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Abstract—In this paper, an input error identification algorithm
for a class of Euler-Lagrange systems is proposed. The algorithm
has a state-observer structure which uses the input error between
the real system and an estimated model instead of the output
error. Both systems are controlled by two Proportional-Derivative
(PD) controllers with the same gain values. An excitation signal
is added to the PD controllers to guarantee parameter estimates
convergence. Stability of the complete identification method and
parameter estimates convergence are assessed via Lyapunov
stability theory. Simulation studies are carried out to verify the
approach.

I. INTRODUCTION

Parameter identification is a well known control problem

which seeks to estimate the parameters of a system. These

parameters gives useful qualitative information for tuning

controllers gains for the design of model-based feedforward

and feedback controllers [1].

There exist several kinds of methodologies to estimate

system parameters either off-line or on-line. Some methods

are well known algorithms such as least mean squares (LMS)

[2] [3], recursive least squares (RLS) [4] and neural networks,

which work in open-loop and require BIBO (bounded-input

bounded-output) stability, which is not always the case. Other

algorithms work in closed-loop such as adaptive controllers

[5], [6] where the identification and the control law are

executed simultaneously, e.g., the famous algorithm of Slotine

& Li [7]–[9] and sliding mode identification [10]–[12]. These

adaptive controllers use the parameter estimates to compute

the controller [13], [14] and exhibit good performance, but

without a Persistency of Excitation (PE) condition [15] the

parameter estimates would not converge to their true vales

[16].

Most of the identification algorithms are off-line and do

not give a convergence analysis proof [2]. In other words,

it is argued that the identification algorithm is iterative and

the parameter estimates will converge to values close to their

real parameters values. However, there is no mathematical

proof using either Lyapunov stability theory [17] or the

Banach contraction property [18], [19] which are two of the

most common mathematical tools for convergence analysis.

Furthermore, if the identification algorithm does not consider

the PE condition then the estimates will not converge to their

real values.

On-line approaches have been considered by using a

Kalman Filter [20] and a Kalman Active-Observer [21] to

estimate unknown parameters of a system. However, the

Kalman filter requires a careful tuning procedure. Another

approach is the multi-estimator (ME) approach, which is a

supervisory control that finds the best approximated model

among other candidates. It performs well but it does not

guarantee parameter convergence [4]. The closed-loop output

error (CLOE) algorithm has been studied for the identification

of discrete linear time systems. It provides unbiased estimates

and the controller feeds the identification algorithm such as

in the case of an indirect adaptive controller [22]–[24], but it

requires values of the parameter estimates obtained previously

under open loop conditions. New CLOE approaches [25] are

developed by using control inputs instead of measurements of

the generalized coordinates and their respective derivatives.

The closed-loop input error (CLIE) algorithm is proposed in

[2], where an estimated model of a DC servomechanism is in

closed-loop with a Proportional Derivative (PD) controller, and

the input error between the real DC motor and its estimated

model feeds an identification algorithm that subsequently

update the estimate model. Its stability is proven theoreti-

cally without considering disturbances by means of Lyapunov

theory, and experimentally by using a laboratory prototype.

However, the PE condition [26] on parameter convergence is

not analysed.

Motivated by the above comments, this work reports an on-

line parameter identification algorithm using a Closed Loop

Input Error (CLIE) approach for a class of Euler-Lagrange

systems. Two identification cases are analysed: exact model

matching and estimation error. The convergence of the pa-

rameter estimates are assessed using Lyapunov stability theory

which takes into account the PD controller employed for

stabilizing the Euler-Lagrange system, the PE signal, and the

estimated model.
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II. A CLASS OF EULER-LAGRANGE SYSTEMS

Consider the following dynamic equation of a class of Euler-

Lagrange systems:

J ẍ+Rẋ+ Px = Qnc +Qc (1)

where J ∈ R
n×n is a symmetric inertia matrix, R ∈ R

n×n

is a matrix with dissipative terms, P ∈ R
n×n is a compliance

matrix, Qnc ∈ R
n are the non-conservatives forces and

Qc ∈ R
n are the conservative forces, x, ẋ, ẍ ∈ R

n are the

generalized coordinates and their respective derivatives.

This class of Euler-Lagrange systems stands to many me-

chanical, electrical and hydraulic models, e.g., for mechanical

and electrical systems: J represents the inertia or inductance,

R can represents friction, a damper or a resistor, P represents

a spring or a capacitance, Qc represents components due to the

potential energy as gravitational terms, Qnc are the external

inputs such as torques, forces, voltages or current sources. The

following assumption is required

Assumption 1: The inertial matrix J is constant and positive

definite with eigenvalues different to zero, i.e, J = J⊤ > 0.

Now consider the following alternative form of the dynamics

(1):

ẍ = −Aẋ− Cx+BQnc +D (2)

where A = J−1R, C = J−1P , B = J−1, and D = J−1Qc.

This particular version is needed to apply the input error

identification technique.

III. CLOSED LOOP INPUT ERROR (CLIE) IDENTIFICATION

TECHNIQUE

The closed loop input error (CLIE) identification algorithm

[2] is shown in Fig. 1. The diagram is composed of the Euler-

Lagrange system in parallel with an estimated model. Both

systems are controlled by a PD control law, which stabilize

(2) without knowledge on its parameters, and tuned with the

same gains [27]. The input error is used by an identification

algorithm to update the estimates of the estimated model.
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Fig. 1. Block diagram of the closed loop input identification technique

The next PD control law is applied to the Euler-Lagrange

dynamics (2)

Qnc = Kpx̃−Kdẋ+ PE, (3)

where Kp = diag (kp1
, · · · , kpn

) ∈ R
n×n and Kd =

diag (kd1
, · · · , kdn

) ∈ R
n×n denote the proportional and

derivative gain matrices, respectively; where kpi
, kdi

> 0,

i = 1, · · ·n. The error vector is defined as x̃ = xd − x where

xd ∈ R
n is a constant desired reference and PE is a bounded

excitation signal.

Remark 1: The control law Qnc is used only to stabilize

the plant and does not guarantee convergence to the desired

trajectory. Hence, the PD control law (3) is the simplest control

law which can achieve this objective.

Remark 2: Proportional-Integral-Derivative (PID) is com-

monly used for system identification. However, the integral

term could destabilize [28] the closed-loop dynamics of the

estimated model.

The Euler-Lagrange dynamics (2) under the PD control law

(3) yields the closed-loop dynamics

ẍ = −(A+BKd)ẋ−Cx+B(Kpx̃+PE)+D = −Φ⊤Θ (4)

where Φ = Φ(x̃, x, ẋ, PE) ∈ R
p×n is the regressor matrix and

Θ ∈ R
p is the unknown parameters vector which are defined

as

Φ =




I ⊗ ẋ
I ⊗ x

−I ⊗Qnc

−I


 , Θ =




vec(A)
vec(C)
vec(B)

D


 (5)

where ⊗ denotes the Kronecker product, vec(P ) ∈ R
wv

denote the vectorization of matrix P ∈ R
w×v and I is the

identity matrix of an appropriate dimension.

The estimated model has the following structure

ÿ = −Âẏ − Ĉy + B̂Unc + D̂ (6)

where Â, B̂, Ĉ, D̂ are estimates of A,B,C, and D, respec-

tively, and y ∈ R
n is the state of the estimated model. The

control law Unc has the same structure as in (3) as

Unc = Kpỹ −Kdẏ + PE (7)

with ỹ = xd−y. The estimated model (6) under the PD control

law (7) gives

ÿ = −(Â+B̂Kd)ẏ−Ĉy+B̂(Kpỹ+PE)+D̂ = −Φ⊤
y Θ̂. (8)

The term Φy = Φy(ỹ, y, ẏ, PE) ∈ R
p×n is a regressor matrix

and Θ̂ ∈ R
p is an estimate of the parameter vector Θ which

are defined as

Φy =




I ⊗ ẏ
I ⊗ y

−I ⊗ Unc

−I


 , Θ̂ =




vec(Â)

vec(Ĉ)

vec(B̂)

D̂


 . (9)

A. Exact matching

Consider the case that the identification algorithm exactly

estimates the parameters of the Euler-Lagrange system. Let

define the output error as

e = ỹ − x̃ = x− y. (10)



The closed-loop error dynamics between the dynamics (2)

and the estimated model (6) is

ë = −Āė− B̄e+ Ãẏ + C̃y − B̃Unc − D̃

= −Āė− B̄e+Φ⊤
y Θ̃ (11)

where Ā = A + BKd, B̄ = C + BKp, Θ̃ = Θ̂ − Θ ∈ R
p is

the parametric error vector. The parametric error is defined as

Θ̃ = Θ̂−Θ =




vec(Â)− vec(A)

vec(Ĉ)− vec(C)

vec(B̂)− vec(B)

D̂ −D


 . (12)

The input error eu is given by the difference between the

PD control laws as

eu = Unc −Qnc

= Kpe+Kdė (13)

The next theorem establishes the stability and parameter

convergence of the CLIE approach applied to the parameter

estimation of any Euler-Lagrange system of the form (2).

Theorem 1: Consider the Euler-Lagrange system dynamics

(2) in closed-loop with the PD control law (3), and the

estimated model (6) in closed-loop with control law (7). If

the parameter estimates Θ̂ are updated as

˙̂
Θ = −ΓΦyKdK

−1
p eu, (14)

where Γ = Γ⊤ > 0 ∈ R
p×p is a diagonal matrix gain, and

K−1
p KdĀ− I > 0 then Θ̃, e, ė, y, ẏ and Φy remain bounded

and the input error eu converges to zero.

Proof: Consider the following Lyapunov function

V =
1

2
e⊤uK

−1
p eu +

1

2
Θ̃⊤Γ−1Θ̃

+
1

2
e⊤
[
B̄⊤KdK

−1
p Kd +Kp

(
K−1

p KdĀ− I
)]

e (15)

This function is positive definite if K−1
p KdĀ− I > 0. The

derivative of (15) with respect to the time is

V̇ =e⊤uK
−1
p (Kpė+Kdë) + Θ̃⊤Γ−1 ˙̃Θ

+ e⊤
(
KdĀ+ B̄⊤KdK

−1
p Kd −Kp

)
ė

=− e⊤KdB̄e− ė⊤Kd(K
−1
p KdĀ− I)ė

+ Θ̃⊤(Γ−1 ˙̃Θ + ΦyKdK
−1
p eu)

If the update law is chosen as (14), then the time-derivative

of the Lyapunov function simplifies to

V̇ = −e⊤KdB̄e− ė⊤Kd(K
−1
p KdĀ− I)ė

= −
[
e
ė

]⊤ [
KdB̄ 0
0 Kd(K

−1
p KdĀ− I)

]

︸ ︷︷ ︸
Q∈R2n×2n

[
e
ė

]

≤ −λmin(Q)‖E‖2 (16)

where E = [e⊤, ė⊤]⊤ and λmin(Q) is the minimum eigen-

value of matrix Q. The matrix Q is positive definite if

K−1
p KdĀ − I > 0. From (16), it is clear that E bounded

and V (0) ≥ V . On the other hand, boundedness of E implies

that E, y, ẏ, Unc,Φy ∈ L∞.

Integrating (16) gives

V (t)− V (0) ≤ −
t∫

0

λmin(Q)‖E‖2dτ.

Then it follows that

t∫

0

‖E‖2dτ ≤ V (0)

λmin(Q)
< ∞. (17)

In consequence, the error E is an L2 function. Boundedness

of the parametric error Θ̃, e, and ė in (16) allow concluding

that Ė = [ė⊤, ë⊤]⊤ is an L∞ function. The Barbalat’s lemma

is applied to conclude that E converges to zero. Finally, from

(13) it is clear that eu converges to zero. This completes the

proof.

Parameter convergence is achieved if the following persistence

of excitation condition [29]–[31] on the regressor matrix Φy

is fulfilled

Definition 1: [32] A matrix Φy : Rn×R
n×R

n×R → R
p×n

is persistently exciting (PE) [30] if there exist β1, β2, T > 0
such that for all t ≥ 0 the next relationship is fulfilled

β1I ≤ L1 =

t+T∫

t

Φy(σ)Φ
⊤
y (σ)dσ ≤ β2I (18)

The PE condition (18) is equivalent to the uniform complete

observability (UCO) [33], [34] of linear-time variant (LTV)

systems.

B. Estimation error

Now consider the estimation error case, that is, the identi-

fication algorithm exhibits a small and irreducible error due

to noise, disturbances or unmodelled dynamics. Consider the

error dynamics (11) be rewritten as

ë = −Āė− B̄e+Φ⊤
y Θ̃ + ε (19)

where ε ∈ R
n is a bounded estimation error with ‖ε‖ ≤ ε̄.

The following theorem establishes that the closed-loop

trajectories (19) are uniformly ultimately bounded (UUB) [17]

and the parameter estimates Θ̂ remain bounded under PE

conditions.

Theorem 2: Consider the error dynamics (19). The parame-

ters Θ̂ are updated by (14) and the regressor matrix Φy fulfills

the PE condition (18). Assume that there exists constants k1
and k2 that verifies

k1 = min{λmin(KdB̄), λmin(Kd(K
−1
p KdĀ− I))}

k2 = max{λmax(Kd), λmax(KdK
−1
p Kd)}

k1 >
√
2k2ε̄+ ρ (20)

where ρ ∈ R
+. Then the trajectories of (19) are UUB and

converges to a compact set SE of radius µ1 =
√
2k2ε̄
k1

as t →
∞, and therefore the parameter estimates Θ̂ remain bounded.



Proof: Consider the previous Lyapunov function (15). Its

time derivative along the error dynamics (19) is

V̇ =e⊤uK
−1
p (Kpė+Kdë) + Θ̃⊤Γ−1 ˙̃Θ

+ e⊤
(
KdĀ+ B̄⊤KdK

−1
p Kd −Kp

)
ė

=− e⊤KdB̄e− ė⊤Kd(K
−1
p KdĀ− I)ė

+ Θ̃⊤(Γ−1 ˙̃Θ + ΦyKdK
−1
p eu) + e⊤uK

−1
p Kdε

If the update law is chosen as (14), then V̇ is reduced to

V̇ =− e⊤KdB̄e− ė⊤Kd(K
−1
p KdĀ− I)ė+ e⊤uK

−1
p Kdε

=− e⊤KdB̄e− ė⊤KdK̄ė+ e⊤Kdε+ ė⊤KdK
−1
p Kdε

≤− λmin(KdB̄)‖e‖2 − λmin(KdK̄)‖ė‖2
+ ε̄λmax(Kd)‖e‖+ ε̄λmax(KdK

−1
p Kd)‖ė‖

≤ − k1‖ζ‖2 +
√
2k2ε̄‖ζ‖

=− k1‖ζ‖
(
‖ζ‖ −

√
2k2ε̄

k1

)
(21)

where ζ = [‖e‖, ‖ė‖]⊤ and ‖ζ‖ = ‖E‖. V̇ is negative definite

if

‖E‖ >

√
2k2ε̄

k1
≡ µ1. (22)

If k1 satisfies (20), then the trajectories of the error dynam-

ics (19) converge to a compact set SE of radius µ1, that is,

‖E‖ ≤ µ1 and therefore, the trajectories of (19) are UUB.

From Theorem 1 is easy to show that if E ∈ L∞ then

the signals are bounded too, that is, eu, y, ẏ,Φy, Ė ∈ L∞. In

consequence, the dynamic parametrization is bounded, that is,

z ≡ Φ⊤
y Θ̃ = ë+ Āė+ B̄e− ε (23)

which can be equivalently written as the next LTV system

˙̃
Θ = −ΓΦyKdK

−1
p

[
Kp Kd

]
E

z = Φ⊤
y Θ̃

(24)

Since z, E and Φy are bounded and Φy is PE, then the UCO

condition [33] is satisfied, which guarantees boundedness of

the parametric error Θ̃, and hence Θ̂. This completes the proof.

IV. NUMERICAL SIMULATION STUDIES

The performance of the CLIE identification algorithm is

assessed using a 4-DOF robot model [8] actuated by DC

motors endowed with a gearbox. It is well known that a robot

manipulator with gearbox train satisfies the Euler-Lagrange

system (3) [35]. For this model there is no compliance term

C and satisfies the next Euler-Lagrange system

q̈ = −Aq̇ +Bu−D, (25)

where A ∈ R
4×4 denote the friction/dissipative terms, B ∈

R
4×4 is the control gain, D ∈ R

4 is the disturbance vector,

u ∈ R
4 is the control input, and q, q̇, q̈ ∈ R

4 are the joint

position, velocity, and acceleration vectors, respectively. For

this special case, A and B are diagonal matrices.

TABLE I
DENAVIT HARTENBERG PARAMETERS OF THE 4-DOF ROBOT

Joint k ϑk dk ak αk

1 q1 l1 0 π

2

2 q2 0 0 −π

2

3 q3 0 l3
π

2

4 q4 0 l4 0

The Denavit-Hartenberg parameters [36] of the robot are

given in Table I.

The joint angles of the 4-DOF robot are denoted as q1,

q2, q3, q4; each link are modeled as thin bars with inertia

Jr
k = 1

12
mkl

2
k, where mk and lk are the mass and length of

link k. The robot parameters are m1 = 8.4 kg, m2 = 4.9
kg, m3 = m4 = 2.7 kg, l1 = 0.228 m, l3 = l4 = 0.22 m.

Gaussian noise ∆q ∼ N (0, σ2) of small magnitude and low

variance is used to model position measurement noise, that is,

it is assumed that the encoder measurements exhibit a linear

correlation. The Gaussian noise is obtained from the random

number block of Simulink with a variance of σ2 = 1× 10−6

and a mean µ = 0. Each DC motor dynamics driving the

robot links has the following inertia and friction parameters:

Jm
k = 1/50 kgm2 and Rk = 1/25 kgm2/s. The gear ratio rk

is 100:1.

0 2 4 6 8 10
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Fig. 2. PE signal

A. System identification

The regressor matrix Φ and the parameters vector Θ satisfy

(5). So, there are 12 parameters to estimate. The regressor Φy

and the parameter estimates vector Θ̂ satisfy (9). The PE signal

(see Fig. 2) is designed as a sum of sinusoidal functions with

low frequency to excite the robot modes and keep tracking a

smooth trajectory. The PE signal is

PE = 0.7 sin(2πt) + 0.5 sin(πt)− 0.25 cos(πt).

The gains of the PD controller are tuned manually until the

trajectories of the robot dynamics are stabilized. The final

gains are set to Kp = 12I and Kd = 5I . The update gain

is set to Γ = 20I . Fig. 3 shows the time evolution of the

parameter estimates.
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Fig. 3. Parameter estimates of the 4-DOF robot

TABLE II
PARAMETER ESTIMATES OF THE 4-DOF PLANAR ROBOT THROUGH THE

CLIE UPDATE RULE (14)

Approximate CLIE Algorithm

Estimate Θ̂k Real value Θk Θ̂k |Θ̃k| (%)

Â1 1.9966 1.9963 0.0320

Â2 1.9940 1.9984 0.4460

Â3 1.9993 1.9999 0.0514

Â4 1.9965 1.9974 0.0915

B̂1 0.4992 0.4987 0.0473

B̂2 0.4985 0.4992 0.0699

B̂3 0.4998 0.4998 0.0013

B̂4 0.4991 0.4992 0.0117

D̂1 -0.0493 -0.050 0.0673

D̂2 -0.0115 -0.0121 0.0610

D̂3 0.0431 0.0428 0.0300

D̂4 -0.0072 -0.0075 0.0266

Table II summarizes the mean value of the parameters esti-

mates and the parametric error percentage of the identification

algorithm during the last 20 seconds. The results show that

good estimates close to its real values are obtained.

The estimates of Table II are used to compute the estimation

error ε = Φ⊤
y Θ̂ − Φ⊤Θ = [ε1, ε2, ε3, ε4]

⊤ of each identifica-

tion method for 100 seconds of simulation time. The mean

estimation error

ε̄k =
1

100

100∑

t=0

εk(t) (26)

is used to obtain the mean value of the estimation error, with

k = 1 · · · 4. Notice that ε̄k denote the mean estimation error

of the DOF k. The results are: ε̄1 = 0.4538 × 10−5, ε̄2 =
−0.7173 × 10−5, ε̄3 = 0.0071 × 10−5, and ε̄4 = −0.0655 ×
10−5. The above results verify boundedness of the estimates

Θ̂ and robustness again noise and nonlinear disturbances of

the robot dynamics.

B. Validation

The parameter estimates of Table II are verified by comput-

ing the next feedback linearization controller

u = B̂−1

[
Âq̇ − D̂ +Kpq̃ +Kd

˙̃q + q̈d

]
(27)

where the same Kp and Kd gains of the previous identifica-

tion experiment are employed; qd, q̇d, q̈d are the desired joint

position, velocity and acceleration, respectively. q̃ = qd − q
and ˙̃q = q̇d − q̇ are the position and velocity tracking errors,

respectively. The desired reference is

qd =




0.5 sin
(
π
6
t
)

π
2
+ 0.1 cos

(
π
6
t
)

0.5 sin
(
π
6
t
)

π
3
+ π

4
cos
(
π
6
t
)


 .

The forward kinematics of the robot [36] is computed using

the Denavit Hartenberg parameters of Table I. The task-space

trajectory is used to exhibit the accuracy of the the feedback

linearization controller under the parameter estimates of Table

II. The task-space trajectory results are shown in Fig. 4.

Fig. 4. Trajectory in the task space of the 4-DOF robot

The results show an accurate tracking performance of the

identification method. The mean squared error

qk =
1

100

100∑

t=0

q̃2k(t) (28)

of the tracking error q̃ is used to show the accuracy of the

feedback linearization controller under the estimates of Table

II. The numerical results are: q̄1 = 0.1322 × 10−4, q̄2 =
0.0253×10−4, q̄3 = 0.0055×10−4, and q̄4 = 0.0059×10−4.

These outcomes show that the proposed approach obtains

reliable estimates that are close to their real values.

V. CONCLUSION

This paper provides an input error identification method for

parameter identification of a class of Euler-Lagrange systems.

The approach uses the input error instead of the output error to

update a gradient identification law. The regressor matrix uses

measurements of the estimated model’s states instead of the

states of the real system such that noise and high-pass filter

are avoided. Stability and convergence of the complete closed-

loop system is assessed using Lyapunov stability theory under

persistency of exciting conditions. Numerical simulations are

carried out to validate the proposed approach.
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