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The efficacy of fatigue life approximation methodologies for 

Landing Gear systems is studied and compared to the ongoing 

Structural Health Monitoring techniques being researched, 

which will forecast failures based on the system’s specific life 
and withstanding abilities, ranging from creating a digital 

simulation model to applying neural network technologies, in 

order to simulate and approximate locations and levels of failure 

along the structure. Explainable Artificial Intelligence allows for 

the ease-of-integration of Deep Neural Network data into 

Predictive Maintenance, which is a procedure focused on the 

health of a system and its efficient upkeep via the use of sensor-

based data. Test data from a flight includes a multitude of 

conditions and varying parameters such as the surface of the 

landing strip as well as the aircraft itself, requiring the use of 

Deep Neural Network models for damage assessment and failure 

anticipation, where compliance to standards is a major question 

raised, as the EASA AI roadmap is followed, as well as the ICAO 

and FAA. This paper additionally discusses the challenges faced 

with respect to standardizing the Explainable AI methodologies 

and their parameters specifically for the case of Landing Gear. 

Keywords— Explainable AI, Landing Gear Systems, digital 

simulation model. 

I. INTRODUCTION 

Landing Gear Systems on Aircraft undergo a multitude of 
forces during their life cycle, leading to the eventual 
replacement of this system based on a ‘safe life’ approach 
that majorly underestimates the component’s remaining life 
due to factors such as generalizing the impact cycle to all 
Landing Gear systems, as well as ground inspections deemed 
as extra measures due to the uncertainty of pilots when 
performing hard landings[1]. Accurate load data including 
the placement and magnitude of the loads imposed, as well 
as the fatigue generated, allow for the replacement of time-
consuming precautionary check-ups and the streamlining of 
replacement services[2]. Structural Health Monitoring 
techniques are currently being proposed in which a neural 
network replaces the finite element modelling diagnosis and 
testing procedure that is part of a Predictive Maintenance 
cycle[3], thereby reducing time and resources usually 
required for the finite element modelling process. In order 
for machine learning to be implemented and trusted in the 
industry, compliance to standards is a major question raised, 
as the EASA AI roadmap is followed, as well as the ICAO 
and FAA, where certification will need to be applied, 
wherein the ‘black box’ nature of the deep neural net 
environment is to be clearly explained in order to understand 
the exact workings and reasons for the decisions taken in the 
machine learning inference environment. This certification 
process relies on Explainable Artificial Intelligence. 
Consequentially, the challenges faced with respect to 
standardizing and certifying Machine Learning approaches 
are demonstrated below.  

 

II. FATIGUE LIFE PREDICTION 

As the aircraft maneuvers about the landing strip, with stress 

reactions being lower than the material’s static strength and 
of a cyclic nature of values above 10^3, they are categorized 

as High-Cycle Fatigue (HCF) failure. In addition to these 

usual interactions, Joy et al. prove the existence of Low-

Cycle Fatigue  (LCF) failure as a result of unexpected loads 

applied on the landing gear due to hard landings, exceeding 

the design domain of the components and leading to an even 

shorter fatigue life for landing gear [4]. Therefore, both 

HCF and LCF will have to be considered for landing gear 

safe-life fatigue failure. 

A. Structural design methodologies 

Philosophies for fatigue-safe component design have 

developed over time from safe-life, to fail-safe, then onto 

damage tolerance, and with a transition to using Structural 

Health Monitoring as a method of live-data collection as an 

addition to planned inspections with respect to flight hours. 

Landing Gear structures are still based on the safe-life 

fatigue failure approach [5] due to their components being 

formed of high-strength steels and the relative difficulty of 

planned crack inspections[6].  

 

The requirements of a safe-life approach methodology are 

stripped down to component environmental operation data 

as well as the assumed external load applications for the 

assumptions of initial crack formation, disregarding crack 

propagation, leading to the overpassing of initial structural 

damage. This method requires a vast amount of fatigue tests 

on the structural components as a result of the wide range of 

formulated data placed on a plot. Mean life is then pulled 

from the data in order to obtain a maximum life value in the 

wake of applying a safety factor (usually of the value 1.5). 

Aircraft fuselage applications of the safe-life approach 

proved to be a catastrophic test subject after the Hevilland 

Comet crash disasters [5]. This method was then deemed 

inefficient due to its assumptions which required either a 

too-safe of an approach, leading to the uneconomical usage 

and constant early replacement of the aircraft components, 

or the risking of failure as a result of overlooking the effects 

and process of crack-propagation. Consequentially, Fatigue 

Fail-Safe methodologies were introduced, relying on 

redundancy as well as considering ‘multiple load paths’ in 
which a failed load-bearing component would transfer that 

load onto another component, preventing early and 

catastrophic failure and allowing for the early detection of a 

crack propagation. Afterwards, Damage-Tolerant design 

emerged with a concentration on non-destructive inspection 

via the use of visual, fluid-penetrant, and ultrasonic 

inspections as part of structural check-ups. Finally, 

li2106
Text Box
Proceedings of the 2021 AIAA/IEEE 40th Digital Avionics Systems Conference (DASC), 3-7 October, San Antonio, CA, USA
DOI:10.1109/DASC52595.2021.9594374


li2106
Text Box
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, 
or reuse of any copyrighted component of this work in other works





Structural Health Monitoring techniques currently are used 

in the industry and focus on the usage of sensors as well as 

actuators on-board the aircraft components, monitoring and 

collecting load and stress data in real-time, while focusing 

on the location, type, intensity, & remaining life of the 

damage [7]. 

 

B. Safe-life approach for Landing Gear 

The EASA CS-25 design requirements, in accordance with 

EASA AMC-25 advisory material, are used for landing gear 

design, concentrating on safe-life fatigue analysis 

methodologies. The process of safe-life fatigue analysis may 

be regarded according to Hoole, on large aircraft 

conforming with CS-25 standards,  as follows[8]: 

• The formulation of S-N data, in order to relate 

cyclic stress amplitude to the number of cycles to 

failure by applying specified forces with a cyclic 

nature onto the structural components. 

• The data is then observed on an S-N curve, with a 

stress correction considered as a factor in order to 

correct the mean S-N curve, being a statistically 

derived reduction. 

• Safe-life factors then include conservative values 

encompassing: 

o  the difference between the sample being 

used for the S-N curve and the actual 

component in the landing gear. 

o Effects of environmental interaction with 

the components and whether a 

preventative coating is applied. 

o The variability of loading and whether a 

mean stress correction is required. 

o A factor to account for the aftermath of  

the component failure and its prevention. 

 

C. Finite Element Analysis & Constraints Used for a Dgital 

Simulation Model 

Since a high cycle fatigue situation is that which the 

landing gear encounters, with stresses being below the yield 

stress limit of the materials used, and in which the load 

applications are multiaxial, the stress-based Brown-Miller  

method was  deemed most suitable for this application.  This 

method is suitable for ductile materials subjected to HCF 

loads [9]. The Gerber diagram was used as a mean stress 

correction method. These constraints were applied on a set 

of cylindrical profiles. The profiles are part of a finite 

element model representative of the nose landing gear on 

which the stress reactions were induced due to the force 

applied at a remote point. These force applications were 

cycled continuously from null to their final value until 

fatigue life was formulated due to failure approximated for 

multiple landing impact scenarios, such as being towed, 

encountering touchdown, as well as hitting a bump while 

taking off. The most critical scenarios in terms of fatigue 

were formulated to be at touchdown, followed by side 

ground load encounters.  In order to monitor the loading 

data and perform such remaining life predictions according 

to precise scenario occurrences, a strain sensor would be 

placed in the area of lowest fatigue life, in the fatigue 

analyses, corresponding to the point of contact between the 

axle and fork. Since this was a 2D simulation in which beam 

elements were used, the lack of cross-sectional spread of 

nodes is essentially translated to the edge of a 3D beam 

since fatigue failure occurs at edges first. Demonstrated in a 

cross-sectional view in Figures 1-3, where the strain gauge 

may be placed inside at the axle at the corner and under the 

point of contact with the bearing connecting it to the axle. 

 

 

 
 

 

 

 

Figure 1 Figure 2 Figure 3 

 

III. MACHINE LEARNING 

Replacing strain gauges in the aircraft’s fatigue-monitored 

system is the aim of the machine learning implementation in 

this paper, due to the monitoring of the aircraft’s parts via 
data collected while the aircraft is operational, as well as 

comparing it to data taken of the same aircraft parts in 

previous situations and landing/take-off encounters. The 

ability to add a continuous amount of data points and input 

variables affecting these parameters with machine learning 

algorithms is what differs a well-formulated algorithm from 

a typical one. This consequentially allows for the output 

data to be optimized for the assessment of structural 

integrity and maintenance scheduling [10]. The sources of 

data for the machine learning algorithms include: 

• Fatigue tests implemented physically on the parts 

themselves in a controlled environment. 

• Flight data of the same aircraft and landing gear 

from other operators. 

• Finite Element Digital Twin data resulting from 

tests on a compatible model with similar operating 

environments. 

• Maintenance observations. 

• Information from operating limits and 

recommended maintenance schedules for the 

aforementioned parts. 

 

The algorithm should be able to categorize input data 

with respect to its importance to the end result and the 

evaluation of the fatigue damage limits of the landing gear 

as well as compare validated values of stress and loading 

with the filtered input data in order to result with a precise 

final value, e.g. with the use of probabilistic approaches [11] 

. For the control of data and the optimization of its 

importance to the end result, Higgins et al. recommend the 

usage of ‘fencing’ wherein a three-step approach includes: 



1. The filtering of unwanted deviations in data, using 

more than one prediction model. 

2. Using already existing validation methods and 

libraries within machine learning in order to 

continuously monitor the authenticity of the data 

being used. 

3. Fencing the data by the use of a ‘deterministic 
method’ after consulting with experimental 
previous data and human input and decision[10]  

 

Due to the requirement of human intervention in its initial 

stages of data learning, a Machine Learning Model requires 

a set of Artificial Neural Networks (ANN) in order to 

formulate decisions based on more than the initial data 

learned[12]. This is done via the use of neurons comprising 

a transfer function each, and linked together via weighted 

branches containing factors of multiplication linking them to 

the input values and bias values in order to result with an 

output value, as shown in Figure 4[8]. When multi-layered, 

the ANN face uncertainties due to the differences of weights 

when applied on a separate dataset than that of which they 

were first trained on. This problem is corrected by the use of 

a probability distribution assignment for these weights, at 

which the network obtains a mean distribution relating to 

the network’s values predicted, whereby confidence 
intervals may be met and utilized for later certification 

purposes in explainable AI scenarios [13]. 

 

Cross et al. demonstrate the correlation between recorded 

aircraft flight parameters and landing gear resulting loads 

via the use of ‘accurate nonlinear regression models’[13]. 

By using Classical and Bayesian Multi-Layer Perception 

networks and teaching them with landing gear drop-test 

data, they successfully predicted side-stay loads on landing 

gear. This gives hope for the usage of neural networks to 

predict landing gear failure via the use of data such as 

distance travelled for the shock absorber, its pressure 

variation, travel speed of the wheel, as well as acceleration 

of the landing gear system. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

IV. THE TRANSITION FROM FINITE ELEMENT MODELLING TO 

MACHINE LEARNING 

Structural Health Monitoring (SHM) techniques, 
discussed below, are attempting to circumvent the following 
challenges: 

• SHM and neural network data is taken from sensors 
placed at the points of interest, which in turn 
generates costs for the sensor’s data storage in 
addition to the many sensors required 
themselves[14]. 

• The robustness of the system formulated to 
diagnose and regulate the data must be vigorous 
with low error rates, due to the nature of conditions 
faced by the aircraft’s landing gear, in which 
landing strips constantly change due to the wind 
conditions and control surface changes. 

• The method used for diagnosis must include 
analyses of cost-benefit scenarios due to the costs 
associated with downtime[14] 

The machine learning method used by Holmes et al., namely 
Gaussian Progress regression, to calculate loads on landing 
gear, resorted to the input sourced from sensors being 
attached to the landing gear of a singular aircraft while 
enveloping multiple surfaces of runways the aircraft interacts 
with, taken from a landing gear testing rig[15]. Concluding 
with the requirement of aircraft-specific model training, the 
machine learning model used would adapt to different 
landing conditions without the need for filtering of the data 
used for input. As for Jeong et al., ditching the need for  
accelerometers such as those used by Holmes et al. for the 
use of sensors at the point of touchdown in the case of a hard 
landing in order to calculate maximum load values, required 
a simulation for the landing itself, due to the need of 
adequate data points for the neural network training[1]. 
These data points were taken from beam and shell elements 
and their normal and shear values. Using regularization in 
order to prevent overfitting and to contain the multilayer 
perceptron neural network’s complexity, they demonstrated 
that the use of one hidden layer and ten neurons would be 
adequate in terms of performance efficiency. Additional 
SHM techniques include those being used in the industry, 
such as Ramboll Oil and Gas’s system which monitors the 
current structural state and produces a corresponding 
schedule for maintaining the parts in interest. It does so by 
using structural data measurements from sensors placed in 
order to adjust a digital twin finite element model and 
schedule inspections based on the assumptions of the 
aforementioned model [16]. 

V. EXPLAINABLE AI  & CERTIFICATION 

A. Explainable AI 

Algorithms tend to increase in complexity, especially 

with the use of a large number of attributes for data input 

into the model[17], in which the need for Dimensionality 

reduction arises. It can be split into two methods of 

approach: 

• Feature Extraction, where features that are 

initially detectable lead to the creation of non-

detectable features[18]. 

• Feature Selection, in which features are each 

evaluated in order to decide whether they 

should be considered for the model [19]. 

 

 
Figure 4 A one-layered ANN 

 



In addition to the multiple methods available, 

interpretability’s reach, whether it be local or global, allows 

for the understanding of predictions based on the input 

clusters of small regions in a conditional distribution in the 

case of the former, whereas they would be fully 

encompassing distributions (be they conditional) resulting 

due to a model depending on average values in the latter 

[20]. 

 

AI models, according to Roscher et al., may be divided into 

three kinds, focusing on: 

• Transparency, with the focus being on the 

model itself. Where model transparency refers 

to the entire model, design transparency is used 

when referring to the model components, and 

algorithmic transparency being that which is 

based on training algorithms. 

• Interpretability, including both the model and 

the interpretable data. 

• Explainability, with the whole process of 

machine learning in mind, where they may be 

divided into human-centric and scientific 

explainability [21]. 

 

As for the principles of XAI, Phillips et al. mention four: 

• Explanation: This principle does not evaluate the 

explanations, rather commits the AI system in 

question to deliver the means for which the output 

has been reproduced. 

• Meaningfulness: Since a system engulfs a 

multitude of user interpretabilities, developing the 

way a user or developer understands how this 

system & model operates holds an important role 

in the explainable side of AI. 

• Explanation Accuracy: Focusing on how a system 

results with a specific decision, rather than 

whether that decision is plausible, explanation 

accuracy also disregards specific values and 

iterations that are not necessary for the end user of 

that system, while maintaining the variable of 

simplicity in delivering the required end 

explanation solely based on their requirements. 

• Knowledge limits: A principle that implies a 

system is able to recognize inputs that do not 

comply with or fit in the required dataset that the 

model has learned, it specifies the matureness of 

the system’s categorization of data & its 

confidence in whether the data input is worth 

studying, while simultaneously informing the end 

user of the data’s unconformity instead of 
including it in the model’s study[22]. 

 

The types of explanations may be categorized into their end 

means with respect to the industry or market, as Phillips et 

al. deduced: 

• User Benefit: Serves as the simplest type of 

explanation, with the goal of informing the end 

user of the reason for why such a decision has been 

made based on their input. 

• Societal acceptance: With an aim of regularization 

in terms of a new approach to a specific analysis, 

keeping in mind the society’s general view on 
whether it is morally acceptable by training into 

normalized explanations. 

• Regulatory and compliance: With a means of 

regulatory clarification & standardization in 

situations where certification is necessary[22]. 

 

Furthermore, Alejandro et al. introduce the way in which 

ML models may be interpreted, where it may be categorized 

into 3 sectors: 

• Simulatability: Applying to a scenario where a 

model may be fully replicated by a human being, 

rendering long but simple rule-based algorithms an 

exclusion of this sector, simulatability may be used 

as a classifying quality for such a model. This 

sector, or transparency level, therefore, applies to a 

single perceptron neural network for example. 

• Decomposability: When all the ML model’s main 
constituents can be explained, including the input, 

calculation, & parameter, requiring no additional 

methods of explanation for the end user to 

understand the methodology of the model. 

• Algorithmic transparency: A model that allows its 

user to follow the learning and decision-making 

process with knowledge of its reasoning with 

respect to the logic followed in order to model the 

result may be classified as algorithmically 

transparent. 

 

The following are examples of transparent ML models 

and how they may be fitted into these above 

transparency sectors: 

• Logistic Regression may be classified as 

simulatable due to its prediction being 

readable by a user, as a result of the 

minimization of these predictors’ interactions. 

It does, on the other hand, require algorithmic 

transparency via mathematical tools due to the 

complexity of its variables. 

• Tree ensembles need post-hoc analysis via the 

simplification of the ML model or the use of 

feature techniques, as this method does not 

meet any of the three mentioned sectors of 

transparency [23]. 

 

Algorithms may transgress into meta-learning models [24] 

wherein certification for such algorithms requires a clear 

explanation to the purpose and reason of the predictions it 

has reached, and whether errors may be mended [25]. The 

process of machine learning interpretation runs with specific 

tool-based methods that feed from a human expert in order to 

be adapted and sent back as an input to the model’s machine 
learning loop [17].  Interpretations of complex models have 

been simplified by several methods, each significant for a 

particular purpose in the simulation. SHapley Additive 

exPlanations is an example of the implementation of 

explainable AI implementing the feature selection process 

where it “assigns each feature an importance value for a 
particular prediction” [26]. This specific approach offers a 

reliable and constant way of measuring and evaluating the 

significance of each feature, allows for engine level 



visualization confidence, and demonstrates the 

intercommunication of each of the features with each other 

[25].  

 

B. Certification and its Challenges 

The limitations of Machine Learning algorithms require a 

scope to be identified within, and since they are able to 

handle non-deterministic behavioural scenarios, SOTIF, 

which was developed to address the new safety challenges 

that autonomous (and semi-autonomous) vehicle software 

developers are facing, may be used as part of the basis for 

certification application. Another challenge for certification 

is the constitution of a dataset, and whether it be sufficient 

for the required application and in comparison to the function 

in operation. In the case of explainability, the lack of such a 

measure affects confidence in the model’s learning 
capability. As for while Machine Learning is being 

implemented, the deployment of such a program would not 

be successful when supplied with a low-level set of tools for 

the inference. New practices in the aeronautic domain for 

certification encompass an initiative known as Overarching 

Properties. Here, Assurance Cases, which have been 

previously used in Aeronautics and Neural networks, may 

define themselves as the bridge between the need to comply 

with the Overarching Properties (which are intent, 

correctness, and innocuity) and the quality possession of the 

product being considered by placing a strong argument. 

Artificial Intelligence in Aviation workgroups (such as SAE 

G-34/EUROCAE WG-114) are experimenting with the 

aforementioned new practices in order to produce guidance 

material for the standards being developed for Machine 

Learning in the Aeronautical domain.  

VI. DISCUSSION 

Certification for machine learning applications in Landing 

Gear may be applied via Explainability, by the means of 

connecting data point values from features; values and 

properties of a monitored process[27]. The method of 

adopting these features depends on both the ML model 

being used, as well as the fatigue failure model being 

implemented, resulting in the dependence on the sensor data 

taken ultimately during flight, take-off, and manoeuvres on 

the landing strip. The usage of features has been resorted to 

due to the nature of the way in which an ML model 

operates; by operating on ‘single values per case’ [28]. As 

the ML model formulated to operate on failure diagnosis 

trains on maintenance data and usage data, while 

simultaneously filtering outliers, and labelling each feature 

for the readiness of the model, these labelled features will 

then need to be categorized based on their relative 

importance to the fatigue failure of the Landing Gear 

components being studied. These values are compared to 

predefined value ranges that dictate whether a component’s 
stress reactions qualify it as leading to fatigue failure due to 

the likeable repeatability of this value and its cycling 

resulting  with a HCF failure.  The values shall include tyre 

wear, side-stay loads, impact loads, shock absorber travel 

distance, as well as distance travelled by the wheel, in 

addition to forces applied on the axle of the Landing Gear. 

The features are then transferred to classes; diagnoses[28]. 

This methodology does result with relative feature 

importance, informing the end user of how critical a feature 

is by relating its likeability of occurrence to the results of a 

simulated model.   

VII. CONCLUSION 

Beginning with a Digital-Twin model to calculate fatigue 

life for specific loads on components of the landing gear, 

Machine Learning models can be used to provide 

component-level load histories via predicting loads based on 

data from sensors onboard the aircraft. A physics-informed 

ML model taking data from a minute mount of sensors 

allows for a monitoring system which will require data from 

both live sensors as well as previous data, therefore creating 

a certifiable machine learning model. The model shall 

consist of nonlinear regression models via multi-layer 

perception networks and integrated with landing gear drop-

test data as well as the inclusion of aircraft taxiing data, and 

for explainability, simulatability, decomposability, and 

algorithmic transparency shall be placed as standards in 

order to reach the goal of regulatory and compliance 

certification. The replacement of the current safe-life 

approach for landing gear fatigue maintenance and 

management via the use of sensors based on SHM and ML 

models integrated with ANN and explainable AI, will pave 

the way to easily certify with accordance to the SAE G-

34/EUROCAE WG-114 workgroups. Concentrating on 

Knowledge Limits, Explanation Accuracy, & 

Meaningfulness ensures the streamlined explainability 

process for the intended ML model. 
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