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Abstract—3D visual servoing systems need to detect the object
and its pose in order to perform. As a result accurate, fast
object detection and pose estimation play a vital role. Most
visual servoing methods use low-level object detection and pose
estimation algorithms. However, many approaches detect objects
in 2D RGB sequences for servoing, which lacks reliability when
estimating the object’s pose in 3D space. To cope with these
problems, firstly, a joint feature extractor is employed to fuse
the object’s 2D RGB image and 3D point cloud data. At this
point, a novel method called PosEst is proposed to exploit the
correlation between 2D and 3D features. Here are the results of
the custom model using test data; precision: 0,9756, recall: 0.9876,
F1 Score(beta=1): 0.9815, F1 Score(beta=2): 0.9779. The method
used in this study can be easily implemented to 3D grasping
and 3D tracking problems to make the solutions faster and more
accurate. In a period where electric vehicles and autonomous
systems are gradually becoming a part of our lives, this study
offers a safer, more efficient and more comfortable environment.

Index Terms—autonomous, aircraft, refuelling, robotics, inte-
gration

I. INTRODUCTION

Aircraft refuelling is accompanied by attendant hazards

which must be managed sufficiently for their mitigation to

acceptable levels. The issues are much the same whether

the fuel source is a tanker/bowser or a fuel hydrant system.

The primary risk is the unintended ignition of fuel vapour,

which can occur by a single spark. A sufficient quantity of

fuel vapour can create a high risk of ignition which may

result from the spillage arising from procedural errors, leaks,

aircraft tank venting or failure of pressurised fuel lines or

their couplings. In connection with refuelling, there have been

many accidents in the past that caused a great loss of life

and property. To eliminate this, trained and skilled personnel

are required for this operation. However, training personnel

to work in a high-risk job requires both a lot of time and

money. No matter how trained and skilled they are, there is

always an accident risk wherever people work. To reduce the

risks and increase safety and comfort in the airline industry,

visual servoing systems can achieve this easily.

Aircraft refuelling is a serious task which is carried out by

trained aircraft mechanics. To enable the aircraft to continue

its journey, refuelling process where trained personnel carried

out task to fill an aircraft with fuel needs to be done. There

are two methods of refuelling; gravity refuelling and pressure

refuelling [1]. Small aircraft such as Cessna 172 uses gravity

refuelling, when it comes to large aircraft such as Boeing

737 pressure refuelling (Shown in Figure 1) is used. Safe

refuelling operations require strict adherence to procedures

and careful application of the safety precautions, not only by

the refuelling operators but also flight crew, the cabin crew

and the other ground operators [2].

Fig. 1. Pressure aircraft refuelling

Robotic manipulators are very useful in many conditions,

such as risky or unpredictable environments. Robotic

manipulators that are autonomous or operated remotely can

greatly reduce the number of people needed for a given task.

Because of the primary risk of unintended ignition of fuel

vapour caused by a single spark, it is necessary to conduct

this research in order to reduce the amount of incidents and

risks that can result in fatal accidents [3].
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In the past, the following incidents happened [4]:

1) On 5 September 2001, a British Airways Boeing 777-

200 on the ground at Denver USA, was substantially

damaged, and a refuelling operative killed, when a fire

broke out following the failure of a refuelling coupling

under pressure because of improper attachment.

2) On 13 April 2010, a Cathay Pacific Airbus A330-300

en route from Surabaya to Hong Kong experienced

difficulty in controlling engine thrust. As these problems

worsened, one engine became unusable. Salt water

contamination of the hydrant fuel system at Surabaya

after alterations during airport construction work was

found to have led to the appearance of a polymer

contaminant in uplifted fuel.

3) On 16 April 2014, a pre-flight concern about whether

a Boeing 777-200ER about to depart Singapore had

been over-fuelled was resolved by a manual check.

The Investigation found that a system fault had caused

over-fuelling and that the manual check carried out

to confirm the actual fuel load had failed to detect it

because it had been not been performed correctly.

4) On 7 June 2016, a Boeing 777-300 made a high speed

rejected takeoff on 3200 metre-long runway at Dhaka

after right engine failure was enunciated. The Inves-

tigation found that engine failure had followed Super

Absorbent Polymer contamination of some of the fuel

nozzle valves which caused them to malfunction leading

to Low Pressure Turbine mechanical damage.

A refuelling operation scenario follows:

1) The aircraft and the fuel tanker have to be grounded.

2) Before removing the filter cap, the fuelling nozzle

grounding cable has to be connected to the aircraft

grounding receptacle.

3) After grounding procedure, the fuel nozzle needs to be

inserted carefully into filler cap and commence refu-

elling.

4) Stop the refuelling once the desired fuel quantity has

been reached.

5) Once the refuelling process is done, install and secure

the filler cap.

6) Remove the refuelling nozzle grounding cable from the

aircraft grounding receptacle.

7) Remove the grounding of aircraft and the fuel tanker.

8) Ensure there is any spillage of fuel on the ground.

9) The aircraft is ready to depart.

A direct objective of this study is to develop an autonomous

ground refuelling approach, which uses computer vision,

machine learning and visual servoing methods in order to

locate the pressurised fuel servicing adaptor and place the

nozzle in slipway. Trajectory information that is identifying

and locating the pressurised fuel servicing adaptor needed for

the robot manipulator. The autonomous refuelling approach

is going to use the visual servoing to close the loop around

the motion control problem [5].

This paper introduces novel ”PosEst” method to enable the

3D operations in high accuracy and speed. Relative object

detection and tracking methods are using low-level object

detection and pose estimation algorithms such as arc/contour

detection. Consequently, new solution for refuelling adaptor

detection and pose estimation in autonomous ground refuelling

operations is presented in this paper. The main contributions

of this method include two aspects. In the aspect of refuelling

adaptor detection, convolutional neural networks have been

trained using 2D RGB dataset and 3D depth stream for faster

and accurate detection to solve the problem in multi-scale.

In the aspect of pose estimation, different pose estimation

algorithms have been tested and implemented on the basis

of the structure feature of pressurised refuelling adaptor,

which takes advantage of the structure characteristics of

refuelling adaptor to solve the problem. Thereby the study

offers the-state-of-the-art method to detect refuelling adaptor

and obtain its pose in autonomous ground refuelling approach

based on the combination of 2D object detection/3D object

tracking and pose estimation.

As the introduction to autonomous ground refuelling system

is presented in Section 1, the rest of the paper is organised as

follows: Section 2 outlines existing methods related to aircraft

refuelling.The brief explanation of the proposed method can

be found in Section 3. Section 4 covers the dataset preparation,

machine learning model and its structure, pose estimation

algorithms. The results and the discussion can be found in

Section 5. Finally the conclusion is presented in Section 6.

II. RELATED WORK

For autonomous ground refuelling system to achieve safe

approach and coupling procedure and increase its robustness,

accurate detection of the object and its pose are vital.

Existing visual measurement methods are mostly based on

artificial features. Due to their susceptibility to occlusion,

artificial features such as spray marks or LEDs caused

some problems. VisNav, short for visual navigation system,

developed by Valsek based on artificial features [7]–[11]. The

LEDs emit with different frequencies are mounted on the

system to detect the centre of the beacon with measuring units.

On the receiver side which generates a current according to

acquired modulated lights, position sensing diode is mounted.

Gaussian least-squares differential correction algorithm is

used to calculate the refuelling adaptor’s pose which is a

combination of beacon data. The main advantage of this

method is its ability to reduce the inference filtering the

light out on specific frequency bands in short distance. On

the contrary, method produces poor signal to noise ratio in

long distance due to the low-energy intensity acceptance of



position sensing diode.

The method which uses both vision system and global

positioning system’s fusion switch strategy is proposed by

Pollini [12]. To identify the refuelling adaptor, near infrared

filter and CCD camera are used along with mounted LEDs to

object. The distance between refuelling adaptor and nozzle

is measured using machine vision with installed marker

points as the position between tanker and the aircraft is

measured using GPS. To construct the best relation between

3D marker and 2D feature Lu, Hager and Mjolsness [13]

pose estimation algorithm is used with a fixed number of steps.

Using colour analysis, contour analysis and relative

position measurement algorithm Wang proposed a method

to detect the refuelling adaptor coating with a material has

high reflection characteristic [14], [15]. The projection of

refuelling adaptor and its characteristic relationship between

short and long axes can be used to obtain the yaw and the

pitch angles by combining the yaw and the pitch angles with

the pose measurement algorithm. In order to use the high

reflection characteristic of coating material, refuelling adaptor

needs to be modified in advance and forming the circle from

elliptical projection must be considered.

Using 3D Flash LIDAR camera and level set front

propagation method Chen is able to segment the image,

identify the returned colour and depth stream from LIDAR

camera and finally determine the desired object from the

multiple segments [16], [17]. The 3D point cloud data is

combined with RANSAC algorithm [18] to identify the

position of refuelling adaptor as the pose estimation of

refuelling adaptor is not applied. Moreover, modification of

refuelling adaptor is needed as it is based on artificial features.

There are many studies proposed based on grey scale and

the shape of the refuelling adaptor to detect the object and

estimate its pose [19]–[23]. Based on the contour feature

of refuelling adaptor and the threshold, Yin proposed a

method [19], [20] which uses spatial relationship between

inner region’s elliptical projection and the shape of the

inner region to detect the refuelling adaptor and its pose.

The drawback of the method is being not suitable for long

distance measurement as the ambiguity of circular feature

projection calculation is ignored.

Song’s detection strategy [21] is based on low-rank, multi

scale, sparse decomposition. As the method perform the

detection without any structural characteristics of the object,

it is highly susceptible to illumination in terms of foggy

and cloudy environment and can fail in highly complex

surrounding.

Martinez’s visual measurement scheme [22], [23] based

on the direct methodology has four stages: initialisation,

detection, tracking, and position estimation. In the detection

stage two different methods are being used: image threshold

segmentation and edge image template matching. According

to the studies which use only characterisation of the

object for detection, this method offers higher success

rate. The hierarchical multi-parametric and multi-resolution

implementation of the inverse compositional image alignment

strategy [24] is prefered for tracking stage. The HMPMR-

ICIA technique can achieve stable tracking with scale

invariance. The four points on the object determined as

referral points in order to use the world coordinate system to

define according to diameter of the object. To calculate the

relative position of the refuelling adaptor, the four referral

points are transformed into homography matrix. Template

matching forms the detection stage of the method and it

is the most time consuming stage as it includes different

variations of the object such as illumination, scale and

position. Empirical threshold is applied to segment the input

image to detect the object if the template matching fails as it

is not achievable to gather all conditions into the template.

During the position estimation stage the pitch and yaw

angles are ignored, therefore the pose estimation can not be

comprehended fully.

Fortunately, machine learning techniques have offered sat-

isfactory solutions to many problems [25]–[27]. There are

several studies adopted machine learning techniques to detect

the refuelling adaptor. Yin proposed a support vector machine

[28] performing block type classification method on the object.

Another method proposed by Wang which is using convolu-

tional neural networks [29].

III. SYSTEM DESIGN

Fig. 2. PosEst workflow



A novel PosEst method (Can be seen in Figure 2) does

not require any artificial features of the refuelling adaptor

to detect and determine its pose. Using the custom created

dataset, custom EfficienNet-B0 model has been trained on

PyTorch framework. After successful detection in colour

stream, the refuelling adaptor is also being detected in depth

stream. The real world coordinates of refuelling adaptor can

be derived using point cloud data in high accuracy. Using 2D

coordinates and 3D real world coordinates, its pose can be

derived using Perspective-n-Point algorithm from streams in

real-time.

The proposed method offers high speed, high accuracy and

easy implementation in real aviation problems. Autonomous

ground refuelling operation is a key to digital aviation.

According to IATA [33], it’s been foreseen that advanced

biometrics, autonomous robotic systems, greener energy

sources, VR/AR are going to play key roles in the future of

the airline industry.

A autonomous refuelling scenario as follows:

1) The aircraft needs to be in the park position.

2) The autonomous refuelling system pulls up to aircraft.

3) The manipulator swings towards aircraft, near the refu-

elling adaptor.

4) Using the 3D cameras and already constructed deep

learning algorithms, boom finds the refuelling adaptor

and guides towards to refuelling adaptor.

5) The fuel nozzle needs to be inserted carefully into

refuelling adaptor and commence refuelling.

6) Stop the refuelling once the desired fuel quantity has

been reached.

7) The boom is detached from the adaptor and stowed once

aircraft has been refuelled.

8) The autonomous refuelling system pulls away from the

aircraft.

9) The aircraft is ready to depart.

IV. METHODOLOGY

A. Dataset Preparation

Pressure refuelling adaptor [36] is a connection adaptor

for the delivery of pressurised fuel to aircrafts. The

design and construction of the refuelling adaptor must

conform to both MIL-A-25896 and MS24484-5 standards.

Military Standard, ”MIL-STD”, is a United States defence

standard and helps to fulfil standardisation objectives

by the U.S. Department of Defence. Standardisation is

beneficial in achieving interoperability, commonality, total

cost of ownership, reliability, ensuring products meet certain

requirements, compatibility with logistics systems and defence

related objectives [37]. Adaptor is generally constructed of

aluminium and high-strength stainless steel to ensure the

maximum durability and strength. The poppet assembly,

adaptor body and spider are precision investment cast for a

long-service life under high usage conditions.

Fig. 3. Pressurised fuel servicing adaptor [6]

Custom dataset plays fundamental and important role

due to the lack of acknowledged dataset for autonomous

ground refuelling as successful detection is considered. To be

able to train robust deep learning model, refuelling adaptor

dataset is collected from Boeing 737-400 aircraft. To make

sure to custom trained model works under any conditions,

different augmentation methods (Shown in Figure 4) such as

brightness, exposure, blur, flip have been applied to dataset.

The dataset contains 567 training, 162 validation and 81 test

images.

Fig. 4. Labelled dataset



The dataset has been collected using Intel® RealSense™

D435 [35] (Shown in Figure 5) depth camera. The camera has

Intel® RealSense™ D4 Vision Processor and it can stream

both RGB up to 1920x1080 resolution and Active Stereo

Depth up to 1280x720 resolution. Dual global shutter sensors

stream up to 90 FPS and their Field of View is over 90°. It

can accurately range from 20 centimetres to 10 metres [34].

Fig. 5. Intel® RealSense™ D435

B. Network Architecture

When more computational power is available, convolutional

neural networks which are commonly developed at a fixed

resource cost, scale up to achieve better accuracy. For

instance, only by increasing the number of layers ResNet

can be scaled up from ResNet-18 to ResNet-200 [38]. The

conventional approach for model scaling is to use larger input

image resolution for training or to arbitrarily increase the

width or depth of layers. Even these offer better accuracy,

often yield sub-optimal performance and need tiring manual

tuning. To obtain better convolutional neural network in

efficiency and accuracy, different kind of method has been

adopted as a principle [32].

EfficientNet [30] is a convolutional neural network as well

as being a scaling method that scales all dimensions of width,

depth, and resolution uniformly using compound coefficient.

EfficientNet’s scaling approach scales network’s depth, width

and resolution uniformly with a set of fixed scaling coefficients

unlike the conventional practice which is arbitrary scaling

the factors. To use 2N times more compute power, constant

coefficients α, β, γ determined by grid search on the original

model where they are used as the increase of the depth by

αN , the width by βN and the image size by γN . Instead of

using different number of coefficients, EfficientNet employs

a compound coefficient φ to scale network uniformly [39].

As the convolutional neural network is going to need more

layers to capture fine-grained patterns as the input image gets

bigger, balancing all the dimensions of the network gives better

overall performance on the contrary scaling depth, width and

resolution by different coefficients. Addition to MobileNetV2’s

squeeze-and-excitation blocks, EfficientNet-B0 network also

uses the inverted bottleneck residual blocks of MobileNetV2

[40].

Fig. 6. Comparison of scaling methods [32]

Baseline network also affects heavily the effectiveness of the

model scaling. To increase the performance of the model fur-

ther, new baseline network has been developed using AutoML

MNAS framework [41] which optimises both efficiency in

terms of FLOPS and accuracy. The newly developed baseline

network is similar to MnasNet and MobileNetV2 as it is

using mobile inverted bottleneck convolution but it is slightly

different due to the increase in FLOPS.

Fig. 7. The architecture of EfficientNet-B0 [32]



In contrast to conventional scaling methods, scaling

up baseline models such as ResNet and MobileNet using

compound scaling method increases model’s efficiency and

accuracy consistently. While reducing both FLOPS and

parameter size, EfficientNet achieve better efficiency and

higher accuracy over existing convolutional neural networks

on ImageNet [42] dataset. It can be seen in both figure 8 and

figure 9.

Fig. 8. Accuracy vs. Model Size [31]

Fig. 9. Accuracy vs. FLOPS [31]

To reveal the real performance of EfficientNet, other

datasets should be transferred even it is performing well on

ImageNet. To test this, well known datasets such as Flowers

[43] and CIFAR-100 [44] has been used. Even with an

order of magnitude reduction, EfficientNet obtained 98.8%

and 91.7% accuracies on Flowers and CIFAR-100 datasets

respectively. With the significant improvements in both

accuracy and efficiency, EfficientNet offers huge potential for

computer vision tasks.

The EfficientNet model has been trained on Google’s

Colab. It is a Jupyter [45] based notebook service which

provides free access to computing resources such as GPUs.

Even though it is free to access it resources, yet there are

some rules apply. Available resources can vary over time

in Colab as fluctuations happen in demand. This means

available GPU types, idle timeout period, maximum Virtual

Machine lifetime vary time to time [46]. Available computing

resources are usually Intel® Xeon® 2-core 2.2GHz CPU,

13GB RAM, 33GB HDD, Nvidia Tesla K80 GPU in free

edition. Estimating the training time should be considered

as Colab allows you to use Virtual Machine up to 12 hours

and also will disconnect you from Virtual Machine if you are

idle for too long. So it can be said smaller models are more

suitable to be trained on Colab. But Colab still offers lots of

functionality for free.

Colab offers following:

• Writing and executing code in Python

• Creating / Uploading / Sharing notebooks

• Importing/Saving notebooks from/to Google Drive

• Importing / Publishing notebooks from GitHub

• Importing external datasets

• Integrating TensorFlow, Keras, PyTorch, OpenCV

C. Object Detection and Tracking

During pre-processing stage, filters are implemented to

reduce the noise level and enhance the quality of the depth

stream [47]. Decimation filter has been applied to reduce the

depth scene complexity effectively. Kernel size of the filter

can vary from 2x2 to 8x8 pixels. While 4 − 8 pixels are

being selected for larger kernels, 2− 3 median depth value is

selected for patches in regards to performance considerations.

To preserve the aspect ratio, the image size is proportionally

scaled down in both width and height. Given the example

input size is 1280x720 and scale factor is 3, the calculation

would be [1280, 720]/3 -> [426.6666667, 240] -> [428, 240].
To compensate changes in the resolution, the frame intrinsic

parameters need to be recalculated after the new frame is

produced. As decimation filter uses non-zero pixels, it also

performs some hole filling operation.

The implementation of Spatial Edge-Preserving filter

is based on Eduardo’s paper [48]. The filter boosts the

smoothness of the depth data by performing a series of 1D

vertical and horizontal iterations. The key characteristics

of the filter are, not being affected by parameters as it is

linear-time compute and using high-order domain transform

[47].

To improve the depth persistency, temporal filter

manipulates per-pixel values based on the previous frames.



Temporal filter adjusts the depth values as well as updating

the track history by performing a single pass on the depth

data. In circumstances where the pixel data is invalid or

missing, the filter decides whether the missing value should be

corrected with stored data by using user defined persistency

mode. The filter is best-suited for static scenes as it relies on

historic data so smearing artefacts and visible blurring might

be seen [47].

Holes Filling filter uses several methods to correct missing

data in the stream. According to user defined rule, the filter

receive four immediate pixel neighbours which are left, right,

up, down pixels, and selects one of them [47]. The order of

the applied filters [49] can be seen in figure 10.

Object detection is a computer vision technique in which a

software system can detect, locate, and trace the object from

a given image or video. The special attribute about object

detection is that it identifies the class of object (person, table,

chair, etc.) and their location-specific coordinates in the given

image. The location is pointed out by drawing a bounding

box around the object. The bounding box may or may not

accurately locate the position of the object. The ability to

locate the object inside an image defines the performance of

the algorithm used for detection.

Detecting, locating and tracing the object in the given

image or video are main attributes of the object detection

software which is a computer vision technique. While

detecting the desired object and its class in the given stream,

it also identifies the object’s location. By drawing a bounding

box around the desired object, the location is being pointed

out. In some cases, bounding boxes might not be accurate

therefore post processing filters are used. The performance of

the algorithm is defined by the ability of locating the desired

object in the given stream [50].

To infer using custom trained PyTorch model, .pth file

needs to be loaded using torch.load(*.pth) command.

PyTorch [51] supports Nvidia GPUs for faster computation.

Whether there is a CUDA supported GPU available can

be learnt using if torch.cuda.is_available():

command . If there is by typing model = model.cuda(),

*.pth file can be sent to GPU. After having an input image,

scores, boxes = model(img.cuda()) command

makes predictions and obtains the scores and bounding boxes

of the desired object in the image.

To obtain stable results from the model, extended Kalman

filter is applied after inference. Linear quadratic estimation

also known as Kalman filter is a kind of algorithm which uses

a series of measurements monitored over time and produces

estimated values for unknown variables by approximating

joint probability distribution for each time frame which is

more accurate in contrast to a single measurement. One of the

developers is Rudolf E. Kálmán and filter was named after

him. Navigation, guidance and control of the vehicles are the

common applications of Kalman filter [52]. Robotic motion

planning, trajectory optimisation and robotic control are also

main topics of Kalman filter [53]. The algorithm forms from

two stages. The Kalman filter estimates the current state

variables in the prediction stage along with their uncertainties.

Once the next measurement is done which involves random

noise, estimations can be updated with weighted average.

As more weight is given to the algorithm, it can make the

estimations with higher certainty.

Predicted state estimate:

xk|k−1 = f(xk−1|k−1, uk) (1)

Predicted covariance estimate:

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (2)

As being a recursive algorithm, Kalman filter can run

in real time. To make the optimal calculation, the Kalman

filter assumes the noises are Gaussian. Regardless of being

Gaussian, if the measurements and processes of covariances

are known the Kalman filter is the best possible option for

linear estimation with the minimum mean-square-error [54].

Measurement residual:

yk = zk − h(xk|k−1) (3)

Residual covariance:

Sk = HkPk|k−1H
T
k +Rk (4)

Kalman gain:

Kk = Pk|k−1H
T
k S

−1

k (5)

Generalisations and extensions also have been applied to

the method such as the extended Kalman filter which works

on nonlinear systems [55].

As being a recursive estimator, the Kalman filter needs

current measurement and estimated state from previous time

step to estimate the current state. No estimation history is

needed contrast to batch estimation algorithms.

Updated state estimate:

xk|k = xk|k−1 +Kkyk (6)

Updated covariance estimate:

Pk|k = (I −KkHk)Pk|k−1 (7)

Transition matrix:

Fk =
∂f

∂x

∣

∣

∣

xk−1|k−1,uk

(8)

Observation matrix:

Hk =
∂h

∂x

∣

∣

∣

xk−1|k−1

(9)



Fig. 10. Filter flowchart

Two variables are used to represent the state of the filter.

xk|k−1 states the observations that has been estimated up to

the time k given. Pk|k−1 states the covariance matrix which

is a measure of the estimated accuracy.

Fig. 11. The Kalman filter workflow

As shown in the figure 11 above, the Kalman filter has

been adjusted to derive stable 3D world coordinates of the

object. The formulas mentioned in the above belongs to 1D

calculations. Extensions need to be done to the matrices.

Therefore xk is:

xk =





























x
ẋ
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F and G matrices need to be augmented:

F =





























1 0 0 ∆t 0 0 1

2
(∆t)2 0 0

0 1 0 0 ∆t 0 0 1

2
(∆t)2 0

0 0 1 0 0 ∆t 0 0 1

2
(∆t)2

0 0 0 1 0 0 ∆t 0 0
0 0 0 0 1 0 0 ∆t 0
0 0 0 0 0 1 0 0 ∆t
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





























(11)
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(12)

And R is:

R =





1 0 0
0 1 0
0 0 1



 (13)

Where ∆t is 0.001 which equals to 1000Hz. This represents

the Kalman filter’s frequency response.

D. 6D Pose Estimation

Detecting object’s location and orientation forms the 6D

pose estimation task which is important in robotic applications

where the robot needs to be aware about the location of the

object and estimate its pose to move towards to object for

further operations [56].

Fig. 12. Calculating the depth [57]

Stereo depth camera projects its infrared light onto a object

to improve the accuracy of the data, unlike structured light

camera, stereo camera can operate under any light condition

to measure depth. Stereo depth cameras has two sensors with



small space between. By taking two images from two sensor,

as the distance is known between sensors, a stereo depth

camera compares the images and uses the information to

calculate the depth [57].

As stereo depth camera employs visual features of the

object to measure, they work best in the most lighting

conditions. The Intel® RealSense™ D435 cameras have

additional an infrared projector which makes them to work in

low lighting conditions without having problems. Using depth

camera also interfering problem can be avoided in contrast to

coded light camera which usually would have.

To be able to calculate object’s pose, few parameters such

as camera intrinsic, camera extrinsic and homography need to

be obtained [58]. The camera calibration matrix usually called

camera intrinsic is K:

K =





αu γ u0
0 αv v0
0 0 1



 (14)

where αu and αv are the scale factor in (u, v) coordinates.

γ is called skew where u and v are non-perpendicular.

External parameters or camera extrinsic is a matrix where

R is a rotation matrix and t is a translation matrix.It represents

the euclidean transformation from a world coordinate system

to the camera coordinate system [58].

[R|t] =





r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



 (15)

After successful detection in RGB stream, both

streams can be aligned in order to obtain the

object’s real world coordinates from depth stream.

Using rs.align(rs.stream.color) and

frameset.get_depth_frame() commands, both

colour and depth streams are being aligned. After alignment

has been done, with rs2_deproject_pixel_to_point

command real world coordinates can be derived from

anywhere in the detection area as the centre of the object is

usually being selected in most of the cases.

Calculated a set of n 3D points in real world coordinates

and their corresponding 2D projections as well as the camera’s

intrinsic and extrinsic parameters, 6D pose estimation can be

obtained. The perspective project model [59] is:

spc = K
[

R|T
]

pw (16)

Fig. 13. Aligned streams

where homogeneous world point is pw = [x y z 1]T ,

corresponding homogeneous image point is pc = [u v 1]T ,

fx and fy are the scaled focal lengths, γ is the skew. This

leads to the equation for the model:

s





u
v
1



 =





fx γ u0
0 fy v0
0 0 1









r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3













x
y
z
1









(17)

As necessary information is given to cv2.solvePnP,

it produces the rotation and transformation vectors. A ro-

tation vector is a compact and convenient representation of

a rotation matrix. To be able to obtain Euler angles [60],

rotation vector needs to be converted to rotation matrix using

cv2.Rodrigues. The rotation matrix is shown as R:

R = cos(θ)I + (1− cosθ)rrT + sin(θ)





0 −rz ry
rz 0 −rx
−ry rx 0





(18)

From this point, converting rotation matrix to Euler angles

is easy. And the formulation follows:

Rx(ψ) =





1 0 0
0 cosψ −sinψ
0 sinψ cosψ



 (19)



Ry(θ) =





cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ



 (20)

Rz(φ) =





cosφ −sinφ 0
sinφ cosφ 0
0 0 1



 (21)

where ψ, θ and φ are the Euler angles [61].

V. RESULTS

A. Object Detection Results and Analysis

The statistical criteria accuracy, precision, recall, specificity,

F-measure and negative predictive value have been selected to

quantitatively evaluate whether the succession of the PosEst

method satisfies the autonomous ground refuelling approach

for high standards.

Classification accuracy is the simplest metrics to show the

model’s success.By itself, it delivers the basic understanding

of the results.

Accuracy:

A =
TP + TN

TP + TN + FP + FN
(22)

Precision is a good indicator to show the model’s learning

rate on specific classes. In binary classification is indicates

the model’s response to non-class data.

Precision:

P =
TP

TP + FP
(23)

Recall is another metric to differentiate the correct

classification.

Recall:

R =
TP

TP + FN
(24)

F scores are combining both precision and recall as being

a better indication method. It is a harmonic mean of precision

and recall.

F-measure:

F =
(1 + ρ) · P ·R

ρ · P +R
(25)

Specificity is another popular metric that is being used.

Specificity:

S =
TN

TN + FP
(26)

Negative predictive value is a proportion of negative results

that have been classified truly. Where the model performs

better, the negative predictive value is lower.

Negative Predictive Value:

NPV =
TN

TN + FN
(27)

To evaluate the method, test set has been prepared using

81 refuelling adaptor images and 162 non-refuelling adaptor

images. As can be seen in the figure 18, only 3 images

have been misclassified. Only 1 image falsely predicted as

a refuelling adaptor out of 243 images which is really low rate.

Fig. 14. Confusion Matrix

According to classification of test images, the results

belong to precision, recall, F scores are calculated and shown

below in the table.



TABLE I
METRICS TABLE

Accuracy % 98.7654321

Precision 0.975609756

Recall 0.987654321

F1-Score 0.981595092

F2-Score 0.97799511

Specificity 0.987654321

Negative Predictive Value 0.99378882

Overall results of the metrics are shown, custom trained

model performs well on the test data. As the accuracy is not

enough itself to evaluate the model, the other metrics such as

precision, recall, F scores need to be considered. Especially

having high precision and recall outcomes is showing

the effective response of the model to any circumstances.

Negative predictive value indicates the level of predicted false

negatives are really low.

Fig. 15. Detections from close-up

It is relatively easy to detect an object from close-up. In

the figure 15 above, refuelling adaptor can detected from

close distance and different angles as well. It also shows the

prediction rate is 100 which is quite high. In this case, the

object is positioned 20 centimetres from the camera.

Fig. 16. Detections from distant

In most of the cases, machine learning models struggle

to detect from far distances. In the figure 16, the refuelling

adaptor which is located 2 metres apart from camera detected

successfully. The model is also managed to obtain object’s

coordinates as well.

B. Pose Estimation Results and Analysis

Experiments have been carried out to analyse the results

and determine the success of the PosEst method. Real world

coordinates of the object x0, y0, z0 are compared with calcu-

lated x, y, z using PosEst method. Absolute distance error and

lateral error are the performance metrics for pose estimation

stage. They are calculated as follow:

ADE =
∣

∣

∣

√

x2 + y2 + z2 −
√

x2
0
+ y2

0
+ z2

0

∣

∣

∣
(28)

LE =
∣

∣

∣

√

x2 + y2 −
√

x2
0
+ y2

0

∣

∣

∣
(29)

To be able to measure the coordinates of the refuelling adap-

tor correctly, method needs to detect the refuelling adaptor in

colour stream with high accuracy. Therefore, detected object’s

bounding box values need to be compared with its ground

truth. The Intersection over Union provides a metric as the

amount of predicted bounding box overlaps with the ground

truth bounding box divided by the total area of both bounding

boxes. Different Intersection over Union thresholds are defined

starting at 0.5 and increasing to 0.95 by 0.05. In this case,

0.5 and 0.95 have been selected to evaluate the detections.

This also an indication for correct coordinate derivation as the

method is using both streams to obtain the coordinates. In this

regards, accurate bounding box prediction is really important.

The results belong the method can be seen in figure 17 and

the metrics for bounding box mAP@0.5 and mAP@0.95
are measured as 0.996, 0.951 respectively. High accuracy in

bounding box overlapping gives us accurate measurement in

pose estimation. Constructing the refuelling adaptor in 3D

space relies on the correct prediction in colour stream. Aligned

streams in figure 13 has shown accurate construction of the

object in 3D space as well.



Fig. 17. The results of PosEst model

VI. CONCLUSIONS

This study presents a method ”PosEst” in order to facilitate

3D object grasping and 3D object tracking problems. Main

moral of this study is to increase safety and efficiency by

using autonomous systems in aircraft refuelling task. Aviation

is one of the areas where high technology is being used. With

the developing technology, it is predicted aviation will be sub-

jected to a great digitalisation in the next 20 years. From the

moment you enter the airport, smart security services, smart

border controls and fully autonomous passenger aircrafts are

the part of this change. With the development of technology,

the need for people is decreasing in every field. The gap left

by people can be filled by autonomous systems that could do

their work tirelessly, more efficiently, faster and with higher

precision. It has been observed the system can detect the

refuelling adaptor and estimate its pose with high accuracy

and precision. Currently the system is designed to detect the

refuelling adaptor of Boeing 737-400 aircraft. Training set

should be increased in order to work with other aircraft. After

applying the Kalman filter instability in the system has been

removed. However, there is a delay in the response of the

system. This delay is not at a level that will affect the operation

but this delay can be eliminated by working with alternative

filtering methods.
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