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One of the most used Position, Navigation and Timing (PNT) technology of the 21st century is 

Global Navigation Satellite Systems (GNSS). GNSS signals are affected by urban canyons that 

limit line-of-sight and reduce satellite availability to receivers. Smart cities are expected to 

adopt autonomous Unmanned Aerial Vehicles (UAV) operations for critical missions such as 

transportation of organs which are time-sensitive. Therefore, higher accuracy for position and 

velocity information is required. This paper investigates the use of Gated Recurrent Units 

(GRU) as a suitable technique that can memorize previous information in conjunction with 

the inputs (consisting of attitude, change in attitude, and change in velocity) to reduce position 

and velocity error when GNSS is not available. The fusion approach is developed and tested 

using Spirent’s SimGEN GSS7000 hardware simulator which simulates GNSS signals and 
Spirent’s SimSENSOR software that simulates accelerometer and gyroscope stochastic and 
deterministic errors. GNSS outage is varied between 1 and 20 seconds randomly to affect 

predicted position and velocity. The data is collected and used to train the GRU to predict the 

position and velocity error measured by the Inertial Measurement Unit (IMU). From the 

performance evaluation, a 60% reduction in Root Mean Squared Error (RMSE) is observed 

compared to Recurrent Neural Networks (RNN). Comparing 95th percentile with Inertial 

Navigation System (INS), RNN, and GRU, an 80% reduction is observed between INS and 

RNN. Furthermore, a 35% drop in the 95th percentile is observed between RNN and GRU. 

 

I. Nomenclature 

ARW = Accelerometer Random Walk 

DCM = Direction Cosine Matrix 

EKF = Extended Kalman Filter 

GNSS = Global Navigation Satellite System 

GPS = Global Positioning System 

GRU = Gated Recurrent Unit 

GRW = Gyroscope Random Walk 

IMU = Inertial Measurement Unit 

INS = Inertial Navigation Unit 

LSTM = Long Short-Term Memory 

RMSE = Root Mean Squared Error 
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RNN = Recurrent Neural Network 

UAV = Unmanned Aeriel Vehicle 

 

II. Introduction 

 

Rapid urbanization has transformed human settlements into increasingly complex urban landscapes. Not only are there 

“urban canyons” that limit Line-Of-Sight and create environments that allow multiple signals from the same satellite 

to arrive at a GNSS receiver, but also present challenges in increased interference from other radio systems [1]. This 

is especially true for autonomous vehicles where full self-control is desired for smarter cities [2]. These cities could 

deploy autonomous air and ground vehicles for various tasks including critical missions such as disasters and 

pandemics. 

 

Sensors, such as GNSS receivers and IMUs, can provide positioning and orientation data (as defined by the roll, pitch, 

and yaw) that can be used by navigation systems. However, these sensors/receivers can provide erroneous data that 

will impact their performance. For GNSS receivers, these problems (besides those mentioned above) are clock errors, 

ionospheric and tropospheric delays, and receiver noise to mention a few [3]. IMUs are typically composed of an 

accelerometer and gyroscope. Both these sensor readings are affected by various errors such as biases (including 

random walk) and scale factor errors [4]. Typically, these errors are split into deterministic and stochastic errors. 

Therefore, it is of benefit to use different sensors together to mitigate/reduce some of these errors.  

 

Traditional methods to combat these issues include using multiple sensors/receivers to provide a better estimate of 

position. A classic Bayesian fusion technique is the Kalman Filter. Kalman filters continuously calculate an estimate 

of the system state based on sensor inputs. Two steps are used in a Kalman filter, prediction, and update. The advantage 

of using Kalman filters is that of low computational cost due to no older timesteps being memorized. However, 

Kalman filters can only represent linear systems with gaussian error distribution. Extended Kalman filters solve this 

problem by using a Taylor series expansion to linearize a model. However, highly non-linear systems will not be 

represented well and this adaptation of the Kalman filter still assumes Gaussian error distribution [4-5,15]. Another 

adaptation of the Kalman filter is the Unscented Kalman filter (UKF). UKFs use approximate known statistical 

distributions by determining the minimum set of points around the mean that will then be able to describe the true 

means and covariance of the statistical distribution [15]. Therefore, there is no need to linearize the model. Though, 

the approximations are not global. They are based on a small set of trial points. Moreover, these systems can only be 

applied well to models that are driven by gaussian noises [16]. Additionally, for prolonged GNSS outages or 

inaccuracies when INS/GNSS signals are used, true and estimated positioning diverge over time as heavy reliance is 

placed on the INS [7]. Depending on the application/mission, this may not be a method that could be relied on. 

Therefore, a fusion method that can mitigate these issues is highly desired. To be able to deliver better positioning and 

velocity information, improvements in accuracy are required over the traditional Kalman filtering methods. 

 

Recent methods to overcome these issues include artificial neural networks (ANN). Some of these proposed methods 

have included multi-layer perception (MLP) and radial basis function neural network (RBFNN) to predict INS errors 

during Global Positioning System (GPS) outages [8-9]. Currently, MLP has real-time implementation problems and 

RBF networks are not able to consider past error dependencies. To improve on the mentioned issues, an alternative 

neural network proposed is input-delayed neural networks (IDNN). Nevertheless, the major issue with IDNN is the 

computational cost and training time that is required [10]. This, therefore, requires a new neural network-based fusion 

architecture that would solve the issues discussed. Recurrent Neural Networks (RNN) is a type of ANN that has the 

advantage of collecting records so that each is dependent on the previouhases [11]. However, RNN have difficulties 

solving problems that require learning long-term dependencies due to the gradient of the loss function decaying 

exponentially over time [12-13]. Candidate techniques include using high dimensional memory points or Gated 

Recurrent Units (GRUs) which solve the issue of the exponentially decaying loss function by using update and reset 

gates. The reset gate is used to determine how much of the past information it has received needs to be forgotten. This 

is done by multiplying the weights with the hidden state ℎ𝑡−1 and input 𝑥𝑡. They are then added together, and a sigmoid 

function is used to squash the results between 0 and 1. The update gate is used to determine how much of the previous 

information is required to be carried forward. This is like the reset gate, but different weights are used when 

multiplying the input and the hidden state [13]. 
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Therefore, the paper proposes a method of predicting errors in cases where there are missing/ inaccurate GNSS updates 

This architecture is then tested on the Spirent SimGEN GSS7000 and SimSENSOR to provide a realistic testing 

scenario. The rest of the paper is organized as follows: first, the state of the art in sensor fusion is discussed and some 

of the existing RNN papers are discussed for reference points in Section III. In Section IV, the proposed fusion 

architecture is presented and explained. Hereafter, the testing methodology used to test the proposed architecture is 

discussed in Section V. Lastly, the results are discussed and explained in Section VI. 

III.Fusion Approaches 

 
Figure 1. Inside a Gated Recurrent Unit 

Recurrent Neural Networks are a class of artificial neural networks that are specifically used for sequences prediction 

problems. Derived from feedforward neural networks by David Rumelhart, they use part of the previous state outputs 

as part of the current input and therefore establishing a relationship between the output and the input [17]. These 

specific neural networks have been used primarily in handwriting and speech recognition. Recurrent Neural Networks 

have been used for sensor fusion in the past. The RNN algorithm is shown in equation 1 and 2[18]: 

 

 ℎ𝑡 = 𝜎ℎ(𝑊ℎℎℎ𝑡−1 + 𝑊𝑥ℎ𝑋𝑡 + 𝑏ℎ) (1) 

 

 𝑦𝑡 = 𝜎𝑦_𝑊𝑦ℎ𝑡 + 𝑏𝑦 (2) 

 

where: 

 ℎ𝑡 is the hidden layer vector, 𝑦𝑡  is the output vector, 𝑋𝑡 is the input vector, 𝑊ℎℎ, 𝑊𝑥ℎ , 𝑊𝑦 are the parameter matrices, 𝑏ℎ, 𝑏𝑦  are the bias terms and 𝜎ℎ, 𝜎𝑦 are the activation functions. RNNs take the information from the previous state ℎ𝑡−1 and multiply it with a weight matrix. The same is done for the new input 𝑋𝑡 and is then combined with the 

previous state to create the new hidden state ℎ𝑡. Because of the way RNN is structured, it allows for information in 

the past to be linked with the information at the current timestep.  

 

The activation functions (Tanh) are used to assess the sum weights of the input and decide which information is 

needed. However, RNNs suffer from vanishing and exploding gradient problems that may only provide a short-term 

memory for the past information being inputted. It also means that some information can be propagated even though 

the information is not useful [13]. Two types that are derived from RNNs (GRU and LSTMs) solve these issues. 
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LSTMs and GRUs use gates to determine whether the input information should be kept or should be removed. In a 

GRU, there are 2 gates that deal with this. An update gate is used to help the neural network determine how much 

information from, the previous time step needs to be passed to the next timestep. GRU architecture is shown in Figure 

1. The formula for this is presented below [13]: 

 

 𝑧𝑡 = 𝜎(𝑊𝑧𝑋𝑡 + 𝑈𝑧ℎ𝑡−1) (3) 

 

The reset gate is used to determine how much of the past information should be forgotten to improve the performance 

of the GRU. The formula is presented below: 

 

 𝑟𝑡 = 𝜎(𝑊𝑟𝑋𝑡 + 𝑈𝑟ℎ𝑡−1) (4) 

 

These gates aid in removing the issues related to exploding and vanishing gradients. However, due to the additional 

gates, this adds computational complexity to the neural network which may slow down the training process. LSTMs 

on the other hand use 3 gates to solve these issues. These are the input gate, output gate and a forget gate. Because 

LSTMs use 3 gates, they are more computationally expensive than GRUs but can provide more accurate information 

for training the model [19]. 

 

One example of RNN being used is the work done by Dai et. Al. on an INS/GNSS integration using RNN. The paper 

explains how information from its GNSS and INS sensor are used to train RNN in detecting positioning and velocity 

errors. The author compares their proposed architecture against EKFs and extreme learning machine (EML). The 

results show up to 60% performance improvement when compared to the RMSE output of the EKF [20]. However, 

RNN suffers from gradient loss function which provides only a short-term memory solution as mentioned previously.  

 

Another paper focuses on using an LSTM (Long Short-Term Memory) based architecture to predict horizontal position 

using GNSS and IMU. The author tests this algorithm on experimental data collected by driving a car in an open field. 

The solution demonstrates a 40% improvement compared to GNSS-only navigation without any external bias 

information [21]. However, there are some important issues to highlight with this paper. First, the test is only carried 

out on the horizontal plane. Whilst this may be sufficient for ground-based vehicles, UAVs also rely on the vertical 

axis information. Furthermore, the test was carried out in an open field. Therefore, the architecture proposed is not 

tested in urban environments where other errors such as multi-path or blockages occur. Lastly, LSTMs are more 

computationally expensive compared to RNNs or GRU as mentioned previously. Therefore, this may not be suitable 

for a small UAV 

IV. Proposed Solution  

 

IMU sensors measure the UAVs specific forces and angular velocities along the body frame. These values are 

integrated in the system to provide the position and velocity data to the navigation system. However, integrating these 

values will lead to a divergence between ground truth and INS position and velocity output due to the biases included 

in the measurements. To understand how the errors may propagate through the calculation, it is important to derive 

the position and velocity equations. The velocity of the vehicle is given by [20,22]: 

 

 𝒗𝑒𝑏𝑛 (𝑘) ≈ 𝒗𝑒𝑏𝑛 (𝑘 − 1) + (𝑪𝑏𝑛𝒇𝑖𝑏𝑏 + 𝒈𝑛 − 2𝛀𝑖𝑛𝑛 𝒗𝑒𝑏𝑛 (𝑘 − 1)) 𝜏 (5) 

 

Where 𝒗𝑒𝑏𝑛  is the UAVs velocity with respect to the earth in the local navigation frame, 𝑪𝑏𝑛 is the direction cosine 

matrix from the body frame to the local navigation frame, 𝒇𝑖𝑏𝑏  is the specific force in the body frame, 𝒈𝑛 is the 

gravitational vector in the local navigation frame and 𝛀𝑖𝑛𝑛  is the skew-symmetric matrix of the earth’s angular velocity. 
To obtain the position of the UAV, the equation above needs to be integrated once more. The position of the vehicle 

is given by: 

 

 𝒑𝑒𝑏𝑛 (𝑘) = 𝒑𝑒𝑏𝑛 (𝑘 − 1) +  (𝒗𝑒𝑏𝑛 (𝑘 − 1) + 𝒗𝑒𝑏𝑛 (𝑘)) 𝜏2 (6) 

 

To understand the influence of the measurement noises experienced, the actual velocity and position are given by the 

sum of the true measurement and the biases. The current position and velocity error are related to the vehicle dynamics, 
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previous INS error, and the environment. The relationship between these factors and the current position and velocity 

error is highly non-linear thus current techniques may not be enough to provide the accuracy required by UAVs when 

operating in an urban environment and experiencing GNSS outages. Therefore, a system is required that can find the 

non-linear relationship. 

 

 
Figure 2. Fusion architecture for training and testing  

   

The proposed system architecture is shown in Figure 2. Consisting of two modes, the first mode is used for the training 

of the system. Data generated by the INS sensor and GNSS receiver are used to gather positioning and velocity data. 

Furthermore, the vehicle’s specific force and angular velocity measured by the accelerometer and gyroscope are used 
to calculate the input for the GRU. Therefore, the input to the GRU is the vehicle change in velocity and the vehicle 

change in attitude. The output of the system is the position and velocity error generated by the INS during normal 

operations. To measure the progress of the training, estimated residuals for positioning and velocity are compared to 

the GNSS standard deviation from each information source. Once enough confidence is provided by the GRU, the 

system is ready to move to its second mode. 

 

The second mode is the prediction phase of the neural network. The prediction mode is used when GNSS information 

is not available. The trained GRU is used to predict the positioning and velocity error for the given INS information 

input. The predicted errors are then subtracted from the INS velocity and position readings to provide the system 

prediction. This will be carried out until GNSS information is available again.  

V. Simulation Setup 

To evaluate the proposed architecture, training of the architecture must be carried out. To obtain GNSS and IMU data, 

Spirent GSS7000 simulator is used with SimSENSOR to provide realistic training scenarios. The route is created to 

represent different maneuvers typically done by a drone. This is shown in Figure 5. Ground truth, GPS L1, gyroscope, 

and accelerometer data are collected and processed to obtain the velocity and position data. The GNSS signal is 

interrupted for a random duration between 1 and 20 seconds to simulate typical GNSS outages. This is then used to 

calculate the input and output data for the GRU. The input is obtained by taking the readings from the accelerometer 

and gyroscope and calculating the attitude and velocity. Periodically, GNSS updates are received to correct the IMU 

error when available to emulate outages. The input also includes information on how long ago the last GNSS update 

was received by the system. The output from the GRU is the Position and Velocity Error predicted. This is shown 

visually in Figure 3. The predicted errors are then subtracted from the INS readings to obtain the estimated true 

Position and Velocity data. This is then compared to the ground truth to evaluate the architecture performance. 

 

GNSS 

INS 

GNSS Pre - 
Processing 

INS Pre - 
Processing IMU 

GRU 

- 

+ 

Position and  
Velocity  
Estimate 

+ 

- 
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Figure 3. Data model from recording to input/output for neural network architecture [23-25] 

 

The machine learning algorithm is optimized using random search to find the optimal hidden units, number of GRU 

layers, and best-performing activation function. Random Search only uses a small percentage of the total data to 

determine the best parameters. Priority is placed on both reducing the computational cost and improving the prediction 

accuracy. The final layers used are shown in Figure 4. It consists of one hidden layer with 275 units and a dropout of 

20%. The GRU is then trained from the dataset provided until the training has been run sufficiently.  

 
Figure 4. Machine learning layers configuration 
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VI.   Results 

A. Data collection 

Data collection is carried out using Spirent’s SimGEN and SimSENSOR software. In SimGEN, a route is selected 

that will test the fusion approach’s ability by including typical UAV maneuvers such as large straight sections and 
turning points. The data collected represents the raw GNSS readings consisting of satellite position, velocity, azimuth, 

elevation, pseudo ranges and rates, delays due to the transition of signal from satellite and receiver, and doppler shift. 

For the IMU, this consists of accelerometer and gyro readings (angular velocity in all axes). The duration of the data 

recorded is 8200 seconds. 

 

Figure 5. Drone testing trajectory with velocity information 

The route trajectory is generated using SimROUTE [23] which is then loaded into SimGEN. The route is shown in 

Figure 5. Thlimitsed limit pre-defined so that the simulator does not exceed realisticwhilstds wilst the acceleration for 

each section and curve is random with non-linear acceleration/deceleration ranging between 0 to 2 𝑚/𝑠2 . Once the 

maximum speed is reached, the UAV will hold this speed until it reaches close to a curve, where the UAV then starts 

to decelerate to the defined turning speed. No environmental elements (such as wind or rain) are modelled in the 

simulator to isolate position and velocity estimation errors for analysis. To generate realistic IMU readings, 

SimSENSOR is used to simulate IMU readings. The IMU is modeled from a BMI055 IMU [25] developed by Bosch 

which is used in the popular Pixhawk 4. No additional noises, other than the receiver/sensor specification are applied 

to SimSENSOR. To provide a realistic reading, sensor deterministic and stochastic errors from a real sensor are used. 

For GNSS, the NEO-M8 by ublox is used as a model receiver [24] with the simulated errors shown in Figure 6. The 

key sensor specifications for the gyroscope and the accelerometer are shown in Table 1. In Table 2, the GNSS receiver 

specification is presented. The dataset is split into 80% training and 20% testing data sequentially to evaluate GRU 

performance. Mean squared error (MSE) is used as a benchmark to determine the proposed architecture performance 

whilst training. Once the training is complete, testing data is used to evaluate the performance of the system. The 

testing results are used to compare with existing methods like Extended Kalman Filters and Recurrent Neural 

Networks to understand its performance improvements over the traditional methods.  
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Figure 6. Comparison of drone trajectory with GNSS output from simulator a) whole map b) zoomed in 

Table 1. INS sensor specification 

 

GNSS receiver specification 

Pseudo range accuracy (m) 3 

Pseudo range rate accuracy (m/s) 0.5 

Update rate (Hz) 10 

Table 2. GNSS receiver specification 

B. Performance Evaluation  

In Figure 7, the true position error is compared to the predicted position error in the North (N), East (E), and Down 

(D) directions. Unlike ground-based vehicles, UAVs depend on obtaining information in all axes to maintain safe 

flying conditions. It can be shown that INS errors that accumulate due to integration cause the errors to increase 

rapidly. Whenever GNSS signal is provided again (randomly between 1 to 20 seconds) a sharp correction is observed. 

This trend continues throughout the journey of the drone in all axes. Comparing the true error to the predicted error, 

visually it can be seen that most of the errors generated by the INS are predicted by the architecture. There are some 

instances where this is not the case. These correlate with turning maneuvers that can be seen in Figure 8. 

 

In Figure 8, the ground truth is compared to the INS data and the predicted ground truth. The predicted truth is 

calculated by taking the INS measurement and subtracting the predicted INS error. The majority of the errors generated 

by the IMU sensor that led to the predicted path deviating from its actual trajectory due to its deterministic and 

stochastic errors are mitigated by the GRU architecture. This is especially true for the straight segments of the 

trajectory. In more challenging circumstances like right or left turns this is also true. However, there are still some 

rotations that the GRU struggles with predicting the measured errors. This may indicate that more training data is 

required to improve the performance of the GRU. This can be solved by training the GRU on multiple routes for a 

prolonged time. Furthermore, in certain circumstances, the architecture overcompensates for the INS reading errors 

for the position. However, these overcorrections are very minor compared to the errors from the INS data. 

 

 INS sensor specification 

Accelerometer Gyroscope 

Scaling factor (ppm) 500 Scaling factor (ppm) 500 

Bias (mg) 0.1 Bias (deg/h) 0.001 

Accelerometer Random Wallk 

(ARW) (m/s/sqrt(h)) 
0.003 

Gyroscope Random Wallk GRW 

(deg/sqrt(h)) 
0.003 

Update rate (Hz) 100 
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In Table 3, a comparison between the Root Mean Square Error performance (RMSE) of the GRU, RNN, and EKF is 

made. The total position RMSE (the summation of RMSE in the North, East, and Down direction) shows a reduction 

of nearly 80% for RNN compared to EKF. This is to be expected as the linearization step in EKFs provides estimation 

errors. Furthermore, assuming Gaussian error distribution may also provide problematic for non-linear problems. RNN 

also has some short-term memory ability which allows it to use past information to correct the position error. 

Additionally, looking at the difference between RNN and GRU, we see a further drop in the total position RMSE by 

60%. This could be attributed to the GRUs ability to determine whether it keeps or removes the prior information 

based on their impact on the overall system thus solving the issues related to the gradient loss function observed on 

RNNs, therefore, allowing GRU to keep more of the useful information on the system. 

 

Figure 7. True position error vs predicted error for a) North b) East c) Down  

Figure 8. Position performance comparison between Ground Truth, INS data, and Predicted Truth from 

GRU a) straight segment b) turning point 

 GRU errors RNN errors EKF errors 

Position 

RMSE, (m) 

Velocity 

RMSE, (m) 

Position 

RMSE, (m) 

Velocity 

RMSE, (m) 

Position 

RMSE, (m) 

Velocity 

RMSE, (m) 

North 0.91 0.05 1.95 0.07 6.4 0.45 

East 0.23 0.04 0.53 0.04 5.5 0.2 

Down 0.14 0.02 0.51 0.05 2.2 0.46 

Total 1.27 1.1 2.99 0.15 14.1 1.22 

Table 3. RMSE comparison of different fusion architectures 

In Figure 9, a comparison of positioning performance is shown between RNN and GRU during a turning point. The 

proposed architecture reduces the INS errors during GNSS outages whilst RNN struggles with highly non-linear 

issues. This may be due to the inherent problems RNN has with keeping information for a longer period as compared 

to GRUs which solve these issues by using update and reset gates to determine which information to keep or discard 
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therefore reducing long-term errors. However, RNN is faster to train as it does not use gates. Nonetheless, for UAVs 

higher accuracy is preferred. 

 
Figure 9. Position performance comparison between RNN and GRU a) straight segment b) turning point   

Figure 10 compares the Mean, Standard deviation, and 95th percentile between INS, RNN, and GRU in the horizontal 

direction. Consistently, GRU outperforms both RNN and GRU in all categories in both the North and East Direction. 

As expected, RNN and GRU perform significantly better than INS as they can utilize past information. The difference 

between RNN and GRU is more significant in the North direction as compared to the East direction.  

 
Figure 10. Mean, Standard Deviation and 95th percentile error comparison between INS, RNN, and GRU in 

a) North direction b) East direction 

Looking at Figure 11, an error distribution is presented showing the magnitude of position error of the INS compared 

with the error distribution when using the proposed method. Comparing the graph, the proposed method reduces the 

position estimation error caused by the stochastic and deterministic errors exhibited by the accelerometer and 

gyroscope. After using the GRU, Figure 10 shows that the absolute error at the 95th percentile is less than 0.4 meters 

This is compared to before using the proposed architecture where the error is about 4 meters at the 95th percentile. 

Therefore, for GNSS outages lasting 20 seconds, it is reasonable to assume that the position error in INS-only mode 

using the proposed method will, for most of the time, be less than 0.4 meters. 
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Figure 11. Error distribution comparing INS and GRU performance 

VII.Conclusion 

The paper aimed to propose a method that aids in situations where GNSS is denied or unreliable for UAVs. Traditional 

methods use an IMU/GNSS integration method to improve location accuracy. However, these do not aid in situations 

when GNSS information is unavailable. Existing techniques such as EKFs are not suitable for highly non-linear 

problems. RNNs have been proposed due to their ability to use past information to determine future output. However, 

RNNs suffer from gradient loss functions which only allow the system to retain short-term memory. Therefore, it was 

proposed to use a GRU architecture that solves the issues with RNNs. Analysis of the results shows visually that the 

proposed method reduces path deviation when GNSS is not available. Furthermore, a comparison of EKF, RNN, and 

GRU shows a 60% performance improvement for predicting position errors generated by the IMU. Comparing the 

mean, standard deviation and 95th percentile between INS and the proposed architecture shows an average of 88% 

improvement in reducing the range of predicted position errors. The method proposed in this paper shows that using 

GRUs to establish a relationship between the vehicle dynamics and the predicted errors leads to better position and 

velocity predicting when comparing this to traditional methods when GNSS is not available. However, GRUs are 

computationally more expensive than EKF and RNN. Future work will be focused on implementing other sensors to 

the architecture and testing the system in a real-life case. 
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