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Abstract
In this paper we extend the application of unstructured high-order finite-volume central-
weighted essentially non-oscillatory (CWENO) schemes to multicomponent flows using the
interface capturing paradigm. The developed method achieves high-order accurate solution
in smooth regions, while providing oscillation free solutions at discontinuous regions. The
schemes are inherently compact in the sense that the central stencils employed are as compact
as possible, and that the directional stencils are reduced in size, therefore simplifying their
implementation. Several parameters that influence the performance of the schemes are inves-
tigated, such as reconstruction variables and their reconstruction order. The performance
of the schemes is assessed under a series of stringent test problems consisting of various
combinations of gases and liquids, and compared against analytical solutions, computational
and experimental results available in the literature. The results obtained demonstrate the
robustness of the new schemes for several applications, as well as their limitations within the
present interface-capturing implementation.

Keywords CWENO · Unstructured · Finite-volume · Multispecies

1 Introduction

Multi-component multi-phase compressible flows are encountered in several scientific fields
and due to the complexity of the interaction of different states of matter a detailed under-
standing of them is required for many applications. The choice of schemes to simulate these
interactions are far neither unique nor obvious, due to several factors such as the level of
fidelity, the computational resources, and due to the mechanism of the interface that sepa-
rates two fluids (e.g. liquid and gas), since the thermodynamic properties of the interface
might be different from the two separate states, that can obey different equation of state
(EOS). Most of the schemes in an Eulerian framework belong to the class of sharp inter-
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face type methods (SIM) or the class of diffuse interface methods (DIM). The SIM class
of methods treat the material interface between the fluids as infinitely thin, or sharp and
several successful methods have been developed including the volume-of-fluid [28], the
front-tracking [55], and the level-set methods [40]. The DIM class of methods is treating
the interface as a non-zero thickness based on the idea originally formulated by Rayleigh
[45] and van der Waals [69] who developed gradient theories for predicting the thickness of
the interfaces based on thermodynamic principles. The DIM allow artificially the two states
to develop some mixing, and therefore a thermodynamic state of this mixture is required
as the interface evolves. Among the common DIM models are the five-equation model of
Kapila’s et al. [35], which is tailored for two-phase immiscible non-reacting flows which was
also adopted by Allaire’s et al. [1]. The complete Baer–Nunziato’s [6] seven equation model
that includes non-equilibrium effects and the unified hyperbolic formulation of Godunov–
Peshkov–Romenski (GPR model) [24,42] that can treat traditional fluid and solid problems
within one framework which is the ultimate goal of several highly sophisticated and elegant
advanced diffuse interface models [8,14,22,23,29,38,70,71].

In the present study the five-equation model of Kapila et al. [35] is employed in the form
adopted by Allaire et al. [1] where an isobaric closure law is deployed that can simulate two
fluids with arbitrary EOSs. This form has been extended by numerous researchers to include
viscosity, capillary effects, and has been also extended to unstructured meshes by Chiapolino
et al. [11], Price et al. [43], Faucher et al. [21] and Cheng et al. [10]. The simplified and
more compact five-equation model of Allaire et al. has found many applications as listed in
[10,11,13,21,32,36,43,47,72,73].

The hyperbolic character of the PDEs involved in this context, the simplicity of this
type of DIM and their ease of implementation are the primary reasons for the selection of
this five-equation model. For engineering applications unstructured meshes offer significant
advantages when dealing with optimisation of complicated geometries that require compu-
tational workflows with rapid and highly automated mesh generation. In order for the DIM
class of methods to work correctly the spatial accuracy should be sufficient to resolve the
interfaces correctly without an excessive diffusion across them and this requirement can be
achieved by either increasing the spatial resolution at the interface regions or resorting to high-
resolution numerical methods. Additionally the numerical methods should be non-oscillatory
since very strong gradients across material interfaces can result in spurious oscillations and
a blown-up simulation. There are several high-order high-resolution numerical methods in
the unstructured finite-volume framework such as the Weighted Essentially Non-Oscillatory
(WENO) [17,63,75], Central Weighted Essentialy Non-Oscillatory (CWENO) [19,61], Mul-
tidimensional Optimal Order Detection (MOOD) [15,20], Monotone Upstream Scheme for
Conservation laws (MUSCL) [52,57] and the Edge Based Reconstruction WENO (EBR-
WENO) [7].

In this study however we will be focusing on the application of the CWENO type of
schemes as developed in [19,61] since these methods were found to be more robust and
significantly more computational efficient compared to the original WENO type of schemes
for unstructured meshes, that have previously been successfully applied by Dumbser et al.
[18] to the full seven equation Baer–Nunziatomodel. The improved robustness and efficiency
is provided by the low-order polynomials associated with the directional stencils and their
reduced size compared to the high-order polynomial associated with the central stencil.
The reader is referred to [19,61] for an overview of the methods. All the schemes/models
are developed in the open source community UCNS3D solver [68], and we assess their
performance in terms of for a series of stringent 2D and 3D test problems. The paper is
organized as follows. In Sect. 2 we introduce the formulation of the governing equations
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employed for this study, followed by the numerical framework used to describe the high-
order finite-volume framework for unstructured meshes, the reconstruction process for the
CWENO schemes, while describing the chosen fluxes and temporal discretisation employed
in Sect. 3. In Sect. 4 the numerical results obtained for all the test problems are presented and
compared against analytical, reference or experimental solution whenever possible. Finally,
the last section describes the conclusions drawn from this study.

2 Governing Equations

The quasi-conservative five-equation model of Allaire et al. [1] is considered in this study
for inviscid compressible multicomponent flows. For two fluids this involves two continuity
equations Eqs. (1) and (2), a momentum equation per dimension Eq. (3), an energy equation
Eq. (4), and the non-conservative advection equation of the volume fraction of one of the
two fluids Eq. (5) as given below:

∂(a1ρ1)

∂t
+ ∇ · (a1ρ1u) = 0, (1)

∂(a2ρ2)

∂t
+ ∇ · (a2ρ2u) = 0, (2)

∂ρu
∂t

+ ∇ · (ρuu + pI) = 0, (3)

∂E

∂t
+ ∇ · (E + p)u = 0, (4)

∂a1
∂t

+ u · ∇a1 = 0, (5)

where ρ is the density, u = (u, v, w)T is the velocity, p is the pressure, E is the total energy
and a is the volume fraction. The widely use stiffened gas EOS is employed for closing the
five-equation model. It has been primarily selected due to its application for flow problems
involving gases, liquids and solids. The stiffened gas EOS characterises each fluid pressure
as:

pi = (γi − 1)ρiεi − γiπ∞,i , (6)

where π∞,i ≥ 0 is a reference pressure, and will be set to π∞ = 0 for gases. The total mass
and ρε being given by the following equations:

ρ =
∑

i

aiρi , (7)

ρε =
∑

i

aiρiεi , (8)

where ε is the internal energy, with ρε = E − 1
2ρuu. The EOS of the mixture reads

ξ = 1

γ − 1
=
∑

i

ai
γi − 1

, (9)

π∞γ

γ − 1
=
∑

i

ai
π∞,iγi

γi − 1
, (10)

p = (γ − 1)ρε − γπ∞. (11)
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Finally, the non-conservative volume fraction advection Eq. (5) is rewritten in a mathemati-
cally equivalent form as introduced by Johnsen and Colonius [32]:

∂a1
∂t

+ ∇ · (a1u) = a1∇ · u. (12)

3 Numerical Framework

3.1 Spatial Discretization

Consider a 3D domain Ω consisting of conforming tetrahedral, hexahedral, prism, and pyra-
mid cells each one of them indexed by a unique mono-index i , and the governing equations
of the five-equation model written in vector form as follows:

∂

∂t

∫

Vi

U dV +
∫

∂Vi

Fn dS =
∫

Vi

s dV (13)

where U = U(x, t) is the vector of conserved variables and the volume fraction of one
species, Fn is the non-linear flux in the direction normal to the cells interface as given below:

U =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1ρ1
a2ρ2
ρu
ρv

ρw

E
a1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Fn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1ρ1un
a2ρ2un

ρuun + nx p
ρvun + ny p
ρwun + nz p
un(E + p)

a1un

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

whereun is the velocity normal to the bounded surface area, definedbyun = nxu+nyv+nzw.
The source term s is with regards to the term a1∇ · u of Eq. (5). Following the approach of
Johnsen and Colonius [32] the source term is numerically approximated as surface integral,
rather than a volume one, while using the same velocity estimate as the one used for the
evaluation of the fluxes as shown below:

∫

Vi

a1∇ · u dV ≈
∫

Vi

a1 dV ·
∫

∂Vi

(un)
Riem. dS. (15)

Integrating Eq. (13) over the mesh element i using a high-order explicit finite-volume for-
mulation the following equation is obtained that incorporates the source term as previously
defined:

dUi

dt
= 1

|Vi |
N f∑

j=1

Nqp∑

α=1

(
Fnij

(
Un
i j,L(xi j,α, t),Un

i j,R(xi j,α, t)
)

− ani,1 · uRiem
n (xi j,α, t)

)
ωα|Si j |,

(16)

where Ui is the volume averaged vector of variables

Ui = 1

|Vi |
∫

Vi
U(x, y, z) dV , (17)

and Fnij is a numerical flux function in the direction normal to the cell interface between a
considered cell i and one of its neighbouring cells j . N f is the number of faces per element,
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Nqp is the number of quadrature points used for approximating the surface integrals, |Si j |
is the surface area of the corresponding face, and Un

i j,L(xi j,α, t) and Un
i j,R(xi j,α, t) are the

high-order approximations of the solutions for cell i and cell j respectively. α corresponds
to different Gaussian integration points xα and weights ωα over each face. ani,1 corresponds
to the volume averaged volume fraction of cell i at time level n. The volume, surface and
line integrals are numerically approximated by a suitable Gauss–Legendre quadrature.

3.2 Reconstruction

A high-order polynomial pi (x, y, z) of order r can be built that provides r + 1 order of
accuracy for a cell i , by ensuring that it has the same average as a general quantity Ui . This
can be formulated as:

Ui = 1

|Vi |
∫

Vi
pi (x, y, z) dV . (18)

The present polynomial reconstruction is based upon the approaches of [53,63], that have
been applied to smooth and discontinuous flow problems [2–5,20,46,49,50,57,59–62,64–
67], and only the key-components will be presented herein and the reader is referred to
[53,63] for further details. For the reconstruction, a transformation from physical space
to a reference space as introduced by Dumbser et al. [16,17] is employed to reduce the
scaling effects that occur at unstructured meshes consisting of elements of different shape
and size. In particular we employ the decomposition strategy defined in [63,64], where each
element is decomposed into triangular (2D) or tetrahedral (3D) elements and using one of
the decomposed elements as the reference element for transforming to the new system of
coordinates. Let vxi j , j = 1, 2, . . . Ji be the vertices of the considered 3D general element.
Non tetrahedral elements are decomposed into tetrahedrals and one of them is chosen with
w1 = (x1, y1, z1), w2 = (x2, y2, z2), w3 = (x3, y3, z3) and w4 = (x4, y4, z4) being its four
vertices. The transformation from the Cartesian coordinates x, y, z into a reference space
ξ, η, ζ is given by the following equations:

⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
x1
y1
z1

⎞

⎠+ J ·
⎛

⎝
ξ

η

ζ

⎞

⎠ , (19)

with the Jacobian matrix given by:

J =
⎡

⎣
x2 − x1 x3 − x1 x4 − x1
y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1

⎤

⎦ . (20)

Using an inversemapping the elementVi can be transformed to the elementV ′
i in the reference

co-ordinate system as:

vx′
i j = J−1 · (vxi j − w1

)
, j = 1, 2, . . . Ji . (21)

while the spatial average of the conserved variableUi does not change during transformation

Ui = 1

|Vi |
∫

Vi
U(x, y, z) dV ≡ 1

|V ′
i |
∫

V ′
i

U(ξ, η, ζ ) dξdηdζ. (22)

The reconstruction polynomial uses a central stencil S1, which is built by recursively
adding neighbouring elements, consisting of M + 1 cells including the considered cell i . We
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employ the stencil based compact algorithm (SBC) introduced in [58], which is characteristed
by a low computational cost and increased robustness in regions of poor quality meshing.
In the present study we employ M = 2K , for enhanced robustness as reported in several
previous studies [15,30,58], where K is the total number of polynomial coefficients given
by:

K (r , d) = 1

d!
d∏

l=1

(r + l) , (23)

where d ∈ [2, 3] is the space dimensions. The central stencil S1 is given by

Sc
i =

Mc⋃

m=0

Vm, (24)

where the indexm refers to the local numbering of the elements in the stencil with the element
with index 0 being the considered cell i , and the index c referring to the stencil number (in
case of multiple stencils) where for the central stencil c = 1. All the cells of each stencil are
transformed in the reference space S ′c

i , where the r th order reconstruction polynomial is an
expansion over local polynomial basis functions φk(ξ, η, ζ ) given by:

p(ξ, η, ζ ) =
K∑

k=0

akφk(ξ, η, ζ ) = U0 +
K∑

k=1

akφk(ξ, η, ζ ), (25)

whereU0 corresponds to the vector of conserved variables at the considered cell i , and ak are
the degrees of freedom of the polynomial. The degrees of freedom ak for the polynomial for
each cell m are obtained by ensuring that the cell average of the reconstruction polynomial
p(ξ, η, ζ ) is equal to the cell average of the solution Um :

∫

V ′
m

p(ξ, η, ζ ) dξdηdζ = |V ′
m |U0 +

K∑

k=1

∫

V ′
m

akφk dξdηdζ = |V ′
m |Um, m = 1, . . . , M .

(26)

The conservation condition in Eq. (18) is such that requires the basis functions to have a
zero mean value over the considered transformed cell V ′

0. This can be achieved by using
hierarchical orthogonal basis functions defined on a unit element in reference space. For
triangular and tetrahedral elements hierarchical orthogonal basis functions can achieve this
requirement. However for arbitrary shaped quadrilaterals, pyramids, prisms and hexahedrals
they do not transform to a unit-element exactly, and therefore their basis functions need to
be constructed in a way that the conservation condition in Eq. (18) is satisfied. The basis
functions employed φk for all the elements in the stencil are defined as follows and satisfy
this requirement:

φk(ξ, η, ζ ) ≡ ψk(ξ, η, ζ ) − 1

|V ′
0|
∫

V ′
0

ψk dξdηdζ k = 1, 2, . . . , K , (27)

and in the present studyψk are Legendre polynomials basis functions. Denoting the integrals
of the basis function k over the cellm in the stencil, and the vector of right-hand side by Amk

and b respectively as given by
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Amk =
∫

V ′
m

φk dξdηdζ, bm = |V ′
m |(Um − U0),

the equations for degrees of freedom ak can be rewritten in a matrix form as:

K∑

k=1

Amkak = bm, m = 1, 2, . . . M . (28)

The resulting linear system is solved by a QR decomposition based on Householder transfor-
mation while using a Moore–Penrose pseudo-inverse of Amk which is only computed once
at the beginning of the simulation as detailed in [58].

3.2.1 CWENO Scheme

The CWENO scheme employed follows the implementation of Tsoutsanis and Dumbser
[61] and is the combination of an optimal (high-order) polynomial popt with lower-order
polynomials. The reconstruction for the optimal (high-order) polynomial uses an expanded
central stencil, (suitable for the desired polynomial order) while the reconstruction for the
lower-order polynomials employs the compact directional stencils. When the variation of the
solution is smooth across all the stencils, the optimal polynomial is recovered and therefore
the desired-order of accuracy is obtained. At the presence of discontinuous data at least one
of the directional stencils associated with the lower-order polynomials could contain smooth
data, hence it is going to have the largest influence in the reconstruction. All the polynomials
involved satisfy the requirement of matching the cell averages of the solution, therefore they
are solvedwith the same constrained least-squares technique. The directional stencils employ
the Type3 definition which includes one directional stencil per element face as detailed in
the work by Tsoutsanis [58]. The optimal polynomial is defined as follows:

popt (ξ, η, ζ ) =
st∑

s=1

λs ps(ξ, η, ζ ), (29)

where s is the stencil index, with s = 1 being the central, s = 2, 3, being the directional, st
being the total number of stencils, and λs being the linear coefficients for each stencil, whose
sum is equal to 1. The p1 polynomial is not computed directly, but computed by subtracting
the lower-order polynomials from the optimum polynomial as follows:

p1(ξ, η, ζ ) = 1

λ1

(
popt (ξ, η, ζ ) −

st∑

s=2

λs ps(ξ, η, ζ )

)
. (30)

The CWENO reconstruction polynomial is given as a non-linear combination of all the
polynomials in the following manner:

p(ξ, η, ζ )cweno =
st∑

s=1

ωs ps(ξ, η, ζ ), (31)

where ωs correspond to the non-linear weights assigned to each polynomial, and in regions
with smooth data ωs ≈ λs , hence obtaining the high-order approximation from the central
stencil, and in regions of discontinuous solutions the reconstructed solution will be mostly
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influenced from the lower-order polynomials of the directional stencils. where ãk are the
reconstructed degrees of freedom; and the non-linear weight ωs is defined as:

ωs = ω̃s∑st
s=1 ω̃s

where ω̃s = λm

(ε + SIs)b
. (32)

The smoothness indicator SIm is given by:

SIs =
∑

1≤|β|≤r

∫

V ′
0

(Dβ ps(ξ, η, ζ )
)2

(dξ, dη, dζ ), (33)

where β is a multi-index, r is the polynomial’s order, λm is the linear weight. The value set to
prevent division by zero of ε = 10−6 is used, with b = 4 andD being the derivative operator.
The smoothness indicator is a quadratic function of the degrees of freedom (ask ) and Eq. (33)
can be rewritten as:

SIs =
K∑

k=1

ask

⎛

⎝
K∑

q=1

OIkqa
s
q

⎞

⎠ , (34)

where the oscillation indication matrix OIkq is given by:

OIkq =
∑

1≤|β|≤r

∫

V ′
0

(Dβφk(ξ, η, ζ )
) (Dβφq(ξ, η, ζ )

)
(dξ, dη, dζ ), (35)

which can be precomputed and stored at the beginning of the simulation. For the directional
stencils and their corresponding polynomials we employ r = 1 to obtain 2nd-order of accu-
racy, and any arbitrary order of accuracy for the polynomial associatedwith the central stencil.
The linear weights are computed by firstly assigning the non-normalised linear weight for
the central stencil λ

′
1 an arbitrary value, and then normalising this as follows:

λ1 = 1 − 1

λ
′
1

, (36)

with the linear weights associated with lower-order polynomials being equal and provided
by the following expression:

λs = 1 − λ1

st − 1
, (37)

where st is the total number of stencils. From this point forward the order of the scheme
will be defined by a number next to the type of the scheme, such as CWENO3 and WENO4
corresponding to a 3rd-order CWENO scheme and a 4th-order WENO scheme respectively.

3.3 Fluxes Approximation and Temporal Discretisation

For the inviscid fluxes the approximate Harten-Lax-van Leer-Contact (HLLC) Riemann
solver of Toro [54] is employed, unless otherwise stated. The temporal discretisation employs
the 3rd-order explicit Strong Stability Preserving (SSP) Runge–Kutta method [26] which is
stable for CFL ≤ 1. All the volume/surface/line integrals are approximated by Gaussian
quadrature rule suitable for the order of polynomial employed. It has to be noted that the
reconstruction in the present study is carried out with respect to the conserved variables or
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primitive variables by transforming to either one of them only during the reconstruction pro-
cess, while always transforming to conservative variables prior to the fluxes calculation. All
the schemes developed are implemented in the open-source UCNS3D CFD code [68] using
object-oriented Fortran 2003, and employing MPI message passing interface (MPI), and the
Open Multi-Processing (OpenMP) application programming interface (API). The reader is
referred to [56,67] for more details on implementation and performance benchmarks.

4 Applications

We present the numerical simulations employed to assess the performance of the CWENO
interface capturing schemes for the solution of the inviscid compressible Euler equations for
multicomponent flows. Several benchmark test problems have been performed.

4.1 Multi-Species Convergence Test

For verifying the designed order of spatial accuracy for the numerical schemes developed, a
multi-species advection test similar to the one employed by Wong and Lele [73] is used. In
this test a smooth volume fraction initial profile of two gases is advected for one period in a
periodic computational domain. The initial condition is given by:

(ρ1, ρ2, u, v, p, a1) = (7, 1, 1, 0, 1/1.4, 0.5 + 0.25 sin(2π(x − 0.5))) . (38)

The 2D computational domain [0, 1]2 consists of arbitrary unstructured triangular elements
of 10, 20, 40 and 80 edges per side resolution as shown in Fig. 1, and the simulation is run
for a time of t f = 1. The two gases selected are nitrogen and helium with specific heats 1.4
and 1.66 respectively. The numerical errors eL2 and the eL∞ are computed as follows:

eL2 =

√√√√
∑

i

∫
Ωi

(
Ue
(
x, t f

)− Uc
(
x, t f

))2
dV

∑
i |Ωi | , (39)

eL∞ = Max
∣∣(Ue

(
x, t f

)− Uc
(
x, t f

)∣∣ , (40)

whereUc
(
x, t f

)
andUe

(
x, t f

)
are the computed and exact solutions at the end of the simula-

tion t f = 1.0. The exact solutionUe
(
x, t f

)
being given by the initial condition itself at t = 0.

The simulations were performed using CFL = 0.1 in order to ensure a sufficiently small
time-step size so that the schemes are not restricted by the time-discretisation for achieving
the designed order of spatial accuracy. The wallclock time per simulation is normalised with
respect to the fastest time taken for a simulation, which in this setup is provided by the
CWENO3 scheme on the coarsest mesh.

From the obtained convergence orders of the schemes as shown in Table 1 it is clear that
the schemes achieve their designed order of convergence for both eL∞ and eL2 . The desirable
feature of the CWENO variant is that it comes with significant lower computational cost—
due to the reduction of the size of the directional stencils—compared to theWENO schemes.
For this test the CWENO schemes require approximately 60–80% of the time taken by a
WENO scheme of the same spatial order, a figure which is expected to improve when larger
mesh sizes, and 3D test problems are deployed.
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Fig. 1 Typical examples of 2D unstructured meshes used, where a zoomed region provides details of the
structure for a triangular mesh (left) and a mixed-element mesh (right)

4.2 IsolatedMaterial Interface

For assessing the non-oscillatory properties of the considered schemes, the advection of a
sharp material interface within a periodic domain is considered. A sharp material interface is
frequently encountered in severalmulticomponentflows, hence the robustness of the proposed
methods is of paramount importance, for the successful deployment of these schemes in
multicomponent flows. The material interface is advected with constant velocity across the
computational domain, and the pressure and temperature is also constant across the interface.
The initial conditions are given by:

(ρ, u, v, p, γ, a1) =
{

(10.0, 0.5, 0, 1/1.4, 1.4, 1) , if x < 0.5

(1.0, 0.5, 0, 1/1.4, 1.66, 0) , otherwise.
(41)

The 2D computational domain [0, 1]2 consists of a mixed-element mesh as shown in Fig. 1
consisting of triangular and quadrilateral mesh elements of 80 edges per side resolution, and
the simulation is run for a time of t f = 2. Firstly a comparison between 3rd-order CWENO3
and WENO3 is made to assess the non-oscillatory properties of the schemes and as it can be
noticed from the obtained results in Fig. 2 the CWENO3 is significantly less oscillatory near
the material interface. The relative coarse resolution of the present mesh, is intentionally
selected to highlight one of the key differences between the two schemes, which is the
compactness of their directional stencils. In the CWENO the directional stencils correspond
to lower-order polynomials compared toWENOschemes and therefore are significantlymore
compact, therefore resulting in improved robustness in such situations. Secondly the influence
of two types of reconstructions are explored with respect to the conserved and primitive
variables. As it can be seen in Fig. 3, the solutions obtained with the primitive variable
reconstruction are free from any oscillations in the pressure and velocity solution. It is well
documented [31–34] that primitive variable reconstruction is needed to prevent spurious
oscillations in problems where γ is not constant, since reconstruction in conservative or
characteristic variables suffer fromoscillations across them.Finally theCWENOschemewith
primitive variables employed provide the correct solution with no oscillations, and as seen in
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Fig. 2 Plots of density a1ρ1 for the isolated sharp-material interface at t = 2 obtained with WENO3 and
CWENO3 schemes, and compared with the reference exact solution. It can be noticed that the the WENO3
is producing some oscillations near the material interface, while they are absent from the CWENO3 obtained
solution

Fig. 3 Plots of density a1ρ1, pressure and velocity for the isolated sharp-material interface at t = 2 obtained
with the CWENO3 scheme with primitive and conservative variables reconstruction, and comparison with the
exact solution. The primitive variable reconstruction is producing an oscillation-free solution for both pressure
and velocity

Fig. 4 Plot of density a1ρ1, pressure and velocity for the isolated sharp-material interface at t = 2 obtained
with several CWENO schemes where it can be noticed that all the schemes provide the correct solution with
no oscillations, and normalised pressure and velocity error at the t = 2 where it can be seen that the minute
oscillations are close to machine precision

Fig. 4 the minute oscillations in normalised pressure and velocity errors are close to machine
precision. Therefore unless otherwise stated from this point onwards the reconstruction with
respect to primitive variables is going to be employed.
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4.3 Gas–Liquid Riemann Problem

The 2D equivalent of the well established gas liquid Riemann problem of Cocchi et al. [12]
is deployed in this study. It is an ideal test problem for exposing the performance of the
developed numerical schemes in for stiffened gas EOS. The left state of the problem consists
of highly compressed air, and the right state is water at atmospheric pressure. The initial
conditions for this problem following the non-dimensionalisation of Cocchi et al. [12] are:

(ρ1, ρ2, u, v, p, a1) =
{

(1.241, 0, 0, 2.753, 1.4, 1) , if x < 0(
0, 0.991, 0, 3.059x10−4, 0

)
, otherwise.

(42)

The specificheats for air andwater are 1.4 and5.5 respectively,with theπ∞ = 1.505 forwater.
The 2D computational domain [−1, 1]2 is discretised by a mixed-element unstructured mesh
similar to the one shown in Fig. 1 which consists of arbitrary triangular and quadrilateral
elements of 100 edges per side resolution, and the simulation is run for a time of t f =
0.2. Two schemes are employed for this test problem a WENO3 and a CWENO5. The
CWENO5 scheme employs a higher-order polynomial for the central stencil compared to
theWENO3 order scheme, and a lower-order polynomial (and stencil size) than theWENO3
order scheme. As it can be noticed from the obtained results shown in Fig. 5 while both
schemes provide results in good agreement with the exact solution, the CWENO5 order
scheme is less oscillatory in this coarse grid resolution due to the compactness offered by the
smaller directional stencils. Therefore from this point onwards only the CWENO schemes
will be employed in the following test problems.

4.4 Gas Bubble inWater

A problem that has been frequently used [25,39] to assess the performance of various numer-
ical methods is considered. This problem involves very high-pressure due to the collapse of
a gas bubble in a liquid. These types of problems are typically found in applications such
as fuel injectors, naval propulsion systems and shockwave lithotripsy. In this study a strong
shock Msh = 1.72 is travelling through water and moving towards an air bubble. The initial
condition is given by:

(ρ, u, v, p, γ, π∞, a1) =
⎧
⎨

⎩

(
1323.65, 681.058, 0, 1.9 · 109, 4.4, 6 · 108, 0) , for Post-shock(
1000, 0, 0, 105, 4.4, 6 · 108, 0) , for Pre-shock(
1, 0, 0, 105, 1.4, 0, 1

)
, for Bubble

(43)

The domain is a [0, 0.024]2 square, the gas bubble is placed at the centre of the domain
(0.012 m, 0.012 m), and the interface between shocked and unshocked regions placed at
x = 0.0066 m. Non-reflecting boundary conditions are prescribed at the left and right
boundaries of the domain, while an Euler slip-wall is prescribed for the top and bottom
boundaries. The domain is discretised by an quadrilateral mesh with approximately 1.0
million cells and an average edge length of ec ≈ Db/250, where Db is the diameter of the
gas bubble Db = 6 mm. The CWENO5 scheme was employed for this test problem, and the
simulation is run until t = 6.2µs.

The evolution of the bubble dynamics obtained with the present schemes is illustrated
in Fig. 6 and in Fig. 7 where all the expected features including the reflected rarefaction
wave, the water jet, the blast wave and the secondary jets are well captured and are similar to
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Fig. 5 Plots of density, pressure, velocity and volume fraction for the gas–liquid Riemann problem at t = 0.2
obtained with WENO3, and CWENO5 schemes and compared with the exact solution. It can be noticed that
the CWENO5 order scheme is less prone to oscillations compared to the WENO3 order scheme

the ones obtained by others Nourgaliev et al. [39] and Goncalves et al. [25]. The maximum
pressure obtained in the computational domain is 7.7GPa, which is inline with the findings
of other studies where higher pressures are seen in fine grid resolutions with Nourgaliev et
al. [39] reporting 10.1GPa at a grid resolution of ec ≈ Db/800, and lower peak pressures
at lower grid resolutions with Goncalves et al. [25] reporting a peak pressure of 7.8GPa at a
grid resolution of ec ≈ Db/300. Similarly the peak temperature at the time of lowest volume
obtained is ≈ 15, 670K which is within the range obtained from the other studies [25,39].

The time evolution of the pressure along the centreline of the computational domain can
be seen in Fig. 8, where it can be noticed that the first peak is associated with the blast wave
at t ≈ 3.9µs and the second peak a later time t ≈ 4.9µs occurs when the blast wave collides
with the bubble fragments as also reported by Goncalves et al. [25]. Finally the time history
of the non-dimensional volume of the gas bubble is illustrated in Fig. 8, where it can be
noticed that the results obtained are in good agreement with the results of Nourgaliev et al.
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(a) (b) (c) (d)

Fig. 6 Plots of theMach number (contours) and volume fraction (lines) for the gas bubble collapse test problem
at different instants. It can be noticed that all the expected features are captured using the present CWENO5
scheme

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 7 Plots of the density contours (top), volume fraction (middle), and density gradient magnitude (bottom)
for the gas bubble collapse test problem at different instants

[39] capturing the correct compression slope, and rebound at late times. However due to the
coarser grid-resolution employed in this study the maximum compression of the bubble is
lower compared to the one obtained by Nourgaliev et al. [39].

4.5 Water Column in Air

The shock wave interaction with a cylindrical water column test case of Xiang andWang [74]
is employed in this study, and in essence it is the opposite of the gas-bubble collapse in water
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Fig. 8 Plots of pressure evolution along the centreline of the computational domain (left), and evolution of
the non-dimensional volume of the gas bubble (right) for the gas bubble collapse in water test problem

problem seen previously. In this test a water droplet is surrounded by air, where a shockwave
at Msh = 2.4 is moving towards the water bubble. The subject test serves as an ideal com-
putational test-problem for development and assessment of numerical methods for interface
dynamics of compressible multi-fluid flows with several practical applications including the
liquid jet atomization in a scramjet engines, combustion, and supernova explosion. We are
considering two variants of the water column in this test one without an air cavity, and one
with an air cavity as performed by Xiang and Wang [74]. The setup of the test problem can
be seen in Fig. 9, where for the water column without the air cavity r = 0, while with air
cavity r = 3.6 mm.

The initial condition is given by:

(ρ, u, v, p, γ, π∞, a1) =

⎧
⎪⎨

⎪⎩

(
3.85, 567.3, 0, 0.664 · 106, 1.4, 0, 0) , for Post-shock(
1.2, 0, 0, 0.101 · 106, 1.4, 0, 0) , for Pre-shock(
1000, 0, 0, 105, 6.12, 0.343 · 109, 1) , for Water

(44)

The domain is x ∈ [0, 0.2208], y ∈ [0, 0.1152], the water column is centred at (0.0576
m, 0.0576 m), and the interface between shocked and unshocked regions placed at x = 0.05
m. Non-reflecting boundary conditions are prescribed at the left and right boundaries of the
domain, while an Euler slip-wall is prescribed for the top and bottom boundaries. The domain
is discretised by an quadrilateral mesh with approximately 0.89 million cells and an average
edge length of ec ≈ Db/192, where Db is the diameter of the water column/or the outer
diameter when a cavity is included Db = 96 mm. The CWENO5 scheme was employed
for this test problem, and the simulation is run until the non dimensional t∗ = tu/Db = 10
where u corresponds to the initial velocity behind the shock. The obtained computed density
gradient magnitude for both variants are in good agreement with the numerical results of
Xiang and Wang [74] as shown in Fig. 10. All the key flow features (reflected expansion
wave, the transmitted wave, the Mach stem, and re-circulation zone) are correctly captured
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Fig. 9 Schematic diagram of the setup for the shock wave cylindrical water column test problem (left), and
the corresponding mesh refinement used for the interaction zone (right)

Fig. 10 Contour plots of density gradient magnitude of the computed solution of the shock wave interaction
with a water column with a cavity (top) and without a cavity (bottom), at various instants t∗ = 0, t∗ = 0.8,
t∗ = 1.62, t∗ = 3.02 (left to right). It can be noticed that all the expected flow features are captured by the
present CWENO scheme

as shown in comparison with the experimental results for the water column without cavity
of Sembian et al. [48] in Fig. 11.

As expected at late times the flow separates for both variants as seen in Fig. 12, where the
water column without the cavity is compressed continuously while it gets flattened down-
stream as documented by Xiang and Wang [74] and Meng and Colonius [37]. For the water
column with cavity the transverse jet formation and the associated Richtmyer–Meshkov
instability occurring when the water is driven into the air cavity are well resolved, and in
agreement with the study of Xiang and Wang [74].

Finally, the pressure along the centreline of the water column without the cavity at time
t∗ = 0.8 is plotted against the computational results of Xiang and Wang [74] in Fig. 13 and
a good agreement is achieved. It has to be stressed that the expected negative pressure drop
is not as pronounced as the study of Xiang and Wang [74] since their grid resolution was
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Fig. 11 Numerical Schlieren contours computed in this work (top) and obtained by experiments of Sembian
et al. [48] (bottom) for the shock-wave interaction with a water column at M = 2.4

finer with an edge length of of ec ≈ Db/333. However, the negative pressure is correctly
captured due to the reflected expansion wave, which is attributed to the cohesive forces that
hold liquids together and can withstand negative pressure [9,41]. For the water column with
the air cavity, a time-history of the maximum pressure present in the computational domain
is plotted against the computational results of Xiang and Wang [74] in Fig. 13, where it is
evident that a good agreement is achieved although the peak pressure is slightly lower due
to the lower grid resolution as expected. However the timing of the maximum peak pressure
agrees with the results of [74], where the maximum peak pressure is seen at the time of
impact of the transverse jet with the inner cavity wall downstream.

4.6 Helium Bubble ShockWave

The interaction of a weak shockwave in air and a helium bubble is considered in 2D and
3D. Several variations of this test problem have been widely used [13,32,72] for assessing
the performance of several techniques for multicomponent flow modelling, and is based on
the experimental setup by Haas and Sturtevant [27]. A bubble of diameter Db = 5 cm, is
placed within an air filled shock tube. The bubble consists of helium and air of 28% mass
concentration. A shockwavemoving from right to left as shown in Fig. 14 of the setup impacts
the bubble contaminated by the surrounding air. The specific heats of 1.4 and 1.66 are used
for air and helium, respectively, and the initial condition is given by:

(a1ρ1, a2ρ2, u, v, p, a1) =

⎧
⎪⎨

⎪⎩

(0.0, 1.204, 0, 0, 101325, 0) , for Pre-shock

(0.0, 1.658,−114.49, 0, 159060, 0) , for Post-shock

(0.158, 0.061, 0, 0, 101325, 0.95) , for Bubble.

(45)

The computation domain is discretised by a mixed-element unstructured mesh consisting of
quadrilateral and triangular elements in 2D, and arbitrary hexahedrals and prism in 3D with
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Fig. 12 Contour plots of density gradient magnitude of the computed solution of the shock wave interaction
with a water columnwith a cavity (top) and without a cavity (bottom), at various instants t∗ = 5.48, t∗ = 10.0,
(left to right). The flow separation for both variations as well as the transverse jet impact with the water cavity
wall downstream (top) and the flattening of the water column downstream (bottom) can be noticed

Fig. 13 Pressure distribution at the centreline of the water column at t∗ = 0.8 (left), and time evolution of the
maximum pressure in the computational domain for the water columnwith an air cavity (right) and comparison
with the results of Xiang and Wang [74]
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Fig. 14 Computational domain setup (top) and corresponding mesh for the helium bubble shock wave test
problem

Fig. 15 Plot of the definition of the interfaces and of the evolution of the position of these interfaces using
a CWENO5 scheme on the finest 2D mesh and 3D mesh. The evolution of the interfaces position is in good
agreement with the results of Terashima and Tryggvason [51] and Quirk and Karni [44]

the shock-bubble interaction region being refined as shown in Fig. 14. A coarse, medium,
and fine mesh are employed for 2D with an average element edge length in the shock bubble
interaction zone of ec ≈ Db/35, em ≈ Db/120, e f ≈ Db/400 respectively, and an edge
length of ec ≈ Db/50 for the 3D mesh. A slip-wall boundary condition is used at the top
and bottom boundaries of the domain, while inflow and outflow boundary conditions are
prescribed at the right and left of the domain respectively. A CWENO5 scheme is employed
and the simulation is run until t = 1000µs.

From the results obtained as shown in Fig. 16, it can be noticed that the time evolution
of the bubble is correctly captured including the formation of a jet and a vortex ring at late
times, and is in agreement with the results obtained by [13,32,72] qualitatively. Due to the
high-order CWENOscheme employed, theKelvin–Helmholtz instabilities that develop at the
interface of the helium bubble are more pronounced as the 2D grid resolution is increased as
shown in Fig. 17, whereas for the 3D setup the resolution employed is not sufficient to capture
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(a) (b) (c)

(d) (e) (f)

Fig. 16 Density contour plots (24 equally distanced levels between 0.19 to 1.74) of the computed solution of
the shockwave helium bubble interaction test problem at various instants using the finest mesh. As the shock
wave passes the helium bubble, Kelvin–Helmholtz instabilities develop at the material interface that later on
break down while resulting in an asymmetric solution profiles

(a) (b) (c)

Fig. 17 Contour plots of volume fraction (24 equally distanced levels between 0 to 1) of the computed solution
of the shockwave helium bubble interaction test problem at t = 983µs, at several mesh resolutions. More
vortical structures are captured as the grid resolution is increased due to the absence of physical viscosity to
diffuse them

these instabilities. as shown in as shown in Fig. 18. The symmetry of the computed solution
is lost at late times for the 2D medium and fine meshes, indicative of multi-dimensional
reconstruction nature of the framework employed and of the arbitrary unstructured elements
in the refined shock-bubble interaction zone. As the bubble evolves, three distinct interfaces
identified are the jet ( j i), the upstream (ui) and the downstream (di) as shown in Fig. 15.
From the space-time diagram of these distinct interface positions, the predicted locations are
in good agreement with the reference results of Terashima and Tryggvason [51] and Quirk
and Karni [44]. It needs to be highlighted that the results have been non-dimensionalised with
respect to the diameter of the bubble at the time that the shock hits the bubble [44,51,72].
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(a) (b)

(c) (d)

(e) (f)

Fig. 18 Contour plots of volume fraction, vorticity magnitude at the centre of the computational domain and
isosurfaces of three levels of volume fraction (0.25, 0.5, 0.9) of the computed solution of the shockwave 3D
helium bubble interaction test problem at different instants
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Table 2 Time averaged velocities of several flow features of the shock-bubble interaction problem obtained
with the present simulation and compared against the experimental results of Haas and Sturtevant [27], and
the computational results of Coralic and Colonius [13]

Grid size uui (m/s) u ji (m/s) udi (m/s)

(2D) Coarse 177.616 223.280 143.864

(2D) Medium 179.514 234.960 144.999

(2D) Fine 181.242 237.086 145.895

3D 178.402 228.375 144.197

Coralic & Colonius WENO5 [13] 173 230 145

Haas & Sturtevant exp. [27] 170 ± 17 230 ± 23 145 ± 15

The time intervals that have been used to average the velocities are [10, 52]µs for the upstrean interface,
[140, 240]µs for the jet, and [140, 240]µs for the downstream interface. It can be noticed that all the obtained
predictions are within the variations of the experiment, and in close agreement with the computational results
of [13]

The results obtained in termsof the averagedvelocities of the jet, upstreamanddownstream
interface are in good agreement with the experimental results of Haas and Sturtevant [27],
and the computational results of Coralic and Colonius [13] as shown in Table 2. Due to the
resolution employed for the 3D setup of the problem, a slower merging of the jet and the
downstream interface is seen compared to the 2D setup.

5 Conclusions

This paper extends to applicability of CWENO schemes on unstructuredmeshes to compress-
ible multi-material flows. The schemes manage to achieve high-order of accuracy, resolve
the material interfaces and finer structures while maintaining their essentially non-oscillatory
character. Switching to primitive variable reconstruction was needed to remove the oscilla-
tions that appear across material interfaces. A series of stringent two- and three-dimensional
test problems were used to verify the accuracy, robustness and computational efficiency of
the schemes, and compared with analytical, experimental and computational results. Future
development will concern the expansion of the CWENO schemes to the complete seven
equation model of Baer–Nunziato’s [6] and the unified hyperbolic formulation of Godunov–
Peshkov–Romenski (GPR model) [24,42].
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