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Abstract: Joint time series of wave height, period and direction are essential input data to computa-
tional models which are used to simulate diachronic beach evolution in coastal engineering. However,
it is often impractical to collect a large amount of the required input data due to the expense. Based
on the nearshore wave records offshore of Littlehampton in Southeast England over the period from
1 September 2003 to 30 June 2016, this paper presents a statistical method to obtain simulated joint
time series of wave height, period and direction covering an extended time span of a decade or
more. The method is based on a vector auto-regressive moving average algorithm. The simulated
times series shows a satisfactory degree of stochastic agreement between original and simulated time
series, including average value, marginal distribution, autocorrelation and cross-correlation structure,
which are important for Monte Carlo modelling of shoreline evolution, thereby allowing ensemble
prediction of shoreline response to a variable wave climate.

Keywords: VAR model; wave time series; autocorrelation; cross-correlation

1. Introduction

Simulation of time series plays an important role in many areas due to the high cost in
obtaining in situ measurements. In the field of coastal engineering simulation of wave time
series has been used for estimating the duration of storm events and their spacing in time,
see e.g., [1,2], with the aim of assessing the risk of serious beach erosion [3,4]. Typically, a
relatively short record of measured wave conditions is available, hence to perform Monte
Carlo simulation of coastal flooding or erosion, wave sequences with similar statistics
are required. This problem is particularly challenging and may be stated as simulating
a non-stationary non-normal, correlated, trivariate stochastic process, given a sample or
realisation of the process. Several methods have been proposed for tackling this type of
problem. For example, Li and Winker [5] proposed a Monte Carlo method, or a quasi
Monte Carlo method, to obtain simulated time series from a vector autoregressive moving
average (VARMA) model fitted to sample data. Barone [6] described a simulation method
that can be used to generate realisations of a VARMA process, while Shea [7] discussed a
direct method of computing the initial state covariance matrix required by the simulation
method. However, these methods cannot ensure the marginal distributions, and/or the
autocorrelation patterns of the simulated data are the same as those of the sample. On
the other hand, representative wave events obtained via a K-Means algorithm clustering
technique has been used for studying port operability and long-term longshore sediment
transport, but this suffers from not taking extreme wave events into account [8].

Methods to simplify the problem include a technique for simulating time series of
wave height, period and direction, accounting for seasonality on a monthly mean basis [2].
This can suffer from jumps in the mean of variables at the changeover between consecutive
months. Focusing on wave height and period only, bivariate autoregressive models were
proposed by Soares and Cunha [9]. Recently, Cai [10] and Cai et al. [11] generalised the work
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of [12,13] in order to obtain simulated multivariate time series. However, these methods
are suitable for stationary time series only, and hence, they cannot be used to generate
the non-stationary wave conditions observed widely in practice. Although Cai et al. [14]
developed a simulation method for non-stationary time series, this method is suitable
only for short non-stationary time series due to relatively higher computational cost, and
therefore is not suitable for wave time series corresponding to long-term measurements.

The purpose of this paper is to extend the method of [10] to recreate both the statistics
and lag correlation properties of a non-stationary, multivariate wave record spanning many
years. The data used here are multivariate, correlated and non-stationary. The reader is
referred to [15–17]. Furthermore, this study relaxes the constraints of describing seasonality
of all wave variables with a single functional form. More specifically, the seasonality
of wave height and period time series were not assumed to have the same form as the
seasonality of wave direction.

This paper is organised as follows. In Section 2, the theoretical background of the
model is presented; in Section 3 the measurements from the study site and the approaches
we used for removing the trends and seasonality are discussed. The simulation results are
demonstrated in Section 4. Finally, discussion and conclusions are presented in Section 5.

2. Methodology
2.1. Outline

Let Et = (E1t,E2t,E3t) denote observed sea condition data, where E1t is the wave height,
E2t is wave period and E3t is the wave direction, and the subscript t indicates waves at
time t. As discussed in the previous section, the main objective of this research is to obtain
simulated sea condition data, denoted by Ẽt =

(
Ẽ1t, Ẽ2t, Ẽ3t

)
, such that the simulated data

will have similar trend, seasonality, autocorrelation structures and marginal distributions
with those of the observed Et.

It is worth noting that the method of [10] requires that the observed data are stationary.
Hence, it is important to convert the observed wave data into stationary ones. More
specifically, our method includes the following steps: (i) Remove the trend and seasonality
from the observed data to produce stationary series; (ii) apply the method of [10] to the
series obtained from step (i); (iii) include the trend and seasonality into the simulated
data obtained from step (ii) to generate the final simulated data that we require. Figure 1
illustrates our proposed methodology:
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First note that in this application, we consider the trend and seasonality to be additive.
That is, each Ekt for k = 1, 2, 3 can be expressed by Ekt = Tkt + Skt + ykt, where Tkt and Skt
represent the trend and seasonality components, respectively, and ykt is the detrended and
deseasonalised data that will be used in step (ii) of our method.

For wave directions, the sample was first transformed to create a variable with similar
magnitude and range as that of wave height and period, (see Section 3), before the trend
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was estimated and removed as per the treatment of wave height and period. Then, a linear
trend for each variable and an autoregressive process model of order 5 for wave height and
period were estimated, which were subtracted from the original data to give the detrended
data Ekt − Tkt.

For seasonality Skt, as waves are driven by atmospheric winds, their characteristics will
reflect the seasonal changes in the weather. However, at any particular location, the wave
conditions may be a combination of waves from several sources so that ‘seasonality’ in the
literal sense may not be reflected in wave height, period and angle in an identical manner.
The seasonality parameters were determined using least squares estimation. Specifically, to
estimate the seasonal component of each one of the three wave time series, sums comprising
of gradually increasing numbers of sine or Fourier terms were successively tested via the
Augmented Dickey-Fuller test [18], until the suitable combination of seasonal components
were obtained. Then, the selected seasonal components were removed from the wave
time series. To this end, an existing routine in MATLAB [19] was applied for testing the
stationarity of the wave time series via the Augmented Dickey-Fuller test. This routine
gives as output the value 0 for non-stationary data and 1 for stationary data. Following this
method, the seasonality of wave height and period time series were described via a sum of
sine terms while the seasonality of wave directions was described via a sum of Fourier terms.
After removal of the trend and seasonal component the detrended and deseasonalised
series are given by ykt = Ekt − Tkt − Skt, which is a vector sequence, (trivariate—with wave
height, period, and direction), that is stationary, correlated and non-normal.

Once the detrended and deseasonalised series ykt for k = 1,2,3 have been computed,
and successfully tested for stationarity, a vector VAR (vector auto-regressive) method,
(outlined in the next section), may be applied to obtain simulated data for ykt. This may
then be transformed back to obtain simulated data for Ekt with the correct seasonality
and trend.

2.2. Detailed Methodology

Following [10], let the base process of the method be a vector AR (auto-regressive)
process of order p, denoted by VAR(p), defined by

zt = ϕ1zt−1 + ϕ2zt−2 + · · ·+ ϕpzt−p + ut (1)

where zt = (z1t,z2t,z3t)′, zkt ∼ N(0,1) for k = 1, 2, 3, φi are fixed 3 × 3 coefficient matrices,
I = 1, ..., p, and ut = (u1t,u2t,u3t)′ is a 3-dimensional normal random variable with mean 0
and covariance matrix Σu such that

E(utu′t−h) =

{
Σu if h = 0

03x3 otherwise

where

Σu =

 s11 s12 s13
s21 s22 s23
s31 s32 s33


(2)

and
sij = E(uitujt) for i, j = 1, 2, 3

with

ϕi =

 ϕi11 ϕi12 ϕi13
ϕi21 ϕi22 ϕi23
ϕi31 ϕi32 ϕi33


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It follows, see e.g., [20], that the correlation matrix function of zt is given by Γ(h) =
E
(
ztz′t−h

)
, where h = 0,1,2,..., H and

Γ(0)=∑p
l=1φlΓ(0−l)+Σu (3)

Γ(h)=∑p
l=1φlΓ(h−l)

Γ(h)=(rijh)3×3=

 r11h r12h r13h
r21h r22h r23h
r31h r32h r33h

, Γ(0)=(rij0)3×3=

 1 r120 r130
r120 1 r230
r130 r230 1


where H is a fixed number that defines the maximum lag value we would like to consider
for matching the autocorrelation structures between the simulated and the observed time
series, rijh is the correlation between zit and zjt+h and i,j = 1, 2, 3, and Γ(−h) = Γ′(h).

The simulation method requires the estimation of φi, rijh and Σu. The correlations rijh
can be obtained by solving the following non-linear equations

ρijh =

∫ ∞
−∞

∫ ∞
−∞ F−1

i (Φ(zit))F−1
j

(
Φ
(

zjt+h

))
ξrijh

(
zit, zjt+h

)
dzitdzjt+h − E(yit)E

(
yjt+h

)
√

var(yit)var
(

yjt+h

) (4)

where ρijh is the correlation between two stationary time series corresponding to the original
input data, Fj(·) is the marginal distribution of yj and hence Fj

−1(·) represents its inverse
function; Φ(·) is the distribution function of the standard normal distribution; ξrijh(·,·) is
the joint density function of two normal variables with mean zero and correlation rijh; E(yit)
is the mean of yit, and var(yit) is the variance ofyit. An explanation about how Equation (4)
is derived is presented in the Appendix A.

Thus, given the sample data Et, we determined detrended and deseasonalised data yit.
Setting Fj(·) equal to the empirical distribution of yjt and setting E(yit) and var(yit) equal
to the sample mean and variance of yit respectively, and replacing ρijh with the sample
autocorrelation of yit and yjt+h, the rijh can be obtained by solving the resulting non-linear
equations using the methods detailed in the Appendix B. Once the rijh’s are available, φi
and Σu for i = 1,...,p can be obtained by solving Equation (3).

Hence, with rijh, φi and Σu determined the simulated data can be produced as follows:
(i) Obtain simulated data from the base process (Equation (1)); (ii) use the simulated
zt = (z1t,z2t,z3t) to obtain simulated yit for i = 1,2,3. To this end, the corresponding values
of the normal cumulative distribution function, Φ(zt), are calculated given as input data
the simulated values zt. Then, the Φ(zt) values are interpolated in the empirical marginal
distribution set of values with respect to the wave parameters (height (for i = 1), period
(for i = 2) and direction (for i = 3) to yield the simulated data yit. (iii) Finally, the trend
and seasonality components that had been removed before (see Figure 1) are re-added
to yit to yield the simulated time series Eit for i = 1,2,3 as required. The whole process is
schematised in Figure 2.
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3. Case-Study and Data Processing

For our test case we have chosen Littlehampton which is located in Southeast England
(Figure 3a).
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Figure 3. (a) Littlehampton beach lies in Southeast England; (b) a rose diagram illustrating the
predominant wave direction from southwest to northeast,where the numbers indicate degrees
from North.

Wave measurements were accessed from the Channel Coastal Observatory, a UK
organisation which collects and archives coastal field-data. Specifically, time series of
significant wave height (Hs), peak wave period (Tp) and wave direction (α) relative to
North, between the 1st of July 2003 and the 30th of June 2016 were gathered. Integrated
wave parameters were available at an interval of 30 min at a location 4 miles SSE of
Littlehampton harbour entrance; observations were made with a Datawell Directional
WaveRider Mk III buoy moored in approximately 10 m water. The wave rose of the
13 year record is illustrated in Figure 3b. This shows a wave climate with a predominant
southwesterly approach and a secondary peak in waves from the southeast. Waves from
the southwest are typically a mixture of locally generated wind waves and swell waves
from Atlantic storms. Southeasterly waves are fetch-limited storm waves generated by the
northern part of low-pressure systems that track to the south of the UK [21].

The wave records were averaged to create a time series of daily wave conditions, as
our focus is on storm events rather than wave by wave fluctuations. The daily data are
shown in Figure 4, in which seasonality is visually evident.



Water 2022, 14, 363 6 of 16

Water 2022, 14, x FOR PEER REVIEW 6 of 16 
 

 

tlehampton harbour entrance; observations were made with a Datawell Directional Wa-

veRider Mk III buoy moored in approximately 10 m water. The wave rose of the 13 year 

record is illustrated in Figure 3b. This shows a wave climate with a predominant south-

westerly approach and a secondary peak in waves from the southeast. Waves from the 

southwest are typically a mixture of locally generated wind waves and swell waves 

from Atlantic storms. Southeasterly waves are fetch-limited storm waves generated by 

the northern part of low-pressure systems that track to the south of the UK [21]. 

The wave records were averaged to create a time series of daily wave conditions, as 

our focus is on storm events rather than wave by wave fluctuations. The daily data are 

shown in Figure 4, in which seasonality is visually evident.  

 

Figure 4. Time series of the observed daily wave data over the period 1 July 2003 to 30 June 2016. 

The horizontal axis shows days from the start of the period. The top panel shows wave heights, 

the middle panel shows wave periods and the bottom panel the transformed wave direction. 

If the magnitudes of the variables of interest are very different, it is normal practice 

to standardise or transform them before beginning the modelling process in order to 

improve the fitting. Here the range of wave direction is much larger than the other two 

variables. Hence, the following transformation of wave direction in the data preparation 

stage was performed: 

                                 if  0 ≤ 𝛼 <
𝜋

2
,          𝜃 = √1 − cos2⁡(𝛼),               0 ≤ 𝜃 < 1  

                   if  
π

2
≤ 𝛼 < π,⁡⁡⁡⁡⁡    𝜃 = 1 + √1 − cos2⁡(𝛼),        1 ≤ 𝜃 < 2  

                                 if  π ≤ 𝛼 <
3π

2
,       𝜃 = −√1 − cos2(𝛼),⁡⁡⁡⁡⁡⁡ ⁡⁡⁡⁡⁡−1 ≤ 𝜃 < 0  

                                 if  
3π

2
≤ 𝛼 < 2π,     𝜃 = −1 − √1 − cos2⁡(𝛼),   −2 ≤ 𝜃 < −1      (5)  

Before undergoing any further processing of the wave time series, it was important 

to split the available dataset into a training and a validation subset. The training subset 

constituted the first 75% of the whole dataset, thus, covering the time period from 1 July 

2003 to 31 March 2013. In this time span, the aim was the VAR model to be properly 

parametrised, specifically, to estimate the trend and the seasonal elements of the wave 

time series, plus the φi and ut parameters of Equation (1). The validation is performed on 

the remaining 25% of the whole dataset, namely, from 1 April 2013 to 30 June 2016. 

Next, the trend and seasonal elements of the wave timeseries are assessed, and sub-

sequently, removed to achieve stationarity.  

Figure 4. Time series of the observed daily wave data over the period 1 July 2003 to 30 June 2016.
The horizontal axis shows days from the start of the period. The top panel shows wave heights, the
middle panel shows wave periods and the bottom panel the transformed wave direction.

If the magnitudes of the variables of interest are very different, it is normal practice to
standardise or transform them before beginning the modelling process in order to improve
the fitting. Here the range of wave direction is much larger than the other two variables.
Hence, the following transformation of wave direction in the data preparation stage was
performed:

if 0 ≤ α < π
2 , θ =

√
1− cos2(α), −0 ≤ θ < 1

if π
2 ≤ α < π, θ = 1 +

√
1− cos2(α), −1 ≤ θ < 2

if π ≤ α < 3π
2 , θ = −

√
1− cos2(α), −1 ≤ θ < 0

if 3π
2 ≤ α < 2π, θ = −1−

√
1− cos2(α), −2 ≤ θ < −1

(5)

Before undergoing any further processing of the wave time series, it was important
to split the available dataset into a training and a validation subset. The training subset
constituted the first 75% of the whole dataset, thus, covering the time period from 1 July
2003 to 31 March 2013. In this time span, the aim was the VAR model to be properly
parametrised, specifically, to estimate the trend and the seasonal elements of the wave time
series, plus the ϕi and ut parameters of Equation (1). The validation is performed on the
remaining 25% of the whole dataset, namely, from 1 April 2013 to 30 June 2016.

Next, the trend and seasonal elements of the wave timeseries are assessed, and subse-
quently, removed to achieve stationarity.

3.1. Detrending

To estimate Tkt, the following model was used to represent the trend; coefficients being
obtained by fitting this to the observations using least-squares estimation:

xt = a + bt + ∑p
u=1 αkxt−u + εt (6)

where εt are independent, identically distributed random variables, p = 0 for wave direc-
tion and p = 5 for wave height and wave period. The value of the order p was chosen to
ensure the stationarity of the detrended and deseasonalised series. The estimated linear
trend for each variable is shown in Figure 5, and the estimated parameter αk values for
wave height are α1 = 0.5996; α2 = −0.08316; α3 = 0.11206; α4 = −0.02666; and α5 = 0.0373,
while the corresponding values for wave period are: a1 = 0.5007; a2 =−0.04946; a3 = 0.03786;
a4 = 0.0182; and a5 = −0.019. The trend, Tkt, was taken as the residual series εt of the models
respectively.
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Figure 5. For 1 July 2003 to 31 March 2013, the upper panel (a) shows the significant wave height
trend (Hs), similarly, the middle panel (b) depicts the peak wave period trend, and finally, the lower
panel, (c), shows the wave direction trend. Dates are shown in day, month, year format.

3.2. Seasonality

For seasonality, a best fit curve was chosen to describe the seasonal element for each
variable. This curve is given by the following equation corresponding to a sum of sine
terms: St = a1 × sin(b1 × n + c1) + . . . +a8 × sin(b8 × n + c8), for significant wave height
Hs and peak wave period Tp, while for the wave direction α, the seasonal element was
described via an equation comprising of a sum of Fourier terms: St = a0 + a1 × cos(nw) + b1
× sin(nw) + a2 × cos(8nw) + b2 × sin(8nw) + . . . a8 × cos(8nw) + b8 × sin(8nw), where n is the
number of the consecutive temporal step. The fitting parameters ai, bi and ci for wave height
and period time series, and the corresponding values ai, bi and w for wave direction were
estimated via the least-squares method for each of wave height, period and direction. A
different formulation for the seasonal components for wave direction was required in order
to remove all the non-stationarity in the series. Figure 3 suggests that seasonal components
in the wave direction are different from those in the other two wave variables and this is
borne out by the nature of the non-stationarity of the respective variables.

The extracted seasonal components are presented in Figure 6. Note that monthly
averaged values of wave parameters have been used for visual clarity.

Finally, the augmented Dickey-Fuller test [18] was applied to the detrended and
deseasonalised data yit to determine whether the series was stationary. This process
was performed iteratively, adding additional terms to the seasonality model, until the
augmented Dickey-Fuller test indicated that yit were stationary.
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Figure 6. The upper panel (a) shows the seasonal component of significant wave height (Hs), similarly,
the middle panel (b) depicts the seasonal component of peak wave period, and finally, the lower
panel, (c), shows the seasonal component of wave direction θ(α).

4. Simulation Results

As mentioned in the previous section, the trend and seasonal component of the first
75% of the available measurements at Littlehampton were taken into account. The marginal
distributions of wave height, period and direction and their autocorrelations and cross-
correlations were estimated from this sequence. The correlations were used to estimate
the values of rijh, φi and Σu by solving Equations (2) and (3) (see also Appendix B), where
h = 0, 1, . . . , 3. Hence, in this study we let H = 3, corresponding to matching the
correlation structure of the data up to three days, or approximately the storm duration at
the site. Note that these parameter values define the correlation structure of the model
(Equation (1)). Then, the estimated model (Equation (1)) was used to obtain simulated data
zt, i.e., the detrended and deseasonalised synthetic data (see Appendix B). The length of
the simulated data was taken to be the same as the original series for illustration purpose.
Finally, the trend and seasonality removed in the initial steps were added back to create the
output synthetic time-series, Ẽt (Figure 7).

If the method is working well, the simulated data Ẽt should have similar statistical
properties to those of the original data Et. As a check on this, marginal distributions and
correlations of the original and simulated series were compared. The marginal distribu-
tions of the observed and simulated data were estimated with the non-parametric kernel
estimation method [22]. The estimated marginal density functions are given in Figure 8,
where the blue curves correspond to the observed data and the red curves correspond
to the simulated data. It can be seen that the two sets of density functions are very close
for all three sea condition variables. Moreover, the estimated means of the observed and
simulated data are shown by the blue and red vertical lines respectively in Figure 8, and
show extremely close agreement.
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Figure 8. In the time period: 1 July 2003 to 31 March 2013, density function plots for the observed
and simulated wave height (m), wave period (s) and wave direction (dimensionless transformed)
respectively. Blue curves correspond to observed data and red curves correspond to simulated data.
Similarly, blue and red vertical lines correspond to the means of the observed and simulated data,
respectively.

Figure 9 shows the estimated autocorrelation and cross-correlation between variables
for the original and simulated data series.
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Figure 9. In the time period: 1 July 2003 to 31 March 2013, first row: autocorrelation up to 50 lags for
each sea condition variable. Second row: cross-correlation between pairs of sea condition variables.
Blue lines are the auto/cross correlation function of the original data, and the red lines correspond
to those of the simulated data. Note: In all plots the horizontal axis is the lag time in days and the
vertical axis is the normalised correlation value which lies between 1 and −1.

Overall, Figure 9 shows a very good agreement between the original and synthetic
data. The final step is the validation of the VAR model on an independent section of
measurements; that is, the time period from 1 April 2013 to 30 June 2016. The simulated
wave time series, along with their density functions is presented in Figures 10 and 11
respectively.
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June 2016.
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Figure 11. Density function plots for the observed and simulated wave height (m), wave period (s)
and wave direction (dimensionless transformed) respectively, in the time period from: 1 April 2013 to
30 June 2016. Blue curves correspond to observed data and red curves correspond to simulated data.
Similarly, blue and red vertical lines correspond to the means of the observed and simulated data,
respectively.

Figure 11 illustrates good agreement between the means of wave height, period
and direction. Some divergence between the original and simulated wave time series,
particularly at the peaks of the density functions, is evident.

A comparison between detrended and deseasonalised original and synthetic time
series was conducted. Results are shown in Figure 12 which demonstrate a good level of
agreement in the correlation structure of the original and synthetic series. The temporal
correlation scales in auto- and cross- correlations is captured well although the slight
negative cross-correlation between wave height and period at lags up to one week is
absent in the synthetic series. Example input data and processed data can be found in
Supplementary Materials.
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Figure 12. In the time period from: 1 April 2013 to 30 June 2016, first row: autocorrelation up to
50 lags for each sea condition variable. Second row: cross-correlation between pairs of sea condition
variables. Blue lines are the auto/cross correlation function of the original data, and the red lines
correspond to those of the simulated data. Note: In all plots the horizontal axis is the lag time in days
and the vertical axis is the normalised correlation value which lies between 1 and −1.
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5. Discussion and Conclusions

A methodology for simulating multi-variate wave sequences via a vector autoregres-
sive (VAR) stochastic model was presented in this study and its application illustrated with
measurements over a 13-year period taken at Littlehampton, UK. The measurement record
was split into two non-overlapping subsets. The first one extending from 1 July 2003 to 31
March 2013 and the second one from 1 April 2013 to 30 June 2016, to provide independent
training and validation data sets. The model was successfully calibrated and validated.

The utility of the correlation functions on non-stationary data is arguable and does
not appear to rhyme with “A key element of the procedure is a detailed treatment of
non-stationarity in the wave time sequences.”

A key element of the procedure is a detailed treatment of non-stationarity in the
wave time sequences. The non-stationarity may have different manifestations within each
element of the wave conditions; with wave height, period and direction each exhibiting
different non-stationarity. Our methodology allows for such variation and is able to create
synthetic sequences of wave conditions that have very similar statistical properties to the
original dataset.

We applied the method to a site in the UK that experiences mid-latitude storms that
have a typical duration of several days. A crucial quantity in the method is the parameter
H, which controls the number of lag correlations that are modelled. For our dataset, we
found that H = 3, corresponding to a lag of three days, provided a good representation
of the storm-scale correlation between wave parameters. Should greater fidelity in the
correlation structure be required, for instance to resolve infra-storm conditions, the method
allows this. It would require analysing the original data at a finer temporal resolution, say
hourly or three hourly, and correlations at a larger number of lags to be found, requiring
additional calculation.

We note that the purpose of removing trend and seasonality in our study is to ensure
that the detended and deseasonalised series ykt are stationary so that we can use our
simulation method to obtain simulated data for the original wave height, direction and
period data. We have used the simplest method of [20] to remove trend and seasonality,
where the trend and seasonality are estimated using our methods. Furthermore, we use
the ADF test to check the stationarity of detrended and deseasonalised data. On the other
hand, after we re-add trend and seasonality to the simulated ykt, any potential biases in the
residuals will disappear.

More sophisticated approaches are available. For example, where seasonal compo-
nents vary significantly in amplitude and frequency over the dataset a least-squares wavelet
analysis applied in a window-wise manner may be more suitable [15]. Other methods,
such as the anti-leakage least-squares spectral analysis, allow simultaneous estimation of
the trend and seasonal components.

The method described in this paper does not yield unrealistic jumps in the time series,
as some earlier techniques did. The vector autoregressive (VAR) stochastic model presented
in this study can be developed further to optimise the modelling of the seasonal component.
In addition, the choice of parameter H, corresponding to the number of lag correlations that
are modelled, could be automated rather than specified via a sequence of trial simulations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14030363/s1, Table S1: model training wave data; Table S2:
model validation wave data.
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Appendix A

The correlation between yit and yjt+h is given by the following equation:

ρijh =
cov
(

yit, yjt+h

)
√

var(yit), var
(

yjt+h

) (A1)

However,

cov(yit, yjt−k) = E[(yit − E(yit))(yjt−k − E(yjt−k)]

= E[yityjt−k − yitE(yjt−k)− yjt−kE(yit) + E(yit)E(yjt−k)]

= E[ yityjt−k]− E[yitE(yjt−k)− yjt−kE(yit)] + E[E(yit)E(yjt−k)]

= E(yityjt−k)− E(yit)E(yjt−k)− E(yjt−k)E(yit) + E(yit)E(yjt−k)

= E(yityjt−k)− E(yit)E(yjt−k)

where cov is the covariance between yit and yjt+h
Thus, Equation (A1) is modified as follows:

ρijh =
E(yit yjt + h)− E(yit)E(yjt + h)√

var(yit), var
(

yjt+h

) (A2)

The mean of the probability distribution E of the product yit × yjt+h can be expressed
analytically via the following equation:

E(yityjt+h) =

∞∫
−∞

∞∫
−∞

F−1
i (Φ(zit))F−1

j (Φ(zjt+h))ξrijh dzitdzjt+h

Hence yielding Equation (4) of Section 2.2:

ρijh =

∞∫
−∞

∞∫
−∞

F−1
i (Φ(zit))F−1

j

(
Φ(zjt+h)

)
ξrijh(zit, zjt+h)dzitdzjt+h − E(yit)E(yjt+h)√

var(yit)var(yjt+h)

Appendix B

Marginal distribution of ykt:
The marginal distribution Fk(y) of ykt is described via an empirical distribution function

of the observed time-series ykt.
Sample mean, variance and autocorrelations:

https://coastalmonitoring.org/cco/
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Let the sample mean of ykt be yk, sample variance σ̂k and sample autocorrelation ρ̂ijh.
Then

yk =
1
n ∑n

t=1 ykt, σ̂k =
1

n−1 ∑n
t=1 (ykt − yk)

2, k = 1, 2, 3

ρ̂ijh =
∑n−h

t=1 (yit−yi)(yit+h−yj)√
∑n

t=1 (yit−yi)
2∑n

t=1 (yjt+h−yj)
2
, i, j = 1, 2; h = 0, · · · , H

where H is a fixed number that defines the maximum lag value we would like to consider
when matching the autocorrelation structures between the simulated and the observed
time-series, and in this study has been set equal to 3.

Solve non-linear equations and Yule-Walker Equation (3):
We need to solve the non-linear Equation (4) (here Equation (A3)) for rijh for all possible

i,j and h.

ρ̂ijh =

∫ ∞
−∞

∫ ∞
−∞ F−1

i (Φ(zit))F−1
i

(
Φ
(

zjt+h

))
ϕrijh

(
zit, zjt+h

)
dzitdzjt+h − yi yj

σ̂iσ̂j
(A3)

where Φ(·) is the standard normal distribution function,

ϕrijh

(
zit, zjt+h

)
=

1

2π
√

1− r2
ijh

exp

− z2
jt − 2rijhzitzjt+h + z2

jt+h

2
(

1− r2
ijh

)
 (A4)

Then rijh can be estimated by solving Equation (A3) using, an iterating technique such
as the Newton–Raphson’s method:

r(m+1)
ijh = r(m)

ijh −
f
(

r(m)
ijh

)
f ′
(

r(m)
ijh

) , m = 0, 1 . . . , (A5)

where

f
(

r(m)
ijh

)
=

∞∫
−∞

∞∫
−∞

F−1
i (Φ(zit))F−1

j (Φ(zit+h))ϕ
(m)
rijh

(
zit, zjt+h

)
dzitdzjt+h − yi yj − σ̂iσ̂jρ̂ijh

f ′
(

r(m)
ijh

)
=

∞∫
−∞

∞∫
−∞

F−1
i (Φ(zit))F−1

j (Φ(zit+h))ϕ′(m)
rijh

(
zit, zjt+h

)
dzitdzjt+h

ϕ′(m)
rijh

(
zit, zjt+h

)
= ϕ

(m)
rijh

(
zit, zjt+h

)
ξ
(m)
rijh

(
zit, zjt+h

)
and

ξ
(m)
rijh

(
zit, zjt+h

)
=

r(m)
ijh

1− r(m)2
ijh

+
zitzjt+h + r(m)2

ijh zitzjt+h − r(m)
ijh z2

it − r(m)
ijh z2

jt+h(
1− r(m)2

ijh

)2

to evaluate two double integrations more efficiently, the following method may be applied:

f
(

r(m)
ijh

)
≈ 1

M

M

∑
l=1

F−1
i ((W(1)

l ))F−1
j

(
Φ
(

W(2)
l

))
− yi yj − σ̂iσ̂jρ̂ijh (A6)

f ′
(

r(m)
ijh

)
≈ 1

M

M

∑
l=1

F−1
i ((W(1)

l ))F−1
j

(
Φ
(

W(2)
l

))
ξ
(m)
rijh

(
W(1)

l , W(2)
l

)
(A7)

where
(

W(1)
l , W(2)

l

)
is a random sample from the bivariate normal distribution with mean

0 and correlation r(m)
ijh .
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Then, a bisection method is applied to find the root corresponding to f
(

rm
ijh

)
≈ 0. The

index m corresponds to the number of the consecutive applications of the bisection method
until rijh is estimated.

Once rijhs are available, φi and Σu for i = 1,...,p can be obtained directly by solving
Equation (2).

Obtain simulated data for the base process zt:
The simulated base process can be obtained by the following steps.

(1) Construct the covariance matrix P and find Q such that P = QQ′, where

P =


Γ(0) Γ′(1) · · · Γ′(p− 1)
Γ(1) Γ(0) · · · Γ′(p− 2)

...
...

. . .
...

Γ(p− 1) Γ(p− 2) · · · Γ(0)


where Γ′ is the transpose matrix of Γ.

(2) Obtain the initial value (z−p+1,z−p+2,...,z0) by simulating vi ∼ N(0,1), where i = 1, ...,
3p, and letting (z−p+1,z−p+2,...,z0) = Q(v1,v2,...,v3p)>′.

(3) Find matrix Q1 such that Σu = Q1Q′1
(4) Obtain simulated data for ut by letting ut = Q1(v1t,v2t,v3t)′, where vkt ~ N(0,1), k = 1 ,2

, 3 and t = 1, 2,..., T, where T is the length of the simulated data.
(5) Obtain the simulated data for the base process zt by letting

zt = ϕ1zt−1 + ϕ2zt−2 + · · ·+ ϕpzt−p + ut, t = 1, · · · , T.

Obtain simulated series ỹkt:

ỹkt = F−1
k (Φ(zkt))

where k = 1, 2, 3 and t = 1, 2, ..., T, and F−k
1(x) is the inverse function of the empirical

distribution of the y process and ỹkt can be obtained by interpolation of the empirical
distribution.

Transform ỹkt back to obtain simulated data for Ekt:
Include the trend, seasonal components and stochastic trend into the simulated process

ỹkt to get the simulated data Ẽkt = Tkt + Skt + ỹkt, where k = 1, 2, 3 and t = 1, 2, ..., T.
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