in a matter of minutes to astounding accuracy.

1 Introduction

Two facts about simple viruses have been known for a long time. Firstly, that genetic economy

leads to the use of symmetry, such that virus capsids are mostly icosahedral or helical. Sec-

ondly, packaging signals, that is secondary structure features in the viral RNA, are often

required for encapsidation in viruses with single-stranded genomes. Examples are the Origin

of Assembly (OAS) sequence in Tobacco Mosaic Virus (TMV), the psi element in HIV

(Human Immunodeficiency Virus) and the TR sequence (Translational Repressor) in MS2

(Male Specific 2 bacteriophage). This is an evolutionary advantage, as it ensures vRNA-specific

encapsidation and can increase assembly efficiency through a cooperative role of the RNA,

which acts as a nucleation site.

More recently, it has been shown that taken together, these two facts suggest that there

could be more than one packaging signal, with multiple signals in fact dispersed throughout

the genome [1, 2]. This is because the capsid is symmetric, and the packaging signal mecha-

nism functions via interaction between viral RNA and the coat protein (CP). In several cases,

this RNA-CP interaction leads to a conformational change in the CP, which only then makes

it assembly competent (e.g. TMV and MS2 [3]. The picture that emerges is then that there are

multiple packaging signals (PS) that recruit CP onto a growing capsid. This reduces the phase

space that CP has to search in order to assemble a capsid, resulting in vastly increased assembly

efficiency. The details of such a mechanism were found in MS2 and STNV (Satellite Tobacco
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Necrosis Virus) as model systems. Once the details of this mechanism were understood using

biochemistry, structural biology [4], bioinformatics [5], biophysics and graph theory [6] in

these model systems, related mechanisms could be found in clinically relevant viruses such as

Hepatitis C virus (HCV), Hepatitis B virus (HBV) and Human Parechovirus. These packaging

signals are secondary structure features of the viral genomes where a stemloop in the single-

stranded RNA presents a common recognition motif that can bind to CP (see Fig 1A). The

viral genome thus has multiple layers of constraints, by having to code for genes as well as the

PS instruction manual. This set of packaging signals can also be repurposed and optimised for

the assembly of virus-like particles, which do not share the same genetic constraints as the

virus, and could be used e.g. for vaccines, drug delivery or as an anti-viral strategy [7].

An equilibrium model of how to assemble a simplified example of an icosahedral virus, a

dodecahedron built from 12 pentagonal faces, was considered in [8] using an ODE (ordinary

differential equations) model. More recently, the multiple dispersed packaging signal para-

digm has sparked renewed interested in such a dodecahedral model [9]. The assembly reaction

kinetics was modelled via a set of discrete reactions in a stochastic simulation paradigm based

on the Gillespie algorithm [10].

In this model 12 PSs can bind CP, as well as dissociate again, reflecting reversible/equilib-

rium kinetics. Bound CP can then bind other bound CP, gradually building up a capsid (see

Fig 1B and 1C). The PSs here have three different bands of binding affinity: weak, medium

and strong. These choices correspond to binding energies of 4/8/12 kcal/mol respectively,

Fig 1. A The nucleotide sequence of a virus determines the gene products; however, in addition to this information content the RNA also explores a configuration

space of secondary structures. Viruses appear to have evolved to use such motifs to help recruit coat protein with a conserved common recognition motif during

assembly. The stability and binding affinity of these packaging signals gives a distinctive profile for viral assembly, which is the phenotype relevant to assembly.

Assembly efficiency is the fitness of this phenotype, or at least the contribution to the overall fitness that is determined by aspects of assembly. B The genomes in the

model consist of twelve packaging signals (PS) that can take weak, medium and strong binding affinities. They successively recruit twelve pentagonal coat proteins,

which together form the dodecahedral virion in this model. C The stochastic simulation algorithm models several possible reactions. Firstly, packaging signals can bind

coat proteins (and fall apart again), and secondly, two coat proteins that have been recruited by packaging signals can bind to each other. The fitness landscape was

computed for 2000 virions for each possible genome, making the computations very intensive.

https://doi.org/10.1371/journal.pone.0250227.g001
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based on the TR sequence in MS2 which has approximately 12kcal/mol. The binding energy

between CPs is much lower, at approximately 2 kcal/mol. This modulation of affinity affects

the assembly kinetics, e.g. by providing a nucleation point that starts assembly, or allowing for

error-correction via weaker binding elsewhere. The thermodynamics of PS binding and of the

number of CP bonds formed then translates into assembly efficiency. This in turn is taken as a

proxy for fitness (all other things being equal)—or at least the contribution to the fitness that

results from assembly considerations [11–13].

In [14] the whole space of these 312 genomes (or rather, phenotype profiles) has been

explored. The assembly efficiency there is given by the number of capsids that have correctly

assembled out of a possible total of 2, 000. This efficiency provides a fitness landscape on the

12-dimensional genome space. This is an interesting model that is tractable, in contrast with

many other biological systems, as it has a small number of degrees of freedom and is domi-

nated by the symmetry of the capsid. This tractability also allows for the consideration of viral

evolution. For instance, mutation of the PS strengths leads to the emergence of a set of related

genomes that form a ‘quasispecies’ [15, 16]. One can thus investigate the effect of evolutionary

pressures, e.g. those exerted by standard drugs or a novel type of drug that targets packaging

signals [9].

This model thus captures many interesting aspects of viral genetics, geometry and assembly.

A more realistic model would have more CP building blocks and PSs, e.g. around 60 for MS2

(i.e. one full orbit of the icosahedral group). But the computation time for even these simple

genomes and the assembly kinetics that provide the fitness landscape are already considerable.

Even other simplified models, e.g. reduced orbits on symmetry axes given by e.g. an icosahe-

dron consisting of 20 triangles with 20 PSs, a rhombic triacontahedron consisting of 30 rhom-

buses with 30 PSs, or a finer gradation of binding affinity bands are already computationally

out of reach. For experimental approaches to measure local fitness values please see for

instance [17], though note that in this reference this is limited to only 48 data points, whereas

the fitness space of the simple above model is already 10; 000 times that.

2 Results/Discussion

This data set is a perfect example of data that is amenable to a machine-learning approach,

since it associates a vector input with a number output. We therefore train a neural network to

predict the fitness landscape. The network is trained on a subset of the whole genome space,

and validated on the remainder of the data. This proof-of-principle shows that it is very fast for

a neural network to learn the inherent patterns within the large degeneracy of the detailed sto-

chastic modelling to predict assembly efficiency fitness for unseen genomes to extremely high

accuracy (c.f. the paper [18] which has been published after submission of this manuscript that

applies machine learning to the related problem of finding high-level behaviour within the

large degeneracies of protein folding). The danger is that some subtleties of the stochastic

modelling are lost, but allowing for computation times many orders of magnitude faster. More

likely, however, since the data is obtained from a Monte Carlo simulation, and many works in

the literature immediately go to an ODE approximation and miss these details anyway, the ML

is actually indifferent to this. In fact, the discontinuities from the stochastic method, which the

ODE smoothing would not capture, is perfectly adapted to the neural network and machine

learning classifiers, which are much better adapted to partitioning fitness space in more subtle

ways. Many different neural network architectures were tested and all led to very similar

results. This supports the point that there is something reasonably simple underlying the data

set that can be learned by any reasonable neural network. This approach could thus in future

be used to tackle more realistic models such as the ones mentioned above. Stochastic

PLOS ONE Machine-learning a virus assembly fitness landscape

PLOS ONE | https://doi.org/10.1371/journal.pone.0250227 May 5, 2021 3 / 10

https://doi.org/10.1371/journal.pone.0250227


simulations could be used to partially explore these larger genome spaces, calculating assembly

fitness in order to provide a training set for a neural network. The rest of the fitness landscape

can then be predicted by the artificial intelligence; it is also possible to only compute this fit-

ness if necessary, e.g. when a new genome arises through mutation in a quasispecies model,

such that such computation may only be necessary ‘precedurally’. By that we mean that they

are only calculated locally when required during the computation, e.g. when evolutionary

dynamics starts exploring a certain range in fitness space, and not calculating the entire fitness

space before beginning the simulation.

The assembly process discussed here is ultimately a problem of geometry and thermody-

namics. So it would with some modification also apply to the assembly of other icosahedral

particles such as virus-like particles (VLPs) for drug delivery or as vaccines, as well as to carbon

fullerene assembly, which are very attractive fields for biomedical and nanoscience applica-

tions. For instance, virus-like particles could present viral epitopes in order to act as vaccines.

In order to find the most efficient assembly pathway for such VLPs, an analogue of the above

fitness landscape could be constructed in order to solve the resulting optimisation problem

and to give industry suggestions which parts of the fitness landscape to explore deeper experi-

mentally.

3 Methods

From a purely mathematical point of view, we have the following problem. Let (weak,

medium, strong) be denoted respectively by (1, 2, 3). The input is a vector v in a 12-dimen-

sional vector space over 3, the field of three elements. The output is an integer (which we treat

as a real number) between 0 and 2000, which we can normalise into � 2 [0, 1]� by dividing by

2000. The algorithm used by [14] is thus a map

f : v 212
3
� !� 2 ½0; 1� : ð1Þ

A typical example is

f1; 1; 1; 2; 2; 2; 3; 1; 2; 2; 1; 1g� !
1523

2000
’ 0:7615 ð2Þ

3.1 Computational aspects of the simulation

The map f is a computationally intensive one with individual genome run times between 20

minutes and 12 hours, and cumulative run time of 3-4 weeks on the N8 Polaris high perfor-

mance computing research cluster, Intel 2.6 GHz Sandy Bridge E5-2670 processors, with a

total of 5, 312 cores, with a mix of 4 and 16Gb of RAM (https://n8hpc.org.uk/facilities/) [9].

The fluctuations in numbers of assembled capsids tend to be in the tenth of a percent range

(i.e. ±20 virions), however when initially running the code with 75 repeats of each run for cer-

tain genomes the standard error was very small (±0.001%) [9]. Due the amount of time and

cluster resources it already took, each point on the landscape is the result of only 2 simulation

runs. While not ideal, cluster computation was limited; the simulation allows to capture the

more generic features whilst the above cross-validation suggests that the error is small [9].

Nevertheless a brute-force simulation has been performed on the 312 = 531, 441 possible input

values and the efficiency value extracted. This gives us a database of some half a million known

cases of the form (2).
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3.2 Machine-learning the dataset

Such a problem is perfectly adapted to supervised machine-learning: we know many input val-

ues and wish to train some artificial intelligence to associate the input with the known output

on some small subset, and use it to predict the output for unseen input [19]. The advantage of

this approach is that often approximate results can be attained at reduction in computation

time by many orders of magnitude. The paradigm of using machine-learning in algebraic

geometry and more general classes of problems in pure mathematics was proposed in [20–22]

to satisfying accuracy, and it is a similar philosophy that we will adopt here.

Let us first try the following specific procedure:

• Take the full data D of the form (2), of size 312;

• Establish the neural network, a 3-layer perceptron

INPUT ¼ v ! L20 ! S20 ! L20 ! S1 ! OUTOUT ¼ �

INPUT ¼ v ! L20 ! S20 ! L20 ! S1 ! OUTOUT ¼ �

• In the above, L means a linear-layer, S, a sigmoid layer and S, a summation layer. In particu-

lar, the first linear layer L20 is a fully connected layer taking the 12-vector v to 20 neurons by

simply the linear function y = wx + b. This is then fed into an element-wise sigmoid layer

s xð Þ ¼ 1þ e� xð Þ
� 1

of 20 neurons, followed again by a linear layer, which is then summed to

the real number � as the output. The schematic of is shown in Fig 2. We have taken this neu-

ral network only to illustrate the power of our methodology and have not optimised the

hyper-parameters such as 20, nor the network architecture or the choice of the type of

neurons.

Fig 2. The structure of the neural network used in the calculation.

https://doi.org/10.1371/journal.pone.0250227.g002
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• Now split D into a training set T of 30,000 random samples; the validation set will be the

complement V = D\T. Note that the training data is only about 5.6% of the total data.

• We train with T and validate on V.

• As a further check, we create a “fake” validation set ~V which has the same inputs as that of V
but with output randomly assigned from the set of correct outputs.

On an ordinary laptop (Intel Core m5-6Y57 CPU, 1.10GHz, 2 Cores, 4 Logical Processors,

with 8Gb of RAM), the training took about 45 seconds, and the prediction about 10 seconds.

The algorithm is implemented on Mathematica [23] and is expected to run even faster on the

Python package Tensorflow [24]. A python Jupyter notebook is attached along with the

Mathematica notebook as S1 and S2 Files. In other words, the entire computation took

under 1 minute with an ordinary notebook as opposed to the many hours it took on a super-

computer. As mentioned above, a number of similar neural networks were all able to per-

form this supervised learning task in a comparably short time, meaning there was little moti-

vation to optimise neural network architecture or hyperparameters. However, this reinforces

the point that there is intrinsic structure in the costly simulation dataset that any reasonable

neural networks finds easy to learn. We also tried various combinations of other standard

machine-learning algorithms such as decision trees and support vector machines, and

empirically find that our particular neural network approach above seems to out-perform all

of them.

We present the result in Fig 3. In part A, we present a plot of the predicted � on the horizon-

tal versus the actual � on the vertical. There are 501, 441 points. One can see that they cluster

near the desired y = x line, which would mean perfect prediction (note the axis ranges). To

give some precise measures, the best fit line is y = −0.0262122 + 1.02519x with F-statistic

2.45082 × 106 and p-value less than 10� 106

. The R-squared value is 0.830151. The errors them-

selves (fit-residuals) give a mean and standard deviation of (6.88 ± 0.02) × 10−16, showing that

the residuals are unbiased around 0. To double check, we plot the same result for the fake vali-

dation set ~V in part B. It is obvious that the distribution is much less structured and essentially

randomly occupies a square. The fit here is y = 0.815233 − 0.000947474x i.e. practically a con-

stant, with a poor F-statistic of 0.450401 and a poor p-value of 0.502145. The R-squared value

is 8.98217 × 10-7. This is very re-assuring for less than 6% of seen data and total computation

time of less than 1 minute on an ordinary laptop.

To give an idea of the prediction, for the (1, 1, . . ., 1) vector, the net predicts � = 0.87069, or

1741. The original value is 200, but that is a singular outlier in the whole data set, which we

would not expect the neural network to be able to reproduce. For the (2, 2, . . ., 2) vector, the

net predicts � = 0.834721, or 1669; the correct value is 1745. For the (3, 3, . . ., 3) vector, the net

predicts � = 0.673568, or 1347; the correct value is 1309.

We will use R-squared, a real number between 0 and 1, as a measure of accuracy of the

machine-learning; the closer it is to 1, the better the fit (for a good reference on machine-learn-

ing and goodness of fit measure, cf. e.g. [25]). Our 30, 000 training set was only to illustrate the

technique in detail. In general, we need to perform cross-validation by splitting the dataset.

We split the data into a fraction x of random samples for training and validate on the comple-

ment 1 − x, done for training set from 30, 000 to 500, 000, in steps of 30, 000. The R-squared

value is computed for each case as a measure of precision. Moreover, for each x, we repeat the

random sampling 10 times, for which we get the error bars. The plot of the R-squared (with

error bars) against the increase of percentage x of the size of the training set con-stitutes a

learning curve which illustrates how the neural network responds to the data; this is shown in

Fig 4.
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Fig 3. A A scatter plot of the predicted and actual value of � for the validation data from a 30, 000 training sample; B scatter plot of a random-prediction

versus the actual � value.

https://doi.org/10.1371/journal.pone.0250227.g003
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As a comparison, one might imagine that since there is an underlying pattern being

machine-learnt, a simple regression might suffice. That is, could one fit a hyperplane f ðxiÞ ¼

a0 þ
P12

i¼1

aivi to the data? We perform this over the entire dataset, and find that the best multi-

linear regression obtains only R2 = 0.575428. Introducing non-linearity and more parameters,

such as fitting f ðxiÞ ¼ a0 þ
P12

i¼1

aivi þ
P12

i¼1

biv2
i does not do much better, at R2 = 0.665484. The

inherent complexity (non-linearity) of the problem is therefore best captured by our neural

network approach.

Supporting information

S1 File. Mathematica notebook implementing the neural network described in the article.

(NB)

S2 File. Python Jupyter notebook implementing similar neural networks.

(IPYNB)
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