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Abstract — As the primary navigation source, GNSS 

performance monitoring and prediction have critical 

importance for the success of mission-critical urban air 

mobility and cargo applications. In this paper, a novel machine 

learning based performance prediction algorithm is suggested 

considering environment recognition. Valid environmental 

parameters that support recognition and prediction stages are 

introduced, and K-Nearest Neighbour, Support Vector 

Regression and Random Forest algorithms are tested based on 

their prediction performance with using these environmental 

parameters. Performance prediction results and parameter 

importances are analyzed based on three types of urban 

environments (suburban, urban and urban-canyon) with the 

synthetic data generated by a high quality GNSS simulator.   

Keywords — GNSS, machine learning, performance 

prediction, environment recognition, environment classification, 

integrity, urban air mobility. 

I. INTRODUCTION 

Global Navigation Satellite System (GNSS) is the 
primary navigation source when available, thanks to its high 
accuracy, global coverage and low cost. However, its 
navigation performance can considerably vary based on the 
particular operational environment due to GNSS is 
vulnerable to Line-of-Sight (LoS) blockage, bad satellite 
geometry and multipath reflections [1]. 

With the growing usage of Unmanned Aerial Systems 
(UASs) for mission-critical applications, reliable UAS 
positioning and timing in  GNSS  challenging or denied 
environments becomes increasingly important. Performance 
requirements to guarantee reliability has already been 
defined for aircraft by aviation authorities with Performance 
Based Navigation (PBN) concept [2], but the requirements 
and regulations for UASs are still under investigation and 
mission dependent. As a most recent example, operational 
requirements of UASs [3] were published by Civil Aviation 
Authority (CAA) for supporting medical Urban Air Mobility 
and Cargo (UAM/C) missions during the COVID-19 
pandemic. 

Especially in urban areas, meeting safety requirements is 
very challenging. In UAM/C use cases, UASs are envisioned 
to operate in a mixture of urban and suburban environments, 
where positioning, navigation and timing (PNT) accuracy, 
availability and continuity from GNSS could vary 
significantly. Thus, it is anticipated that either certain flight 
zones would need to be avoided, considering GNSS 
performance, or different means of navigation aiding would 
need to be active in such zones to ensure desired navigation 
performance. 

In the literature, integrity monitoring has been researched 
without considering environment types or urbanization levels 

[4][5]. These works aim to specify general integrity criteria 
with respect to satellite geometry, satellite visibility, signal 
strength etc., in order to ensure reliable GNSS performance. 
Considering GNSS performance differentiates based on 
environment, some other studies examine how integrity 
parameters such as Dilution of Precision (DOP), number of 
visible satellites, cut-off elevation, Signal-to-Noise Ratio 
(SNR) change in different environments [6][7][8]. Results 
show that while the impact of LoS obscuration on GNSS 
accuracy and integrity can be specified with DOP, number of 
visible satellites and cut-off elevation, SNR is useful to 
detect multipath effects.  

Based on the assumption that these parameters change 
according to the environmental conditions and represents the 
effect of different error sources, the idea of environment 
recognition has emerged. An environment recognition 
algorithm is suggested in [9] to distinguish the five most 
common urban environment types based on GNSS blockage 
and signal strength. Another algorithm for determining LoS 
blockage characteristics around a railway is presented in [10] 
with clustering GNSS elevation and azimuth. And in [11], 
GNSS SNR data is classified for different environment types 
based on elevation angles. 

This study aims to investigate and develop a novel 
machine learning based GNSS performance prediction 
method using environment recognition for UAM vehicles 
operating in urban environments. The GNSS performance 
prediction is a key enabling technology for the design of 
flight trajectories and the development of geo-fenced or 
segregated airspaces considering predicted operational PNT 
accuracy and integrity. 

The remainder of the paper is organized as follows: in 
Section II, selected urban environment specifications are 
introduced, and methods for environment recognition are 
discussed. Section III presents the methodology of the 
performance prediction algorithm and simulation setup.  
Results are given and discussed in Section IV. And finally, 
Section V summarize the results, and a brief conclusion is 
given.   

II. ENVIRONMENTAL AWARENESS 

GNSS performance can be predicted by monitoring 
GNSS data collected by the receiver. Additionally, some 
environmental parameters can enhance the prediction 
performance if applicable. However, the error model of a 
GNSS receiver is not the same in different environments. 
Thus, environment awareness is crucial in order to produce 
better error models. For this purpose, in this section, the 
environment types that cause differentiation in error models 
will be defined first. Then environment recognition approach 
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and the parameters that can be used for GNSS performance 
prediction will be specified. 

A. Environment Types 

Different environment types can be defined based on the 
density of an urban area. The most common environment 
types used in the literature are open-sky, suburban, semi-
urban, urban canyon and forest, considering LoS blockage 
and multipath reflections [9]. As we are interested in 
predicting GNSS performance in urban areas, three 
urbanization levels are selected and defined considering cut-
off elevation and multipath effects: 

1) Suburban: Defined as a settlement area consisting 

mostly of 2 or 3-storey houses and cut-off elevation angle is 

maximum of 10 degrees. The multipath effect is too low. 

2) Urban: Defined as a settlement area covered with 

apartments and cut-off elevation angle is 10 to 30 degrees. 

Multipath reflections have more impact than suburban areas. 

3) Urban-Canyon: An area with lots of very tall 

buildings sheathed with highly reflective materials. Cut-off 

elevation is 20 to 60 degrees with dense multipath impact. 

 Environment types are considered as defined above while 
generating environment-specific data, and GNSS 
performance prediction tests are conducted with this data set.  

B. Environment Recognition 

Based on the definitions of environment types, it can be 
seen that the key separators between the environments are 
satellite visibility and multipath reflections. While DOP, 
number of visible satellites, cut-off elevation angle gives 
information about satellite visibility and geometry, variation 
in SNR is beneficial to detect multipath reflections. These 
observables have been used in the literature in two ways. The 
first one is the direct usage of observables recorded by the 
receiver [10]. In this case, inputs of classification or 
clustering algorithms are: 

• DOP 

• Number of visible satellites 

• Elevation angles of satellites 

• Azimuth angles of satellites 

• SNR of satellites 

 As all these data are directly readable in navigation 
messages by a receiver, this approach is applicable for in-
flight recognition.  

 The second way is to use relative values of observables. 
In this approach, values of observables under optimum 
conditions (open sky, no multipath) should be known to 
calculate differences or rates based on the values from these 
optimum conditions. Suggested environment classification 
inputs are [9]:   

• DOP ratio 

• Blockage coefficient 

• Signal strength attenuation 

• Signal strength fluctuation coefficient 

As it is investigated in [9], environment recognition 
results are significantly better with using relative values as 
input of classification algorithm. However, this approach is 
not suitable for in-flight recognition unless a calibration 
flight is held in advance.  

In this study, the data is generated under predefined 
environment conditions with a GNSS simulator. Hence, we 
ensure that environment recognition errors do not affect 
GNSS performance prediction results. The training data 
generation stage is explained in Methodology, and the 
characteristics of training data are analyzed in Results.  

III. METHODOLOGY 

A. Simulation Setup 

Environment types and impact of error sources are 
unpredictable in a real test environment, and producing a 
realistic error model requires a high amount of data. Even the 
required amount of data can be collected from clearly 
differentiated environments, calculating positioning errors is 
not possible due to ground truths are unknown. Therefore, a 
GNSS Simulator was preferred to simulate environments and 
generate GNSS signals. With Spirent GSS7000 GNSS 
simulator, signals from each satellite can be generated 
considering defined environment types, atmospheric effects, 
obscuration levels and multipath reflections. Suburban, urban 
and urban-canyon environment scenarios are defined in the 
simulator as explained in Section II, and L1 frequency 
signals are generated for only GPS constellation for 12 hours 
(one orbital cycle of GPS satellites). Simulated environments 
are illustrated in Fig. 1-3. 

 

Fig. 1. Simulated Suburban Environment  

 

Fig. 2. Simulated Urban Environment  



 

Fig. 3. Simulated Urban-canyon Environment  

 Generated signals are given to a low-cost GNSS 
receiver, u-blox NEO-M8T, to observe positioning errors for 
each environment. Position errors are calculated from the 
difference between the receiver’s position estimation and 
ground truth of the simulator. HDOP, VDOP, satellite IDs, 
elevations and signal strengths are obtained via extracting 
NMEA outputs from the receiver. Then, extracted data are 
processed in Python and MATLAB in order to train GNSS 
performance predictors with supervised learning algorithms. 

B. Data Processing 

After NMEA data extraction stage, the raw data need to 
be pre-processed before being used in training. Initially, 
recorded data samples where the number of visible satellites 
is less than four are removed because the position cannot be 
estimated with less than four satellites by the receiver. The 
remaining data are used for generating training inputs. 
According to the literature discussed in Section II, the 
following parameters are selected as training inputs: 

• HDOP/VDOP 

• Number of visible satellites 

• Minimum elevation angle of visible satellites (deg) 

• Mean signal strength of visible satellites (dB) 

 These parameters are easy to collect and calculate during 
the flight as well as beneficial to build environment-related 
error models. 

 After unavailable parts are removed and selected training 
parameters are calculated, the parameters are normalized 
with respect to their mean (µx) and standard deviation (σx), in 
order to enhance training performance, as below: 

     Xnorm = (X - µx) / σx        (1) 

 Three supervised learning algorithms, K-Nearest 
Neighbours (KNN), Support Vector Regressor (SVR) and 
Random Forest, have been trained with normalized 
parameters for each environment type. Additionally, in order 
to ensure each learning algorithm are optimized, 
hyperparameters of each learning model are tuned with grid 
search. 

A graphical representation of the prediction architecture 
is shown in Fig 4. 

 

Fig. 4. GNSS Performance Prediction Architecture 

IV. RESULTS 

A. Training Data Characteristics 

Before pursuing GNSS performance prediction results, 

initially, training data characteristics were investigated. 

Thanks to the simulated data, we are able to show exact 

differences in horizontal and vertical error characteristics 

based on different environments. The variation of each 

training parameter can be seen as well. Horizontal and 

vertical error characteristics of training data are statistically 

analyzed and summarized in Table I for each environment.  

TABLE I.  TRAINING DATA ERROR CHARACTERISTICS 

Environment 

Type 

Horizontal Absolute 

Error (m) 

Vertical Absolute 

Error (m) 

µ σ µ σ 

Suburban 15.48 36.08 20.11 1.40 

Urban 82.64 88.76 23.16 4.09 

Urban-Canyon 1076.47 750.52 65.09 22.40 

 According to the results, it is hard to build a general error 
model for GNSS navigation that suits all the environment 
types efficiently as error characteristics vary dramatically 
with respect to environmental conditions. This is the idea 
behind using environment recognition for supporting GNSS 
error prediction. Especially in denser urban areas like urban-



canyon, either horizontal and vertical characteristics are 
much worse than suburban or urban areas. 

 Now we would like to investigate the environmental 
training parameters to see whether their variations are similar 
to positioning error variation. Training parameter 
characteristics are statistically analyzed and summarized in 
Table II for each environment. 

TABLE II.  TRAINING PARAMETER CHARACTERISTICS 

Parameters 
Suburban Urban Urban-Canyon 

µ σ µ σ µ σ 

HDOP 0.87 0.14 1.17 0.28 1.47 1.39 

VDOP 1.51 0.17 2.21 0.82 2.00 1.87 

Number of 

Visible 

Satellites 

9.98 1.35 8.11 1.44 7.65 1.38 

Minimum 

Elevation 

Angle (o) 

11.62 2.77 16.34 4.83 9.26 3.97 

Mean 

Signal 

Strength 

(dB) 

45.59 0.66 45.86 0.99 45.16 2.18 

Based on the characteristics of training parameters, a 
logical variation can be observed between suburban and 
urban areas as a result of the difference in LoS blockage 
levels. In urban environment, DOPs and minimum elevation 
angle is higher than suburban, while number of visible 
satellites is lower. Nevertheless, in the urban-canyon area, 
although there is a higher building obscuration, minimum 
elevation angles are less because reflected signals still can be 
detected and mislead the receiver. Besides, mean signal 
strength does not vary much with respect to environments, 
but the standard deviation of mean signal strength becomes 
higher in denser urban areas. 

As an overall discussion based on these characteristics, 
error variation between suburban and urban areas is mainly 
caused by the effect of LoS blockage, and impact of 
multipath reflection is low. However, in urban-canyon 
environment, because of the high impact of multipath 
reflections in addition to blockage, the GNSS error model 
differs significantly, and it is expected that an overall error 
predictor would not work properly under this kind of 
environment with high multipath reflections. Thus, 
environment recognition can enhance the error prediction 
performance in urban environments as the environment type 
can be considered before building an error prediction model 
with a learning algorithm. 

B. Error Prediction Performance 

In order to show the impact of environments on both 
horizontal and vertical error prediction performance, three 
different error models were trained by K-Nearest Neighbour 
(KNN), Support Vector Regression (SVR) and Random 
Forest (RF) learning algorithms, with simulated environment 
specific data. Prediction results were analyzed with respect to 
Mean Absolute Error (MAE) and Coefficient of 
Determination (R2). While MAE represents the prediction 
error of the trained model, R2 is a parameter to show how 

well the model fits the real data, and its value is between 0 
and 1. Table III summarize the prediction performance 
results of horizontal and vertical error for each environment 
type and each learning algorithm.  

TABLE III.  PREDICTION PERFORMANCE RESULTS 

Environment 

Type 

Learning 

Algorithm 

Horizontal Vertical 

MAE (m) R2 MAE 

(m) 
R2 

Suburban 

KNN 6.35 0.67 0.16 0.87 

SVR 10.57 0.07 0.37 0.43 

RF 6.22 0.68 0.15 0.89 

Urban 

KNN 19.22 0.79 0.55 0.90 

SVR 48.58 0.33 1.85 0.39 

RF 18.63 0.84 0.41 0.95 

Urban- 

Canyon 

KNN 181.39 0.79 5.10 0.79 

SVR 496.01 0.16 15.44 0.17 

RF 144.45 0.85 3.67 0.88 

When the results are compared based on learning 
algorithms, RF algorithm gives the best performance for both 
horizontal and vertical error prediction. However, prediction 
errors getting higher with increasing urbanization regardless 
of algorithm. It means that the same performance cannot be 
reached with the same training parameters for different 
environments. Therefore, looking at the importance of 
parameters during the training of RF algorithm would be a 
good idea to see which one has more impact on prediction 
performance for each environment type. Table IV and V 
shows the parameter importance for horizontal and vertical 
error prediction, respectively. 

TABLE IV.  PARAMETER IMPORTANCES FOR HORIZONTAL ERROR 

PREDICTION 

Environment 

Type 

Relative Importance 

HDOP 

Number 

of Visible 

Satellites 

Minimum 

Elevation 

Angle 

Mean 

Signal 

Strength 

Suburban 0.54 0.03 0.34 0.09 

Urban 0.41 0.15 0.37 0.07 

Urban- 

Canyon 
0.56 0.11 0.22 0.11 

TABLE V.  PARAMETER IMPORTANCES FOR VERTICAL  ERROR  

PREDICTION 

Environment 

Type 

Relative Importance 

VDOP 

Number 

of Visible 

Satellites 

Minimum 

Elevation 

Angle 

Mean 

Signal 

Strength 

Suburban 0.64 0.07 0.25 0.04 

Urban 0.53 0.11 0.33 0.03 

Urban- 

Canyon 
0.46 0.17 0.23 0.14 

The parameter importance analysis shows that the most 
important parameters are DOP coefficients and minimum 



elevation angle. And then, it shows the importance of 
satellite geometry on prediction performance. These two 
parameters are much more effective than the other two 
parameters, especially under low LoS blockage and 
multipath effect. In order to discuss the impact of LoS 
blockage independent from multipath reflections, it is better 
to compare suburban and urban environments. Based on this 
comparison, while importances of DOP coefficients are 
decreasing under higher LoS blockage, importances of 
number of visible satellites and minimum elevation angle 
increase. This situation can be explained by that the position 
error mostly depends on their sight angle and geometry if 
more than enough satellites are visible. Besides, mean signal 
strength has a very limited effect and does not chance with 
blockage level if multipath effects are not intense.  

On the other hand, if we compare urban and urban-
canyon environments to see the impact of multipath on 
GNSS error prediction, it can be seen that especially the 
impact of mean signal strength parameter getting higher in 
urban-canyon environment with increasing intensity of 
multipath effects. Because signal strengths fluctuate as a 
result of reflected GNSS signals and even the signals from 
blocked satellites can arrive at the receiver weaker than 
normal strength. Moreover, the information collected from 
these signals misleads the training algorithm in urban-canyon 
environments as non-visible satellites are counted as visible 
by the receiver. It also causes miscalculations for minimum 
elevation angle and DOP values and degrades the error 
prediction performance in urban-canyon environment. 

V. CONCLUSION 

In this study, the benefits of environment recognition on 
GPS performance prediction were investigated with synthetic 
data generated by a GNSS simulator. In this context, firstly, 
potential challenging environment types were defined 
concerning LoS blockage and multipath intensity. Suitable 
environment recognition parameters were specified as inputs 
of learning algorithms. Then, the simulated environment-
specific data were analyzed statistically, and error 
characteristics were summarized with the characteristics of 
training parameters. And lastly, GNSS error predictors were 
trained with KNN, SVR and RF learning algorithms, and 
their performance and importance of training parameters 
were assessed with respect to the environments. 

According to the results, RF has the best error prediction 
performance with suggested parameters for all environments. 
However, when we check the training efficiency based on 
environment types, the performance of RF algorithm 
degraded, especially in urban-canyon environment. 
Parameter importance analysis shows that while the selected 
parameters work well in the training algorithm to predict 
errors sourced by LoS blockage, performance prediction 
model cannot be trained appropriately where multipath errors 

are dominant. This issue can be solved with additional 
training parameters which show similar variation 
characteristics with multipath errors.  

Overall, this research shows that GNSS performance can 
be predicted better by considering environment type thanks 
to environment recognition as the GNSS error models varies 
based on environment types. Different training parameters 
can be selected according to dominant error sources in 
different environments. Additionally, with environment 
recognition approach, error range in a certain environment 
can be specified. This would be useful for mission-critical 
applications to decide whether the flight environment is risky 
based on mission requirements.      
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