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Abstract—The decomposition-based multi-objective evolution-
ary algorithm (MOEA/D) has attained excellent performance
in solving optimization problems involving multiple conflicting
objectives. However, the Pareto optimal front (POF) of many
multi-objective optimization problems (MOPs) has irregular
properties, which weakens the performance of MOEA/D. To
address this issue, we devise a dynamic transfer reference point
oriented MOEA/D with local objective-space knowledge (DTR-
MOEA/D). The design principle is based on three original and
rigorous mechanisms. First, the individuals are projected onto a
line segment (two-objective case) or a three-dimensional plane
(three-objective case) after being normalized in the objective
space. The line segment or the plane is divided into three different
regions: the central region, the middle region, and the edge
region. Second, a dynamic transfer criterion of reference point is
developed based on population density relationships in different
regions. Third, a strategy of population diversity enhancement
guided by local objective-space knowledge is adopted to improve
the diversity of the population. Finally, the experimental results
conducted on sixteen benchmark MOPs and eight modified
MOPs with irregular POF shapes verify that the proposed DTR-
MOEA/D has attained a strong competitiveness compared with
other representative algorithms.

Index Terms—Multi-objective optimization, decomposition, dy-
namic transfer reference point, local objective space.

I. INTRODUCTION

N scientific research and engineering practice, the problem

consisting of multiple conflicting objective functions that
need to take the minimum or maximum simultaneously is
often called multi-objective optimization problem [1]-[8]. The
population-based multi-objective evolutionary algorithms aim
at obtaining a range of trade-off solutions among multiple
conflicting objectives [9]-[11]. The nature of multi-objective
evolutionary algorithms (MOEAs) enable them to achieve
excellent performance when dealing with multi-objective op-
timization problems. Common examples of real-world multi-
objective optimization problems include multi-objective op-
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timal control of urban wastewater treatment processes [12],
[13], teaching manipulator [14], barrier coverage with wireless
sensors [15], image feature extraction in the presence of noise
[16], the design of a trauma system [17], and risk-based
optimal operation of a hybrid energy system [18].

For the sake of more precise description, it is imperative
to give a unified definition of the multi-objective optimization
problem (MOP) studied in this paper. A minimized MOP can
be formulated as follows:

minimize f(x) = (f1(x), fa(x), - 7fM(X))T (1)
subject to x € ()

where x = (z1,22, - ,xp) € § is a decision vector
consisting of D decision variables, and 2 C RP is the decision
space. f : Q@ — ' C RM defines M objective functions,
and I is the objective space. Assuming that x® and x” are
two different solutions, x* dominant x? needs to meet the
following two conditions:

{ fe(x*) < fo(x),Vk € {1,2,--- , M} @)
fj(xa) < fj(xb)aaj € {1727' o >M}'

A solution x¢ € (2 is considered to be Pareto optimal if and
only if no other solution x? €  can dominate x°. The set of
all Pareto optimal solutions is defined as the Pareto optimal
set (POS). The dominance relation in the decision space is
consistent with the dominance relation in the objective space,
so the solution set which is composed of the objective function
values corresponding to the POS is called Pareto optimal front
(POF).

Due to the excellent performance in solving MOPs, MOEAs
with different characteristics have sprung up in a variety of
theoretical research and engineering applications. According to
different evolutionary criteria, most MOEAs can be classified
into three representative categories [19].

The first category covers the MOEAs employing the Pareto
dominance-based criterion to select the candidate solutions
and meet the evolving needs of the population [20], [21].
The nondominated sorting genetic algorithm II (NSGA-II) was
proposed to improve population synthesis performance while
reducing the computational complexity [22]. An improved
strength Pareto evolutionary algorithm (SPEA2) was designed
to select suitable non-dominant individuals for mating se-
lection [23]. An effective two-archive strategy to solve the
problem of convergence and diversity imbalance was given



in [24]. An external elite archive strategy based on conver-
gence information was integrated into the MOEA framework
to accelerate the convergence process [25]. Furthermore, an
efficient non-dominated sort approach was studied in [26]. It
is believed that the non-dominated sorting strategy will still
be a hot topic of MOEAs.

The second category is known as the indicator-based
MOEAs, where performance indicators are used to guide the
optimization process. A binary performance indicator for the
selection process was defined in [27]. An enhanced inverted
generational distance indicator was adopted as a measure of
contribution to promote the convergence speed of individuals
[28]. A simple hypervolume indicator was also applied to
update the exact contribution of different individuals [29]. The
Divergence theorem-based R2 indicator was derived for better
hypervolume approximation [30]. Moreover, a new R2 indica-
tor was selected to assist the MOEA to solve MOPs [31]. An
indicator-based MOEA with diversity enhancement strategy
for large-scale multiobjective optimization was described in
[32]. It is worth investigating to incorporate the evolutionary
state information of the population or the preference informa-
tion of decision-makers into the indicator-based MOEAs.

The third category refers to the decomposition-based
MOEAs [33]. MOEA/D was developed to transform an MOP
into a set of scalar optimization subproblems and to find
the solution of each subproblem by using the information of
its neighboring subproblems [34]. The distribution of weight
vectors has a great correlation with the distribution of indi-
viduals, so people have been holding great enthusiasm for the
research of improving the distribution of weight vectors [35].
A novel weight vector initialization and distribution strategy
was embedded into the original MOEA/D framework to solve
MOPs with complex POF shapes [36]. An adaptive weight
vector guided MOEA was presented in [37] to obtain a set
of uniformly distributed optimal individuals. The preference
information was embedded into the MOEA/D framework to
improve its performance [38]. A systematic approach was
presented to generate weight vectors for multi-objective op-
timization [39]. In addition, a generalized adaptive adjustment
strategy of weight vector was given in [40]. Furthermore, two
sets of weights were used to balance convergence and diversity
during the evolutionary process [41]. A two-stage strategy was
adopted in which the ideal point was set as the initial reference
point, and whether to change the reference point was judged
when the evolution generations reach a certain set value [42].
The above two improvements have promoted the performance
of MOEA/D to some extent. However, the number of sub-
problems assigned to each reference point or the number of
evolutionary generations in the first evolutionary stage was
artificially set and was not related to the evolutionary state of
the population.

To effectively address these shortcomings, a dynamic trans-
fer reference point oriented MOEA/D with local objective-
space knowledge, DTR-MOEA/D for short, is proposed in this
paper. We highlight the main novelty and contributions of our
proposed DTR-MOEA/D compared with recently proposed
representative algorithms as follows.

1) The individuals in the population generated after each

iteration are normalized in the objective space. The
normalized individuals are projected onto a line segment
or a three-dimensional plane. More specifically, in the
case of two objectives, the normalized individuals are
projected onto a line segment. We take the maximum of
two objectives as the two endpoints of the line segment
and then the line segment is divided into six segments
equidistantly. The two adjacent segments located in the
center are marked as the central region, the two segments
at the two ends are marked as the edge region, and
the remaining two segments are recorded as the middle
region. The number of individuals in the population
projected onto each region is calculated respectively. In
the case of three objectives, the normalized individuals
are projected onto a three-dimensional plane. It is worth
noting that for the convenience of calculation, the areas
of different regions are not equal, which is different from
the situation of the bi-objective case. The number of
individuals in the population projected onto each region
is calculated respectively.

2) A reasonable reference point dynamic transfer criterion is
formulated. According to the number of individuals pro-
jected onto different regions, the density relationship of
individuals in adjacent regions is judged, and the position
of the reference point in the next iteration is dynamically
adjusted according to the density relationship.

3) A diversity enhancement mechanism guided by individual
density knowledge in local objective-space is designed.
The minimum value of the angle between each individual
and the remaining individuals in global objective-space
is obtained, and the average value of the N minimum
values (N represents the number of individuals in the
population) is calculated and recorded as the global angle
average value. We calculate the minimum angle value
between each individual and the rest individuals in the
local objective-space, and calculate the average value of
the angles, which is recorded as the local angle average
value. The appropriate mating individuals are selected by
judging the relationship between the global angle average
and the local angle average.

The rest of this paper is outlined as follows. Section II
introduces the fundamental concepts and discusses the existing
works. The details of the proposed DTR-MOEA/D are pre-
sented in Section III. Section IV studies the parameter setting,
presents the experimental results on benchmark MOPs and
modified MOPs with irregular Pareto front shapes, and com-
pares the proposed DTR-MOEA/D with other representative
MOEAs. Finally, the conclusions are drawn in Section V, and
in addition, future works are illustrated in this section.

II. PRELIMINARIES AND RELATED WORKS
A. Penalty-based Boundary Intersection Approach

MOEA/D transforms an MOP into a set of scalar optimiza-
tion subproblems by using a basic decomposition strategy and
then optimizes them simultaneously. In MOEA/D, each sub-
problem is optimized mainly by its neighborhood informa-
tion. Among the various MOEA/D variants, commonly used
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Fig. 1. Tllustration of PBI approach.

decomposition methods include the weighted sum approach,
Tchebycheff approach, and penalty-based boundary intersec-
tion approach.

The penalty-based boundary intersection approach is used
in the proposed DTR-MOEA/D, and a scalar optimization
subproblem can be defined mathematically as follows:

min gP% (x|, 2*) = dy + 0da

subject to x € 3)
where
[(f(x) = 2°)TA|
d=—— 4
: AT @
A
do = ||f(x) — | 2" +d1+—— 5
2= oo = (= a3y )| ®

and 6 is the preset penalty factor. Fig. 1 shows the approach of
PBL. A = (A1, Ao, -+, Aps) T is the weight vector, \; satisfies
A >0and YN =1 2% = (25,235, ,25,)7 denotes
the reference point. H' is the projection of f(x) onto the
corresponding weight vector A. dy is the vertical distance
between f(x) and H'. d; is the straight distance from z* to
H'.

B. Normalization

In the process of seeking the optimal solutions of MOPs,
the scale of different objectives may be very different. The
normalization operation can improve the performance of the
solutions in the face of the above situation. In DTR-MOEA/D,
all the objectives will be normalized and then projected. The
normalization method adopted herein is expressed as follows:

[ (@) = 2

where f; () is the normalized objective value of f;(x), Vi €
{1,2,--- M}, and z* = (2§, 25,--- ,2%,)T denotes the ideal
reference point. f™**(x) represents the maximum value of
fi(z) among all the individuals generated in each iteration.

C. Related Works

In the past few years, MOEA/D has been broadly ex-
plored to solve various practical problems due to its excellent
performance [43]. The theoretical research field has also
witnessed the development boom of MOEA/D [44], and a
large number of MOEA/D variants have appeared in the
literature to deal with MOPs with various characteristics. The
penalty factor incremental strategy was proposed to balance
the diversity and convergence [45]. After this pioneering work,
the dynamic adjustment strategy of penalty factor was paid
great attention particularly in [2]. A unique weight vectors
adjustment strategy was devised in [46]. Besides, an idea of
hierarchical decomposition was adopted to assign subproblems
to different hierarchies recently [47]. For the convenience of
readers, we summarize the common improvement modules of
the MOEA/D framework as follows.

Different reproductive operations affect the performance
of population diversity and convergence. In the original
MOEA/D, the simulated binary crossover (SBX) operator was
selected to generate new individuals. It is gratifying that the
differential evolution (DE) operators have been developed to
embed into MOEA/D to improve the performance of the
population in the evolutionary process [48], [49]. Previous
experience was utilized to guide the selection of different DE
operators [50]. An adaptive DE operator selection strategy
based on the current population information was used to
balance the population diversity and convergence [51]. Overall,
the strategy of replacing the SBX operator with DE operator
is greatly meaningful for the newly generated individuals in
the aspect of overall population performance.

The selection range of mating and replacement has a signif-
icant impact on the population diversity and convergence. An
adaptive neighborhood size selection mechanism was devel-
oped to balance the convergence and distribution of individuals
[52]. Different neighborhood sizes were combined together
to select the appropriate size according to the evolutionary
performance of the population [53]. The proper neighborhood
size was assigned to each sub-problem at different evolutionary
stages in [54]. A novel adaptive replacement strategy was
designed to enhance convergence and diversity [55]. It is worth
affirming that the research on the size of mating and replace-
ment greatly improves the performance of the algorithms while
saving computing resources.

III. DTR-MOEA/D

Recent years have witnessed a growing number of MOEA/D
variants that are applied for solving a wide variety of MOP-
s. The proposed DTR-MOEA/D, particularly developed for
handing irregular MOPs, will be described in detail. Below,
we first introduce the reference point dynamic transfer strategy.
Second, we describe the diversity enhancement strategy. Then,
the overall framework of DTR-MOEA/D is designed. At last,
the computational complexity of DTR-MOEA/D is analyzed
in detail.

A. Reference Point Dynamic Transfer Strategy

When solving an MOP, the POF shape of the MOP may be
linear, convex, concave, or other shapes, which in most cases



Fig. 2. Distribution of approximate solutions on convex POF with reference
points Zi® and Z™® respectively.
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Fig. 3. Distribution of projected individuals in the case of two-objective.

is unknown in advance. Besides, on the convex POF with a
sharp peak and long tail, the approximate solutions obtained
by taking the ideal point as the reference point are densely
distributed in the intermediate region and sparsely distributed
at the two ends. However, the distribution of approximate
solutions obtained by using the nadir point as the reference
point is more uniform. Fig. 2 shows a two-objective case.
According to the distribution of approximate solutions to judge
the shape of the POF, and it is of great significance to select the
appropriate reference point for solving this kind of problem.
Under the guidance of this concept, we develop a dynamic
transfer strategy of reference point based on the individual
density relationship in different regions of the projection line
segment or three-dimensional plane.

First, the individuals generated after each iteration are
projected onto a two-dimensional line segment or a three-
dimensional plane. It is well known that the shape of the POF
of an MOP can be convex, concave, mixed, and so on. It
is difficult to accurately judge the density of the individuals
which are approximately distributed on the irregular POF.
In order to accurately judge the distribution of individuals
from a mathematical point of view, we pioneer the concept of
projection and zoning. The approximate individuals obtained
by optimizing the MOP with two-objective are projected onto
a line segment. We take the maximum of two objectives as the
two endpoints of the line segment and divide the segment into
six equal parts. The two segments at the center are marked
as the central region, the two segments at the edges are
marked as the edge region, and the remaining two segments
are marked as the middle region, as shown in Fig. 3. The
individuals projected onto the different regions are marked
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Fig. 5. Distribution of projected individuals in the case of three-objective.

with three different colors. An MOP with three-objective is
taken as an example to illustrate the process of calculating
individual density in different regions, as indicated in Fig. 4.
Note that the side length of the edge triangle is preset. For
the convenience of calculation, we set it to 10a. Other values
are also available. For convergence, we present the relevant
alphabetic symbols and the associated implications in Table I.
The approximate individuals obtained by optimizing the MOP
with three-objective are projected onto a three-dimensional
plane. Note that for the convenience of calculation, the areas
of different regions are not equal, which is different from the
situation of the bi-objective case. The plane is divided into a
central region, a middle region, and an edge region, as shown
in Fig. 5. According to the number of individuals in different
regions, the individual density of the region is calculated.

The individual density in different areas is calculated as
follows:

1 1
A, = 5(10a)2 sin <3w) = 25v/3a> (7)
9c % +a
10c 5 ®
then we get
b="Ta )
Sl 1N 1, (1 49V3
Ay = 2b sm(37r) = 2(7a) sin (377) =—7
(10)
Considering
d
5+2
8¢ 5 t2a (11



TABLE 1
ALPHABETIC SYMBOLS AND IMPLICATIONS

Symbols Meanings
10a Edge triangle side length
10c Edge triangle height
b Middle triangle side Iength
d Central triangle side length
Ae Edge triangle area
Am Middle triangle area
Ae Central triangle area
Ac_m Edge region area
Am—c Middle region area
Ne Number of individuals in edge region
N, Number of individuals in middle region
N Number of individuals in central region
Pe Edge region individual density
Pm Middle region individual density
Pe Central region individual density
and therefore
d = 4a (12)

3 2

The edge region area is computed as

49\/§a2 _ 51V3
4 4

A, = %dQ sin (171') = 1(4@)2 sin (;w) =4v3ad%. (13)

Aon = Ay — A, = 25V3a° — a’. (14)

The middle region area is derived from

49v/3 33v3
= 7[a2 —4V/3a% = 7;[a2.

Ap—c=Am — A (15)

The individual density of the edge region can be calculated
as

N, 4v/3N,
Pe = = Trq.92 - (16)
Acem 153a
The individual density of the middle region is given by
N, 4v/3N,,
P = = (17)
A_e 99a

The individual density of the central region can be obtained
as

N. V3N,
Pe=—F = . (18)
A, 12a2
Then, we have
_@_4\/§Nm 4\/§Ne 71_E& (19)
< pe 9942 \ 153a2 11 N,
_ pe VBN, (4VBN,\7' 33 N, 0
P = o~ 1202 \ 9942 16N,

Then, the dynamic transfer strategy of the reference point
is formulated according to the individual density relationship
of the two adjacent regions. If p= > 1 and pe > 1, it
indicates that the individuals in the population are sparsely
distributed in the edge region, and the individual distribution
density increases gradually from the edge region to the central
region. The reference point should be changed from the ideal
(nadir) point to the nadir (ideal) point. Otherwise, the reference
point attribute remains unchanged.

Generate
offspring individuals

Select mating
parents from B(i)

Generate
offspring individuals

Select mating
parents from F;

Y ave ave
R

The densities of individuals
in the global objective-Space
and the local objective-space
are calculated respectively

Population i Population

_________________ e

Population
projection

|
|
|
|
|
|
|
|
|
|
|
|
J

Calculate the individual density of different regions —4—

Dynamic transfer of
reference point

N The reference
point attribute
remains the same

Fig. 6. The basic architecture of DTR-MOEA/D.

B. Mating Selection Strategy Based on Individual Density in
the Local Objective Space

To further enhance evolutionary performance of the pop-
ulation, in this paper we put forward a novel diversity en-
hancement strategy guided by the relationship between the
individual density knowledge in the global objective-space and
the local objective-space. This paper is the first work that inte-
grates the global objective-space individual density and local
objective-space individual density for guiding mating parents
selection. More specifically, we first calculate the minimum
angle between each individual and the rest of the population
in the global objective-space, labeled 6%, 0%, ..., 0%, respec-
tively, and take the average of these N angles as follows:

On + 0% + -+ 0¥
N

where N denotes the number of the subproblems considered

in DTR-MOEA/D.

Next, we calculate the minimum angle between each indi-
vidual and the rest of the individuals in the local objective-
space, labeled 0} ., 0% .., ..., 0N ;, respectively, and take the
average of these 71" angles as follows:

1 2
ave eifT + eifT + T
i—T T

ave __
HN -

21

0y

(22)

O™ = 62 — o3¢ (23)

where T denotes the number of the weight vectors in the
neighborhood of each weight vector, and ¢ represents the i-th
individual in the population.

At last, the selection range of the mating parents is deter-
mined according to the average value of the individual density



in the global objective-space and the average value of the
individual density in the local objective-space. If #2¢ < 0, it
means that the distribution of individuals in the local objective-
space is denser and the similarity between individuals is higher
than that in the global objective-space. It is reasonable to
select individuals outside the neighborhood as mating parents
that are conducive to increasing the diversity of the offspring
population. Hence, the selection range of the mating parents
can be constrained as follows:

P—{ B(i) if6* >0

F,  otherwise

B(i) = {i1,ia,...,i7}, where AN X2 .. X7 are the T
closest weight vectors to A’. F, represents a solution set that
does not include individuals in B(3). It is worth noting that
we use the DE/rand/1 operator to replace the SBX operator in
the process of generating new individuals. When 62 < 0, we
need to select mating parents from F; to enhance the search
ability in the process of population evolution.

(24)

C. Framework of the Proposed DTR-MOEA/D

Based on the MOEA/D-DE and inspired by the recently
proposed MOEA/D-TPN, we propose the DTR-MOEA/D,
as given in Fig. 6. The designed DTR-MOEA/D is mainly
composed of the reference point dynamic transfer strategy
and the diversity enhancement strategy. Specifically, for the
reference point dynamic transfer strategy, we first calculate the
individual density in different regions and then decide whether
to carry out the reference point transfer operation according to
pm and p.. For the diversity enhancement strategy, we first
calculate the individual density 0%° in the global objective-
space and the individual density 02, in the local objective-
space respectively and then decide to select the appropriate
mating parents from B(i) or F, by judging the relationship
between 6%, and 657°.

The pseudo-code of DTR-MOEA/D is given in Algorithm
1, which can be divided into the following important steps.
First, we initialize the population, reference point, and weight
vectors. Besides, we straightforwardly elaborate the division
of the projection region and the calculation of the individual
density in different regions. Second, we compare the individual
density in different regions. At last, new individuals are
generated. The population and reference point are updated
respectively.

D. Computational Cost of One Generation of DTR-MOEA/D

This subsection analyzes the computational complexity of
our proposed DTR-MOEA/D. For clarity, it is necessary to set
the following parameters: the number of objectives contained
in the MOP is set to M. The population size is set to N.
The number of the weight vectors in the neighborhood of
each weight vector is set to 7. The time complexity of
updating the weight vectors is O(N?). The computational cost
of updating an individual’s neighborhood is O(MNT), so
the computational cost of updating the neighborhood of N
individuals is O(MTN?). It is worth noting that 7T is usually
a relatively small number. Therefore, the computational cost
of DTR-MOEA/D is actually O(M N?).

Algorithm 1 DTR-MOEA/D

Input:
An MOP(1);
The maximum number of iterations: Iy ;
The population size: N;
The number of the weight vectors in the neighborhood
of each weight vector: T';
The penalty parameter: 6;
The maximal number of solutions replaced by each child
solution: n,..

Output:
A set of solutions.

Step 1 Initialization:
Step 1.1 Generate an initial population x!,x2,...,x"V by
uniformly sampling from (2.
Step 1.2 Generate an initial reference point z*.
Step 1.3 Generate N uniformly distributed weight vectors.
Step 1.4 Determine the T weight vectors closest to A’ by
Euclidean distances (: = 1,2,...,N).

Step 2 Projection and Partitioning:
/*For the two-objective optimization problem*/
Step 2.1 Calculate the number of individuals projected
onto the interval of the different line segment.
/*For the three-objective optimization problem*/
Step 2.2 Calculate the area of the center, middle, and edge
regions using equations (7)-(15).
Step 2.3 Calculate the density of individuals in the center,
middle, and edge regions using equations (16)-(18).
Step 2.4 Calculate the density of individuals in the global
objective-space using equation (21).
Step 2.5 Calculate the density of individuals in the local
objective-space using equation (22).

Step 3 Density Evaluation:
Step 3.1 Determine the individual density relationship in
the adjacent two regions of the central region, the middle
region and the edge region using equations (19) and (20).
Step 3.2 Determine the individual density relationship in
the global objective-space and local objective-space using
equation (23).

Step 4 Update:
For:=1,2,...,N, do
Step 4.1 Select the appropriate mating parents according
to equation (24).
Step 4.2 Use DE/rand/1 operator and polynomial mutation
to generate new individuals.
Step 4.3 Use equations (19) and (20) to update the
reference point.
Step 4.4 Update of solutions.

Step 5 Stoping Criterion:
If the stopping criterion is satisfied, then stop and output
a set of non-dominated solutions. Otherwise, go to Step 2.

IV. PERFORMANCE VERIFICATION OF DTR-MOEA/D

This section lists the experimental settings in detail and the
comprehensive analysis of the experimental results. Five rep-
resentative MOEAs with different characteristics are adopted



to compare with the proposed DTR-MOEA/D for dealing with
conventional MOPs and MOPs with irregular Pareto optimal
front shapes.

A. Test Problems and Compared Algorithms

Three test suites consisting of MOPs with various attributes,
e.g., DTLZ [56], WFG [57], and IMOP [58], are introduced
to investigate the performance of DTR-MOEA/D on solving
complex problems. DTLZ [56] and WFG [57] contain 16
widely used benchmark problems with linear, convex, concave,
and discontinuous features. IMOP [58] is composed of 8§ re-
cently designed MOPs with irregular POF shapes. We compare
the proposed DTR-MOEA/D with five representative or state-
of-the-art MOEA/D variants, which include BCE-MOEA/D
[1], ENS-MOEA/D [53], MOEA/D-AWA [36], MOEA/D-TPN
[42], and MOEA/D-FRRMAB [59]. For clarity, we briefly
describe the characteristics of each of the five compared
algorithms as follows:

1) BCE-MOEA/D [1]: Pareto criterion and non-Pareto cri-
terion promote the evolution of each other through a
large number of information exchanges in the process
of evolutionary optimization, and give full play to their
respective advantages while compensates for each other’s
weaknesses.

2) ENS-MOEA/D [53]: K-fixed neighborhood sizes are
selected as a pool of candidate individuals in ENS-
MOEA/D. Each subproblem is assigned a specific neigh-
borhood size according to the candidate individuals’
previous performances of generating improved solutions.

3) MOEA/D-AWA [36]: A novel initialization method of
weight vector is proposed. The sparsity of each individ-
ual is calculated. The subproblems of the overcrowded
regions are deleted and new subproblems are added to the
sparse regions. In addition, the strategy of weight vector
adjustment is carried out periodically.

4) MOEA/D-TPN [42]: The evolution process of the popu-
lation is divided into two stages, and at the end of the
first stage, whether to use the reversed scalar subproblem
is decided by judging the density of the individuals.
In addition, a niche guided update selection strategy is
proposed to improve the population diversity.

5) MOEA/D-FRRMAB [59]: The adaptive DE operator se-
lection strategy based on the bandit is integrated into the
framework of MOEA/D. In the optimization procedure,
according to the received credit values, the appropriate
DE operator is selected to generate new individuals.

B. Experimental Settings

To ensure the fairness of comparison, the baseline algorithm
in all the compared algorithms is replaced by MOEA/D-
DE [48], and these compared algorithms are denoted as
BCE-MOEA/D-DE, AWA-MOEA/D-DE, TPN-MOEA/D-DE,
MAB-MOEA/D-DE, and ENS-MOEA/D-DE, respectively.
Other parameters are kept as the default values in their original
references. The five compared MOEAs and the proposed DTR-
MOEA/D have the same population sizes and function evalua-
tion times on each MOP. The population sizes and evolutionary

TABLE II
SETTINGS OF TEST PROBLEMS

Problem | M | D N In Problem | M | D N In
DTLZI1 3 7 200 | 300 WEFG6 2 22 | 150 | 200
DTLZ2 3 12 | 200 | 300 WEG7 2 22 | 150 | 200
DTLZ3 3 12 | 200 | 300 WFG38 2 22 | 150 | 200
DTLZ4 3 12 | 200 | 300 WFG9 2 22 | 150 | 200
DTLZ5 3 12 | 200 | 300 | IMOPI 2 10 | 150 | 200
DTLZ6 3 12 | 200 | 300 | IMOP2 2 10 | 150 | 200
DTLZ7 3 22 | 200 | 300 | IMOP3 2 10 | 150 | 200
WFG1 2 22 | 150 | 200 | IMOP4 3 10 | 200 | 300
WFG2 2 22 | 150 | 200 | IMOP5 3 10 | 200 | 300
WFG3 2 22 | 150 | 200 | IMOP6 3 10 | 200 | 300
WFG4 2 22 | 150 | 200 | IMOP7 3 10 | 200 | 300
WFG5 2 22 | 150 | 200 | IMOP8 3 10 | 200 | 300

generations of all the test MOPs in the experiment, as well as
the number of objectives and decision variables contained in
each MOP, are listed in Table II. M, D, N, and Iy represent
the number of objectives, the number of decision variables,
the population size, and the iteration times of an MOP,
respectively. The parameters of the comparative algorithms are
set in the same manner as in the original literatures. In DTR-
MOEA/D, the penalty factor and the neighborhood size are set
to § = 5 and T" = 20, respectively. The DE/rand/1 operator
[60] and polynomial mutation operation [61] are applied to
produce new individuals. The control parameters of C'R and
F' are set to 1.0 and 0.5, respectively. The distribution index
and the mutation rate are set to n = 20 and p,,, = %, where
D is the number of decision variables, respectively.

C. Performance Indicators

To comprehensively evaluate the performance of the pro-
posed DTR-MOEA/D and other five typical or state-of-the-art
MOEAs on test problems from the aspects of convergence
and diversity, two typical performance indicators, inverted
generational distance (IGD) [62] and hypervolume (HV) [63],
are employed in this paper.

1) IGD indicator: 1GD needs to obtain a set of uniformly
distributed points on the real POF of a test MOP as a reference
set, which is denoted as Rgs. In the process of population evo-
lution, Ag is a set of new approximate individuals generated
after each iteration. The inverted generational distance from
Rg to Ag is defined as

IGD(Rg, Ag) =

(25)

where d(I,, Ag) is the specified minimum Euclidean distance
between the individual I, and the individuals in Ag.

2) HV indicator: Hypervolume can evaluate the conver-
gence and diversity of a set of individuals simultaneously, so
it is often adopted as a performance indicator to evaluate the
performance of MOEAs. The hypervolume is defined as

HV(Ns) = Leb(UF!5Y)

K2

(26)

where Leb(-) denotes the Lebesgue measure, S} is the su-
pervolume of non-dominant solution and the reference point,
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TABLE III

IMOP TEST INSTANCES

MAB-MOEA/D-DE

ENS-MOEA/D-DE

DTR-MOEA/D

2.8978E-2(2.85E-2)-
4.9284E-2(4.98E-4)—

6.4007E+0(1.06E+1)—

5.8351E-2(4.29E-3)+
7.2269E-3(1.15E-4)—
7.3639E-3(1.47E-5)—
1.4886E-1(3.33E-2)—

2.4673E-1(5.13E-1)-
4.8941E-2(3.08E-4)—
7.0922E+0(9.78E+0)—
9.7495E-2(9.64E-2)—
7.3173E-3(5.35E-5)-
7.3882E-3(1.05E-5)-
1.8844E-1(8.73E-2)—

2.6132E-2(3.18E-4)
3.4026E-2(2.61E-4)
7.2615E-1(2.17E-3)
6.5164E-2(5.27E-2)
2.3572E-3(6.37E-5)
7.0729E-3(5.82E-5)
3.5274E-2(8.62E-3)

1.2021E+0(2.68E2)—
5.2351E-2(1.43E-2)~
5.4612E-2(1.38E-2)—
1.1904E-1(1.45E-2)—
6.8321E-2(1.59E-3)—
1.0205E-1(2.75E-2)—
2.2370E-2(5.16E-3)+
1.3445E-1(4.16E-2)—
1.0909E-1(2.72E-2)—

1.1728E+0(2.42E-2)—
4.2874E-2(1.15E-2)—
2.4604E-2(4.70E-3)-
8.9843E-2(9.20E-3)-
6.7116E-2(2.32E-3)-
8.8921E-2(3.55E-2)—
1.4949E-2(2.39E-3)+
1.0880E-1(2.03E-2)-
4.3595E-2(3.46E-2)—

1.8725E-1(4.41E-3)
4.1573E-2(5.26E-4)
1.3826E-2(7.52E-3)
8.3274E-3(1.92E-4)
6.2751E-2(2.85E-3)
5.4713E-2(3.68E-2)
2.7185E-2(6.55E-3)
7.3726E-2(4.28E-4)
3.2813E-2(2.73E-2)

Problem  BCE-MOEA/D-DE  AWA-MOEA/DDE _ TPN-MOEA/D-DE

DTLZI  1.4551E-2(1.58E-4)+ 1.1027E-1(1.22E-1)— 3.5661E-2(5.08E-2)—
DTLZ2  3.8935E-2(1.86E-4)- 1.8661E-1(4.05E-2)- 3.5783E-2(2.62E-4)~
DTLZ3  3.4642E-1(1.43E+0)+ 1.1277E+1(3.06E+1)— 2.4603E+0(5.39E+0)—
DTLZ4  4.1286E-2(6.21E-4)+ 7.8842E-2(8.09E-2)- 7.6631E-2(7.20E-2)—
DTLZ5  2.5834E-3(8.02E-5)- 7.7628E-3(1.31E-3)- 7.3975E-3(2.89E-4)—
DTLZ6  2.1934E-3(1.46E-5)+ 5.4503E-3(2.85E-4)+ 7.6736E-3(1.83E-5)—
DTLZ7  8.1707E-2(1.04E-1)- 4.2710E-1(1.48E-1)- 9.3712E+0(9.34E-1)-
WFGI T.0430E+0(5.60E-2)— 9.2907E-1(1.17E-1)~ 1.6291E+0(4.62E-1)~
WFG2 1.6810E-2(2.08E-3)+ 2.7531E-1(4.51E-2)- 4.7855E-2(8.34E-3)—
WFG3 2.6107E-2(3.41E-3)- 2.3731E-1(2.75E-2)- 3.9385E-2(6.16E-3)-
WFG4 6.2936E-2(6.70E-3)— 1.1603E-1(1.18E-2)- 8.8484E-2(1.02E-2)—
WFGS5 6.3770E-2(5.43E-4)~ 2.0283E-1(5.42E-2)- 6.8081E-2(1.74E-3)-
WFG6 9.0477E-2(3.53E-2)- 3.6335E-1(3.82E-2)- 1.0559E-1(2.27E-2)—
WFG7 1.5267E-2(1.00E-3)+ 2.2798E-1(2.52E-2)- 1.5830E-2(1.14E-3)+
WFG8 8.7306E-2(7.14E-3)~ 3.4678E-1(2.50E-2)- 9.1513E-2(8.93E-3)—
WFG9 5.4953E-2(3.91E-2)- 1.3420E-1(3.36E-2)- 7.2536E-2(4.15E-2)—
IMOP1 __ 1.6300E-2(4.14E-3)— 1.0096E-1(1.42E-2)— 1.4045E-2(4.05E-3)~
IMOP2  1.4265E-1(1.96E-1)- 7.1467E-1(6.79E-3)- 5.5322E-2(3.05E-2)-
IMOP3  6.0309E-3(1.10E-3)- 6.3572E-1(1.45E-1)- 1.0038E-2(1.20E-3)—
IMOP4  5.7370E-3(3.44E-4)+ 9.8861E-3(7.06E-4)+ 1.2253E-2(4.38E-4)+
IMOP5  4.0203E-2(7.18E-3)- 6.1899E-2(1.35E-2)~ 6.3589E-2(1.84E-2)~
IMOP6  2.2945E-2(6.10E-4)+ 3.4165E-2(2.71E-3)- 2.4308E-2(8.17E-4)+
IMOP7  2.8593E-2(2.86E-3)- 7.6158E-1(2.48E-1)- 8.1634E-2(3.92E-2)—
IMOP8  5.9826E-2(1.27B-3)- 1.0066E-1(5.66E-3)~ 5.8717E-1(6.53E-1)—

9.2770E-2(2.34E-3)—
3.4078E-2(9.82E-3)~
9.7109E-3(1.19E-3)—
1.3212E-2(1.52E-3)+
7.0750E-2(2.05E-2)—
3.3748E-2(6.16E-4)—
5.2785E-2(4.43E-3)—
1.7160E-1(1.01E-2)—

9.2965E-2(2.06E-3)—
3.0928E-2(3.15E-3)+
1.0893E-2(1.30E-3)-
1.3486E-2(1.77E-3)+
5.9710E-2(9.58E-3)-
3.3490E-2(4.97E-4)~
1.3552E-1(2.55E-1)-
1.7994E-1(1.05E-2)-

1.1826E-2(5.22E-3)
3.1082E-2(2.53E-3)
3.4927E-3(1.26E-3)
1.6528E-2(6.31E-4)
2.2583E-2(5.95E-4)
2.6172E-2(1.62E-4)
2.3374E-2(8.26E-2)
5.3792E-2(7.16E-4)
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and Ng denotes a set of the non-dominant solutions. In the
experiments, the reference point is set to (1.1,1.1)T and
(1.1,1.1,1.1)T for bi-objective and tri-objective test cases,
respectively.

Note that the larger the HV value (the lower the IGD value)
of an MOEA on a test MOP, the better the performance of
the MOEA. In order to make the experimental comparison
more reliable, the results of each MOEA on each test MOP
are obtained by executing 30 independent experimental runs,
and the mean and standard deviation values are recorded.
The statistically significant differences in IGD and HV values
between each compared MOEA and the proposed DTR-
MOEA/D are evaluated using the Wilcoxon rank sum test
[64] with a significance a-level (o« = 0.05). The mathematical
symbols “ 4+ 7 “ — "7 and “ ~ ” are employed to denote
that the indicator values obtained by each compared MOEA
is significantly better, worse, and similar to that of proposed
DTR-MOEA/D, respectively.

D. Performance Comparisons

1) Comparison on the DTLZ Test Problems: We first cal-
culate the IGD performance indicator value of the designed
DTR-MOEA/D and five other compared evolutionary algo-
rithms on the DTLZ test suite. As reported in Table III,
the proposed DTR-MOEA/D and BCE-MOEA/D-DE have
attained inspiringly performance on DTLZI1-DTLZ7 MOP-
s. The DTR-MOEA/D on DTLZ2, DTLZS, and DTLZ7
achieved the least mean inverted generational distance com-
pared with BCE-MOEA/D-DE, AWA-MOEA/D-DE, TPN-
MOEA/D-DE, MAB-MOEA/D-DE, and ENS-MOEA/D-DE,
respectively. We can find that the ENS-MOEA/D-DE gets the
worst results on the seven MOPs compared with other algo-
rithms. As previously discussed, the neighborhood size plays

an important role in population diversity and convergence.
Although there are several neighborhood sizes that can be
selected by ENS-MOEA/D-DE, the neighborhood size can not
be adjusted adaptively according to the evolution state of the
population, which affects the performance of the population
in the evolution process to some extent.

Furthermore, the HV indicator is used to evaluate the
performance of the designed DTR-MOEA/D and the other five
compared MOEAs on the DTLZ test suite. As shown in Table
IV, our devised DTR-MOEA/D has achieved remarkably better
performance than those MOEAs. Specifically, DTR-MOEA/D,
BCE-MOEA/D-DE, AWA-MOEA/D-DE, TPN-MOEA/D-DE,
MAB-MOEA/D-DE, and ENS-MOEA/D-DE obtain a better
HV value in four, two, zero, one, zero, and zero out of the 7
test MOPs, respectively.

2) Comparison on the WFG Test Problems: The WFG test
suite is widely adopted to test the performance of the MOEAs
designated for tackling MOPs involving linear, convex, con-
cave, mixed, degenerate, and disconnected Pareto optimal ge-
ometries. Table III presents the IGD value ( mean and standard
deviation) of individuals obtained by DTR-MOEA/D and other
popular and classical MOEA/D variants on solving MOPs
from WFG1 to WFG9. Overall, our proposed DTR-MOEA/D
has achieved the best performance among the five evolutionary
algorithms under comparison in terms of IGD indicator. The
DTR-MOEA/D wins on 7 test problems in terms of IGD out of
9 test MOPs in total. In contrast, BCE-MOEA/D-DE, AWA-
MOEA/D-DE, TPN-MOEA/D-DE, MAB-MOEA/D-DE, and
ENS-MOEA/D-DE win one, zero, zero, zero, and one test
problems in terms of IGD out of 9 test MOPs, respectively. We
find that BCE-MOEA/D-DE achieves the least mean inverted
generational distance on WFG2, the reason is that the dual-
criterion evolution mechanism composed of Pareto criteri-
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TABLE IV

IMOP TEST INSTANCES

MAB-MOEA/D-DE ENS-MOEA/D-DE ~ DTR-MOEA/D

8.0245E-1(7.52E-2)-
5.5312E-1(1.65E-3)~
1.4453E-1(2.09E-1)-
5.5590E-1(9.77E-4)~
1.9828E-1(6.90E-5)—
1.9864E-1(7.89E-6)—
2.4444E-1(4.84E-3)+

6.0975E-1(3.46E-1)-
5.5304E-1(1.27E-3)-
9.1252E-2(1.66E-1)-
5.3805E-1(4.49E-2)-
1.9850E-1(2.93E-5)—
1.9863E-1(5.14E-6)—
2.4431E-1(4.76E-3)+

8.2517E-1(2.51E-2)
5.7229E-1(1.53E-4)
5.8351E-1(2.92E-3)
5.8164E-1(3.84E-3)
2.1464E-1(7.05E-3)
2.2546E-1(1.46E-5)
2.3128E-1(4.61E-3)

1.8483E-1(5.75E-3)—
6.0381E-1(9.99E-3)—
5.5506E-1(7.80E-3)—
2.9468E-1(4.54E-3)—
3.0886E-1(1.34E-3)—
2.9284E-1(1.54E-2)—
3.3844E-1(2.84E-3)—
2.7996E-1(1.99E-2)—
2.8786E-1(1.53E-2)—

1.8789E-1(5.26E-3)—
6.1101E-1(8.53E-3)-
5.7203E-1(2.69E-3)~
3.0265E-1(4.53E-3)-
3.0993E-1(2.04E-3)~
3.0011E-1(1.97E-2)-
3.4279E-1(1.39E-3)+
2.9110E-1(1.02E-2)—
3.2348E-1(1.90E-2)+

4.9275E-1(7.22E-4)
6.2857E-1(4.16E-3)
5.8826E-1(2.53E-4)
3.3761E-1(2.55E-4)
3.2815E-1(4.11E-3)
3.2275E-1(5.64E-3)
3.3954E-1(2.26E-2)
3.1732E-1(8.02E-2)
3.2068E-1(2.31E-2)

Problem  BCE-MOEA/D-DE ~ AWA-MOEA/D-DE TPN-MOEA/D-DE

DTLZ1 8.5002E-1(7.54E-4)+ 6.6768E-1(1.73E-1)- 7.9979E-1(1.17E-1)-
DTLZ2 5.6854E-1(6.02E-4)~ 4.2589E-1(2.78E-2)— S5.7280E-1(2.43E-4)+
DTLZ3 5.1207E-1(1.41E-1)- 2.9276E-1(1.69E-1)- 2.6702E-1(2.41E-1)-
DTLZ4 5.6594E-1(7.64E-4)—- 5.5691E-1(2.98E-2)— 5.6010E-1(2.73E-2)-
DTLZ5 2.0079E-1(7.47E-5)~ 1.9755E-1(6.30E-4)— 1.9942E-1(5.63E-5)~
DTLZ6 2.0147E-1(1.23E-5)- 1.9922E-1(1.47E-4)- 1.9978E-1(1.18E-5)—
DTLZ7 2.7569E-1(1.27E-2)+ 2.2812E-1(1.15E-2)— 0.0000E+0(0.00E+0)—
WFG1 2.3768E-1(1.97E-2)- 2.7483E-1(3.88E-2)- 9.3260E-2(9.53E-2)—
WEFG2 6.2582E-1(1.37E-3)- 5.5965E-1(1.28E-2)- 6.0471E-1(6.35E-3)-
WFG3 5.7141E-1(1.90E-3)- 4.7854E-1(1.12E-2)~ 5.6366E-1(3.45E-3)~
WFG4 3.1990E-1(2.93E-3)- 2.8682E-1(5.53E-3)- 3.0489E-1(3.45E-3)—
WEGS 3.1366E-1(7.40E-4)- 2.6068E-1(2.19E-2)- 3.0922E-1(1.57E-3)—
WFG6 2.9978E-1(1.95E-2)- 2.0665E-1(1.80E-2)- 2.9096E-1(1.26E-2)—
WEG7 3.4280E-1(6.04E-4)+ 2.5661E-1(5.83E-3)— 3.4185E-1(6.64E-4)+
WFGS 3.0173E-1(3.68E-3)— 2.1457E-1(6.93E-3)- 2.9915E-1(4.48E-3)~
WEFG9 3.1925E-1(2.17E-2)~ 2.7788E-1(7.85E-3)- 3.0802E-1(2.27E-2)—
IMOP1 9.8765E-1(3.02E-5)- 9.7073E-1(9.23E-3)— 9.8789E-1(2.14E-5)-
IMOP2 1.9923E-1(5.87E-2)- 9.0918E-2(3.49E-6)— 2.1859E-1(2.14E-2)-
IMOP3 6.5791E-1(6.19E-4)- 1.3408E-1(2.96E-2)— 6.5640E-1(4.40E-4)—
IMOP4 4.3502E-1(2.32E-4)- 4.3299E-1(3.79E-4)~ 4.3296E-1(3.44E-4)~
IMOP5 5.3947E-1(1.18E-2)+ 5.3442E-1(6.69E-3)— 5.2853E-1(1.09E-3)-
IMOP6 5.3758E-1(5.34E-4)- 5.2757E-1(1.84E-3)— 5.3867E-1(7.14E-4)~
IMOP7 5.3392E-1(1.05E-3)- 1.4501E-1(1.12E-1)- 4.6082E-1(6.85E-2)—
IMOPS8 5.3215E-1(2.36E-3)- 5.2316E-1(8.17E-3)— 3.5868E-1(2.08E-1)-

9.8595E-1(7.98E-5)—
2.3097E-1(1.05E-3)—
5.5649E-1(4.48E-4)—
4.3207E-1(8.80E-4)~
5.2818E-1(1.19E-2)—
5.2614E-1(7.18E-4)—
5.1455B-1(2.29E-3)~
4.6520E-1(5.48E-3)—

9.8597E-1(8.32E-5)-
2.3139E-1(1.92E-4)-
6.5614E-1(4.70E-4)—
4.3216E-1(9.64E-4)—
5.3398E-1(9.71E-3)~
5.2829E-1(6.41E-4)-
4.7374E-1(1.28E-1)-
4.6632E-1(4.86E-3)—

9.8825E-1(5.31E-5)
2.3794E-1(5.33E-4)
6.6182E-1(4.28E-3)
4.3705E-1(2.61E-4)
5.3517E-1(7.59E-3)
5.4126E-1(6.38E-4)
5.3974E-1(3.52E-2)
5.3581E-1(6.27E-2)

¥/ =/~ 4183 02272 21775

1/20/3 3/18/3

on and non-Pareto criterion has advantages in dealing with
problems involving convex and disconnected Pareto optimal
geometries.

The HV indicator values obtained by DTR-MOEA/D and
five other compared algorithms on different test problems are
listed in Table IV. As seen, the devised DTR-MOEA/D works
quite efficiently. Additionally, we also present the statistical
significance of DTR-MOEA/D and other five algorithms. We
can observe that, despite that DTR-MOEA/D does not achieve
the maximum HYV value for all test problems such as WFG7
and WFGY, the statistical results of most test problems are
significantly better than those of other algorithms.

3) Comparison on the IMOP Test Problems: Besides the
above two benchmark test suites used for numerical compari-
son, more attention has been paid to solve other multiobjective
testing problems with irregular Pareto front shapes. IMOP test
suite is a typical MOP suite, which contains of eight MOPs
with highly irregular Pareto optimal front shapes. The Pareto
optimal fronts of IMOP1 and IMOP?2 are strong convex and
strong concave with long tails and sharp peaks, respectively.
IMOP3 has a discontinuous Pareto front. IMOP4-IMOPS8 have
highly irregular Pareto fronts, respectively. Table III shows
the mean and standard deviation IGD values of the solutions
obtained by six algorithms in 30 independent runs. Clearly,
the designed DTR-MOEA/D is statistically significantly better
than the other five comparative algorithms. It wins on 5 out
of 8 test problems in terms of the IGD values. Among the six
evolutionary algorithms, however, AWA-MOEA/D-DE, TPN-
MOEA/D-DE, and MAB-MOEA/D-DE do not perform well
when solving IMOP1-IMOPS test problems. BCE-MOEA/D-
DE only achieved the minimum inverted generational dis-
tance on IMOP4 and IMOP6. We can easily find that TPN-
MOEA/D-DE performs well on IMOP4 and IMOP6. From

these IGD results, we can ascertain that the devised DTR-
MOEA/D has superior to the other algorithms. We further
demonstrate the performance of different algorithms under the
HYV indicator. As shown in Table IV, our DTR-MOEA/D has
achieved better performance than the other algorithms on all
the IMOP test problems.

As can be observed from Tables III and IV, the devised
DTR-MOEA/D generally performs better than the other com-
pared evolutionary algorithms. More specifically, the DTR-
MOEA/D achieve the minimum inverted generational dis-
tance value in 15 out of the 24 test problems, followed by
BCE-MOEA/D-DE and ENS-MOEA/D-DE achieving 7 and
2 best results, respectively. In terms of the Wilcoxon rank
sum test, the proportion of test problems where our pro-
posed DTR-MOEA/D has inspiringly better IGD values than
BCE-MOEA/D-DE, AWA-MOEA/D-DE, TPN-MOEA/D-DE,
MAB-MOEA/D-DE, and ENS-MOEA/D-DE is 14/24, 21/24,
18/24, 19/24, and 20/24, respectively. For HV, our DTR-
MOEA/D achieve the maximum HV value in 18 out of the 24
test MOPs, followed by BCE-MOEA/D-DE, TPN-MOEA/D-
DE, and ENS-MOEA/D-DE achieving 4, 1, and 1 best results,
respectively. Additionally, the proportion of test MOPs where
the DTR-MOEA/D has inspiringly better HV values than
BCE-MOEA/D-DE, AWA-MOEA/D-DE, TPN-MOEA/D-DE,
MAB-MOEA/D-DE, and ENS-MOEA/D-DE is 17/24, 22/24,
17/24, 20/24, and 18/24, respectively.

In order to intuitively observe the performance of the de-
signed DTR-MOEA/D and the other comparative algorithms,
Fig. 7 clearly depicts the solutions with the lowest IGD
obtained by different evolutionary algorithms on DTLZ2,
WFGI1, WFG4, IMOP1, IMOP3, and IMOPS. As illustrated in
Fig. 7, it is not difficult to observe that the solutions obtained
by our devised DTR-MOEA/D on various multiobjective test



Fig.

7.
TPN-MOEA/D-DE, MAB-MOEA/D-DE, ENS-MOEA/D-DE, and DTR-MOEA/D on DTLZ2, WFG1, WFG4, IMOP1, IMOP3, and IMOPS.
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Pareto fronts and the final solutions with the lowest IGD value among 30 independent runs obtained by BCE-MOEA/D-DE, AWA-MOEA/D-DE,



problems can be well distributed over the entire Pareto optimal
fronts. For the WFGI test problem, which has a mixed con-
vex/concave POF, the solutions of BCE-MOEA/D-DE, AWA-
MOEA/D-DE, TPN-MOEA/D-DE, MAB-MOEA/D-DE, and
ENS-MOEA/D-DE on WFGI1 after the same function evalua-
tion times can not converge to the POF, and the distribution of
solutions is not uniform, showing the phenomenon of dense
in the middle and sparse at both ends. The reason why DTR-
MOEA/D can achieve superior performance on WFGI is
lie in the dynamic transfer strategy of reference point and
the diversity enhancement strategy based on local objective-
space knowledge. These two measures also ensure that the
solutions obtained by DTR-MOEA/D on other test problems
can be distributed in the whole POF while guaranteeing the
convergence.

E. Discussions

Although the proposed DTR-MOEA/D has attained the best
overall performance among all the comparative algorithms
used in this paper, it does not always perform satisfactorily.
As shown in Fig. 7, although DTR-MOEA/D achieves the
best performance among the six algorithms on WFGI, the
obtained non-dominated individuals are not well distributed
on the whole POF. This is also the case for IMOP1. The
poor performance in extreme regions shows that although the
reference point transfer strategy and the diversity enhancement
strategy based on the knowledge in the local objective-space
can promote the uniform distribution of individuals to a certain
extent, they still can not solve the strong convex or strong
concave problem well. How to ensure the uniform distribution
of individuals in extreme regions is one of the future research
directions. In addition, it is worthwhile to emphasize that the
dynamic transfer strategy of reference point guided by the
density of individuals in different regions can better ensure
the diversity of individuals in solving MOPs with irregular
Pareto front shape compared with the two-stage strategy. As
is clearly seen from the statistical results in Tables III and
IV, TPN-MOEA/D-DE performed better than DTR-MOEA/D
in 3 and 2 of the 24 test problems, respectively. The TPN-
MOEA/D-DE with the ideal point as the reference point
would decide whether to change the reference point when
the evolution generation reaches 0.7/ . This strategy is not
conducive to maintaining the diversity of the population when
solving MOPs with concave, mixed, and other irregular Pareto
optimal front shapes.

We further compare the IGD and HV values of DTR-
MOEA/D and MAB-MOEA/D-DE on three test suites. The
statistical results show that DTR-MOEA/D is significantly
better than MAB-MOEA/D-DE in solving MOPs. In the pro-
cess of population evolution, MAB-MOEA/D-DE randomly
selected mating parents from a specific population, and there
was no reference to the individual density information in the
evolution process. Additionally, MAB-MOEA/D-DE only uses
DE operator adaptive strategy and hence can not guarantee the
uniform distribution of individuals in the whole irregular POF.
One can see that, in general, our proposed DTR-MOEA/D al-
so outperforms BCE-MOEA/D-DE, AWA-MOEA/D-DE, and
ENS-MOEA/D-DE on 24 multiobjective test problems.

V. CONCLUSIONS

In comparison to existing evolutionary algorithms, there are
some spotlights in our work. First, the reference point dynamic
transfer strategy is developed based on the density relationship
of individuals in different mapping regions. Second, the diver-
sity enhancement strategy is based on the relationship between
the individual density in the local objective-space and that in
the global objective-space. We further systematically integrate
the above two strategies into the MOEA/D-DE framework
to propose the final DTR-MOEA/D. Via experiments, the
proposed DTR-MOEA/D has achieved noticeably better per-
formance than the state-of-the-art MOEAs.

The proposed DTR-MOEA/D has demonstrated that the
reference point dynamic transfer strategy and the diversity
enhancement strategy are promising strategies for solving
MOPs. However, further investigation of applying the above
two strategies to other MOEAs is still desirable, especially on
MOPs with time-varying decision variables or time-varying
number of objectives. Additionally, it will be very meaningful
for us to use DTR-MOEA/D to solve problems in the industrial
field. For example, the urban wastewater treatment process is a
multi-objective dynamic optimization process which contains
multiple conflicting objectives. DTR-MOEA/D can be used to
solve the conflict between the three objectives of aeration en-
ergy consumption, pumping energy consumption, and effluent
quality in the wastewater treatment process, so as to achieve
the purpose of reducing energy consumption and improving
effluent quality. This is of great practical significance for
saving energy and realizing the recycling of wastewater.
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