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a b s t r a c t 

The problem of gas-liquid (two-phase) flow regime identification in an S-shaped riser using an ultrasonic sensor 

and convolutional recurrent neural networks (CRNN) is addressed. This research systematically evaluates three 

different schemes with four CRNN-based classifiers over fourteen experiments. Four metrics are used as the eval- 

uation criteria: categorical accuracy, categorical cross-entropy, mean square error (MSE), and computation graph 

complexity. Compared with existing results, a compatible performance is achieved while considerably reducing 

the model complexity. The testing and validation accuracies were 98.13% and 98.06%, while the complexity 

decreased by 98.4% (only 117,702 parameters). The proposed approach is i) accurate, low complexity, and non- 

intrusive and hence suitable for industry, and ii) could provide a benchmark for flow regime identification. 
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. Introduction 

The simultaneous flow of two-phase gas-liquid flow occurs in a wide

ange of processes in nature and technological applications ( Shen and

ibiki, 2021 ), for example, petrochemical processes ( Feng et al., 2021 ),

hemical analysis and synthesis ( Kou and Sun, 2018 ), and spraying pro-

ess ( Hammad et al., 2021 ). The knowledge and the understanding of

he systems flow conditions are essential due to their impact on pro-

ess intensification, safety issues, and process control in industrial ap-

lications ( Nnabuife et al., 2021 ; Wiedemann et al., 2019 ). Because the

entral focus of Falcone et al. (2018) and Liu et al. (2018) is on flow

ecognition, intermittent or irregular flow structures are generally un-

anted as they can cause plant dynamic mechanical stresses, or plant

hut down ( Nnabuife et al., 2019a ). As a result, the determination and

rediction of the spatial-temporal phase distribution is a necessity for

afe and efficient plant operation ( Kuang et al., 2021; Nnabuife and Pi-

ario, 2019 ). 

Different methodologies for identifying flow regimes have been pro-

osed ( Chakraborty and Das, 2018 ; Figueiredo et al., 2020 ; Xu, Li, et al.,

020 ). Rosa et al. (2010) published a study of the critical methods that
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ave been widely investigated. Other approaches include optical imag-

ng ( Sunde et al., 2005 ), electrical impedance ( George et al., 2000 ),

ressure fluctuation ( Chalgeri and Jeong, 2019 ), radiation absorption

 Hanus et al., 2018 ), and ultrasound. The optical imaging system is

on-invasive, low-cost, and capable of simultaneously providing infor-

ation on several flow characteristics, although it needs a transparent

ipe and fluids for optical measurements ( Sunde et al., 2005 ). The pres-

ure fluctuation method is also inexpensive and simple to use, while it

ecessitates sealing tape on the tubing, which may increase the risk of

eakage ( Chalgeri and Jeong, 2019 ). Electrical impedance is also a low-

ost and simple-to-use procedure ( George et al., 2000 ). On the other

and, impedance methods are susceptible to phase inversion in water-

il flows. They may also be particularly sensitive to the flow pattern

ithin the channel. Radiation absorption is another method for iden-

ifying flow regimes. The absorption of radiation is a well-studied and

on-invasive technique ( Affonso et al., 2020 ; Hanus, 2015 ). The main

rawback of the radiation absorption technique is its safety concerns

nd high cost. 

Ultrasonic techniques are a promising alternative to radioactive

echniques, which are expensive, complex, and unsafe. Ultrasonic
anuary 2022 
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Nomenclature 

2 𝑓 𝑠 Source frequency 

𝑓 𝐷 Doppler frequency shift 

𝑓 𝑅 Frequency received 

𝑓 0 Frequency transmitted 

𝐿 𝑏 Length of Taylor bubbles 

𝐿 𝑠 Length of slug body 

𝑉 𝐺𝑆 Gas bubble velocity 

𝑉 𝐿𝑆 The velocity of liquid in slug 

𝑥 𝑡 Signal transmitted 

𝑥 𝑟 Signals received 

𝑤 𝑠 Reference signal 

𝑥 𝐷 Doppler signal 

𝑧 Acoustic impedance 

𝜃1 Phase term based on the shift in phase produced within 

the receiver and scatterer distance from the transducer 

echniques are given due consideration because they are non-intrusive,

on-invasive, fast, low-cost, and simple to operate, and suitable for real-

ime measurements. They can work in extreme environments such as

igh pressure and high temperatures. It also has high precision, is time

ensitive, and is suitable for optically opaque systems ( Figueiredo et al.,

020 ). A comprehensive review of the use of the ultrasonic tech-

ique in the context of multiphase flow measurement can be found in

an et al. (2021) . Ultrasonic signals can be used to meet the needs of

ong-distance signal transmission, remote sensing, and harsh operating

onditions that are common in the oil industry. They have also been

idely used to measure phase velocity and phase fraction ( Thorn et al.,

013 ). For velocity measurement, the pulsed-wave ultrasonic Doppler

PWUD) and continuous-wave ultrasonic Doppler (CWUD) techniques

ave been investigated ( Tan et al., 2021 ). PWUD intercepts the mov-

ng stream with a single transducer by sending short ultrasonic bursts

nd receiving echoes from tracer particles along a sound beam. Typi-

al examples are Murai et al. (2010) and Yin et al. (2020) . To deter-

ine the average flow velocity, the CWUD employs two separate trans-

itting and receiving transducers ( Dong et al., 2015 ; Nnabuife et al.,

020 ; Nnabuife et al., 2019 ). Although PWDU measurements are per-

ectly adequate for flow measurement, the maximum flow velocity that

an be measured with the PWDU is limited by its sampling frequency.

he CWDU technique accurately measures two-phase flow velocity and

as no maximum limit on the flow velocity it can measure ( Tan et al.,

021 ). A lot of research work has been carried out using ultrasonic sen-

ors for two-phase flow regime classification, and they can be found

n Fang et al. (2020) , Figueiredo et al. (2016) , Nnabuife et al. (2021) ,

ada et al. (2006) , and Mao et al. (2022) . 

Recent developments in machine learning and artificial intelligence

ave brought innovation to the signal processing process in two-phase

ow identification ( Lin et al., 2020 ; Parrales et al., 2018 ; Queiroz et al.,

021 ). More specifically, Nnabuife et al. (2019) proposed a baseline

sing the principal component analysis (PCA) and support vector ma-

hine (SVM), achieving 85% identification accuracy. The identifica-

ion accuracy is relatively low because of the limited training data

 Nnabuife et al., 2019 ). Subsequently, Nnabuife et al. (2020) proposed

he twin-window feature extraction (TFE) algorithm to artificially aug-

ent the training dataset, which pushes the identification accuracy to

6.28% with a proposed deep neural network (DNN)-based classifier.

lthough Nnabuife et al. (2020) achieve a high-standard identification

ccuracy, its classifier requires a huge input data size (more than 50k

ata points), and the model size is also large. The full-connected struc-

ures ( Nnabuife et al., 2020 ) have significantly low learning efficiency

specially with a large amount of data. These drawbacks may make

t difficult to implement this flow regime identification technology in

eal-world scenarios due to limited computational resources. Instead
2 
f tracing higher identification accuracy, Kuang et al. (2020) propose

he pseudo-image-feature (PIF) algorithm to assist the explain-ability of

he ultrasonic signal processing procedure, which extends the machine

ision inspirations into the multiphase flow identification sector. How-

ver, the high model complexity (along with high computation resource

equirement) exists ( Kuang et al., 2020 ). 

Their related researches ( Kuang et al., 2020 ; Nnabuife et al., 2020 ;

nabuife et al., 2019 ) are not end-to-end (E2E) solutions. The E2E refers

o the functionality of inputting raw ultrasonic signals then outputting

he identified flow regime ( Saltzer et al., 1984 ). The existing solutions

ith multiple steps inevitably encounter the difficulty of optimization.

arious steps correspond to various functionalities, which are not all

rientating to flow regime identification. This E2E concentrates the en-

ire solution to one clear and direct target, which improves efficiency.

urthermore, the proposed E2E model can be used as the pre-trained

odel for further transfer learning to fit other similar problems. 

The convolutional recurrent neural network (CRNN) is a hybrid

tructure consisting of a convolutional neural network (CNN) and a re-

urrent neural network (RNN) ( Deng et al., 2020 ; Zhang et al., 2021 ).

ltrasonic signals have characteristics of both low signal-noise ratio and

ong time-domain span ( Nnabuife et al., 2019a ). The parameter shar-

ng property of CNN provides a feature extraction approach with low

verfitting risk, which can enforce the robustness for the low signal-

oise ratio ( Zhai et al., 2016 ). However, the receptive field increase

n CNN inevitably brings in high costs in both information loss and

he risk of gradient vanishing ( O’Shea and Nash, 2015 ). Notably, the

ommon approaches are the Atrous (Dilated) Convolution, pooling, and

tride-convolution layer to increase the receptive field ( O’Shea and

ash, 2015 ). However, an RNN focuses on handling the history depen-

ency ( Ghavamian and Simone, 2019 ). An RNN iterates the numerical

orrelation among timestamps through a series structure and implicitly

ides inside the RNN structure ( He et al., 2020 ). The RNN has a rela-

ively simple structure, but a long time-domain span might suppress the

elation from the early timestamp. Therefore, combining the CNN fea-

ure extraction and RNN time-domain correlation becomes a very tempt-

ng idea, which is especially suitable for the low signal-noise ratio and

ong time-domain span ultrasonic signals in this research ( Pascanu et al.,

013 ). The CRNN architecture has achieved promising effectiveness in

ther sectors ( Jeon and Moon, 2020 ; Qin et al., 2019 ). 

Flow regime identification in flexible risers has received more atten-

ion in recent years. Li et al. (2013) conducted experiments using air-

ater on three separate riser configurations, including a free-hanging

atenary, a lazy S-riser, and a steep S-riser. It was discovered that slug

ow in flexible risers behaved differently to classical flow in a vertical

iser ( Li et al., 2013 ). Some published research on flow regime identifica-

ion in flexible risers can be found in Li et al. (2017) , Xu et al. (2020) and

u et al. (2020) . Despite comprehensive attempts to research flow pat-

erns in pipeline-riser systems, comparatively few studies on two-phase

ow patterns in pipeline-riser systems with an S-shaped riser have been

ublished. Furthermore, to the best of the authors’ understanding, there

s no documented work on identifying two-phase gas-liquid flow regimes

n an S-shaped riser using an ultrasonic sensor and CRNN. The flow

egime recognition in an S-shaped riser has not yet been extensively an-

lyzed. Exploration and exploitation of offshore petroleum deposits can

ove into shallow waters while the majority of new oil and gas discov-

ries are projected to occur offshore. As a result, the offshore petroleum

ndustry will see a greater use of floating processing facilities and flex-

ble risers. The characteristics and mechanisms of two-phase gas-liquid

ow in an S-shaped riser are critical not only for efficient pipe sizing,

esign, and routing, but also for the operation of the downstream sys-

em. 

This research proposes an identification framework for the flow

egime ultrasonic signals in the S-shaped riser based on the proposed

RNN model. This research aims to find the best E2E configuration for

ow regime identification by fusing the CNN feature extraction and the

NN time-series analysis. Compared with the existing models, the goal
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Fig. 1. The process of the Continuous Wave Doppler Ultrasound (CWDU) flowmeter ( Nnabuife et al., 2020 ). 
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f the CRNN model proposed in this research is to significantly reduce

he complexity of the model while ensuring a relatively high flow regime

dentification accuracy. 

In summary, this research’s main contributions are as follows: (i)

his appears to be the first end-to-end (E2E) solution towards the gas-

iquid flow regime identification using ultrasonic signals in an S-shaped

iser. (ii) the proposed CRNN classifier significantly decreases the mod-

le complexity along with a high identification accuracy. (iii) to the

est of the authors’ knowledge, this research is the first successful trial

f cooperating the feature extraction of CNN and time-domine of RNN

or the flow regime identification. (iv) this paper investigated various

RNN schemes with systematic details, which can be a benchmark for

urther research. 

This paper is organized as follows: In Section 3 , the experimental

ethod used in this research is described. Proposed flow regime classi-

ers are discussed in Section 4 . In Section 5 , the results and discussion

f the analyzed data are presented, and finally, conclusions and future

ork are given in Section 6. 

. Data collection 

.1. The continuous-wave Doppler ultrasonic measurement principles 

The ultrasonic sensor used in this research is the Continuous Wave

oppler Ultrasound (CWDU) flowmeter, and its schematic diagram is

hown in Fig. 1 . The ultrasonic beam continually penetrates the flow

n the vertical part of the S-shaped pipe, and the ultrasonic beam cor-

espondingly reacts according to the variant fluid situations ( Fig. 1

a]). The receiver then recognizes the ultrasonic signal’s change and

onverts it into a corresponding waveform digital signal ( Fig. 1 [b])

 Nnabuife et al., 2020 ). 

The changing frequency of an acoustic wave when there is a move-

ent or shift between the source and the acoustic receiver, and the

requency shift is proportional to the acoustic source velocity, is re-

erred to as the Doppler shift. Calculating the shift in frequency between

he acoustic source and the receiver yields the acoustic source velocity.

he CWDU technology involves constantly discharging an acoustic fre-

uency beam from the transducer into the flow and reflecting the sound

ave by moving the scattering. Another ultrasonic transducer receives

he dispersed acoustic beam, and the flow velocity is computed with the

requency change based on the Doppler effect ( Nnabuife et al., 2021 ). 

Fig. 2 depicts and describes the instrumentation procedure required

o detect Doppler changes in the received ultrasound: Assuming the

ransmitted signal is 

 𝑡 ( 𝑡 ) = 𝜀 𝑡 cos 
(
𝑤 𝑠 𝑡 

)
(2.1)
3 
Furthermore, the receiving signal from one of the scatterers is 

 𝑡 ( 𝑡 ) = 𝜀 𝑟 cos 
({

𝑤 𝑠 + 𝑤 𝐷 

}
𝑡 + 𝜃1 

)
(2.2) 

here 𝑤 𝑠 = 2 𝜋𝑓 𝑠 , 𝑤 𝑅 = 2 𝜋𝑓 𝑅 and the phase based on the scatterer dis-

ance from the phase shifts initiated within the receiver and the trans-

ucer is 𝜃1 ( Cobbold, 1989 ). 

Electronically multiplying the two signals yields 

 𝑡 ( 𝑡 ) 𝑥 𝑟 ( 𝑡 ) = 𝜀 𝑡 𝜀 𝑟 cos 
(
𝑤 𝑠 𝑡 

)
cos 

([
𝑤 𝑠 + 𝑤 𝐷 

]
𝑡 + 𝜃1 

)
(2.3) 

 𝑡 ( 𝑡 ) 𝑥 𝑟 ( 𝑡 ) = 

𝜀 𝑡 𝜀 𝑟 

2 
{ cos ( 𝑤 𝐷 𝑡 + 𝜃1 ) + cos ( 

[
2 𝑤 𝑠 + 𝑤 𝐷 

]
𝑡 + 𝜃1 )} (2.4)

As a consequence, the resultant signal is ultimately low-pass filtered

o remove the 2 𝑓 𝑠 source frequency while retaining just the Doppler

ignal ( Cobbold, 1989 ). 

 𝐷 ( 𝑡 ) = 

𝜀 𝑡 𝜀 𝑟 

2 
cos ( 𝑤 𝐷 𝑡 + 𝜃1 ) (2.5)

However, because the received ultrasound signal has reflected ultra-

ound of larger amplitude than the signal backscattered from the moving

catterer, further signal processing may be required. Doppler shifts at a

ow frequency in this form of reflected ultrasound. As a result, to elimi-

ate this anomaly, band-pass filtering may be required. ( Cobbold, 1989 ).

.2. Test rig and experimental procedure 

The research was conducted at Cranfield University’s Process Sys-

ems Engineering Laboratory equipped with state of art industrial-scale

ultiphase and single-phase flow systems to study the complex behav-

or of fluids in process plants and oil and gas production. The ultrasonic

ensor and the auxiliary instruments are shown in displayed as Fig. 3

 Nnabuife et al., 2020 ). 

The fully automated unique three pressure facility contained 50 m

ong 4 ” and 2 ” flowline and 11m high riser systems and could deliver

40 m 

3 /hr and 1400 m 

3 /hr of water and oil. The flow facility could

lso supply up to 40m/s of air in a 4 ” pipeline system. The test facil-

ty was rated up to 20 barg but currently, the capacity was limited to

 barg maximum air pressure from the compressors. The flow facility

as managed and controlled by DeltaV a Fieldbus based supervisory,

ontrol, and data acquisition (SCADA) software produced by Emerson

rocess management. 

The 2-inch S-shaped test facility used in this experiment had a 54.8-

m internal diameter, 40-m length, and 1.5-m down comer as shown in

ig. 4 . The 2-inch S-shaped pipeline-riser test section has a transparent

ube for flow regime observation ( Nnabuife et al., 2020 ). 
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Fig. 2. Hardware block diagram of a continuous-wave Doppler ultrasound system ( Nnabuife, Sharma, et al., 2021 ) 

Fig. 3. The ultrasonic sensor and the auxiliary instruments used in this research ( Nnabuife et al., 2020 ). 

4 



B. Kuang, S.G. Nnabuife, S. Sun et al. Digital Chemical Engineering 2 (2022) 100012 

Fig. 4. Schematic diagram of the 2-inch S-shaped flow loop test ( Nnabuife et al., 2020 ; Nnabuife, Pilario, et al., 2019 ). 

Fig. 5. Flow regime map for 2-inch S-shaped riser. 
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A non-intrusive clamped-on CWDU with ± 10V excitation voltage,

perating at a 500 kHz carrier frequency, was attached S-shaped riser

op-side section as shown in Fig. 4. The ultrasound beam incident angle

as 58° to flow direction on the S-shaped riser. To make the ultrasound

nergy transmission easier, a gel coupling agent was used between the

oppler transducer and the pipe wall. The continuous-wave Doppler

ltrasonic flow meter was employed to record the Doppler voltage sig-

als for further analysis ( Nnabuife et al., 2019 ). Fig. 5 depicts the flow

egime map determined from the test facility for the various flow con-

itions examined in this research. 

The process variable measured by the Doppler ultrasonic sensor was

ow average velocity. Based on the flow velocity range and the pipe

cale, it was evaluated that the flow velocity varies at a frequency no

ore than 2 kHz. Therefore, in the LabVIEW data acquisition technol-

gy, a 10 kHz sampling frequency was appropriate to the Nyquist crite-

ion. This was five times the measured upper limit of the flow velocity

requency variation ( Nnabuife et al., 2019 ). 

.3. Ground-truth dataset 

The data used in this research is the flow regime Doppler ultrasonic

ignal dataset in an S-shaped riser from the open-access Cranfield Online

esearch Data (CORD) record ( Nnabuife et al., 2019 ). Its reliability has
5 
een verified through several studies ( Kuang et al., 2021 ; Nnabuife et al.,

020 ; Nnabuife et al., 2019 ). The dataset ( Nnabuife et al., 2019 ) consists

f 125 equally-sized subsets of data each corresponding to one experi-

ental record. Each experimental record contains 1.3 million recorded

ata points. 

The four flow regimes have been labeled with integers “1 ”, “2 ”, “3 ”,

nd “4 ” corresponding to slugging flow, bubbly flow, churn flow, and

nnular flow, respectively. Notably, that the integer labels are further

ncoded with the one-hot format in the training process to avoid gradi-

nt confusion. 

. Data preprocessing 

This research adopts a single window segmentation algorithm (see

ig. 6 and Algorithm 1) to augment the overall dataset. The yellow win-

ow segments a part of the ultrasonic signal as the input for further

ow regime classifiers. Nnabuife et al. (2020) found about 50k data

oints ( 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑤𝑖𝑛𝑑𝑜𝑤 ) came a 96% identification accuracy, which indi-

ates even a part of the individual record can provide sufficient infor-

ation for flow regime identification ( Nnabuife et al., 2020 ). However,

he state-of-the-art researches require at least 50k data points as one

inimum input length of ultrasonic signal. Nnabuife et al. (2020) found

he 50k data points of 𝑙𝑒𝑛𝑔𝑡 ℎ is the limitation of their DNN-based
𝑤𝑖𝑛𝑑𝑜𝑤 
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Fig. 6. The process of the single-window segmentation-based data augmentation. The blue (top) and orange (bottom-left) waveform signals respectively refer to the 

flow ultrasonic signal and the augmented data. The bottom-right neural network represents all the flow regime classifiers used in this research. 𝒍 𝒆 𝒏 𝒈 𝒕 𝒉 𝒊 𝒏 𝒑 𝒖 𝒕 corresponds 

to the length of the classifiers’ input, which equals to 𝒍 𝒆 𝒏 𝒈 𝒕 𝒉 𝒘 𝒊 𝒏 𝒅 𝒐 𝒘 . 

Table 1 

The setting details of the three data augmentation schemes. The 

length of the record ( 𝒍 𝒆 𝒏 𝒈 𝒕 𝒉 𝒓 𝒆 𝒄 𝒐 𝒓 𝒅 ) is 1.3 million (digits) of data 

points, and the sample frequency is 10kHz. The three augmenta- 

tion schemes correspond to sensing durations of 1.6384, 0.8192, 

and 0.4096 seconds respectively. 

Augmentation scheme 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑡𝑒 𝑝 𝑤𝑖𝑛𝑑𝑜𝑤 𝑛𝑢𝑚𝑏𝑒 𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 

Unit digits digits samples 

A 16,384 4,096 39,125 

B 8,192 4,096 39,375 

C 4,096 4,096 39,500 

c  

(  

s  

o  

r  

d  

a  

𝑙  

a  

T  

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

m

 

n  

n  

t  

𝑛  

d  

a  

t  
lassifier ( Nnabuife et al., 2020 ). The minimum 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑤𝑖𝑛𝑑𝑜𝑤 in

 Kuang et al., 2020 ) is also 50k. The minimum input length for clas-

ifier directly correspond to the classifier’s on-time property. The length

f the signal input to the neural network represents the amount of data

equired by the classifier, and the direct manifestation of such amount of

ata on the ultrasonic signal is the time length of the signal. Scheme A, B,

nd C separately use 16,384, 8,192, and 4,096 digits as input lengths (or

𝑒𝑛𝑔𝑡 ℎ 𝑟𝑒𝑐𝑜𝑟𝑑 ), which correspond to the signal lengths of 1.6394, 0.8192,

nd 0.4096 seconds regarding the 10kHz frequency (see the footnotes of

able 1 ). The reasons for choosing the three signal lengths ( 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑤𝑖𝑛𝑑𝑜𝑤 )

s follows: 

(1) The signal lengths in Scheme A, B, and C are shorter

than the state-of-the-art. The length settings recommended in

Kuang et al. (2021) , Nnabuife et al. (2020) , and Nnabuife,

Kuang et al. (2021) are 325,000, 10,000, and 30,000, and

the corresponding time durations are 3.25, 1, and 3 sec-

onds, respectively. Scheme A has a shorter time duration than

Nnabuife et al. (2020) and Nnabuife, Kuang et al. (2021) , but

longer than Kuang et al. (2021) . As the first scheme and the
6 
longest time duration, scheme A verifies the effectiveness of the

preprocessing ( Section 3 ). Specifically, the corresponding classi-

fier cannot prove its advance if the classifier does not show a com-

petitive result to the state-of-the-art in Scheme A. Both Schemes

B and C have shorter time durations than state-of-the-art. These

two schemes aim to test the novelty of real-time. Scheme C is

committed to decreasing the signal duration further to explore

the performance of each classifier on a very short signal dura-

tion. 

(2) The 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑤𝑖𝑛𝑑𝑜𝑤 in Scheme A, B, and C are multiples of 2, which

are 2 to the power of 14, 13, and 12, respectively. The purpose is

to use Fast Fourier Transform (FFT) for faster and more efficient

preprocessing. Fourier transform is a complicated process, while

the FFT can save a lot of computing power and time. In Scheme C,

the 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑤𝑖𝑛𝑑𝑜𝑤 and the 𝑠𝑡𝑒 𝑝 𝑤𝑖𝑛𝑑𝑜𝑤 are equal, which is equivalent

to no overlaps between all samples. Further, reducing the window

length can cause significant information loss in the preprocessing,

which is pointless for data preprocessing design. Furthermore,

the experiment in Section 5 proves that the signal duration of

Scheme C is too short for the flow regimes identification. 

Combining the above two points, Scheme A, B and C use long, short,

nd very short time durations to construct the signal lengths experi-

ented by each classifier. 

Eq. (1) depicts the qualitative relationship between the robust-

ess and the length of the signal ( 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑠𝑖𝑔𝑛𝑎𝑙 ) and the number of sig-

als ( 𝑛𝑢𝑚𝑏𝑒 𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 ). Notably, the number of signals ( 𝑛𝑢𝑚𝑏𝑒 𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 ) refers

o the available number of training signals. This research limits the

𝑢𝑚𝑏𝑒 𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 to a value around 40k data points using the length of win-

ow shifting ( 𝑠𝑡𝑒 𝑝 𝑤𝑖𝑛𝑑𝑜𝑤 ), which is an enough large value to achieve

 convinced identification result. Table 1 shows the progressive set-

ings data augmentation schemes, and Eq. (2) depicts the numerical
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Table 2 

the specifications for all the flow regime classifiers in the proposed CRNN benchmark. Experiment index provides 

an index for all fourteen experiments, which also corresponds to the “idx ” in Table 3 . Notably, Experiment No.14 

is a special case which has been discussed in Section 5.2. The “Classifier type ” indicates the applied classifier. 

The “Augmentation scheme ” corresponds to the Scheme A, B, and C in Table 1 . The “Usage ” refers to the purpose 

of different classifiers, where “C ” stands for the comparison-classifiers, and “T ” stands for testing-classifiers. The 

“Axis ” refers to the main learning strategy, where “T ” stands for the recurrent structures and “S ” stands for the 

convolutional structures. The “Additional explanation ” includes some key information for different models. 

Experimental 

scheme 

Experimental index 

(No.) 

Classifier 

type 

Augmentation 

scheme 

Key characteristics 

Usage Axis Additional explanations 

Scheme 

“reference ”

1 FCN A C S Only use convolutional 

structures 2 B 

3 C 

4 RNN A C T Only use the recurrent layers 

Scheme 1 5 CRNN1.x A T S + T A simple dimension 

alignment among tensors 6 B 

Scheme 2 7 CRNN2.1 A T S + T PTS vector-set + complicated 

CRNN 8 B 

9 CRNN2.2 A T S + T PTS vector-set + simple 

CRNN 10 B 

Scheme 3 11 CRNN3.x A T S + T Multi-scale CRNN 
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elationship among 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑠𝑖𝑔𝑛𝑎𝑙 , the length of window ( 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑤𝑖𝑛𝑑𝑜𝑤 ),

𝑡𝑒 𝑝 𝑤𝑖𝑛𝑑𝑜𝑤 , and 𝑛𝑢𝑚𝑏𝑒 𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 . 

 

𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 ∝ 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑠𝑖𝑔𝑛𝑎𝑙 
𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 ∝ 1∕ 𝑛𝑢𝑚𝑏𝑒 𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 

(1)

𝑢𝑚𝑏𝑒 𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 = 

𝑙 𝑒𝑛𝑔𝑡 ℎ 𝑟𝑒𝑐𝑜𝑟𝑑 − 𝑙 𝑒𝑛𝑔𝑡 ℎ 𝑤𝑖𝑛𝑑𝑜𝑤 

𝑠𝑡𝑒 𝑝 𝑤𝑖𝑛𝑑𝑜𝑤 

(2)

. Experimental designs 

Convolutional Neural Networks (CNN) are effective in feature ex-

raction, which provides a means for overcoming the low signal-noise

atio challenge. Nnabuife et al. (2019) , Nnabuife et al. (2020) , and

uang et al. (2020) utilize PCA and Fourier transformation to han-

le the challenge of high noise-signal-ratio, which complicate the over-

ll procedure also require prior optimizations (not E2E) ( Kuang et al.,

020 ; Nnabuife et al., 2020 ; Nnabuife et al., 2019 ). Furthermore, the

arameter-sharing (of CNN) can suppress the overfitting risk to achieve

 better identification performance. However, the depth increases in

onvolutional structure inevitably increase the model complexity and

radient vanishing risk. On the other aspect, Recurrent Neural Networks

RNN) provide an approach to implicitly connect information along the

ime-axis ( Zaremba et al., 2014 ). The recurrent layer can map the input
7 
hape to a desired output shape ( Ghavamian and Simone, 2019 ). How-

ver, these implicit connections (within a recurrent structure) inverse-

orrelate to the timestamp extension ( Zaremba et al., 2014 ). 

This research uses convolutional structures to create a pseudo-time-

eries (PTS), then utilizes recurrent layers to dig the implicit connections

long the PTS. The PTS can be understood as an artificial time-axis,

hich is the output of convolutional neural networks (CNNs) feature

xtraction along the real time-axis (the named pseudo-time-series). The

nteresting part is the inevitable consequence for receptive field increase

n CNNs can be simply handled using RNN with the CNNs-generated PTS

xis. Therefore, the key mission for this research focuses on finding the

RNN classifier which can achieve high identification accuracy with a

ery simple model-complexity. 

This research involves three CRNN schemes described in Table 2 . No-

ably, a gradual strategy is adopted for applying different augmentation

chemes to the classifiers. The gradual strategy refers to “only adopts

 shorter 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑠𝑖𝑔𝑛𝑎𝑙 (augmentation scheme) if the longer 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑠𝑖𝑔𝑛𝑎𝑙 
augmentation scheme) achieves proper performance ”. Section 4.1 dis-

usses the fully convolutional network (FCN)-based classifier (without

ny recurrent structure). Section 4.2 depicts the only RNN-based clas-

ifier. They represent two extreme design with only CNN and RNN as

eference cases. Section 4.3 then considers the CRNN classifiers (three

RNN schemes involved). 

.1. FCN-based flow regime classifier 

This section attempts to identify the flow regime with only convolu-

ional structures (see Fig. 7 ). The FCN-based flow regime classifier can

e divided into two parts, the feature extraction part and the classifier

art. 

The feature extraction part can extract the input 1D time-series data

nto a compact feature. The expansion block (ConvBlock-e) parallelly

xpands the 1D input into multiple 1D vectors ( Fig. 8 depicts ConvBlock-

’s structure). The "e" stands for the "expand" in ConvBlock-e. The subse-

uent feature extraction blocks (ConvBlock-fX) gradually extract valid

eatures by increasing the depth along six convolution blocks. The struc-

ure of ConvBlock-fX is depicted in Fig. 7 , where "f" stands for "feature

xtraction" in ConvBlock-fX. ConvBlock-fX adopts a structure similar to

he residual neural network (ResNet) ( He et al., 2015 ). The ResNet de-

ign can achieve better convergence and higher accuracy ( Yao et al.,

020 ). The "Add layer" creates a "highway" in ConvBlock-fX, which

oosts the gradient’s backpropagation to avoid the vanishing gradients.
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Fig. 7. The detailed structure of the proposed FCN-based flow regime classifier. (a) illustrates the overall layout of the FCN-based classifier. (b) depicts the structure of 

the ConvBlock-fX. The structures of the ConvBlock-e, ConvBlock-s, and ConvBlock-cX are placed in Fig. 8 . For all Fig.s in this paper, the ‘X’ marks, rectangular boxes, 

rounded rectangular boxes, elliptical boxes, solid lines represent the block index, in/output data, neural network blocks, layers, and inside data flow, respectively. 

ZeroP, Conv1D, BN, LeakyReLU refer to the zero-padding layer, 1D convolutional layer, batch normalize layer, and leaky rectified linear unit (LeakyReLU) activation 

function, respectively. The X inside “[X] ” after the Conv1D (or Conv2D) refers to the kernel size, and the “strides = X ” refers to the stride’s length equals to X for 

kernel shifting. 

Fig. 8. The structure of the ConvBlock-e, ConvBlock-s, and ConvBlock-cX in this research. 
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conduct the classification task. 
onvBlock-fX uses the convolutional layers with strides equals to two

nstead of the pooling layer to suppress information loss in the fea-

ure extraction part. Finally, the stretch block (ConvBlock-s) ( Fig. 8 [b])

tretches the extracted features back into 1D form, where "s" stands for

he "stretch." Notably, ConvBlock-s’ output is a compact feature with a

horter length than the input data. 

Fig. 7 shows that the FCN structure uses five times ConvBlock-fX

lock, and each ConvBlock-fX performs a convolution operation with

 stride of two. Furthermore, the dimensional changes introduced by

tride are also applicable to the RCNN design in Section 4.3 . The recep-

ive field of each node in ConvBlock-t6 in ConvBlock-f1 is about 1,700

igits. Assuming that the convolutional kernel of a stride-convolution is

 𝑚 " and stride is " 𝑠 ", the size of the receptive field (" 𝑟 ") in this convolu-

ional layer is " 𝑟 = ( 𝑚 − 𝑠 ) ∗ 𝑠 + 𝑚 ". Further increasing the receptive field

an increase the neural network depth, which increases the risk of the

radient vanishing. It is noteworthy that, in order to suppress the gradi-

nt vanishing, this study applies a connected structure like the ResNet

see Fig. 7 (b)). Therefore, it is unnecessary to increase the receptive field

urther because of the risk of gradient vanishing. On the other hand, re-

ucing the receptive field to reduce the risk of gradient vanishing is

lso inappropriate. In the RCNN structure in Section 4.3 , the convolu-

ion structure also conducts the function of dimensional change. Stride-

onvolution increases the receptive field while also compressing the di-
8 
ension of the tensor. When stride is equal to 2, one stride-convolution

an compress the tensor to its 1/2. The FCN classifier and RCNN classi-

er use five times stride-convolutions. Therefore, the data is compressed

y 2 5 (or 32) times. If the number of stride-convolution is reduced,

he tensor introduced to the classification part becomes very large. Al-

hough this does not cause too much problem for the FCN network,

he RNN layer in the CRNN will significantly reduce the computational

fficiency. 

The classification block (ConvBlock-cX) in the classification part

 Fig. 7 ) is a convolution block that uses the convolution kernel equals to

ne, operating like the fully connected layer. The final output-softmax

ayer uses a vector length of four to output the prediction. Output-

oftmax is composed of a flat layer followed by a fully connected layer

ith four neurons, and the activation function is the softmax logical

egression. 

The FCN-based flow regime classifier implements a two-dimensional

2D) mapping from ConvBlock-e to 2DMap-sigmoid ( Fig. 7 [b]). Using

he sigmoid activation, the four flow regimes are mapped into a 2D

quare space with each edge equal to one, which is discussed in detail in

ection 5.3. Notably, all proposed classifiers adopt the 2DMap-sigmoid

nd Output-softmax structure as the output port. Therefore, the classi-

ers firstly map the flow regime data to a 2D square space and then
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Fig. 9. The detailed structure of the proposed RNN-based flow regime classifier. (a) depicts the overall layout of the RNN-based classifier. The RNN-X refers to the 

recurrent neural network block with index X. FC-X refers to the fully connected block, composites with fully connected layer, and LeakyReLU activation function. 

Fig. 10. The detailed structure of the proposed CRNN1.x-based flow regime classifier. (a) depicts the overall layout of the CRNN1.x classifier. (b) refers to the 

structure of Conv2DBlock-b, FC-X in this research. The structure of Conv1DBlock-X and Conv2DBlock-aX have been illustrated in Fig. 11 . 

3

 

r  

s  

D  

f  

R  

a

a  

r  

a  

e  

t  

R  

s  

s  

3

3

 

w  

t  

c  

fi  

c  

t  

c  

t  

l  

t  

i  

a

 

l  

t  

e  

(  

F  

s  

i  

[  

r  

C  

v  

c  

f  

a  

i  

p  

3

 

C  

l  

e  

c  
.2. RNN-based flow regime classifier 

This section focuses on the time-series method. RNN is a popular

epresentation of time-series methods. The RNN-based flow regime clas-

ifier ( Fig. 9 [a]) only utilizes the recurrent structures. The input 1D

oppler signal passes through three RNN-blocks, then enters the three

ully connected layers. Fig. 9 (b) highlights the operating process of the

NN blocks in Fig. 9 (a). The orange circles ( Fig. 9 [b] top) represent

 single sample in the input batch ( Fig. 9 [a]). 𝑥 0 , 𝑥 𝑡 −1 , 𝑥 𝑡 , 𝑥 𝑡 +1 , and 𝑥 𝑛 
re the data point at the start (0), 𝑡 − 1 , 𝑡 , 𝑡 + 1 , and end timestamp ( 𝑛 ),

espectively. There are two types of RNN blocks used in this research

ccording to the sequence return formation. The first type returns the

ntire timestamp results, while the second type only returns the end

imestamp result. RNN-1 and RNN-2 blocks belong to the first type, and

NN-3 block belongs to the second type. The columns ( Fig. 9 [b]) repre-

ent the forward and backward propagation inside the RNN-based clas-

ifier, and the rows ( Fig. 9 [b]) are the propagation along the time axis.

.3. CRNN-based flow regime classifiers 

.3.1. CRNN1.x: dimensional alignment 

This section discusses the CRNN1.x-based flow regime classifier,

hich is a simple combination using convolutional and recurrent struc-

ures. Notably, the FCN-based classifier attempts to decrease the model

omplexity by parameter-sharing strategy and increases the receptive

eld by increasing depth (also increase the model complexity). Such

onflicts decrease the efficiency of online flow regime prediction. On

he other side, the RNN-based classifier attempts to utilize the time-

orrelation, but the RNN-3 block loses a lot of information because of
9 
he significant dimension change. Moreover, the time-correlation estab-

ished in the RNN-based classifier is actually weak because of the long

imestamp range. For the timestamp 𝑛 output, only the timestamp n-1

s directly related. As a result, striking a balance between convolutional

nd recurrent structures is difficult. 

The input and output data tensors of convolutional and recurrent

ayers both have three dimensions, which is indicated with batch size,

imestamp length, and dimension, respectively. The convolutional lay-

rs of the CRNN1.0 classifier mainly work for the dimension reduction

 Fig. 10 [a]), while the recurrent structure focus on time-correlation.

ig. 11 (a) depicts the structure of Conv1DBlock-X, which also adopts a

tructure similar to the ResNet ( He et al., 2015 ). Each Conv1DBlock-X

s composed of a convolutional layer of strides larger than one ( Fig. 11

a] left), and a convolutional layer of stride equals to one on the

ight of ( Fig. 11 [a] right). RNN-1 learns the time-correlation from the

onv1DBlock-6. The 2 nd dimension reduction part utilizes the 2D con-

olutional blocks (Conv2DBlock-aX) ( Fig. 8 [a]) imitates the image pro-

essing, uses 2D convolutional layers to compress the results of RNN-1

urther. Conv2DBlock-b ( Fig. 10 [b] top) stretches the feature back into

 1D form after the five Conv2DBlock-aX. This one-dimensional feature

s input into the RNN-2 structure, and then FC-X ( Fig. 10 [b] bottom)

erforms dimension reduction and finally outputs the prediction vector.

.3.2. CRNN2.x: pseudo-time-series vector-set 

The section discusses the CRNN2.x flow regime classifier. The

RNN1.x classifier equips low computational efficiency, convolutional

ayers play the role of dimension transformer for inside data flow. How-

ver, the essence of a convolutional operator is a depth expansion pro-

ess using parallel convolution kernels. In other words, convolution is a
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Fig. 11. The structures of Conv1DBlock-X and Conv2DBlock-aX in this research 

Fig. 12. The detailed structure of the proposed CRNN2.x-based flow regime classifier. (a) depicts the overall layout of the CRNN2.x classifier. (b) refers to the 

structure of ConvBlock-tX 
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apping operator that maps data from input to output space. CRNN2.x

roposes a more efficient convolutional and recurrent structures. 

CRNN2.x can be divided into two parts: PTS vector-set part ( Fig. 12

a]) and classification ( Fig. 12 [a]). The PTS vector-set part imitates the

tructure of FCN ( Section 4.1 ). ConvBlock-tX ( Fig. 12 [b]) is a 1D convo-

utional layers block, where t stands for transformation. ConvBlock-tX

lso uses a structure similar to the ResNet ( He et al., 2015 ). Notably,

he stride of the first layer of ConvBlock-tX equals two to replace the

ooling operator. The depth gradually increases from ConvBlock-t1 to

onvBlock-t6. Compared with the input data, the output of ConvBlock-

6 is a vector-set whose size is greatly shorted. This research supposes

he size-axis sets as the timestamp axis and the depth-axis sets as the

ector-axis. The PTS vector-set part’s output is a vector-set compressed

long the timestamp-axis but extended along the depth-axis. The PTS

ector-set consists of multiple PTS vectors distributed along the pseudo-

imestamps-axis. The classification part inputs the PTS vector-set into

he classifier composed of three RNN blocks, three FC-X blocks, 2DMap-

igmoid, and Output-softmax. 

CRNN3.x: multi-scale model 

This section discusses the CRNN3.0 multi-scales CRNN-based flow

egime classifier. Fig. 13 shows the structure of CRNN3.x, which can

e divided into multi-scale virtual time-series vector-set part and the

lassification part. 

The multi-scale PTS vector-set part adopts a multi-scale convolu-

ional structure. A deep convolutional layers layout can cause signif-
10 
cant information loss, but a shallow layout cannot provide enough

omputational complexity. They respectively use 20, 25, and 19 con-

olutional layers to conduct the dimension transformation in the above

CN, CRNN1.x, CRNN2.x-based classifiers, while CRNN3.x only requires

ine convolutional layers. CRNN3.x parallelly achieves three same-sized

ST-vector-set. Thus, the depth of each convolutional layer scale in each

hannel is only three blocks. The structure of Conv1DBlock-X is shown in

ig. 14 (a) and (b). The classification part comprises four CRNN blocks

 Fig. 14 [d]), which contains one RNN block and two Conv1DBlock-

 blocks. After CRNNBlock-X, RNN-5 and a fully connected layer are

dded to complete the classification. 

. Results and discussions 

.1. The proposed CRNN-based flow regime identification benchmark 

The hardware utilized in this research was the Intel E5-2620 v4

Broadwell) Central Processing Units (CPUs) of 16 CPU cores, the mem-

ry of 64GB, and the Tesla K80 Graphics Processing Unit (GPU) card.

his research developed on the Linux 18.04 system and the involved

oftware is Python3.7, Tensorflow 2.0, Numpy, and Matplotlib. 

This study keeps the hyperparameters constant on different exper-

ments to eliminate the influence of hyperparameter adjustments. The

urpose of the experiments is to compare the performance of the dif-

erent RNN-based classifiers proposed in Section 4 on flow regime
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Fig. 13. The detailed structure of the proposed CRNN3.x-based flow regime classifier 

Fig. 14. The structure of Conv1DBlock-X, Conv1DBlock-X (with stride equals to s), and CRNNBlock-X in this research 
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dentification. The setting of hyperparameters will have a great impact

n the experimental results. The settings and discussions of the hyper-

arameters are as follows: 

(1) The 𝑛𝑢𝑚𝑏𝑒 𝑟 𝑖𝑛𝑝𝑢𝑡 represents the size of the sample space. Deep

learning is usually very sensitive to the size of the sample space.

The experiments limit the sample space obtained by the different

schemes in Section 3 to a small range, 39K to 39.5K samples. The

recommended sample space size from Nnabuife et al. (2021) is

12k, so this study assumes that a sample space size of about 39k

is a reasonable setting, and the results in Table 3 also support this

hypothesis. 

(2) This study uses the one-hot encoding method for annotating dif-

ferent flow regimes. One-hot decomposes the multi-classification

task into multiple binary classification tasks. For example, the

four flow regimes (slugging flow, bubbly flow, churn flow, and

annular flow) in Section 2 are marked using integers "1", "2", "3",

and "4". However, they can bring confusion to the gradient. For

example, a predicted value of 1.5 has the same gradient to anno-

tation "1" and "2". The one-hot encoding transforms the annota-

tions along the following patterns, "1- > (1,0,0,0)", "2- > (0,1,0,0)",

"3- > (0,0,1,0)", and "4- > (0,0,0,1)". Thus, any flow regime is recog-

nized as a binary classification task (between 0 and 1). The one-
11 
hot encoding can accelerate the model convergence and avoid

gradient confusion. 

(3) All the data from Section 3 has been randomly shuffled before

performing any experiment. 

(4) The shuffled samples are divided into the training set, testing set,

and validation set according to the ratio of 60%, 20%, and 20%.

Specifically, 0 to 60% is used as the training set, 60% to 80%

is used as the testing set, and 80% to 100% is used as the vali-

dation set. It is noteworthy that the verification of the proposed

flow regime classifier is conducted using the testing and verifi-

cation sets. Specifically, the goal of the training set is to provide

experience for training the classifiers. The entire training process

repeatedly iterates on the training set, and once learning is also

called an epoch. The epoch does return not only the training re-

sults but also the evaluation results using the testing set. The test-

ing set contains the data independent from the training set, which

can be regarded as new data different from the training set. The

results of the testing set are used to evaluate the generalization

ability and fitting condition of the classifier, while the fitting con-

dition mainly refers to the level of overfitting and underfitting.

However, the testing set is also involved in the general training

process because the testing set has been used to evaluate the gen-

eral training performance of the classifier. Therefore, this study
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Table 3 

The benchmark of the CRNN-based flow regime classifiers. idx, 𝒂 𝒄 𝒄 𝒕 𝒓 𝒂 𝒊 𝒏 , 𝒂 𝒄 𝒄 𝒕 𝒆 𝒔 𝒕 , 𝒂 𝒄 𝒄 𝒗 𝒂 𝒍 𝒊 𝒅 , 𝒍 𝒐 𝒔 𝒔 𝒕 𝒓 𝒂 𝒊 𝒏 , 𝒍 𝒐 𝒔 𝒔 𝒕 𝒆 𝒔 𝒕 , 

𝒎 𝒔 𝒆 𝒕 𝒓 𝒂 𝒊 𝒏 , 𝒎 𝒔 𝒆 𝒕 𝒆 𝒔 𝒕 , and complexity respectively refer to the experiment index (corresponding to Table 2 ), training 

accuracy, testing accuracy, validation accuracy, training loss, testing loss, training MSE), testing MSE, and the 

computational graph complexity. “% ” stands for the percentage. “/ ” stands for the non-applicable. The bold val- 

ues refer to the best record in this research. The shadow refers to the highlighted result, which achieves the best 

performance balanced between model’s complexity and accuracy. Nnabuife et al. (2019) ; Nnabuife et al. (2020) , 

and Kuang et al. (2020) refer to the state-of-the-art. Experiment No.14 further trains the model from Experiment 

No.11, so the epoch callback goes to 300 instead of 200. Experiment No.14 achieves the best result in this 

research, which has been discussed in Section 5.2. 

idx 𝑎𝑐 𝑐 𝑡𝑟𝑎𝑖𝑛 𝑎𝑐 𝑐 𝑡𝑒𝑠𝑡 𝑎𝑐 𝑐 𝑣𝑎𝑙𝑖𝑑 𝑙𝑜𝑠 𝑠 𝑡𝑟𝑎𝑖𝑛 𝑙𝑜𝑠 𝑠 𝑡𝑒𝑠𝑡 𝑚𝑠 𝑒 𝑡𝑟𝑎𝑖𝑛 𝑚𝑠 𝑒 𝑡𝑒𝑠𝑡 complexity 

unit % % % / / / / parameters 

1 99.98 97.13 97.30 0.2112 0.2870 0.0160 0.0256 7,436,654 

2 99.85 86.38 84.70 0.2522 0.5181 0.0189 0.0620 7,436,654 

3 99.75 72.53 73.42 0.1889 1.0150 0.0138 0.0119 7,436,654 

4 36.73 37.14 25.00 1.2873 1.2831 0.1755 0.1750 756,830 

5 100.00 97.45 97.63 0.2109 0.2591 0.0151 0.0234 6,748,974 

6 99.92 85.62 86.02 0.2498 0.5612 0.0202 0.0673 4,651,822 

7 99.78 97.59 98.06 0.2052 0.2643 0.0152 0.0230 17,113,606 

8 36.20 37.98 25.00 1.2900 1.2773 0.1759 0.1744 14,242,542 

9 99.75 97.36 97.25 0.2051 0.2725 0.0146 0.0231 11,933,702 

10 99.75 88.39 89.42 0.2433 0.5109 0.0198 0.0588 3,931,918 

11 98.47 92.46 93.60 0.2974 0.4424 0.0276 0.0465 117,702 

12 66.88 59.75 41.02 0.8058 0.9824 0.1185 0.1391 101,318 

13 78.81 60.17 54.51 0.6113 1.0081 0.0818 0.1379 93,126 

14 99.30 98.26 97.80 0.0865 0.1235 0.0048 0.0092 117,702 

Nnabuife et al. (2019) 85.70 84.60 / / / / / / 

Nnabuife et al. (2020) 99.01 96.28 96.35 / / 0.0060 0.0152 / 

Kuang et al. (2020) 99.95 99.95 99.54 0.0013 0.0141 3.9175 ∗ e-4 0.0019 / 
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further applies an independent validation set to evaluate the gen-

eralization ability of the classifier in the new environment. 

(5) The number of training epochs is set to 200 epochs. 

(6) The loss function uses the categorical cross-entropy, which is rep-

resented by Eq. (3) . The 𝑙𝑜𝑠 𝑠 𝑐 𝑐 𝑒 , 𝑥 𝑖𝑛𝑝𝑢𝑡 , 𝑛 , 𝑦 𝑔𝑡 , and 𝑦 𝑝𝑟𝑒𝑑 respec-

tively refer to the categorical cross-entropy, input batch, batch

size, ground-truth label and prediction. 

(7) The evaluation metrics apply accuracy and mean square error

(MSE). Eqs. (4) and (5) depict the accuracy and MSE used in

this research, where TP, FP, FN, and TN refer to the number of

true positive, false positive, false negative, and true negative pre-

dictions from the machine learning aspect. Accuracy is a direct

evaluation index, while MSE is a representation of the Euclidean

distance between the predictions and the annotations. It is note-

worthy that there is no direct connection between MSE and accu-

racy. For example, if an annotation equals 1, and the prediction

equals 0.8, so the accuracy and MSE equal 100% and 0.2. In an-

other case, the prediction becomes 0.6, while the accuracy and

MSE equal 100% and 0.4, respectively. 

(8) The optimizer uses Adam, and the initial learning rate is set to

0.0001. This study uses the Adam optimizer implemented by Ten-

sorFlow Keras, and other parameters are their corresponding de-

fault settings. 

(9) Batch size is set to 32 samples per batch. 

Table 3 lists all the results of the fourteen experiments depicted in

able 2 . Table 3 indicates that the highest testing and validation accu-

acy were obtained in Experiment No.7, while the simplest complexity

ere achieved in CRNN3.3. FCN, CRNN1.x, CRNN2.x, and CRNN3.x all

btained better results than ( Nnabuife et al., 2019 ) and ( Nnabuife et al.,

020 ) in the augmentation scheme A. However, most of them (except

RNN3.3) are also very complex. A high complexity brings seriously

hallenge for the actual industrial scenarios, and lead to a high-risk of

verfitting. Table 3 depicts that the training accuracy of FCN, CRNN1.x,

nd CRNN2.x are close to 100%, but the testing and validation accuracy

till low for Experiments No. 2, 3, 6, and 10. 
12 
Experiment No.11 achieved a better result than all the baselines pro-

osed by Nnabuife et al. (2019) , this is significant. Although its testing

nd validation accuracies are lower than Nnabuife et al., (2020) and

uang et al. (2020) , its complexity is 98.4% lower compared to Exper-

ment No.7, which is considerable. Even Nnabuife et al. (2020) and

uang et al. (2020) do not consider the complexity, this research

alculates that the complexities are approximately between 1,100k

nd 2,000k according to their classifier’s structure ( Kuang et al.,

020 ; Nnabuife et al., 2020 ). Therefore, the CRNN3.x separately

ecreased the complexity by approximately 90% and 95%. Fur-

hermore, Nnabuife et al. (2020) consumed about 1,300 epochs to

chieve the 97.59% testing accuracy ( Nnabuife et al., 2020 ), and

uang et al. (2020) spent 500 epochs to achieve the 99.95% testing ac-

uracy ( Kuang et al., 2020 ). The CRNN3.x only conducted 200 epochs.

ection 5.1.5 discusses Experiment No.11 in detail. Further evaluation of

he CRNN3.x-based flow regime classifier’s performance without epoch

imitation is proposed in Section 5.2. 

𝑜𝑠 𝑠 𝑐 𝑐 𝑒 = − 

1 
𝑛 

∑

𝑥 𝑖𝑛𝑝𝑢𝑡 

[
𝑦 𝑔𝑡 ⋅ ln ( 𝑦 𝑝𝑟𝑒𝑑 ) + 

(
1 − 𝑦 𝑔𝑡 

)
⋅ ln 

(
1 − 𝑦 𝑝𝑟𝑒𝑑 

)]
(3)

𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 

𝑇 𝑃 + 𝑇 𝑁 

𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁 

(4)

𝑆𝐸 = 

1 
𝑚 

𝑚 ∑

1 

(
𝑦 𝑝𝑟𝑒𝑑 − 𝑦 𝑔𝑡 

)2 
(5)

.1.1. FCN-based flow regime classifiers 

Figs. 15 , 23 , and 24 show the FCN-based classifier training’s exper-

mental results with the augmentation schemes A, B, and C (Experi-

ent No.1, 2, and 3 in Table 2 ), respectively. In Experiment No.1, the

CN-based classifier demonstrates a flow regime identification perfor-

ance lower than Nnabuife et al., (2020) and Nnabuife et al., (2019) .

n Fig. 15 , the FCN-based classifier uses only 32% of the input length

f ( Nnabuife et al., 2020 ) and achieves 99.98%, 97.13%, and 97.30%

raining, testing, and validation accuracy, respectively. Fig. 15 (b) and

c) show very stable learning trends, indicating that the model is stable.



B. Kuang, S.G. Nnabuife, S. Sun et al. Digital Chemical Engineering 2 (2022) 100012 

Fig. 15. The detailed experimental records of the FCN-based flow regime classifier using the augmentation scheme A (Experiment No.1 in Table 2 and Table 3 ). 

(a), (b), and (c) respectively refer to the training and testing curves of accuracy, loss, and MSE, where the red dash and blue solid curves respectively correspond to 

the training and testing set. The x-axis in (a), (b), and (c) refers to the epoch. The y-axis refers to accuracy in (a), categorical cross-entropy in (b), and MSE in (c). 

(d) left and right respectively refer to the testing and validation confusion matrix, where the values correspond to the accuracy, x and y-axis refer to prediction and 

ground-truth labels. The right color bar indicates the sample’s amount to the corresponding color. Notably, all the figures in this paper follows the same meanings 

as above. 
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a  
urprisingly, Fig. 15 (d) depicts that the FCN-based classifier has supe-

ior identification accuracy for the four flow regimes, which indicates

hat the convolutional layers provide significant performance in pat-

ern recognition. However, Fig. 23 and Fig. 24 indicate that the model’s

erformance decreases as the length of the input flow ultrasonic signal

ecreases, which also verifies Eq. (1) in Section 3 . Notably, Figs. 23 and

4 (a), (b), and (c) show that the FCN-based classifier is significantly

verfitted. Furthermore, Table 3 mentions that the FCN-based classi-

er equips 7,436,654 parameters. Although the complex computational

raph allows the FCN classifier to achieve high training accuracy when

he 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑖𝑛𝑝𝑢𝑡 is reduced, the model is easy to overfit. 

.1.2. RNN-based flow regime classifier 

Fig. 16 shows the RNN-based classifier results. The accuracy passes

8%, then suddenly drops to and stays at about 35%, which indicates

hat it is challenging to directly use the RNN. Especially for the long

imestamp signals, it brings great computational consumptions (almost

mpossible). Therefore, the RNN-based classifier uses the second type of

NN block to reduce the amount of calculation before accessing the fully

onnected layer. The second type of RNN block only returns the result

f the last timestamp, which leads to a significant information loss from

he early timestamp. The RNN-based classifier only requires 756,830

arameters ( Table 3 ), which decreases complexity by 90% compared to

he FCN-based classifier. Therefore, the idea of combining the convolu-

ional structures of FCN with the recurrent structures of RNN becomes

ery pertinent. 

The comparison between Experiment No.4 and Experiment

o.1 shows that the convolutional structure has advantages over

he recurrent structure in feature extraction and anti-noise. In

nabuife et al. (2019) , PCA was used to extract features and anti-noise
13 
or the ultrasonic signals, but the accuracy obtained by its classifier was

nly about 88%. Convolutions and stride-convolutions expand the re-

eptive field while gradually extracting features in the signal. It is note-

orthy that the information in the ultrasound signal can be roughly

ivided into "information valid for a specific task" and "information in-

alid for a specific task." Traditional artificial feature extraction methods

such as PCA or highpass filter) can only extract information in a fixed

orm, and task change can cause corresponding changes in the defini-

ion of "valid information." The convolution structures in Experiments

o.1, 2, and 3 provide a more intelligent feature extraction approach

han the traditional artificial features, which explains the excellent per-

ormance of each classifier in Section 5.1.1: "The classifiers depicted

n Section 5.1.1 have good anti-noise performance". Furthermore, the

NN classifier in this study refers to the classifier that does not use any

onvolutional structures. The difference in Fig. 16 than in Section 5.1.1

llustrates the advantages of the above-mentioned convolutional struc-

ure in terms of anti-noise. 

.1.3. CRNN1.x-based flow regime classifiers 

Figs. 17 and 25 show the results of the CRNN1.0-based classifier,

hich is the first combined classifier of convolutional and recurrent

tructures. Table 3 shows that the number of parameters of CRNN1.0

s reduced through the introduction of time-series features compared

o the FCN classifier (Experiments No.5 and No.6 have decreased the

omplexity by 9.2% and 37.4%, respectively). The CRNN1.0 obtains

00%, 97.45%, and 97.63% of the training, testing, and validation accu-

acy, which shows that the flow regime classifier’s performance achieves

urther improvement. Fig. 17 (a) shows that the convergence speed of

RNN1.0 has been accelerated, and the accuracy curve converges at

bout 25 epochs. The loss curves in Fig. 17 (b) and (c) are smoother
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Fig. 16. The detailed experimental records of the RNN-based flow regime classifier using the augmentation scheme A (Experiment No.4 in Table 2 and Table 3 ) 

Fig. 17. The detailed experimental records of the CRNN1.0-based flow regime classifier using the augmentation scheme A (Experiment No.5) 

14 
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Fig. 18. The detailed experimental records of the CRNN2.1-based flow regime classifier using the augmentation scheme A in Table 2 (Experiment No.7) 

Fig. 19. The detailed experimental records of the CRNN2.2-based flow regime classifier using the augmentation scheme A in Table 2 (Experiment No.9) 

15 
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Fig. 20. The detailed experimental records of the CRNN3.0-based flow regime classifier using the augmentation scheme A (Experiment No.11) 
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Fig. 21. The testing and validation confusion matrix of the converged CRNN3.1 

flow regime classifier 
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han in the FCN classifier, indicating that the CRNN1.0 model is more

table. Notably, CRNN1.0 ( Fig. 25 ) shows better performance than both

he FCN classifier and ( Nnabuife et al., 2019 ) when the augmentation

cheme B ( Table 1 ) is adopted. 

.1.4. CRNN2.x-based flow regime classifiers 

Fig. 18 and Fig. 26 show the results of the CRNN2.1 classifier.

he performance of CRNN2.1 on the augmentation scheme A performs

ell, and it has achieved the highest testing and validation accuracy

f all fourteen experiments. Table 3 shows that the training, testing,

nd validation accuracy of CRNN2.1 obtained on the augmentation

cheme A are 100%, 97.45%, and 98.06% respectively, which is higher

erformance than the state-of-the-art result ( Nnabuife et al., 2020 ).

ig. 18 (d) left and right also show that the classification performance

f the CRNN2.1 for the four flow regimes also achieves accurate re-

ults. However, the complexity of CRNN2.1 also reached an astonishing

7,113,606 parameters (Experiment No.7) and 14,242,542 (Experiment

o.8), which increases about 130% and 91.5%, respectively compared

o the FCN model. Therefore, although CRNN2.1 has improved accuracy

y about 1.5% compared to FCN, its model has become very complex.

owever, when the 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑖𝑛𝑝𝑢𝑡 is reduced to 8,192 data points (augmen-

ation scheme B in Table 2 ), the training, testing, and validation ac-

uracy significantly drop to below 40% ( Fig. 26 (a), (b), and (c)). The

eason for this abnormal situation is that the CRNN2.1 overfitted when

he 𝑙𝑒𝑛𝑔𝑡 ℎ 𝑖𝑛𝑝𝑢𝑡 becomes shorter. 

Figs. 19 and 27 (of CRNN2.2) maintain the same design layouts as

RNN2.1 but decrease the model complexity to verify the discussion in

xperiment No.8. Experiment No.9 lower 20% of complexity than Ex-

eriment No.7 and Experiment No.10 lower 72% complexity than Ex-

eriment No.8. For the augmentation scheme A ( Table 2 ), the training,

esting, and verification accuracy in Experiment No.9 only dropped by

bout 0.2% to 0.8%, which is negligible compared to the reduction in

odel complexity. For the augmentation scheme B ( Table 2 ), the ac-

uracy has also been significantly improved, and its training, testing,

nd validation accuracy of Experiment No.10 are 85.81%, 76.26%, and
16 
00%, respectively. Although the accuracy in Fig. 27 (a) is closed to

he level of [6], the testing and validation confusion matrix shows that

RNN2.1 has difficulty to distinguish the first and second types of flow

egimes ( Fig. 27 (d) left and right). 

.1.5. CRNN3.x-based flow regime classifiers 

Figs 20 (Experiment No.11), 28 (Experiment No.12), and 29 (Exper-

ment No.13) illustrate the performance of CRNN3.x among all three

ugmentation schemes. Although the training, testing, and validation

ccuracy of Experiment No.11 is 98.47%, 92.46%, and 93.06, the model

omplexity has significantly reduced by 98.4% (only contains 117,702

arameters). The extremely low complexity of CRNN3.x benefits from

he design of the multi-scaled PST vector-set layout and the efficient us-

ge of time-series features through CRNN. Notably, the loss and MSE

urves in Fig. 20 (b) and (c) keep decreasing, indicating a good learn-

ng trend. Therefore, Experiment No.11 can achieve better results by

xtending the training time (see Section 5.2). 

.2. Further evaluation for the CRNN3.0-based flow regime classifier 

This research further trained the CRNN3.0 model from Experiment

o.11 to explore the convergence point. After another 100 epochs, the
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Fig. 22. Clusters visualization for the four flow regimes. The yellow pentagons, red circles, blue triangles, and green squares respectively correspond to the four flow 

regimes. (a), (b) top, and (b) bottom respectively indicate the clusters visualization data using 25%, 15%, and 10% of the data. x and y-axis respectively correspond 

to the first and second values in the 2DMap-sigmoid block, which is the output interface for all the classifiers. 

t  

a  

t  

r  

d  

v  

i  

2  

d

 

i  

d

4

 

S  

S  

c  

c  

p  

t  

a  

i  

p  

t  

fl  

e  

o  

a  

fl  

g  

fi  

t  

F

5

 

c  

t  

9  

%

 

a  

r  

d  

s  

i  

N  

t  

b

 

t  

s  

d  

r  

d  

s  

t  

r

D

 

i  

t

A

 

G  

w  

d  

m  

d

raining, testing, and validation accuracy arrived at 99.30%, 98.26%,

nd 97.80%, respectively. The training and testing categorical cross en-

ropy reach 0.0865 and 0.1235, while the training and testing MSE sepa-

ately corresponds to 0.0048 and 0.0092. Fig. 21 (a) and (b) separately

epict the testing and validation confusion matrix. Although the con-

erged CRNN3.0 does not defeat the best record in ( Kuang et al., 2020 ),

t does achieve a better result than the baseline from ( Nnabuife et al.,

019 ) and the records from ( Nnabuife et al., 2020 ), which verifies the

iscussion in Section 5.1.5. 

The computation time for the CRNN-3.0-based flow regime classifier

s less than 0.6 seconds for an implementation in Python on a standard

esktop PC. 

.3. Clusters visualization for the four flow regimes 

Fig. 22 shows the result of the 2DMap-sigmoid (mentioned in

ection 4.1 ), a 2D cluster visualization of flow classification. Although

ection 5.1 uses the accuracy curves, loss curves, MSE curves, testing set

onfusion matrix, and validation set confusion matrix to analyze and dis-

uss the classifiers’ results, it is still not explicit enough. This research

rovides a 2D mapping method for each classifier in the benchmark

hrough the 2DMap-sigmoid interface, which uses the sigmoid function

s the activation. Therefore, all flow ultrasonic signals can be mapped

nto a one by one square area. Fig. 22 is the 2D projection result of Ex-

eriment 5. The red circle represents the slugging flow; the yellow pen-

agon represents the bubbly flow; the blue triangle represents the churn

ow; the green square represents the annular flow. The transparency of

ach sample in Fig. 22 is 75% so that the color can represent the number

f overlapping targets in an area. For example, the four corners’ colors

re quite deep, indicating that the clustering orientations of the four

ow regimes are the four corners. However, part of the red circles and

reen squares scatters throughout the 2D area explain that the identi-

cation accuracy of the first and third flow regimes is generally lower

han the second and fourth flow regimes in the Section 5.1 benchmark.

ig. 22 provides a more explicit way to visualize results qualitatively. 

. Conclusion 

This research proposed an ultrasonic sensor and a convolutional re-

urrent neural network (CRNN) for gas-liquid two-phase flow recogni-
17 
ion in an S-shaped riser, achieving testing and validation accuracies of

8.13 % and 98.06 %, respectively, while reducing complexity by 98.4

 (only 117,702 parameters). 

Compared with the previous methods, the applied time-domain char-

cteristics in this research successfully improved the identification accu-

acy and simplified the deep learning model complexity. This research

iscussed the promising ability of CNN-RNN cooperation for the ultra-

onic signal for flow regime identification in S-shape risers (the theoret-

cal logics in Section 4 and the experimental validations in Section 5 ).

otably, this research also proposes an explicit 2D clustering visualiza-

ion method, which qualitatively illustrates the performance of CRNN-

ased flow regime identification. 

This contribution proposed an end-to-end (E2E) CRNN-based solu-

ion towards the gas-liquid flow regime identification using ultrasonic

ignals in an S-shaped riser. The proposed CRNN classifier significantly

ecreases the module complexity along with a high identification accu-

acy. The cooperation between the feature extraction of CNN and time-

omain analysis of RNN shows considerable ability for handling the low

ignal-noise ratio and long ultrasonic signal. The systematically inves-

igated CRNN schemes provide a benchmark (or baseline) for further

elated research (e.g. transfer learning). 
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A
ppendix 

Experimental records for the CRNN-based flow regime identification benchmark 

Fig. 23 - 29 

Fig. 23. The detailed experimental records of the FCN-based flow regime classifier using the augmentation scheme B (Experiment No.2). 

Fig. 24. The detailed experimental records of the FCN-based flow regime classifier using the augmentation scheme C (Experiment No.3). 

18 



B. Kuang, S.G. Nnabuife, S. Sun et al. Digital Chemical Engineering 2 (2022) 100012 

Fig. 25. The detailed experimental records of the CRNN1.0-based flow regime classifier using the augmentation scheme B (Experiment No.6). 

Fig. 26. The detailed experimental records of the CRNN2.1-based flow regime classifier using the augmentation scheme B (Experiment No.8). 
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Fig. 27. The detailed experimental records of the CRNN2.2-based flow regime classifier using the augmentation scheme B (Experiment No.10). 

Fig. 28. The detailed experimental records of the CRNN3.0-based flow regime classifier using the augmentation scheme B (Experiment No.12). 
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