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Abstract
In this paper, reinforcement learning based decoy deployment strategy is proposed to protect naval platforms against

radar seeker equipped anti-ship missiles. Decoy system consists of a rotary-wing unmanned aerial vehicle (UAV) and an

integrated onboard jammer. This decoy concept enables agility which is quite critical for jamming operations against a

high-speed anti-ship missile. There are two main purposes of the developed jamming strategy; a) flying in the field of

view of the anti-ship missile to conceal the naval platform, and b) flying away from the target ship to increase the miss

distance between the anti-ship missile and naval platform. Here, it is aimed to meet these requirements simultaneously.

Kinematics models are used to represent missile, decoy UAV and target motion. Jammer and seeker signal strengths are

modeled and radar-cross section of a frigate is utilized to increase the realism of the simulation environment. Deep

Deterministic Policy Gradient (DDPG) algorithm is applied to train an actor-critic agent which maps the observation

parameters to decoy’s lateral acceleration. A heuristic way is chosen to create appropriate reward function to solve the

decoy guidance problem. Finally, simulations studies are performed to evaluate the system performance.

I. Introduction
Naval platforms can be considered as a portable space for war vehicles, and they are moving slowly due to their

heavy structure. Because of housing significant assets, the safety of these platforms becomes a major issue in modern

warfare. During the maritime missions, naval platforms operated in combat area are under multi-directional anti-ship

missile threats equipped with advanced radar seekers. Therefore, an effective defence strategy should be carried out to

enhance the survival probability of target ships from approaching threats. Many concepts have been designed to develop

a decoy strategy that performs a countermeasure/soft kill mission against missile threats. On-board countermeasures

are one of the first attempts to conceal main platform from approaching threats. However, due to intelligent tracking

algorithms executed by the radar seeker technology degrade the effectiveness of this technique.

Protecting of these naval platforms has been studied for years because of their importance in the warfare. Several

methods have been developed in literature based on active and passive protection. Passive systems that are applied as

decoys are not reactive to a specific threat, and their structure are utilized to mimic radar cross section signature, such as

floating decoy system. In [1], a towed-decoy launched from an aircraft is analysed to evaluate its performance against an

anti-air missile which is equipped with a monopulse radar seeker. Relative distance between missile and target is called

as a miss distance, and it is an important metric to evaluate the effectiveness of decoys. The signal strength, tether length,

and release direction of the decoy are parameterised to be utilized for different scenarios. However, because of the tether

between towed-decoy and mother platform, manoeuvre capability of the aircraft has been restricted. In [2], the author

examines the use of off-board active decoys against anti-ship missiles. These decoys can be deployed by a helicopter or

launched by a rocket and then kept in air by a parachute system. They emit radiation that can jam the radar signal of the

seeker and direct the missile away from the ship. The decoy deployment time and decoy launch direction are critical

parameters, so they are examined to determine the success of decoy mission. The authors in [«] evaluate the effectiveness

of jamming strategy carrying out by a group of unmanned air vehicles (UAVs) flying based on a close formation. UAVs

move cooperatively to expand the jammed area by superimposing their jamming signals. Moreover, a methodology is

proposed for UAVs to follow a minimum-risk path planning within the zone where surface-to-air missile radars exist. In

[»], feasibility of electronic attack executed by multiple autonomous vehicles against integrated air defence systems

(IADS) is discussed. Resource allocation and cooperative path planning are highlighted problems to be formulated in this
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context. A collaborative decoy jamming strategy is proposed in [5] to degrade the performance of the inverse synthetic

aperture radar (ISAR) by utilizing a group of small-scale UAVs. Also, a cooperative decision-making algorithm is applied

for coordination of multiple UAVs. A same-side-deployment and zig-zag deployment strategies are proposed in [6] to

evaluate the efficiency of a single and multiple decoys. For aircraft targets, an analytical expression is developed in [7] to

perform the optimal deployment of decoys and vertical-S manoeuvre strategy, simultaneously. The survival probabilities

of the radar against anti-radiation missiles are evaluated for the cases in which decoys are positioned in an appropriate

quadrangular topology [8]. Effectiveness of decoys in the evader-pursuer engagement scenario is analysed in [9] for

various decoy launch angles and launch time. The range of launch angles and launch time which ensure that the decoy

remains within the radar seekers’ field-of-view (FOV) are derived in [10] based on the intersection point between FOV’s

boundaries and the loci of decoy position. A method to simulate echo signal at the tracking radar is proposed in [11],

and the effects of circular and linear polarization of signals are analysed for repeater-type active decoys against ground

tracking radar. Jamming performance of an active repeater decoy is evaluated in [12] based on RF specifications of the

decoy, such as antenna patterns, and amplifier gains. In [1«] , a ducted-fan flight array system is allocated for the role of

decoy to guarantee the protection of the target ship against anti-ship missiles (ASMs). A decoy deployment strategy is

developed by means of a sequential logic algorithm. Q-learning based reinforcement learning algorithm is designed in

[1»] for decoy guidance to direct the allocated decoy to the optimal direction. In [15], an auction-based task assign-

ment algorithm is applied to effectively manage the decoy mission conducted by multiple UAVs against anti-ship missiles.

In this study, main aim is to protect the ship from an approaching missile threat by deploying a decoy which gets the

attention of the missile seeker. The mission success depends on both signal power and path of the decoy. Here, path

planning plays a crucial role to settle the decoy to an appropriate location. An idea is proposed to localize the decoy to

the right position where the decoy stays within the field of view of radar seeker. For this purpose, Deep deterministic

policy gradient algorithm is applied to train an agent which predicts the acceleration of the decoy with respect to

changing dynamics environment. In each simulation case, decoy deployment angle is set randomly from a predefined

angle interval. Based on the assigned deployment angle, the agent can predict the best action for optimal solution.

The rest of this paper is organized as followsȷ Section II formulates and explains kinematics models of the ship,

the missile, and the decoy, respectively. Section III provides fundamental information about reinforcement learning,

and then gives details about deep deterministic policy gradient algorithm applied in this study. Section IV describes

the implementation stage of the proposed algorithm and shares results about the effectiveness of decoying strategy.

Concluding remarks and future works are given in section V.

II. Problem Definition
A mission is envisioned in which an off-board decoy deployed from the target ship aims to lure the anti-ship missile

away from the main platform. Models utilized in the scenario has a substantial impact on the accomplishment of the

mission. That is why, firstly, kinematics models for the target ship, anti-ship missile, and decoy are introduced. In the

case of multiple targets, simply, a radar seeker tends to move towards the direction of the centroid of signal power source

of targets. The main idea of this work is to demonstrate the power of reinforcement learning based approach in terms of

decoying strategy. As illustrated in the Figure 1, the scenario is that as soon as approaching missile is detected by the

ship sensor, decoy mission is executed, and decoy is ejected from the ship to the appropriate position that ensures the

protection of the ship.

A. Target ship kinematics model

It is assumed that the ship moves in 2D environment, along East and North axis. A simple point mass kinematics

equation is described as,



¤𝑋𝑠

¤𝑌𝑠
¤𝜙𝑠



=



𝑉𝑠𝑐𝑜𝑠𝜙𝑠

𝑉𝑠𝑠𝑖𝑛𝜙𝑠

𝜔𝑠



(1)

where X and Y indicate the position of the ship in the East (x) and North (y) axis respectively. 𝑉𝑠 and 𝜔𝑠 are ground

velocity of the ship and the turning rate of the ship respectively. During simulation 𝑉𝑠 is fixed as 15 m/sec. Another

important parameter for target ship is Radar Cross Section (RCS) which is used to calculate the reflected signal from

the target to the radar seeker. RCS is a plenty significant design factor for stealth of a naval ship, so as to decrease
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Fig. 1 Missile Target Decoy engagement

the detectability of naval platforms ship designers perform some methods. However, due to huge structure of naval

platforms, it may not be possible to make them full stealth. The radar cross section of the ship depicted in the Figure 2 is

computed by means of toolkit created by Pofacets [16]. After this section, the ship will be named as a target.

B. Missile kinematics model

In this study, it is assumed that missile updates its information about the target ship by using a radar seeker. For the

kinematics model of the anti-ship missile (ASM), a point mass model utilized. The below equation is given to express

an ASM model as;
¤𝑋𝑚 = 𝑉𝑚𝑐𝑜𝑠𝜙𝑚 (2)

¤𝑌𝑚 = 𝑉𝑚𝑠𝑖𝑛𝜙𝑚 («)

where 𝑋𝑚, and 𝑌𝑚 depict the positions of the missile in the inertial frame. 𝑉𝑚 and 𝜙𝑚 are the velocity and heading

angle of the ASM respectively. A 2D planar missile-target engagement geometry [17] is illustrated in Figure « to better

figure out the conceptual approach of PNG. Subscripts M and T give information about missile and target respectively.

The 𝑉𝑀 and 𝑉𝑇 represent the magnitude of velocity of missile and target respectively. It can be seen in the figure, the

missile moves, with a velocity denoted as 𝑉𝑀 , at an angle of L+HE with respect to the line-of-sight (LOS). The missile

lead angle is defined as the angle L, and the angle HE illustrates the heading error which is known as an initial deviation

angle of missile. The line linking the missile and target during the engagement is termed as line of sight. This line

creates an angle of lambda (λ) with respect to reference point.The mission allocated to the missile is to catch the target

as short time as possible. Miss distance is well-known as the closest point between missile and target. The expected

miss distance to hit a target should be as close to zero as possible, but in reality, impossible. Some basic mathematical

equations are given below to derive the required parameters employed for lateral acceleration. The 𝑅𝑇𝑀 is a relative

separation between target and missile during engagement, and it is calculated as;

𝑅𝑇𝑀 =

√︃
(𝑅2

𝑇𝑀𝑒
+ 𝑅2

𝑇𝑀𝑛
) (»)

As seen in figure «, by means of trigonometry, it is straightforward to find the line-of-sight angle (λ) as;

𝜆 = arctan

(
𝑅𝑇𝑀𝑒

𝑅𝑇𝑀𝑛

)
(5)

The relative velocity components of the target and missile are calculated separately for each axis as below;

𝑉𝑇𝑀𝑒 = 𝑉𝑇𝑒 −𝑉𝑀𝑒 (6)

𝑉𝑇𝑀𝑛 = 𝑉𝑇𝑛 −𝑉𝑀𝑛 (7)
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Fig. 2 Radar Cross Section of the frigate

The line-of-sight rate is derived by the differentiation of line-of-sight angle equation. After some simplifications the

value is obtained as;

¤𝜆 =

𝑅𝑇𝑀𝑒𝑉𝑇𝑀𝑛 − 𝑅𝑇𝑀𝑛𝑉𝑇𝑀𝑒

𝑅2
𝑇𝑀

(8)

The closing velocity is described as the negative rate of change of the missile target separation i.e 𝑅𝑇𝑀 , by applying

differential equations law, it can be easily calculated as

𝑉𝑐 =

−(𝑅𝑇𝑀𝑒𝑉𝑇𝑀𝑒 + 𝑅𝑇𝑀𝑛𝑉𝑇𝑀𝑛)

𝑅𝑇𝑀

(9)

Lastly, by the definition of proportional navigation guidance law, the magnitude of the missile guidance command 𝑛𝑐 is

received as;

𝑛𝑐 = 𝑁𝑉𝑐
¤𝜆 (10)

Here, N is constant and its value is between « and 5.Usually, the identification of the target by the radar seeker is

accomplished with respect to the reflected radar signal from the target to the seeker. The back scattered signal to the

seeker is formalized as

𝑆 =

𝑃𝐺𝑡𝐺𝑟𝜆
2𝜎

(4𝜋)3𝑅4
(11)

where P is the output power of the seeker, and 𝐺𝑡 ,and 𝐺𝑟 , are the transmitter and receiver gains of the seeker, respectively.

The 𝜆 is the wavelength of the seeker, and 𝜎 is equal to the radar cross section (RCS) of the target ship.

C. Decoy kinematics model and jammer

A UAV equipped with a jammer is considered as a decoy to lure the approaching missile threat away from the ship.

It is ejected from the ship and continue its motion in 2D environment. The motion equation is calculated based on the

point mass model.
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Fig. 3 Missile target engagement



¤𝑋𝑑

¤𝑌𝑑
¤𝜙𝑑



=



𝑉𝑑𝑐𝑜𝑠𝜙𝑑

𝑉𝑑𝑠𝑖𝑛𝜙𝑑

𝜔𝑑



(12)

where [𝑋𝑑 𝑌𝑑], 𝜙𝑑 and 𝑉𝑑 represent coordinates of the decoy, heading angle, and the velocity of the decoy respectively.

The signal strength of the decoy during engagement is calculated as [2]

𝐽 =

𝑃𝑑𝐺𝑑𝐺𝑟𝜆
2

(4𝜋)2𝑅2
(1«)

where 𝑃𝑑 , 𝐺𝑑 and 𝐺𝑟 symbolize the jammer’s output power, the transmitter gain, and receiver gain of the decoy jammer

respectively. In this study, values used for the calculation of the seeker and decoy signal power are taken from this paper

[15], and are seen in the table 1.

Table 1 Seeker/decoy signal parameters.

Parameters Values Units

𝑃𝑘 200 𝑘𝑤

𝐺𝑡 «5 𝑑𝐵

𝐺𝑟 «5 𝑑𝐵

𝜆 0.00« 𝑚

𝜎 50 𝑚2

𝑃𝑑 1 𝑘𝑊

𝐺𝑑 «5 𝑑𝐵

III. Reinforcement learning Approach for Decoy Guidance
Reinforcement learning is a promising sub-field of machine learning, and its learning ability is dependent on

the interaction between the agent and the environment [18]. The aim of reinforcement learning is to maximize the

cumulative long-term reward in a Markov Decision Process (MDP). An MDP is formulated by a five-element tuple

(S, O, A, R, P), where S represents the set of states, O the set of observations, A the set of actions, R the reward

function (Rȷ S×A → R) and P the state transition probability (Pȷ S×A×A→ [0,1]). The fundamental working principle

of reinforcement learning is that agent takes an action based on the current observations from the environment to move
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to the next state, and simultaneously, the agent receives reward or penalty in return for the goodness/badness of taken

action. Observation/states are the information received from the environment during interaction. There is a minor

distinction between observation and state, in short, state covers observation. While state is a full description of the

world, observation is a partial description of the world. The action space is defined as a set of all possible actions in an

environment. In discrete space case, the number of actions is finite while in continuous space case it is infinite. In

reinforcement learning, after taking an action reward (positive or negative) is given as feedback to evaluate whether

taken action is good or not. The cumulative reward at each timestep t can be computed by means of the equation asȷ

𝑅(𝜏) = 𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+3 + 𝑟𝑡+4 + . . . . (1»)

However, directly summation of rewards is not applicable in reality, so a new term is added to the equation which is

named as discount. The future reward is discounted by the exponent of the time step to be comparable with the near

reward. The near rewards are more probable to occur because they are more presumable than the long-term future

reward. The modified cumulative reward equation is rewritten asȷ

𝑅(𝜏) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾
2𝑟𝑡+3 + 𝛾

3𝑟𝑡+4 + . . . . (15)

which is equivalent toȷ

𝑅(𝜏) =

∞∑︁

𝑛=1

𝛾𝑘𝑟𝑡+𝑘+1 (16)

γ (gamma) is a discount rate which is bounded between 0 and 1. The bigger the gamma the lesser the discount, which

means the agent focuses more about the long-term reward. On the other hand, the lesser the gamma the bigger discount

which means the agent considers more about the short term reward. The exploration/exploitation trade-off is a crucial

part of learning process in reinforcement learning. Exploration means trying random actions in order to discover new

information about the world, meantime exploitation means using experienced information about the world to take action.

There are two methods to train an RL agent, first is policy-based method, and other is value-based method. In the

policy-based method, learning takes place directly, that directs the agent to find the most appropriate action which

maximizes the cumulative expected return. In deterministic policy case, policy function tries to match each state to the

best action, while in stochastic case, policy function outputs a probability distribution over the set of possible action at

that state. In Value based methods, training takes place based on a Value function which map a state to the expected

value of being at that state. The value of a state is the expected discounted return the agent can receive during interaction.

Value Function is a very indirect process to decide the best action. Instead, “Action–Value Function”, denoted by Q (s,

a) is widely used for this purpose. One of the most popular methods to compute the Q-value is Q-learning.

A. Deep Deterministic Policy Gradient

The Deep Deterministic Policy Gradient is a model-free, online, and off-policy algorithm in reinforcement learning

family. It is a conceptual integration of well-known Deep Q Networks (DQN) and Deterministic Policy Gradient (DPG)

algorithms to learn a deterministic policy which outputs a continuous action in an unknown environment. The structure

of DDPG consists of actor-critic learning algorithm, which is a combination of policy gradient function and value

function. Like DQN, DDPG employs target networks to untangle instability during training caused due to the use of the

Bellman Error. In this case, four neural networks are required namely actor, target actor, critic, and target critic to run

this DDPG algorithm. The µ, Q, 𝜇′ and 𝑄 ′ represent actor, critic, target actor, and target critic respectively. The critic

takes current state and the action predicted by the actor, and the output layer of the critic network with a single neuron

generates the Q-value of the given state-action pair. As seen in the Figure », the task of the critic is to critique the actor

regarding by determining the quality of the predicted action given the current state. Learning for the critic happens by

using critic loss function derived below as [18],

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄
′
(
𝑠𝑖+1, 𝜇

′
(
𝑠𝑖+1 | 𝜃

𝜇′
)
| 𝜃𝑄

′
)

(17)

𝐿 =

1

𝑁

∑︁

𝑖

(
𝑦𝑖 −𝑄

(
𝑠𝑖 , 𝑎𝑖 | 𝜃

𝑄
))2

(18)

Thus, the loss depicted as L is calculated as the Mean-Squared Error between the TD-Target and the Q-value estimated

for current state and corresponding action pair. The TD-Target y employs the target networks. The next state 𝑠′ and the
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Fig. 4 Actor-Critic Algorithm

associated action predicted by the target actor 𝜇′ are provided as input to the target critic 𝑄 ′. As the name suggests, in

this algorithm the policy is deterministic, this refers that the actor network learns to map a given state to a specific action,

instead of a probability distribution on the actions. The actor-network takes as input the state vector and generates the

action to be executed based on the size of the action space. During training, a small amount of noise is added as a role

of exploration to the action predicted by the actor to guarantee that the network does not get stuck in a local minimum.

In this algorithm, a time-corelated noise depicted as ε formed by the Ornstein-Uhlenbeck process is utilized.

𝑎 = 𝜇 (𝑠) + 𝜖 (19)

The actor network is updated by executed a gradient ascent with respect to the policy, along the direction pointed out

by the critic. Target network parameters are updated smoothly based on the value of τ (tau) parameter. The update

equations are indicated below.The τ is between 0 and 1.

𝜃 ′← 𝜏 · 𝜃 + (1 − 𝜏) · 𝜃 ′ (20)

𝜙′← 𝜏 · 𝜙 + (1 − 𝜏) · 𝜙′ (21)

Here, 𝜃 ′, and 𝜙′ represent target critic and target actor respectively.

B. Training DDPG agent

In this section, the aim is to propose a DDPG algorithm that teaches the agent to execute the best action based on the

given current observations. Here, the action is allocated as the acceleration of the decoy to create a path planning in

which decoy is effective. The agent is trained with respect to the observation parameters, reward function and Isdone

statue of the simulation environment. Observation parameters are related with missile states and decoy states, and

namely they are missile positions (2x1), decoy positions (2x1), missile path angle (1x1) and decoy path angle (1x1).

[
𝑂

]
=

[
𝑋𝑚, 𝑌𝑚, 𝑋𝑑 , 𝑌𝑑 , 𝜙𝑚, 𝜙𝑑

]
(22)

The most challenging part of this study is to create an appropriate reward function which can guarantee to carry out

the mission successfully. After some trial and error, it is observed that the below reward function can converge to an

acceptable point. Reward function consists of three different terms with their coefficients, and it is formulated as

𝑟𝑡 = 𝜔1𝑟1 + 𝜔2𝑟2 + 𝜔3𝑟3 (2«)

where

𝑟1 =

𝑅𝑇𝑀

𝑅𝐷𝑀
(2»)

𝑟2 = 1 (25)

𝑟3 =

{
1, if 𝐷𝐹𝑂𝑉.

0, otherwise.
(26)
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Table 2 Initial parameters of missile, ship and decoy.

- Position Velocity Flight path angle

Missile [600;800] m «00 m/sec 85 (deg)

Ship [«000;»000] m 15 m/sec 0 (deg)

Decoy [«000;»000] m 15 m/sec [ 165 180 195] (deg)

Algorithm 1 DDPG algorithm

Initialization of critic network 𝑄
(
𝑠, 𝑎 | 𝜃𝑄

)
and actor network 𝜇 (𝑠 | 𝜃𝜇) with weights 𝜃𝑄 and 𝜃𝜇

respectively.

Initialize target network 𝑄 ′ and 𝜇′ with weights 𝜃𝑄
′
← 𝜃𝑄, 𝜃𝜇

′
← 𝜃𝜇

Initialize replay buffer 𝑅

For each episode start with 1 , until the M

Initialize a random process N for action exploration

Receive initial observation state 𝑠1

for t = 1, T do

Select action 𝑎𝑡 = 𝜇 (𝑠𝑡 | 𝜃
𝜇) + N𝑡 according to the current policy and exploration noise

Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and observe new state 𝑠𝑡+1

Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝑅

Sample a random minibatch of 𝑁 transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from 𝑅

Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄
′
(
𝑠𝑖+1, 𝜇

′
(
𝑠𝑖+1 | 𝜃

𝜇′
)
| 𝜃𝑄

′ )

Update critic by minimizing the lossȷ 𝐿 =
1
𝑁

∑
𝑖

(
𝑦𝑖 −𝑄

(
𝑠𝑖 , 𝑎𝑖 | 𝜃

𝑄
) )2

Update the actor policy using the sampled policy gradientȷ

∇𝜃𝜇 𝐽 ≈ 1
𝑁

∑
𝑖 ∇𝑎𝑄

(
𝑠, 𝑎 | 𝜃𝑄

) ��
𝑠=𝑠𝑖 ,𝑎=𝜇 (𝑠𝑖)

∇𝜃𝜇 𝜇 (𝑠 | 𝜃𝜇)

���
𝑠𝑖

Target critic updateȷ

𝜃 ′← 𝜏 · 𝜃 + (1 − 𝜏) · 𝜃 ′

Target actor updateȷ

𝜇′← 𝜏 · 𝜇 + (1 − 𝜏) · 𝜇′

end for

end for

Coefficients 𝜔1, 𝜔2, and 𝜔3 are three constant to shape the reward function, and they are given in the Table «. The

notation RTM and RDM denotes the range between the target and missile, and the range between the decoy and missile

respectively, and DFOV represents that decoy is within the field of view. The first term 𝑟1 relates the relative distance

between the missile and the target, and relative distance between the missile and the decoy. This rate indicates that

whether the missile is more close to the decoy than the target. That means the 𝑟1 is greater in the case that the decoy is

hit by the missile instead of the target. The second term 𝑟2 is a constant value and it is used as a penalty to complete the

mission as short time as possible. The appointed value is depicted in the Table «, and it is given to the agent for each

time step during training. The third term 𝑟3 is encouraging the decoy to stay within the field of view of radar seeker

during the mission. Because, if the decoy moves out of the field of view, the mission will be unsuccessful. Isdone statue

is used to terminate the training session for each episode if any of the situations where RDM and RTM are smaller than

the fuze range occurs. »0m is assigned to fuse range.

𝐼𝑠𝑑𝑜𝑛𝑒 =




1, if RDM < Fuse range.

1, if RTM < Fuse range

0, otherwise.

(27)
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Table 3 Reward weights

𝜔1 𝜔2 𝜔3

1 -0.1 0.2

The training scenario is run in which the missile firstly moves towards the target. After decoy deployment, based on

the signal powers coming from the ship and the decoy, missile choose a target to hit. Before training the agent, some

required specifications are carried out. The observation and action are 6 by 1 dimensional and 1 by 1 dimensional

respectively.In observation, state parameters have different scale and units therefore for training efficiency it is required

to normalize these parameters. The action represents the decoy’s acceleration to create an optimal path trajectory, and it

is a continuous value bounded between −1.5 𝑔 and 1.5 𝑔. By an optimum action value, the cumulative reward for each

episode will be maximized. Initialization is done in each episode, an angle randomly chosen from angle data given

above is assigned as a decoy deployment angle, and missile and target positions are randomly chosen from bounded

values given in the Table 2 as well. In the initial stage, the decoy and the ship is collocated. As soon as simulation starts,

the decoy launched from the ship with a heading angle to move towards a point that can guarantee the survivability

of the ship. The information regarding these layers are given in the Table ». A rectified linear units (Relu) function

formulated in Eq. 28 is applied as an activation function for each neuron in layers, except for that in the actor output

layer, tanh function 29 is employed.

𝑔(𝑧) =

{
𝑧, if 𝑧 >= 0.

0, if 𝑧 < 0.
(28)

𝑔(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
(29)

After several trial-and-error tests, it is decided to assign numeric values given in the Table 5 as hyperparameters.

Table 4 Network layer properties

Layer Critic Network Actor Network

Input layer 7 (dimension of observation + action) 6 (dimension of observations)

Hidden layer 1 »00 »00

Hidden layer 2 «00 «00

Hidden layer « «00 -

Output layer 1 (dimension of Action-Value function) 1 (dimension of action)

IV. Simulations Results
Extensive numerical simulations are carried out to obtain the preliminary results and training results. In the

preliminary results, we observed in which conditions the decoy can execute the mission successfully. The expectetion

from the trained agent which guides the decoy is that the decoy move towards to the optimal point where the mission

can be achieved.

A. Preliminary Simulations

Before mentioning training results, it is worth to talk about the simulation environment that is a testbed of the

proposed approach in this study. Initially, the missile locks-on the target and the PNG law which guides the missile

during engagement is applied based on target ship parameters. After decoy is activated, the radar seeker resolves two

targets, and based on the signal powers returned from them to radar seeker, the missile chooses one to hit. For simplicity,

9



Table 5 Hyperparameters settings

Parameters Value

Maximum episodes number »000

Maximum steps number 2000

Critic learning rate 1e-«

Actor learning rate 1e-»

Experience Buffer Length 1e6

Discount Factor 0.99

Mini Batch Size 256

Sample Time 0.01

Target Smooth Factor 1e-«

Noise standard deviation 0.9

Noise standard deviation decay rate 1e-6

the signal power computation of seekers and jammers have been converted into log scale (dBm). Consequently, 11 and

1« can be rewritten as

𝑆 = 10 log(𝑃𝑆) + 𝐺𝑆,𝑡 + 𝐺𝑆,𝑟 + 10 log(𝜎) − 40 log(𝑅) − 20 log(𝐹) − 163.4 («0)

𝐽 = 10 log(𝑃𝐷) + 𝐺𝐷,𝑡 + 𝐺𝐷,𝑟 − 20 log(𝑅) − 20 log(𝐹) − 92.45 («1)

These notations are explained above, so we don’t need mentioning about it again.In each sample time, signal strength

calculations are done.In each sample time, signal strength calculations are done based on the given values in the Table 1.

As long as the ship and the decoy are within the field of view of radar seeker, their signal powers are taken into account,

otherwise they will be eliminated. A task is accepted to switch seen target by the radar seeker between the ship and the

decoy based on the their power signal and field of view statue. The backscattered signal to the seeker from the target

ship vary with respect to the angle between the missile and the ship, and this case is taken into account in this study.

B. Training Results

Training process of the agent is started as soon as requirements are completed, and it continues until the maximum

number of episodes reach the »000. After thousands of episodes, the curve of the average reward begins converging. The

agent tries to learn to take the best action which navigates the decoy to move toward the optimal position in which miss

distance can be maximum. Miss distance which is the range between the missile and the ship is a metric to evaluate the

performance of the proposed approach. In each episode, initially the ship and the decoy are co-located, and the positions

of the missile and the target are randomly chosen from the minimum and maximum values. The Figure 5 is obtained in

the case decoy deployment angle is equal to 165◦ degree. The Figure 5b depicts the change in the acceleration of the

decoy during the implementation of the scenario under dynamics environment. As can be seen that the agent learned

taking reasonable action for each observation situation.The Figure 5a depicts the positions of the missile, the ship, and

decoy during the simulation. The ship moves align east axis, and decoy is ejected from the stern part of the ship. As

seen is the Figure 5b, the decoy’s acceleration value start with a positive value, and after a while the sign change. After

deployment, the decoy followed the created path to attract the missile which locks-on the target. The obtained miss

distance in this case is 270 meter, but it can be claimed that at that point even though the radar seeker realizes the decoy,

the re-lock-on the target can be difficult because of deceived heading angle.
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(a) Path trajectories (b) The change in acceleration

Fig. 5 Decoy deployment angle = 165◦

In the case when decoy deployment angle is equal to 180 ◦ which means opposite direction of the ship motion

trajectory, results are presented in Figure 6. As can be seen in the Figure 6b, the agent provides acceleration value

between 1.5 and 1. After 12th seconds, the agent gave unexpected acceleration value for a very short time, but this

situation did not affect the path trajectory of the decoy. The decoy moves towards the port side of the ship to lure the

approaching missile threat as demonstrated in the Figure 6a. The obtained miss distance in this case is «»0 meter, but

the target can be on the verge of danger. Because after the missile arrives the decoy, it still has enough time to re-scan

the real target.

(a) Path trajectories (b) The change in acceleration

Fig. 6 Decoy deployment angle = 180◦

Figure 7 provides information about the instant position of the missile, target and decoy during engagement, also

agent’s response based on the given current observations. The acceleration indicated in the Figure 7b takes a value

between 0.8 and 1.5, and the path planning for the decoy is created based on the this value. The decoy achieves staying

within the field of view of the radar seeker during the simulation time, and this will make the mission a success. A ««0

meter miss distance is obtained when the decoy deployment angle is 195◦. However, as the previous case, the target can
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(a) Path trajectories (b) The change in acceleration

Fig. 7 Decoy deployment angle = 195◦

be on the verge of danger in this case too because of that the missile having sufficient time to maneuver towards to the

real target.

Table 6 Miss distance between Missile and Ship

Decoy deployment angle (degree) 165◦ 180◦ 195◦

Miss distance (meter) 270 «»0 ««0

V. Conclusion
In this paper, a decoy deployment strategy is proposed to enhance the survival probability of the naval platform

under one-decoy/one-missile threat case. A single UAV equipped with a jammer is considered as a decoy. 2D point

mass kinematics equation was employed to model the ship, the missile, and the decoy respectively. Also, the strength of

the back scattered signal from the target and jammer signal is calculated. Furthermore, general concept of the Deep

deterministic policy gradient reinforcement learning algorithm is given and then observation and reward function utilized

during training process are created to provide an optimal path planning to the decoy. To evaluate the performance of the

proposed AI-based approach, a numerical simulation is carried out, and miss distance between the naval platform and

anti-ship missile is utilized as a performance metric. Decoy deployment angle is critical parameter to accomplish the

mission, a limited range is created to randomly assign a value to the angle. It is seen that to extend the range of assigned

deployment angle interval, a huge number of episodes is required and it is necessary to perform long training processes.

This part is also considered as future work. Moreover, future works include developing multi-agent algorithms to create

an optimal path for multiple decoys against multiple missile threats.
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