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Adaptive control has the potential to improve the performance and reliability of aircraft. 

However, the inherent nonlinearity of adaptive control causes difficulty in stability and 

robustness verification which is critical before entry into service. In this paper, the region of 

attraction (ROA) estimation using sum of squares (SOS) technique is explored for adaptive 

control systems. The problem of wing rock suppression by a model reference adaptive control 

(MRAC) serves as a benchmark example to demonstrate the effectiveness of the method. 

Considering the potential disturbance presented in measurement signals, the operative range 

of aircraft must be included in the ROA of the control system. Therefore, the ROA is evaluated 

using SOS polynomial optimization under various combinations of design parameters in the 

adaptive law, including adaptation rate and sigma modification values. This gives insight into 

the interactions of design parameters on the adaptive control performance.  

I. Introduction 

The potential of adaptive control in improving the performance and reliability of control systems attracts researchers 
and engineers from different disciplines. However, the verification and validation of the flight control system 
regarding modeling error, uncertainty, disturbance, and time delay is not an easy task due to the inherent nonlinearity 
of the problem as well as the lack of rigorous analysis tools for nonlinear systems[1–6]. The fact is that safety-critical 
flight systems require extensive validation before entry into service. Thus, the flight control community will benefit a 
lot from the development of the nonlinear analysis[6].  

A significant metric for a flight control system is stability. Unlike the global stability of a linear system, it is usually 
high-demanding or, most of the time, impossible, to guarantee stability across the whole state space for a nonlinear 
system. In many practical applications, global stability is also unnecessary. The actual dynamical system usually 
operates in a specific range of the state space due to the restrictions from the physical properties of the system. 
Therefore, for the engineers, it will be enough to ensure that the system works normally inside the operative range. 
Then, system states will not escape from the allowable range and always go back to the desired steady-state that is 
designed as the equilibrium of the dynamical system. The region of attraction (ROA) for the specific equilibrium 
happens to mark the set of initial conditions from which a trajectory will always travel back to the corresponding 
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equilibrium. Thus, the designer will have to work out how to ensure the operative range is included in the ROA[7,8]. 
This then gives rise to the problem of determining the ROA of a nonlinear system.  

However, it is hard to determine the exact ROA if not impossible[7–10]. Various kinds of methods dedicated to 
estimating ROA, which are roughly divided into analytical and computational methods[11,12]; or into Lyapunov-
based methods and non-Lyapunov-based methods[13] regarding the theory behind the methods. The analytical 
methods can only apply to a limited kind of relatively simple nonlinear systems. As regards the computational ones, 
the Monte Carlo simulation is usually used as a supplement to the analysis. The numerical simulation takes plenty of 
time especially for a complex and high-dimensional system, but still the results cannot be taken deterministic. The 
indeterminism is rooted in the sampling initial conditions. It cannot be guaranteed that the simulation distinguishes all 
the divergent trajectories in the final set. Another kind of computational method, instead of doing exhausted numerical 
integrations, solves the problem formulated by matrix inequalities, such as the Lyapunov-based estimation[8,14,15]. 
The obtained results can be deterministic since it is derived analytically but solved computationally.   

Many nonlinear systems, including the adaptive system considered in this paper, are governed by polynomial 
dynamics. The Sum of squares (SOS) technique has the ability to solve polynomial inequalities. SOS polynomial 
optimization has been used previously to analyze the performance and robustness of systems described by polynomial 
dynamics. Computational algorithms have been developed not only for estimating ROA but also reachability sets, 
input-output gains, robustness with respect to uncertainty, and time-delay margin[10,16]. Applying the SOS technique 
for ROA estimation, this paper aims to show the ability of the techniques to analyze the stability and robustness 
verification for a nonlinear adaptive control system.  

Wing rock is a well-known lateral-directional instability that occurs in aircraft of varying configurations and aspect 
ratios at a moderate to high angle of attack. The accurate modeling and control have been explored by many 
authors[17,18]. Therefore it serves as a classical benchmark example for the demonstration of various control 
methodologies[19]. In this paper, wing rock augmented with a classical model reference adaptive control (MRAC) is 
taken as a demonstration of the ability of the SOS technique in the nonlinear analysis of adaptive control.  

The SOS techniques show great promise for ROA estimation[20] and are then modified and improved in order to 
gain a better approximation[12,15,21–23]. It has been applied successfully to a four-state aircraft control system for 
the investigation of the falling-leaf mode[24], and an eight-state aircraft model for the investigation of the spin 
mode[25]. A simple procedure is used in [26] for estimating the ROA of an adaptive control system. Although the 
SOS results are conservative, they provide rigorous proof of the stability characteristics of nonlinear systems. In its 
current form, the solver for the SOS optimization problem is sensitive to the dynamics of the system, such as the 
dimension of the system and the highest order of the polynomials. But it stands great promising in the nonlinear 
analysis if pursued further[6]. 

The paper is organized as follows. Firstly, the wing rock dynamics and the classical adaptive controller is described 
in Sec. III. In Sec. IV, the algorithms for ROA estimation using SOS polynomial optimization are presented. Sec. V 
summarizes the results of ROA analysis for an adaptive control system with respect to adaptation gain and sigma 
modification parameter. Finally, the paper concludes in Sec. VI. 

II. Wing Rock Dynamics and Adaptive Control 

A. Wing Rock Model 

The model of wing rock, taken from [17], considering a flat, thin wing constrained such that it is free only to roll 
about its x-axis, is described as 

 2
0( / 2 )

xx l
U Sb I C d u      (1) 

where   is the roll angle and the overdot denotes time derivative. 0d  is the control effectiveness element and the 

input signal u  acts as part of the angular acceleration. The roll-moment coefficient is written as 

 3 2 2
1 2 3 4 5l

C a a a a a            (2) 

The aerodynamic parameters i
a  are nonlinear functions of the angle of attack which have been presented in [17]  

Defining 1 2( , ) ( , )T T
x x x    , the wing rock system can be cast as 

 
1 2

2 0( )

x x

x f x d u


  

  (3) 

where 2
x , the Euclidean space of dimension of two, 

 ( ) ( )T
f x b h x   
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and 

 
2

1 2 3 4 5

3 2 2
1 2 1 1 2 1 2

[ , , , , ] , ( / 2 ) 1,...,5

( ) [ , , , , ]

T

i xx i

T

b b b b b b b U Sb I a i

h x x x x x x x x

   


  

B. Model Reference Adaptive Control 

A model reference adaptive controller is applied to suppress the wing rock motion. The reference model carrying 
the desired response is given by  

 m m m
x A x   (4) 

where 1 2[ , ]T

m m m
x x x , 0  , 0

n
   and 

 2[0, 1; , 2 ]
m n n

A       (5) 

The reference signal is chosen as ( ) 0
m

x t   in this study. The desired damping   and natural frequency n
  are 

0.707 and 0.5, respectively.  

The wing rock control problem is formed under the assumption on the function ( )f x : suppose that in Eq. (3) the 

parameters , 1,...,5
i

b i   and 0d  are unknown, but the sign of 0d  is known.  

Defining the tracking error by 

 0[( ) ( ) ]T

m m m
e A e d b b h x d u      (6) 

where [0, 1]T

m
d   and 2[ , 2 ,0,0,0]T

m n n
b   . Then the control law is chosen as  

 ( )T
u h x    (7) 

where 1 2 3 4 5[ , , , , ]T       is a vector of adaptation parameters to enable the control input to cancel the system 

uncertainty. Then the adaptation law governing the behavior of parameter vector   is defined as 

 0sgn( ) ( ) ( )T

m R
d e Pd h x       (8) 

where [0, 1]T

m
d  ; the tracking error e  represents the difference between the state x  and the reference signal m

x . 

The adaptation gain diag( ), 1,...,5
i

i    with 0
i

   and sigma modification gain R
  are two important 

parameters to tune. The adaptation gain determines how quickly   evolves, and the sigma modification gain helps to 
prevent the parameter drift by ensuring   bounded, which adds robustness to the system. P  is the positive definite 
solution of the Lyapunov equation 

 , 0T
A P PA Q Q      (9) 

where m
A A . The stability analysis is given in [27,28]. 

C. Disturbed Adaptive Control 
Before entry into service, the implementation of controllers must be verified and validated under certain 

circumstances including modeling error, time delay, uncertainty, and disturbance. In terms of disturbance, a common 
scenario where the signal measurement process inevitably interferes is considered. The disturbance is then introduced 

during the measurement of roll angle   and angular acceleration  . Here, it is denoted as d
d  and takes a quadratic 

form 

 2
2d

d x   (10) 

where the constant   indicates the level of the disturbance. 

The disturbed measurement signals are written as  

 1 2 1 2[ , ] [ , ]T T

d d d d d
x x x x d x d      (11) 

which is used to construct control input signal  

 ( )T

d d d
u h x    (12) 

where d
u  is the actual signal sent to the executing agency, and d

h  is the relevant five-vector function. In this case, 

the actual adaptation law applied to the wing rock system becomes 

 0sgn( ) ( ) ( )T

m d d R
d e Pd h x         (13) 

and the error dynamics 

 0{ ( ) ( )[ ( ) ( )]}
m m d d m d d

e A e d d h x b b h x h x       (14) 
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It shows that the control input cannot cancel the part of the uncertainty so that the system cannot guarantee 
asymptotical stability. It indicates that the disturbance affects the original stability of the system. Thus, the information 
of the region of attraction for the origin is necessary to evaluate whether the operative range is still included in the 
stable range, which helps to provide confidence for the implementation of the controller. 

The aerodynamic parameters for an angle of attack of 25 deg [27] are used in this paper for the demonstration of 

the occurrence and suppression of wing rock. The dimensionless time (4 / )t U b t


  as in [27] is also introduced. 

Parameters in Eq. (3) are listed below with t
  as an independent variable rather than t   
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In Fig. 1, the wing rock phenomenon occurs at a smaller initial condition which shows as a limit cycle on the    

plane. But the aircraft loses stability at larger conditions. For the convenience of explanation, the disturbance level   

is specified to take the value of 0.1. Simulation of the response is similar to that of the undisturbed control system for 
the two smaller initial conditions as shown in Fig. 2, where the wing rock phenomena are successfully suppressed. 
This corresponds to the equilibrium analysis of the closed-loop system (13) and (14), which indicates that the origin 
is locally asymptotically stable with eigenvalues -0.3535 + 0.3536i. However, random trajectory simulation shows 
that the roll angle and angular acceleration go into infinity under some initial conditions, for example, the largest 
initial condition in Fig. 2. Therefore, the ROA needs to be evaluated. 

 

Fig. 1 Phase portrait for the open-loop wing rock system 
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 a) b) 

Fig. 2 Phase portrait for adaptive wing rock system  

with (red) and without disturbance (blue) measurement error 

III. Region of Attraction Estimation 

A. Lyapunov Theory 
Consider an autonomous nonlinear polynomial system of the form  

 0( ), (0)x F x x x    (15) 

with : n n
F   and n

x . Without loss of generality, we assume that the origin is an asymptotically stable 

equilibrium point such that (0) 0f  . The ROA, a set of initial conditions whose trajectories will always converge 

back to the origin, can be defined as  

  0 0: : If (0) then lim ( ) 0n

t
x x x x t


      (16) 

Based on the proved lemma which follows the direct Lyapunov theory that specifies a sublevel set of a Lyapunov 
function as an estimation of the ROA for an asymptotically stable equilibrium point, the compact set   is estimated. 

Lemma 1 If there exist a continuously differentiable scalar function ( ) : n
V x   and a positive scalar   , 

such that 

 ( ) 0 0V x x    and (0) 0V   (17) 

  : : ( )x V x    is bounded (18) 

 { : ( / ) 0} {0}x V x F        (19) 

then the origin is asymptotically stable and   is a subset of the ROA. ( )V x  is the so-called local Lyapunov function. 

B. Sum of Squares (SOS) Techniques 
Making use of the SOS polynomial, the hard problem of a multivariable polynomial being non-negative can be 

relaxed to being the sum of squares. Then the inequalities as well as set containment conditions in Eqs. (17)-(19) 
become tractable in the form of an SOS problem. Several toolboxes, such as SOSTOOLs, SOSOPTs, and solvers, 
such as SeDuMi[9], have been distributed and are freely available for solving such problems. For example, verifying 

a polynomial ( ) ( )s x xR  ( ( )xR  represents the set of polynomials in n
x  with real coefficients) being an SOS 

polynomial is equivalent to checking the existence of a positive semidefinite matrix Q , such that  

 ( ) ( ) ( )T

n
s x Z x QZ x     (20) 

where ( )Z x  is the properly chosen vector of monomials and n
  denotes the set of SOS polynomial in n

x . This 

is the basic problem in SOS programming.  
Besides, the well-known generalized S-procedure[14] is employed to provide sufficient conditions for the set 

containment condition.  
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Lemma 2 (Generalized S-procedure). Given polynomials 0 ( ),..., ( ) [ ]
m

g x g x x R  and polynomials 

1( ),..., ( )
m n

s x s x  , if 

 0
1

( ) ( ) ( ) 0
m

i i

i

g x s x g x


    (21) 

then  

    1 0| ( ),..., ( ) 0 | ( ) 0
m

x g x g x x g x     (22) 

Then we can approximate the set (16) by 

 1,

1 1

max

Subject to : [( / ) ] ( )

n nV s

n
V x F l V s

 


 
 

      
  (23) 

where 1l  is a small positive polynomial (typically T
x x  with some small real number  ) which is used to guarantee 

the derivative of V  to be strictly negative. 1( )s x  is an SOS multiplier with a proper degree. According to [29], the 

degree can be chosen by  

 
1 1

1 1

max ( ) max (( / ) )

min ( ) min (( / ) )

D V s D V x F l

D s D V x F l

    
   

  (24) 

where 1( )D s represents the degree of the polynomial 1s . A proper choice of 1s  is important to capture the feasible 

result of the problem described by Eq. (23) without introducing unnecessary computation burden. Because a higher 

degree of 1s  will introduce more decision variables. 

Moreover, the problem (23) is bilinear because the decision variables in V  and 1s  are coupled, and also the 

variable to be optimized   is not affine. However, due to the fact that the linear solver has more advantages than the 

nonlinear ones such as PENMBI in YALMIP[30], (23) has to be modified to accommodate to linear solver used in 
this paper. It is decoupled by choosing a feasible Lyapunov function V  in advance and keeping it fixed; the optimized 
  is searched by bisection procedure.  

A Lyapunov function can be constructed using its physical meaning for a specific problem. While a systematic 
way is employed here to generate an initial choice  

 T
V x Px   (25) 

where P  is the solution of Lyapunov equation (9) with 
0

( / )
x

A F x


    that is assumed to be Hurwitz. In [15], it is 

explained why Q I  is chosen but it is still a conservative choice since only the largest ball is provided. Other positive 

definite Q  can also be customized to adapt to a specific shaped ROA when prior knowledge is available.  

The optimized   provides a lower bound for the ROA estimation. Then exhaustive Monte Carlo search is carried 

out using 0 ( 1,...,5)
i

i    to give an insight into the ROA on the 1 2x x  plane. 

IV. Results 

The parameter update law in the MRAC is tuned by adjusting the adaptation rate   and sigma modification R
 . 

As mentioned before, the sigma modification is employed to ensure   remains bounded. Generally, the system 
displays increased performance in tighter tracking and faster rise time as the adaptation rate increases. However, it has 
been shown that increasing   will otherwise bring a decrease in system robustness[1]. Therefore, it is necessary to 
gain more insights into the impact of these parameters on system performance. Especially with the introduced 
disturbance, how does the choice of these parameters influence the ROA of the control system? Should these 
parameters be redesigned to ensure the aircraft system operates normally under such a scenario? In the following parts, 
the problem is explored through ROA estimation of the disturbed adaptive system.  

To initialize the bisection procedure for estimation, a first Lyapunov function is computed as  

 1
0

T T
V x Px       (26) 

The lower bound for   is set zero and an upper bound can be determined by trial and error. A level set is obtained 

when tolerance 1 1( ) / 1e 3
i i i
       is reached. 

A. Adaptation Rate 
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The effect of varying adaptation rates is explored by analyzing the ROA with respect to the origin of the disturbed 
adaptive system. In this case, the sigma modification value is held constant as 1 to isolate the effect of changing 
adaptation rate. The ROA variation trends are shown in Fig. 3.  

 

Fig. 3 ROA variation with adaptation rate 

The results obtained by the SOS method give a lower bound of the actual ROA of the system. As shown in Fig. 3, 

the valid region on the    plane hardly changes with the variation of adaptation rate  , but the bounds for i
  

grow as the adaptation rate increases. This result is intuitive as an increasing   leads to a fast adaptation of the 

unknown parameters i
  and brings them to a steady value quickly thus increasing the robustness of the system, which 

shows a larger ROA. It suggests that a larger adaptation rate can stabilize the system on a wider range of initial 
conditions.  

B. Sigma Modification 
The effect of varying sigma modification values on the MRAC closed-loop system under certain measurement 

errors is explored by analyzing the region of attraction around the origin.  

 

Fig. 4 ROA variation with sigma modification value 

With the adaptation rate fixed at I  , the ROA estimation with respect to various sigma modification values is 
shown in Fig. 4. The ROA expands slightly as R

  increases. The sigma modification is used to prevent parameter 
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drift by bounding the evaluation of estimation parameters. Trajectory simulation shows that the larger the sigma 
modification value, the faster the convergence and the smaller the overshoot. This can bound the trajectories in a 
reasonable small range of variation thus is beneficial for the whole system, and correspondingly, can stabilize a larger 
range of initial conditions. The illustrative results by the SOS method in Fig. 4 reveal this characteristic.  

V. Conclusion 

The region of attraction(ROA) estimation using sum of squares(SOS) optimization technique is used for nonlinear 
analysis for the adaptive control system. The ROA is computed with respect to varying control design parameters, the 
adaptation rate and sigma modification values, and then their effects on ROA estimation are evaluated. Though 
conservative, the results are illustrative in revealing the nonlinear characteristics of the adaptive control system and in 
giving insights into the controller design. The SOS method provides guarantees on the certification process of control 
systems.  
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