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Abstract—The benefits of terahertz (THz) radiation have 
increased its use, especially in imaging systems. Recently, the 
use of a linear sparse periodic array (SPA) has been proposed 
as an effective solution for two-dimensional (2D) scanning in 
THz imaging systems. However, the special multistatic structure 
of the SPA is such that it is not possible to apply fast Fourier 
transform-based techniques directly in the near-field (NF). 
Therefore, in this paper, a fast processing approach based on 
two Fourier techniques compatible with linear SPA is presented 
for NF THz imaging. In this approach, we first employ a 
multistatic-to-monostatic conversion to reduce phase errors due 
to NF multistatic imaging. Then, to improve the quality of the 
results, we mathematically derive an interpolation formula to counteract the non-uniform spacing of the virtual array. 
The modified data is then processed by three rapid techniques (fast Fourier transform (FFT)-inverse fast Fourier 
transform, matched filtering and a novel 1D FFT-based technique with low computational complexity) to obtain 
reconstructed images of the scene. Numerical and experimental results confirm the satisfactory performance of the 
proposed approach in terms of both computational time and the quality of the reconstructed image. 

Index Terms—Fast processing, near-field, reduced dimension Fourier, sparse periodic array, THz imaging. 

I. INTRODUCTION

N recent years, terahertz (THz) imaging technology has 

been used in security screening, clinical and medical 

applications, pharmaceutical, food and agricultural industries, 

non-destructive testing and automotive to solve real-world 

challenges [1-3]. One of the most prominent advantages of 

THz radiation is its ability to penetrate a wide range of 

materials (fabric, plastic, wood, paper, semiconductors, etc.). 

Since THz photon energy is approximately six times smaller 

than an x-ray photon, its interaction with matter, especially 

with biological tissues, does not cause any detectable damage 

[4]. Also, compared to the microwave range, THz waves with 

shorter wavelengths provide much better imaging resolution. 

For two-dimensional (2D) scanning, an active radar may be 
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considered as a transmitter-receiver antenna pair (Tx-Rx) in 

monostatic mode [5]. In this case, by observing the Nyquist 

criterion in spatial sampling, images of the scene can be 

reconstructed with low or negligible distortion. However, such 

2D mechanical scanning takes a lot of time to acquire data, 

which is a major drawback in real-time applications. A 

common and more time-effective approach is to perform 1D 

scanning with a linear array [6-8]. In a monostatic array, a 

large number of antenna elements are required to scan a 

relatively large scene (e.g., a human-scale scene) satisfying the 

Nyquist criterion (which is related to the inter-element spacing 

in terms of wavelength  ). This problem is more acute for the 

THz band and its implementation is sometimes impractical. 

For example, to scan a scene with a width of 0.3m at 220GHz 

and an inter-element spacing of 2 , 441 elements will be 

required. Multiple-input multiple-output (MIMO) apertures, 

also known as multistatic sparse arrays, offer an alternative 

solution to reduce the number of elements. Experiments have 

shown that a high-quality image can be obtained at 75-90 GHz 

band by using a multistatic imaging system with a linear array 

consisting of 58 elements with an inter-element spacing of   

[9]. However, implementing such a setup is still costly for 

experimental work at the THz band. 

To overcome the above issues, Hu et al. have recently 

proposed a THz imaging system using a linear sparse periodic 

array (SPA) with large inter-element spacing [10-12]. To 

reconstruct the image, they use the generalized synthetic 
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aperture focusing technique (GSAFT). This technique 

calculates the vectors between the position of each Tx (and 

Rx) in each mechanical scanning step, and each target pixel, 

by discretizing the target space into several pixels. Although a 

high quality image can be obtained by defining a sufficient 

number of pixels, this technique has a high computational 

time. 

In real-time imaging applications (e.g., concealed threat 

detection in high foot traffic environments), reducing the 

processing time is an important factor. However, the special 

multistatic structure of the SPA is such that it is not possible to 

apply fast Fourier transform (FT)-based techniques in the 

near-field (NF). Therefore, in this paper, a fast processing 

approach based on Fourier techniques compatible with linear 

SPA is presented for NF THz imaging. In this approach, we 

first employ a multistatic-to-monostatic conversion to reduce 

phase errors due to NF multistatic imaging. In contrast to 

conventional synthetic aperture radar (SAR) based solutions 

employing uniform sampling, using this conversion is not a 

trivial task for the sparse imaging problem. This is due to the 

fact that the effective aperture is non-uniformly sampled for 

our problem. To improve the quality of the results, we 

mathematically derive a phase interpolation formula intending 

to counteract the non-uniform spacing of the virtual array. In 

Section IV, we will show how the quality of the results in the 

case of SPA declines without applying this extracted phase 

approximation. It should be noted that conventional SAR 

reconstruction techniques cannot work with data that has not 

been processed by the above steps; and state-of-the-art 

algorithms such as [11] that can work with this data are 

computationally expensive. Following, we first show that 

conventional Fourier-based image reconstruction techniques 

such as fast Fourier transform-inverse fast Fourier transform 

(FFT-IFFT) and matched filtering are fully consistent with the 

proposed approach. We also present a new Fourier-based 

technique employing dimensionality reduction that further 

reduces the computational complexity in comparison to 

regular FFT-based solutions. We demonstrate qualitatively (by 

means of reconstructed images) and quantitatively (by means 

of computational complexity and error analyses) that the 

proposed approach can significantly reduce the complexity 

and increase the reconstruction speed while maintaining the 

visual quality of the reconstructed images. To evaluate the 

effectiveness of the proposed approach, we test the proposed 

techniques on both numerical and experimental data. Given 

that research in THz imaging is still very limited in terms of 

algorithm development, the proposed approach could provide 

new avenues for future research. 

The main contributions and novelties of this paper are 

summarized below: 

 Developing multistatic-to-monostatic conversion for

SPA: As mentioned earlier, the use of SPA for THz

frequencies is a major advantage due to offering large

aperture sizes with fewer elements than is required for

conventional arrays. In this paper, the feasibility of using

multistatic-to-monostatic conversion for SPA is

demonstrated.

 Mathematical derivation of a phase approximation to

ensure the compatibility of Fourier-based solutions with

the imaging scenario involving NF data collected by a 

sparse non-uniformly distributed MIMO effective 

aperture. 

 Derivation of a new Fourier-based closed-form

expression leveraging dimensionality reduction for image

reconstruction with low computational complexity.

 Validation of the performance of the proposed approach

in various experiments with both numerical and

experimental data.

The rest of this paper is organized as follows: In Section II, 

the system model is described; Section III details the proposed 

approach; Section IV provides numerical results and 

experimental verifications; Finally, Section V presents the 

concluding remarks. 

II. SYSTEM MODEL

Fig. 1 shows the general structure of the imaging system in 

the proposed approach. A linear SPA for electronic scanning 

is placed horizontally (x-axis). The echo data of each Tx-Rx 

interaction can be captured by various channel access methods 

(including in its simplest form as time-division multiplexing 

(TDM)). The array then moves to the next vertical sampling 

step (y-axis). The sampling steps are uniformly distributed 

along the vertical axis to form the 2D aperture. 

Fig. 1. Schematic of the imaging system. 

A linear array configuration proposed in [10, 11] includes 

tN Tx elements with uniform spacing
td (distributed as two

equal parts on both sides of the array) and 
rN Rx elements 

with uniform spacing 0.5r t td N d  (in the middle). Fig. 2 

shows two different setups of this configuration. In Setup 1, 

the Tx and Rx sensors are located across a line, while in Setup 

2 there is a vertical distance between the Tx sensors and the 

Rx elements. We use both of these setups in this work. 

III. THE PROPOSED APPROACH

A. Virtual Array Structure

Under far-field (FF) assumptions, a multistatic array

topology with 
t rN N physical antennas can be transformed

into a virtual monostatic array with 
t rN N elements using the

effective phase center principle [13]. Thus, each of the 

configurations in Fig. 2 is equivalent to a denser linear virtual 

array of length   2tr t rL L L   consisting of 
t rN N sampling 

points, where  1t t t r rL N d N d   and  1r r rL N d  (see
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Fig. 3). 
trL depicts the area that can be seen by the imaging

system, also known as the field of view (FOV). It should be 

emphasized that regardless of whether 
rN is even or odd, 

there will be a gap of 
td in the center of the virtual array. This

is because the virtual element closest to the center of the array, 

whose position we represent with  0, ,0y  for simplicity and

to preserve symmetry, is created by the interaction between 

the closest Tx to the center (in position 2r tx L d  (or 

2r tx L d   ) and the farthest Rx from it (in position 

2rx L   (or 2rx L )) in Fig. 2. 

(a) 

(b) 

Fig. 2. Element distributions of SPA; (a) Setup 1, (b) Setup 2. 

Fig. 3. The virtual array corresponding to Fig. 2. 

B. Multistatic-to-Monostatic Conversion

Since we are dealing with a NF multistatic imaging system,

we need a more accurate model to adapt FT-based fast image 

reconstruction techniques. This is because even if we ignore 

the gap in the center of the virtual array, in a NF multistatic 

scenario, the other uniform distances in Fig. 3 will not actually 

be realized because the virtual array model can be considered 

accurate only in the FF region. 

Since Fourier-based image reconstruction methods require 

uniform spatial sampling, we first use a multistatic-to-

monostatic conversion [14] for the captured raw data 
y t rN N N

S . By using this conversion, the received data 

phase of each Tx-Rx interaction is modified according to the 

position of the physical antennas and the corresponding virtual 

element (see [13-15] for more details). Suppose  , ,0C Cx y  is

the position of the phase center corresponding to the 

transmitter element at  , ,0T Tx y  and the receiver element at

 , ,0R Rx y . The multistatic data set can be converted to an 

effective monostatic version as follows: 

   
 

 

,
, , , , ,

, , ,

o c c

C C T T R R

o T T R R

s x y
s x y s x y x y

s x y x y
  (1) 

where  ,o C Cs x y and  , , ,o T T R Rs x y x y correspond to the 

monostatic and multistatic reference signals, respectively, and 

can be calculated as follows: 

 

   

0

0

2
, ,

, , , ,

C

T R

j k R

o C C

jk R R

o T T R R

s x y e

s x y x y e



 




 (2) 

where 
TR and

RR are the distances between the Tx and Rx 

physical antennas to the reference point in the target domain, 

respectively, and 
CR  is the distance between the 

corresponding virtual element and the reference point. 

0 02k f c  is the wavenumber corresponding to the carrier 

frequency 
0f , and c  is the speed of light. 

Note that we are still physically faced with a multistatic 

topology, however, the above conversion provides an artificial 

(mathematical) approximation of the corresponding 

monostatic topology. We refer to the converted data as 
y t rN N N

S . 

C. Phase Interpolation in the Virtual Array Center

Due to the inconsistent gap in the center of the virtual array

(see Fig. 3), the data S  is not yet readily compatible with 

Fourier-based image reconstruction techniques. Our goal here 

is to interpolate the phase of the received signal in the center 

of the array based on the phase of the received signal at 

adjacent points. Let us denote the coordinates of the point 

scatterer and the two virtual elements closest to the center of 

the array with  0, ,x y z ,  , ,0y   and  , ,0y  ,

respectively (see Fig. 4). Therefore, the corresponding

distances can be calculated as follows: 

 

   

   

22 2

0

2 2 2

1 0

2 2 2

2 0

,

,

.

R x y y z

R x y y z

R x y y z





   

    

    

 (3) 

Hence, R  can be rewritten in terms of 
1R as follows: 

2 2

1 2 .R R x      (4) 

As a result, the total round-trip distance associated with the 

center of the array can be calculated as follows: 

2 2

12 2 2 .R R R x           (5) 

By applying Taylor series expansion [16] with respect to   

around zero, we have 

       
2

2

2

1
0 0 0 ....

2!

R R
R R  

 

  
    

 
      (6) 

By performing the necessary calculations on (5), we have 
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     (7) 

By placing (7) into (6), we have: 

2 2 2

1 3

1 1 1

2
2 .

x x
R R

R R R

  
      (8) 

By ignoring the last term (power of order 3 of the distance 
1R

in the denominator parts), considering     0,x y y z   , 

we can obtain an approximation of the total round-trip 

distance associated with the center of the array as follows: 

2

1

0

3ˆ 2 .R R
z


   (9) 

where 2td  . In a similar way, R̂  can be approximated in 

terms of 
2R as 

2

2

0

ˆ 2 .R R
z


   (10) 

Fig. 4. The coordinates of the point scatterer and the two elements 
closest to the center of the array. 

According to (5) and (9) (or (10)), the magnitude of the 

phase approximation error in the center of the virtual array can 

be obtained as follows: 

2
2 2

0 1 1

0

3
2 2 2 .E k R x R

z


       (11) 

Fig. 5 shows the values of E  versus frequency for different 

ranges and 
td values for the scanning midpoint and the 

reference point in the target domain. As can be seen, in all 

cases, with increasing frequency, the approximation error 

increases linearly, which is consistent with the findings of 

(11). Another point that can be deduced from Fig. 5 is that as 

the range increases, the error decreases (see solid lines). This 

means that the NF can be more challenging for phase 

approximations. However, the satisfactory results presented in 

Section IV show that the above approximation is effective 

even in the NF. It can also be found that increasing the inter-

element spacing can lead to an increase in phase 

approximation error (see blue diagrams). This is because the 

approximate phase derived in the above equations is based on 

the phase of the side elements, so increasing (or decreasing) 

the distance of the elements directly leads to increasing (or 

decreasing) the approximation error. 

Fig. 5. The values of E  versus frequency for different ranges and td s. 

By applying the phase interpolation to the data of the 

elements closest to the center of the array, the appropriate data 

for use in Fourier-based techniques is obtained, which we call 
 1ˆ y t rN N N 

S . 

D. Image Reconstruction

Now, 2D target reflectivity can be reconstructed as [17]

   
2 2 2
0 041

2 2

2 2 2

0

ˆ, , ,

4 .

x yj k k k z

D D x y

x y

x y FT FT S k k e

k k k


    

   

 

(12) 

In a more straightforward way, the 2D target reflectivity can 

also be obtained using the matched filtering technique [18] as 

follows: 

     1 *

2 2 2
ˆ, , , ,

fD D D zx y FT FT s x y FT h x y          
     (13) 

where  ,
fzh x y is the impulse response evaluated at the 

focusing distance fz instead of 
0z . For a point target located 

at the origin of the target coordinate system  00,0, z , the

received reflected wave data is given by [18, 19] 

 
2 2 2

0 02
, .

j k x y z
h x y e

  
  (14) 

where  ,h x y  is the impulse response of the imaging system.

Although the latter technique does not consider any visibility 

region condition, analyses [18] show that the resolution 

depends on the correlation between  ,h x y  and  * ,
fzh x y . As 

the aperture size decreases, the image resolution decreases, 

because the correlation is no longer an impulse function [18]. 

In addition to the two techniques mentioned above, various 

versions of the range migration algorithm (RMA) are 
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presented in the literature under various hypotheses and 

scenarios [14, 20-23]. Common steps in all RMA versions 

include multidimensional FTs, filtering, and Stolt 

interpolation. Aiming to reduce computational complexity, a 

new closed-form expression for image reconstruction is 

derived here, which uses 1D FFT computations with a much 

lower computational load than 2D FFT computations. It also 

does not require the heavy computational Stolt interpolation 

step. According to (1) and using the first Born approximation 

[24], the backscattered data associated with a distributed target 

can be written as follows: 

       
2 2 2

0 02
, , , .C Cj k x x y y z

T R C
x y

s x x y x y e dydx
    

     (15) 

By using backpropagation imaging equation [25], the target 

image can be retrieved as follows: 

 

     
2 2 2

0 02

,

, , .C C

T R C

j k x x y y z

T R C c R T
x x y

x y

s x x y e dy dx dx



   



  
(16) 

In the above equation, the inner integral can be considered as a 

convolution operation with respect to y  in the following 

form: 

     
2 2 2

0 02
, , , .C

T R

j k x x y z

T R R T
x x

x y s x x y e dx dx
  

     (17) 

By taking Fourier transform with respect to y  of both sides of 

the above equation, we have: 

     , , , , , ,
T R

y T R y C y R T
x x

x k S x x k H x x k dx dx     (18) 

where  , ,C yH x x k is the Fourier transform of 

   
2 2 2

0 02
, , Cj k x x y z

Ch x x y e
  

 with respect to y . The above 

equation states that for each x , the value of   must be 

calculated by considering all transmitters and receivers and 

their superposition; As a result, we can obtain the target image 

using the following closed-form expression: 

 

   1

1 , 1 , 1 ,

1

,

, , , ,

1,2,..., ,

t

T Ti iR

N

D y D y x R D y x i C R
x

i

x

x y

FT FT s x y FT h x x y dx

i M











 
       

 

 



 (19) 

where 
Ti

xs and 
Ti

xh denote the values of s  and h

corresponding to the i -th transmitter antenna, respectively. 

xM  is the number of points used to discretize x . Obviously, 

the larger the 
xM value selected, the better the image 

resolution. This comes at the cost of increasing computations. 

Note that in the above equations, the transmitter and receiver 

notations can be easily swapped, meaning that in contrast to 

(19), outer and inner summations can be applied to the 

receiver and transmitter elements, respectively. Because the 

latter equation relies on 1D FFT calculations, we call it the 

reduced dimension Fourier (RDF) technique. 

Here, we provide an analysis of the computational 

complexity of the FFF-IFFT, matched filtering, and RDF 

techniques, all three of which are based on the Fourier 

transform. The FFT technique requires a 2D FFT operation 

and a 2D FFT operation in addition to the Stolt interpolation 

operation [26]. Therefore, the major computational complexity 

in the FFT-IFFT technique is 

  2 2 22 log 2 2 1F F K FN N N N  , where 
FN and

KN denote

the number of FFT points and the Stolt interpolation kernel 

length [27], respectively. The matched filtering technique 

mainly requires two 2D FFT operations and one 1D IFFT 

operation, and its computational complexity is 

 2 2 23 logF F FN N N . Unlike the other two techniques, the 

RDF technique does not involve any 2D FFT operations. It 

requires several 1D FFT operations commensurate with the 

number of transmitters (or receivers) and some multiplication 

operations. The major computational complexity of the RDF 

technique is   2 1 logt F F t r F xN N N N N MN  . Fig. 6 

shows the computational complexity of the various techniques 

as a function of 
FN . As can be seen, the proposed RDF 

technique is generally less computationally complex than the 

other techniques. The main reason for this is the elimination of 

the 2D Fourier computations that have far more calculations 

than the 1D Fourier steps. It can also be seen that as the 
FN  

increases, the computational improvement of the RDF 

technique becomes significantly more pronounced. Note that 

as the number of FFT points increases, we expect the quality 

of the reconstructed images to improve. 

Fig. 6. Computational complexity of different techniques versus FN . 

 101xM ,  8tN and  8rN . 

IV. NUMERICAL AND EXPERIMENTAL RESULTS

To evaluate the performance of the proposed approach, in 

this section, numerical and experimental results are presented. 

Numerical data are obtained from electromagnetic simulations 

in FEKO (see [11, 12] for more details). The values of the 

imaging system parameters are given in Table I. According to 

the values of the parameters, targets with distances less than 
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approximately 54m from the array are located in the NF [28]. 

Where not mentioned, 
xM is equal to 101. Colorbar in all 

figures is in dB scale. All computations are performed on the 

MATLAB R2020b of 64-bit Windows 10 operating system 

with 12GB of random-access memory and a Core-i7 central 

processing unit at 2.7GHz. In addition to the computational 

complexity analysis presented in Section III, this section will 

provide qualitative comparisons as well as quantitative 

analyzes such as computational time, resolution, and 

normalized mean squared error (NMSE) to examine 

performance. Computation formula for NMSE is as follows 

[29]: 
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where 
Rec  and 

Ref denote the reconstructed image and 

reference image with M N  sizes, respectively. 

TABLE I 
IMAGING SYSTEM PARAMETERS FOR THE TARGET IN FIG. 7 

0z
ydtrdrdtd

yNtN = rN0f
Parameter 

1.1m 4mm 181mm 24mm 

(17.6 ) 

6mm 

( 4.4 ) 

76 8 220GHz Value 

Fig. 7 shows a picture of a real target. It is a rectangular 

metal plate with a size of 3145 120 5mm  . The metal plate 

has several holes (diameters of six cylinder holes are 6mm and 

7mm; top and bottom diameters of four screw holes are 5mm 

and 8mm). The SPA consists of the typical pyramidal horn, 

which has a half power beamwidth (HPBW) of about 42 

degrees. As we will see, a large HPBW provides an ideal 

cross-range illumination of the scene, thus, we can focus more 

on the algorithm rather than the practical limitations caused by 

a narrow HPBW in terms of illuminating the FOV. Fig. 8 

shows images of the raw echo data obtained from the two 

setups, Setup 1 and Setup 2 as depicted in Fig. 2 earlier. Fig. 9 

shows the reconstructed images resulting from applying the 

FFT-IFFT operation (similar to (12)) directly to the raw data 

S . As can be seen, the reconstructed images do not provide 

any meaningful visualization of the target. It can be clearly 

seen that the original data captured by the SPA cannot be 

processed by Fourier-based techniques due to non-compliance 

with the Nyquist criterion. As a next step, when we apply the 

FFT-IFFT operation to the converted data S , the results give a 

good idea of the target (see Fig. 10). However, as can be seen, 

the results suffer from some distortion in the images; so that 

although some holes are detectable, there is not sufficient 

resolution for proper recognition. The reason for this, as 

mentioned in Section III, is the gap in the center of the virtual 

array. Finally, let us consider the images reconstructed by the 

proposed approach (after applying the conversion and 

interpolation to the raw data). As can be seen in Figs. 11(a) 

and 11(b), the results now provide not only a good idea of the 

target but also the details of the image are well recognizable. 

Note that the diameters of the holes in Fig. 7 are different; 

these differences can also be identified in the images in Figs. 

11(a) and 11(b). An approximation of the theoretical cross-

range resolution, when the target distance is much larger than 

scanning aperture length, can be calculated as 
00.5 trz L

[19]. Therefore, according to the data in Table I, 
trL is equal 

to 192mm and as a result, the cross-range resolution is 

approximately equal to 3.9mm. So, it makes sense that the 

holes in Figs. 11(a) and 11(b) are well recognizable as they 

fall within the resolution limit of the synthesized aperture. 

Fig. 7. First target photo [11]. All the results presented in Figs. 8-25 are 
related to this target profile. 

(a) (b) 
Fig. 8. Image of raw echo data; (a) obtained from Setups 1, (b) 
obtained from Setup 2. 

(a) (b) 

Fig. 9. Reconstructed images from applying FFT-IFFT operations 

directly to S ; (a) Setup 1, (b) Setup 2. 

A careful analysis of Figs. 11(a) and 11(b) reveals that Fig. 

11(a) is of somewhat better quality. This makes sense because, 

in Setup 2, we expect more phase errors. In fact, in Setup 1, 

the positional deviation of the virtual array elements relative to 

the physical antennas is only in the horizontal direction, while 

in Setup 2, there is a vertical deviation as well. Note that here 

the phase error due to vertical deviation is constant for all 
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elements (since the configuration of Setup 2 in the vertical 

direction can be considered as a quasi-monostatic state), while 

not in the horizontal direction. However, as can be seen, the 

results presented for both setups are in good agreement, 

indicating the ability to generalize and extend the proposed 

approach to 2D arrays. Figs. 11(c) and 11(d) show the images 

reconstructed by the proposed approach with the matched 

filtering technique. Compared to Figs. 11(a) and 11(b), i.e., 

images reconstructed by the proposed approach with the FFT-

IFFT technique, the image quality (especially for Setup 2) is 

slightly lower; however, we can achieve better computational 

performance by utilizing this technique. It should be noted that 

although the latter technique is more straightforward and 

faster to implement, the analyzes in [18] show that aperture 

size is a major limitation in the resolution of images 

reconstructed by this technique. Figs. 11(e) and 11(f) show the 

results related to employing the RDF technique in the 

proposed approach. As can be seen, the details of the scene are 

still well recognizable. Although the relative quality is lower 

than the corresponding images in Figs. 11(a) and 11(b), as 

shown in Fig. 6 and will be discussed further Figs. 11(e) and 

11(f) are reconstructed more rapidly due to the reduced 

computational complexity of the RDF technique. 

(a) (b) 
Fig. 10. Reconstructed images from applying FFT-IFFT operations to 

S ; (a) Setup 1, (b) Setup 2. 

Since our experimental data is based on the standard horn, 

let us investigate here the effect of changing the beam 

properties on the results. To have a fair comparison with 

experimental results presented at the end of this section, here 

we have considered a WR3 band standard horn having about 

12 degrees HPBW at 220GHz as the SPA element. 

Reconstructed images from the simulated numerical data can 

be seen in Figs. 11(g), 11(h) and 11(i). As can be seen, 

although the beamwidth has become narrower, the images 

have still been reconstructed correctly by all three Fourier-

based techniques, but with a slight loss of quality. A more 

accurate equation for predicting cross-range resolution, which 

also takes into account the beamwidth effect, is given in [5, 

11]. This equation shows that cross-range resolution is 

inversely proportional to HPBW. So, it makes sense to expect 

a better resolution for wide beam horn outputs than for 

standard horn outputs. 

In the scenario of Figs. 11(a), 11(c) and 11(e), if we reduce 

td  to 4mm (FOV reaches 128mm), the theoretical cross-range 

resolution deteriorates compared to the previous state (reaches 

5.9mm), which is confirmed by the results in Fig. 12. The 

blurred edges of the target in Fig. 12 are created because, in 

the latter state, the FOV is slightly smaller than the width of 

the target. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) 

Fig. 11. Images reconstructed by the proposed approach; (a) with FFT-

IFFT technique, Setup 1, wide beam horn, (b) with FFT-IFFT 

technique, Setup 2, wide beam horn, (c) with matched filtering 

technique, Setup 1, wide beam horn, (d) with matched filtering 

technique, Setup 2, wide beam horn, (e) with RDF technique, Setup 1, 

wide beam horn, (f) with RDF technique, Setup 2, wide beam horn, (g) 

with FFT-IFFT technique, Setup 2, standard horn, (h) with matched 

filtering technique, Setup 2, standard horn, (i) with RDF technique, 

Setup 2, standard horn. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TFUZZ.2022.3144448, IEEE Sensors Journal



8 

(a) (b) 

(c) 
Fig. 12. Images reconstructed by the proposed approach using Setup 

1 and wide beam horn when dt  is reduced; (a) with FFT-IFFT 

technique, (b) with matched filtering technique, (c) with RDF technique. 

Fig. 13 shows the results obtained by the GSAFT technique 

presented in [11]. By comparing Figs. 11(a), 11(b), 13(a) and 

13(b), it can be seen that the results processed by the proposed 

approach do not have the artifacts created in the images 

reconstructed using the GSAFT technique [11]. However, the 

shapes of the holes reconstructed using the approach presented 

in [11] seem to be slightly better defined. The reason for this is 

that, as mentioned in Section I, in the GSAFT approach [11], 

the distances from the target pixels to the elements are 

accurately calculated. In comparison, in our proposed 

approach, to provide a uniform spatial sampling artificially 

(mathematically), we approximate distances based on data 

modified by using multistatic-to-monostatic conversion and 

interpolation operations. 

Although the quality of the reconstructed image has also 

been considered in this study, the main focus has been on 

accelerating computations for use in real-time applications. 

GSAFT is associated with a high computational time due to 

the calculation of numerous vectors between the position of 

the antennas and the discretized scene. This will be more acute 

for 3D imaging because the scene will have to be discretized 

with a huge number of voxels. Table II provides a comparison 

between the reconstruction time needed for Figs. 11 and 13. 

According to this comparison, in the case of Fig. 13, the 

reconstruction time is equal to 2.68 seconds (by defining the 

scene as a 101 101  pixel image); while the reconstruction 

time in the proposed approach is 0.22 and 0.14 seconds, 

respectively, with FFT-IFFT and matched filtering techniques. 

In fact, in this case, the proposed approach, in terms of 

computational time, has provided an almost 12- and 19-fold 

improvement, respectively, compared to [11]. By using the 

developed RDF technique, the reconstruction time is further 

reduced to 0.12 seconds, corresponding to an increase in the 

reconstruction speed by a factor of about 22 times in 

comparison to [11]. 

(a) (b) 

(c) 

Fig. 13. Images reconstructed by the approach [11]; (a) using wide 

beam horn, Setup 1, (b) using wide beam horn, Setup 2, (c) using 

standard horn, Setup 2. The number of scene pixels ( x yN N ):

101 101. 

TABLE II 
COMPARISON OF COMPUTATIONAL TIMES FOR IMAGE RECONSTRUCTION BY 

DIFFERENT TECHNIQUES IN FIGS. 11 AND 13 

13 11(e), 11(f) 

and 11(i) 

11(c), 11(d) 

and 11(h) 

11(a), 11(b) 

and 11(g) 
Figures 

2.68Sec 0.12Sec 0.14Sec 0.22Sec Computational 

Time 

The control parameters in the computational complexity of 

the GSAFT method and FFT processing are the number of 

pixels intended for scene discretization and 
FN , respectively.

In the case of the RDF technique, 
xM is another control 

parameter in addition to 
FN . For a more comprehensive time

study, in Fig. 14, we have calculated the computational time 

versus these control parameters. Obviously, with increasing 

the value of these parameters, the processing time has 

increased. Also, the findings in Fig. 14 are consistent with 

what can be deduced from Fig. 6. Fig. 15 shows a comparison 

between the quality of the reconstructed images in the 

proposed approach with the FFT-IFFT technique for 

128FN  and 1024FN  . A closer look at them reveals the

slightly better image quality of Fig. 15(b), which is obtained 

by using more FFT points. Based on our investigations in this 

particular case, we found 102FN   to be the upper-bound 

limit, beyond which the performance of the image 

reconstruction algorithm becomes saturated; in other words, 

after this value, increasing 
FN no longer has any significant 

effect on improving image quality. The results presented in 

Fig. 16 confirm this observation. In Fig. 16, the NMSE values 

calculated in the proposed approach with the FFT-IFFT 

technique can be seen for three different modes. The reference 

image is the image reconstructed by FFT-IFFT technique in 

first mode (Setup 1, wide beam horn) when 2048FN  . As 

expected, and the images in Fig. 11 confirm, the diagrams for 
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setup 2 demonstrate more error; the standard horn diagram 

also indicates more error (meaning lower image quality) than 

the wide beam horn diagram. Fig. 17 shows a comparison 

between the quality of the reconstructed images in the 

proposed approach with the matched filtering technique for 

108FN  and 512FN  . We can still see the relative

improvement in image quality by increasing the FFT points in 

Fig. 17. In Fig. 18, the NMSE values calculated in the 

proposed approach with the matched filtering technique can be 

seen for three different modes. The reference image is the 

image reconstructed by matched filtering technique in first 

mode (Setup 1, wide beam horn) when 512FN  . It is 

observed that in the case under study, after 72FN  , the 

results are saturated. A comparison of Figs. 11(c) and 17(b) 

confirms this. The corresponding results when using the RDF 

technique in the proposed approach are shown in Figs. 19 and 

20. In the case of RDF, there are two control parameters 
FN  

and
xM , so NMSE diagrams are obtained versus both. The 

reference image for the diagrams in Fig. 20(a) is the image 

reconstructed by RDF technique in first mode (Setup 1, wide 

beam horn) when 512FN   and 101xM  . Also, the 

reference image for the diagrams in Fig. 20(b) is the image 

reconstructed by RDF technique in first mode when 

512FN  . Note that in the latter case, since the size of the 

data used in the reconstructed image varies by the value of 

xM , the diagrams in Fig. 20(b) for each 
xM are obtained

based on a comparison with the reference image in the same 

xM . By comparing Figs. 16, 18 and 20(a), it can be concluded 

that the matched filtering and RDF techniques are saturated 

with smaller 
FN s than the FFT-IFFT technique. This means 

that in the matched filtering and RDF techniques, zero-

padding affects the results less. The reason for this can be 

found in (13) and (19). FTs in (13) and (19) change only the 

computational domain from spatial to Fourier. This is different 

for (12). In (12), increasing the number of FFT points 

(applying zero-padding) affects the discretization of the 

wavenumbers 
xk and

yk . In fact, the greater the number of 

FFT points, the better the resolution of the wavenumber 

domain, which is reflected in the reconstructed images. 

Another point is that in our example, the size of the raw data 

( 76 64 ) is relatively small compared to the more practical 

scenarios. Therefore, very large 
FN values will not be very 

effective here. Obviously, for scenarios with larger data sizes 

(more antennas and more scanning points), relatively larger 

FN s will be required. In that case, the efficiency of the 

proposed RDF technique in terms of computational 

complexity and, consequently, processing speed will be more 

apparent. Fig. 21 shows the images reconstructed by the 

approach [11] for 25x yM M   and 175x yM M  . It can 

be clearly seen that the number of pixels intended for scene 

discretization greatly affects the quality of the reconstructed 

images. Significant improvement in Fig. 21(b) compared to 

Fig. 21(a) comes at the cost of approximately forty times the 

computational time cost as shown in Fig. 14(b). Improvement 

in the reconstructed images saturates after reaching an upper-

bound limit for 
xM and

yM . In our experiments, in this

particular case, this saturation behavior was evident when 
xM

and 
yM dimensions reached approximately 201 201  (see

Fig. 22). The reference image for the diagrams in Fig. 22 is the 

image reconstructed by approach [11] in first mode (Setup 1, 

wide beam horn). Although Fig. 21(b) gives almost the best 

image quality obtained from the approach [11], some 

distortion is still visible at the target edges. A fairer 

comparison between the performance of the approach [11] and 

the proposed approach is the comparison between Figs. 21(a) 

and 11(a). This comparison is fair because the images of these 

figures have been reconstructed with the same configuration 

and almost the same processing time. Even with a cursory 

glance, one can infer the superiority of the quality of the 

reconstructed image in Fig. 11(a). Table III presents a 

comparison between the computational time of image 

reconstruction by different methods in conditions that have 

provided almost their best quality. As can be seen, the 

proposed approach still has a significant advantage in terms of 

computational time compared to the approach [11]. In 

addition, by comparing Tables II and III, it can be concluded 

that by considering larger values for the control parameters 

(which results in better image quality), the proposed approach 

(especially by using the RDF technique) further reveals its 

computational advantage. 

(a) 

(b) 
Fig. 14. Comparison of computational times in different techniques; (a) 

versus control parameter FN (when  101xM ); (b) versus control 

parameters xM and 
yM  (when  256FN ). 
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(a) (b) 

Fig. 15. Images reconstructed by the proposed approach with FFT-

IFFT technique using Setup 1; (a)  128FN , (b)  1024FN . 

Fig. 16. The NMSE values calculated in the proposed approach with 

the FFT-IFFT technique in three different modes. 

(a) (b) 

Fig. 17. Images reconstructed by the proposed approach with matched 

filtering technique using Setup 1; (a)  108FN , (b)  512FN . 

Fig. 18. The NMSE values calculated in the proposed approach with 

the matched filtering technique in three different modes. 

(a) (b) 

(c) (d) 

Fig. 19. Images reconstructed by the proposed approach with RDF 

technique using Setup 1; (a)  88FN  and  101xM , (b)  512FN

and  101xM , (c)  256FN and  25xM , (d)  256FN and 

 175xM . 

(a) 

(b) 

Fig. 20. The NMSE values calculated in the proposed approach with 

the RDF technique; (a) versus FN  when  101xM , (b) versus xM

when  256FN . 
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(a)  (b) 

Fig. 21. Images reconstructed by the approach [11] using Setup 1; (a) 

  25x yM M , (b)  175x yM M . 

Fig. 22. The NMSE values calculated in the approach [11]. 

TABLE III 
COMPARISON OF COMPUTATIONAL TIMES FOR IMAGE RECONSTRUCTION BY 

DIFFERENT TECHNIQUES IN FIGS. 15(B), 17(B), 19(D) AND 21(B) 

21(b) 19(d) 17(b) 15(b) Figure 

7.26Sec 0.21Sec 0.39Sec 2.69Sec Computational Time 

In order to verify the performance, we have also tested the 

proposed approach with experimental data. Fig. 23 shows 

photos of the entire system setup and a closer view of the 

mounted target. In the experimental setup, as Tx and Rx 

antennas, horn antennas are used. The horns used in the 

experiment are standard pyramidal horns in the 220-325 GHz 

band with a peak gain of about 23.81dBi at 220GHz and a -

13dBm typical output power from the Tx at 220GHz. To 

perform vertical scanning, the target is mounted on the head of 

the PNF-XYV-0.9x0.9 system and moves vertically, which 

inversely imitates a relatively mechanical scanning of the 

array to a fixed target (similar to an inverse synthetic aperture 

radar). The system includes a software workstation preloaded 

with NSI2000 antenna measurement software and controls the 

stepper motors and experimental parameters (step size, 

frequency, etc.). In order to realize a linear SPA, two THz 

mixer heads are mounted on two linear horizontal scanning 

stages. To make sure that the placement of the Tx and Rx 

antennas can be practically feasible, Setup 2 as depicted in 

Fig. 2(b), is implemented for the experimental study, where 

the Tx and Rx antennas are separated by a 181mm gap, 

moving to each Tx and Rx element position in the SPA. 

Ideally, we should keep this gap as small as possible, and 

181mm is the minimum gap to place both Tx and Rx heads, 

and allow them to move smoothly within the experimental 

setup [11]. As we have shown in the results based on 

numerical data, this vertical gap between the Tx and Rx 

elements has a relatively minor effect on the reconstructed 

images. This experimental setup uses only one Tx and Rx 

channel to imitate the Tx and Rx arrays. This mechanism not 

only avoids the use of a large number of real channels with 

high cost but also eliminates the phase calibration issue in the 

experiment. In addition, this setup can provide a possible 

solution for the low-cost practical implementation of the THz 

SPA imaging system. Note that the synthesized aperture is a 

collection of measurements collected at each sampling point 

across the synthesized aperture. Although each sampling point 

can be considered a single-input single-output case, the 

synthesized aperture is a MIMO system. In other words, we 

are imitating the imaging setup in Fig. 2 by mechanically 

scanning the Tx and Rx channels and treating each sampling 

as a separate measurement. This is identical to using an array 

of antennas and switching between the antennas (similar to the 

TDM method). Hence, the synthesized aperture is formed by 

using multiple Tx antennas (output) and multiple Rx antennas 

(input), i.e. a MIMO aperture. As far as the algorithm is 

concerned, both these apertures, when considering the overall 

data, represent an identical MIMO system. Accurately 

calculating the distance of the imaged object is important 

particularly at such high frequencies. For experimental 

measurements, we used a laser distance meter to calculate the 

distance between the antenna and the imaged object, which is 

a very accurate way of measuring it. The accuracy of the laser 

meter is 0.1mm , which is less than 10  at 220GHz. We 

took the necessary steps to ensure that the characterization of 

this distance was accurate (our following results will confirm 

this). An error analysis of the experimental system has been 

performed in [30] which shows how such errors can affect the 

reconstruction (particularly Fig. 8 in [30]). It should be noted 

that this error will only be amplified at THz frequencies. 

(a) (b) 
Fig. 23. Lab setup photos; (a) entire system setup, (b) a closer view of 
the mounted target. 

Fig. 24 shows the reconstructed images using experimental 

data. As can be seen, the overall structure of the target has 

been properly reconstructed; however, compared to the 

simulated numerical data, the image quality deteriorated, so 

that some holes are not well recognizable. This is due to the 

narrow beamwidth and the limited sensitivity of the receiver 

(which in practice leads to a narrower FOV) [31]. In another 

experiment, we have set the target at 
0 1.4mz  to investigate 

the effect of the distance from the target to the system on the 

results. As Fig. 25 shows, increasing the distance has 

improved the image quality. Although this distance change 

leads to a tolerable degradation in resolution, by bringing the 

target closer to the FF region, the accuracy of the 

approximations used in the multistatic-to-monostatic 

conversion and interpolation steps is improved (see  [9, 15] 
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and the analyzes in Section III-C). 

(a) (b) 

(c) 

Fig. 24. Images reconstructed by the proposed approach with standard 

horn using Setup 2 (based on experimental data); (a) with FFT-IFFT 

technique, (b) with matched filtering technique, (c) with RDF technique. 

(a) (b) 

(c) 

Fig. 25. Reconstructed images corresponding to Fig. 24, when the 

target distance from the system has increased by 0.3m; (a) with FFT-

IFFT technique, (b) with matched filtering technique, (c) with RDF 

technique. 

The equations derived and employed to reconstruct the 

images in this paper are not defined on the basis of a particular 

type of object (see, for example, (12), (13), and (19)). 

Therefore, considering the appropriate size for the target, the 

equations derived in this paper can be used for imaging any 

kind of target. The purpose of applying a fixed target in 

previous experiments was to make a fair and one-to-one 

comparison in different scenarios (with Setups 1 and 2, with 

wide beam horn and standard horn), with different parameters 

(number of FFT points, number of pixels, spacing between 

elements, and range) and various techniques (GSAFT [11], 

matched filtering, FFT-IFFT and RDF). However, here, to 

further ensure the performance of the proposed approach, we 

test another target with a different aperture size. To this end, a 

pure metallic target with a width of 0.8m is considered (see 

Fig. 26). The size of the rectangular holes in the scene from 

small to large are 3 5 , 5 7 , 7 10  and 210 15mm , 

respectively. The dimensions of large squares and the squares 

inside them are 30 30  and 210 10mm , respectively. The 

parameters of the imaging system under the Setup 1 

configuration are given in Table IV. Fig. 27 shows the image 

of the raw echo data obtained from the electromagnetic 

simulation. Similar to what we did with the first target, here, 

too, we first examine the effect of the multistatic-to-

monostatic conversion and the phase interpolation steps 

presented in the proposed approach on the results. Fig. 28(a) 

shows the reconstructed image resulting from applying the 

FFT-IFFT operation directly to the raw data. As expected, due 

to the multistatic structure of the imaging and the presence of 

the target in the NF, the conventional FFT-IFFT method has 

not been able to create a meaningful image of the scene. 

However, when we apply the FFT-IFFT operation to the 

converted data S , the results give a good idea of the target 

(see Fig. 28(b)). Finally, after another processing step, and 

using phase interpolation, we were able to further improve the 

image quality (see Fig. 29(a)). Also, the results of employing 

matched filtering and RDF techniques in the proposed 

approach are given in Figs. 29(b) and 29(c), respectively. In 

addition, Fig. 29(d) shows the image reconstructed by the 

approach [11]. In all of the images in Fig. 29, the objects in 

the center show a better resolution than the objects on the side 

(which are copies of the central objects). The reason for this 

can be found by comparing the central and lateral parts (along 

the horizontal axis) of Fig. 27. As can be seen, the points 

closer to the center of the target area have the highest 

intensity. In general, moving away from the center of the field 

usually causes a drop in resolution [32]. Table V presents the 

computational times calculated for the reconstructed images in 

Fig. 29. It can be seen from Table V that the proposed 

approach is still much more cost-effective than the approach 

[11] in terms of processing speed. The reason why, unlike

previous experiments, the computational time of the RDF

technique is slightly longer than that of the matched filtering

technique is that in previous experiments the number of

physical antennas was lower (8 Tx and 8 Rx antennas); while

in the recent experiment, the number of antennas is almost

doubled (14 Tx and 16 Rx antennas). According to the

analyzes performed in Section III-D, the computational

complexity of RDF is directly related to the number of

antennas, whereas this is not the case for FFT-IFFT and

matched filtering techniques. However, RDF still has the

advantage of simpler Fourier calculations with less memory

required (see Section III-D for more details).

V. CONCLUSION

In this paper, a fast processing approach compatible with 

linear SPA was presented for NF THz imaging. We first 

employed a multistatic-to-monostatic conversion to reduce 
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phase errors due to NF multistatic imaging. To improve the 

quality of the results, we mathematically derived an 

interpolation formula to counteract the non-uniform spacing of 

the virtual array. Then, we processed the modified data by 

three rapid techniques (FFT-IFFT, matched filtering and a new 

technique with low computational complexity called RDF) to 

obtain reconstructed images of the scene. We examined and 

discussed the performance of the proposed approach with 

numerous data from electromagnetic simulation in FEKO as 

well as experimental data. The results confirmed the 

satisfactory performance of the proposed approach in terms of 

both computational time and the quality of the reconstructed 

image. In cases where processing speed is a priority, 

employing the RDF technique in the proposed approach will 

be more effective; however, in cases where the quality of the 

reconstructed image has a higher priority, employing the FFT-

IFFT technique in the proposed approach is recommended. 

The proposed approach can be effective for real-time imaging 

applications such as concealed threat detection in high foot 

traffic environments [33], image-guided surgery [34] and 

military vetronic systems [35], in which end-users need fast 

processed data to make decisions. 

Fig. 26. Second target profile. All the results presented in Figs. 27-29 

are related to this target profile. 

TABLE IV 
IMAGING SYSTEM PARAMETERS FOR THE TARGET IN FIG. 26 

0z
ydrdtd

yNrN
tN0f

Parameter 

4m 6mm 49mm ( 35.93 ) 7mm ( 5.13 ) 81 16 14 220GHz Value 

Fig. 27. Image of raw echo data. 

(a) 

(b) 

Fig. 28. Reconstructed images; (a) by applying FFT-IFFT operations 

directly to S ; (b) by applying FFT-IFFT operations to S . 

(a) 

(b) 

(c) 

(d) 

Fig. 29. Reconstructed images.  256FN  and  125x yM M ; (a) by 

the proposed approach with FFT-IFFT technique, (b) by the proposed 

approach with matched filtering technique, (c) by the proposed 

approach with RDF technique, (d) by the approach [11]. 

TABLE V 
COMPARISON OF COMPUTATIONAL TIMES FOR IMAGE RECONSTRUCTION BY 

DIFFERENT TECHNIQUES IN FIG. 29 

29(d) 29(c) 29(b) 29(a) Figure 

10.08Sec 0.34Sec 0.3Sec 0.66Sec Computational Time 
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