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Chinese government has proposed a national contribution plan that involves achieving the
peak CO2 emissions by 2030 and carbon neutrality by 2060. To explore the pathway of
achieving carbon neutrality, we tried to use resources taxes and land reclamation deposits
as compulsory ecological compensation (CEC). In order to test if CEC can affect CO2

emissions, energy intensity was selected as the intermediate variable. We found that the
CO2 emissions trend in China is consistent with environmental Kuznets curve hypothesis
and proved that CEC displayed a spillover effect on energy intensity. Likely, energy intensity
presented a spillover effect on CO2 emissions. Therefore, CEC will spatially affect CO2

emissions. The generalized spatial two-stage least-squares estimate model was used to
identify the impact mechanism of coal production on energy intensity with CEC as the
instrumental variable. The results indicated that reducing coal production in neighboring
regions may cause the mitigation of local CO2 emissions. Finally, regression analyses
carried out by region suggested regional cooperation should be carried out in the process
of carbon mitigation.

Keywords: CO2 emissions, compulsory ecological compensation, environmental Kuznets curve, intermediate
variable, spatial econometric model

INTRODUCTION

The Chinese government has proposed a national contribution plan achieving the peak CO2

emissions by 2030 (Malakoff, 2014) and carbon neutrality by 2060 (Cui et al., 2021). However,
China contributed the most CO2 emissions in the world. Because the energy intensity (energy
consumption per unit of GDP) is much higher in China than that for other countries (Li et al.,
2015). Wang et al. (2019) attributed excessive energy consumption to the fact that energy prices
did not include environmental costs. Energy price is the essential factor for carbon intensity and
energy intensity and is the crux to CO2 emission mitigation (Lin and Liu, 2010). However, coal
contributed 82.9% of CO2 emissions (Lin and Wu, 2018). Therefore, coal should be charged for its
external costs to reduce energy intensity and CO2 emissions in China. Besides, coal mining is the
main reason for the damaged land (He and Su, 2002). The damaged area caused by mining reached
47,661 hectares in 2017 (MLR, 2018). To test whether compensation for the damaged land caused
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by mining not only can reduce energy intensity but also can
mitigate CO2 emissions is the original intention of this study.

According to the principle of who destroys who governs, the
Chinese government imposed compensation fees including
resource taxes according to the exploited resources and the
security deposit paid for the remediation and restoration of the
mine geological environment according to damaged areas caused
by mining. For specific terms, refer to Article 5 of the
Implementation Rules of the Mineral Resources Law of the
People’s Republic of China1 and Article 18 of the Regulations
on Mine Geological Environment Protection2. According to these,
we set up an indicator called compulsory ecological compensation
(CEC). Existing ecological compensation policies focus only on
how to subsidize land reclamation, and resource taxes are not used
to mitigate CO2 emissions. As China is setting more light on the
development quality, economic development can no longer rely on
energy consumption regardless of external costs. Economic
development can no longer rely on energy consumption
regardless of external costs. CEC can be considered as
compensation for the negative externalities caused by coal
mining. However, regarding ecology compensation, previous
studies either only focus on the land loss of stakeholders
(Kidido et al., 2015; Adonteng-Kissi, 2017; Shackleton, 2020) or
highlight its impact on sustainable development (Novoselov et al.,
2021). Although the interconnecting mechanism between land loss
and coal-fired pollution emissions has been recovered (Li et al.,
2019b), previous research has not fully considered the relationship
between ecological compensation and CO2 emission mitigation.

To fill these gaps, this study tried to reveal the mechanism that
CEC for damaged land has a spillover effect on CO2 emissions by
spatially affecting energy intensity. First, we used spatial
econometrics to estimate CO2 emissions and energy intensity
in two stages. Second, we focus on the study of the impact of coal
production on energy intensity in different regions. Our article is
organized as follows. The second part is the literature review and
the induced hypothesis. The methodology is shown in the third
section. The following section is the results and discussion. In the
end, we present the conclusion.

LITERATURE REVIEW

The Relationship Between Charging for
Environmental Externalities and CO2

Emissions
Studies have also come to different conclusions about the effects
of compensation on the environment. For example, Silva et al.
(2021) argued that financial compensation for mining activities is
useless for mitigating the negative environmental impacts in
Brazil. By contrast, Bennett et al. (2018) proved that
environmental compensation indeed mitigates negative
externality. The reason for this difference is that the objects of

compensation are different. Mining activities in other countries
mainly refer to nonenergy minerals, whereas coal mining is the
dominant mining activity in China. Charging for coal resources
would be more inclined to mitigate CO2 emissions.

Compensation, carbon taxes, and resource taxes can be used as
policy instruments to charge for environmental externalities. For
example, Whitmore (2020) concluded that compensation could
be a motivation tool to manage climate change. In addition,
previous studies suggested carbon taxes are helpful to reduce
energy demand (Lin and Jia, 2018; Liu et al., 2018) and mitigate
CO2 emissions (Li et al., 2019a; Wang and Yu, 2021). Moreover,
the effect of mineral rent on CO2 emissions has been revealed
(Yue et al., 2020). Resource tax is beneficial to achieve efficient
utilization of coal by increasing the cost. Shen et al. (2021) found
that resource taxes could mitigate CO2 emissions. Lin and Jia
(2020) insisted that resource taxes can manage negative
environmental externalities such as carbon emissions more
effectively by controlling supply. Wang and Yu (2021) argued
that the resource tax should not be too low because it can
effectively control carbon emissions. These all show that
charging for the negative environmental externalities is of
great significance for CO2 emission mitigation in China.

Coal Production and Energy Intensity
Coal production and energy intensity are interrelated. The
relationship is not as apparent as it is with carbon emissions.
A good example is in coal-rich East Europe; the reliance on coal
has led to relatively higher energy intensity (Nielsen et al., 2018).
Likewise, it has been proved that some Western European
countries such as Britain and Germany have been slow to
decline in energy intensity because they have access to cheap
coal (Fouquet, 2016). The type of energy consumed is proved to
be the determining factor in declining energy intensity
(Gentvilaite et al., 2015). As coal is a relatively cheap energy
source, too much reliance on it will not help improve energy
intensity. SomeNordic countries that lack coal endowments, such
as Sweden, declined their energy intensity decline rapidly
(Kander et al., 2017).

Spatial Correlation of Energy Intensity and
CO2 Emissions
Previous research has proved the unbalanced development of
regional energy intensity exists (Song et al., 2018; Yu et al., 2018;
Wang et al., 2019; Mussini, 2020). And it is concluded that energy
intensity was one of the dominating factors determining the
spatiotemporal patterns of China’s carbon intensity (Cheng
et al., 2014) and revealed energy intensity displays a spillover
effect in China (Wang et al., 2019). Besides, neighborhood effects
of CO2 emissions have been recovered (Mussini, 2020; Shahnazi
and Shabani, 2021). It enlightened us that the spatial analysis of
energy intensity and CO2 emissions should be adopted.

Literature Revelation and Hypothesis
Combing the literature, we get the following three points: (1)
charging for environmental externalities can mitigate carbon
emissions; (2) coal production is closely related to energy

1http://f.mnr.gov.cn/201907/t20190728_2449555.html
2http://f.mnr.gov.cn/201702/t20170206_1436681.html
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intensity; and (3) both energy intensity and carbon emissions
have spatial autocorrelation. However, how charging for
environmental externalities affects CO2 emissions is not clear.
Considering coal production could affect the trajectory of energy
intensity, and energy intensity and carbon emissions are closely
linked, we put forward the hypothesis that coal production will
affect CO2 emissions positively by influencing energy intensity.
We expect to prove that charging for coal production could act as
an instrument in mitigating the CO2 emission process. We aim to
reveal the spatial spillover effect of charges on CO2 emission
mitigation. Our innovation is to consider CEC for damaged land
as an incentive instrument.

DATA AND METHODOLOGY

The Definition of CEC
We set up an indicator named CEC. It is the sum of the resources
tax and the security deposit paid for the remediation and
restoration of the mine geological environment. The data of
resource tax are taken from the China Tax Yearbook,3 and the
data of mine geological environment restoration deposit is taken
from the China Land and Resources Statistical Yearbook.4

Although it may be lower than the cost of ecology restoration,
it is still the most reliable data.

Data Processing
The Calculation of CO2 Emissions and Energy Intensity
In order to verify the spatial aggregation effect and heterogeneity
of CO2 emissions and clarify the effect factors, we first calculated
CO2 emissions and the energy intensity. CO2 emissions mainly
stem from the consumption of fossil energy and industrial
processes. This calculation does not include CO2 emissions of
the agricultural process because the CO2 emissions calculated in
the first two parts have accounted for more than 90% of the
whole, and CO2 emissions from agriculture energy consumption
have been included when calculating fossil energy. Moreover, the
impact of CEC on the energy intensity of the agriculture process is
not as significant as that of fossil energy consumption and
industrial processes.

(1) CO2 emissions from the consumption of fossil energy.
Previous studies (Cheng et al., 2014; Wu et al., 2020; Zhang et al.,
2020) used eight kinds of fossil energy sources to build the
formula (Equation 1).

Emci,t � ⎛⎝1.012 ×∑8
j�1

Ei,j × LCVj × CEFj × COFj + Cemi

× EFcem
⎞⎠ × 44

12
(1)

Herein, Emci,t corresponds to the total CO2 emissions in
province i for year t; Ei,j indicates the natural gas, diesel oil, coal

oil, gasoline, fuel oil, crude oil, coke, and coal,
which corresponds to the eight types of fossil energy
used for year t in province i; LCVj represents the
average low-order calorific value for each type of fossil
energy that can be found in Appendix 4 of the China
Energy Statistical Yearbook (NBS, 2018); CEFj denotes the
carbon content of energy j; COFj is the rate of carbon
oxidation. The values of CEFj and COFj were taken from
IPCC (2006).

(2) CO2 emissions from the industrial process. The
coefficient 1.012 represents the total emissions resulting from
fossil energy consumption and other industrial processes such
as ammonia production, lime production, and steel production.
These are equivalent to 1.2% of China’s emissions from fossil
fuel combustion (Liu et al., 2015). Besides, CO2 emissions from
cement production were introduced. Cemi denotes cement
production in province i; EFcem represents the cement
emission factor, which displays a value of 0.1065 (IPCC,
2006; Liu et al., 2015); and 44/12 is the molecular weight
ratio of CO2.

Energy intensity is expressed as the ratio of energy
consumption to GDP (Cheng et al., 2014; Li et al., 2019b; Liu
and Song, 2020). In order to calculate energy intensity, in addition
to fossil fuels, we added electricity.5 Each energy source was
converted into its corresponding standard coal consumption and
is shown in Eq. 2.

Eini,t � 1
GDP

∑8
j�1
(Ei,j × LCVj + Elei × LCVe) (2)

Eini,t represents energy intensity in province i for year t; Elee
corresponds to electricity consumption in province i for year t;
LCVe indicates the average low-order calorific value of electricity;
the values were taken from Supplementary Appendix S4 of the
China Energy Statistical Yearbook, 2018.

The Method to Test Spatial Correlation
To test the spatial relationship among CEC, CO2 emissions,
and energy intensity, Moran’s I6 was used. Both Moran’s I and
spatial analysis need to determine spatial weight matrix
initially. The weight matrix represents the importance of
each province. According to Tobler’s first law of geography,
the attributes of spatial observations close to each other are
more similar than those dispersed. We also used a row-
normalized inverse distance weight matrix Wi,j, which
equals 1/di,j. di,j represented the distance between the i and
the j (i ≠ j) provinces, based on the latitude and longitude of
the capital city in each province. This spatial weight matrix

3https://data.cnki.net/yearbook/Single/N2020050205
4https://data.cnki.net/yearbook/Single/N2020030130

5In order to avoid double calculations, the electricity consumption refers to
electricity consumption from non-fossil energy sources.
6Moran’I statistic: � ∑n

i�1 ∑n

j�1 wi,j(xi−�x)(xj−x)
S2 ∑n

i�1 ∑n

j�1 wi,j
, among them S2 � ∑n

i�1(xi−x)
2

n is the sample

variance, wi,j is the spatial weight matrix. ∑n
i�1 ∑n

j�1 wi,j is the sum of all weights. The
value of Moran’I ranges from -1 to 1, and greater than 0 indicates a positive
correlation. In other words, the high values are adjacent to the high ones, and the low
values are adjacent to the lows. A value less than 0 indicates a negative correlation,
which denotes the high values are adjacent to the low values.
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ensures that variables of neighboring provinces decrease with
distance and vice versa. Table 1 shows the description and
sources of each variable.

Research Framework
As coal resources display regional disparity among provinces, the
damaged land caused by coal mining activities has the
characteristics of spatial aggregation. CEC for the damaged
land (Supplementary Figure S1) is also spatially converged
and heterogeneous. It has been concluded that CO2 emissions
are also spatially heterogeneous (Liu and Liu, 2019; Li et al., 2020;
Li and Li, 2020).

To investigate the impact mechanism of CEC for destructed
land on CO2 emissions and to avoid bias, spatial spillover effects
analysis was used in this study. Furthermore, we used energy
intensity as an intermediate variable. To research the mechanism
of CEC on CO2 emissions, the research framework contained four
steps (Figure1).

Step 1: We tested spatial convergence spatial correlation
characteristics using Moran’s I and Moran scatterplot.
Step 2: The spillover effect of energy intensity on CO2

emissions was examined by comparing three spatial
econometric models of the spatial Durbin model (SDM),

TABLE 1 | List of explanatory variables used in the analysis and data sources.

Name of
variable

Description Data source

E Eight types of fossil energy (104 tons) including natural gas, diesel oil, coal oil,
gasoline, fuel oil, crude oil, coke, and coal

China energy statistical yearbook

Cem Production of cement (104 tons) National Bureau of Statistics: https://data.stats.gov.cn
Emc CO2 emissions (104 tons) Calculated using Eq. 1
GDP Gross domestic production (104 CNY) National Bureau of Statistics: https://data.stats.gov.cn
Pop Population (104 persons) National Bureau of Statistics: https://data.stats.gov.cn
Ein Energy intensity (t/104 CNY) The ratio of the total energy consumption (standard coal equivalent)

to GDP
FDI The ratio of foreign direct investment to total GDP National Bureau of Statistics: https://data.stats.gov.cn
Urba Urbanization: the proportion of urban population in the totala National Bureau of Statistics: https://data.stats.gov.cn
Ist Industrial structure: the percentage of industrial added value to GDPb National Bureau of Statistics: https://data.stats.gov.cn
Epr Coal prices (Qinhuangdao port, 5,500 kcal/kg) Wind Database
Cpro Coal production China energy statistical yearbook
CEC Compulsory ecological compensation (resources tax plus amount of security

deposit)
Security deposit: China land and resources statistical yearbook;
resources tax: China Tax Yearbook

Notes: aThis kind of expression is questioned due to the inconsistency of the household registration system with population movements (Ni et al., 2014) and the reasonableness of
statistical calibers (Tao and Xu, 2005), and so on, to simplify the analysis, we used this indicator to represent the level of urbanization. bThis variable was used by Lin and Jiang, (2009).

FIGURE 1 | Research framework diagram.
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the spatial lag model (spatial autoregressive [SAR]), and the
spatial error model (SEM).
Step 3: SAR, SEM, and SDMmodels were compared to test the
spillover effect of CEC on energy intensity.
Step 4: Using generalized spatial two-stage least-squares
estimates (GS2SLSs) to analyze the impact of CEC and
coal production on energy intensity. As CEC would
increase the cost of coal mining and affect coal
production, coal production was considered as an
explanatory variable of energy intensity.

The Model Specification
Considering the particularity of the geographical environment of
Tibet and the poor availability of data for Hong Kong, Macao, and
Taiwan, we selected annual panel data for 30 provinces covering
the period 2009–2017.

Spatial econometrics method was selected to test the direct and
the spillover effect of damaged land compensation on energy
intensity and CO2 emissions. According to the strategy proposed
by Belotti et al. (2016) and Elhorst (2014), we selected panel SDM
as a general specification and tested for the alternatives. The panel
SDM is represented in Eq. 3:

Yi,t � ρ∑n
j�1

Wi,jYi,t + βXi,t +∑n
j�1

Wi,jXi,tθ + μi + μt

+ εi,t εi,t ∼ i.i.d(0, σ2) (3)

where Yi,t is a vector of the dependent variable for province i and
year t; (i � 1, . . . , n, t � 1, . . . , T). ∑n

j�1 Wi,jYi,t represents the
effects of the interaction between the dependent variables of
neighboring provinces. ρ is the spatial autoregressive
coefficient that measures the magnitude of interaction among
provinces.Xi,t is a matrix of observations for the explanatory
variables with an associated vector of coefficients β. θ indicates
the spatial lag coefficients of explanatory variables, whereas μi and
μt are the fixed effects of space and time, respectively. εi,t
represents the error term, which is independent and
identically distributed with the mean equals zero; the variance
is σ2.Wi,j corresponds to the weight matrix. Following Elhorst
(2014), from the panel SDM, a family of spatial econometric
models can be deduced using the likelihood ratio tests. If the
restriction θ � −ρβ is considered, the SEM can be obtained. It
indicates that spatial dependence exists only in the error term. If
θ � 0 and ρ≠ 0, the SAR model is obtained. This model implies
that spatial dependence only occurs for the dependent variable
and reveals the interrelation of dependent variables among
adjacent provinces.

CO2 emissions are the dependent variables in the first stage.
Eq. 4 presents the initial dependent variable (Emci,t); the
descriptions of other explanatory variables are shown in
Table 1. The environmental Kuznets curve (EKC) hypothesis
was examined by Grossman and Krueger (1995) and Shafik and
Bandyopadhyay (1992), and it has been proven at the city level,
province level, and national level in China (Kang et al., 2016; Jiang
et al., 2019; Chen et al., 2020). We determined selecting the
squared term of GDP for that the relationship between economic
development level and CO2 emissions should not be linear.

lnEmci,t � αi + ρ∑n
j�1

WijlnEmci,t + β1lnGDPi,t + β2(lnGDP)2i,t

+ β3lnPopi,t + β4Eini,t + β5FDIi,t

+ φ1 ∑n
j�1

Wi,jlnGDPi,t + φ2 ∑n
j�1

Wi,j(lnGDP)2i,t

+ φ3 ∑n
j�1

Wi,jlnPopi,t + φ4 ∑n
j�1

Wi,jEini,t

+ φ4 ∑n
j�1

Wi,jEini,t + φ5 ∑n
j�1

Wi,jFDIi,t + μi + μt + εi,t

(4)

The references related to independent variables are shown
in Table 2. According to previous studies (Liu and Liu, 2019; Li
et al., 2020; Li and Li, 2020; Liu and Song, 2020; Zhang et al.,
2020), we chose the energy intensity as the explanatory
variable in the initial. The multicollinearity problem of
selected variables was tested by variance inflation factor
(VIF) test (Tables 3, 4).

We started by hypothesizing that energy intensity (Ein) is an
endogenous variable. Then, the Hausman specification test was used
to test the endogeneity ofEin.When the null hypothesis is not rejected,
we can affirm the SDM model provides a consistent estimation and
ensures a relatively small variance. In order to recover the impact
mechanism of CEC on energy intensity, we introduced Eq. 5 and
choseEini,t, Urba, Ist, lnCEC, and lnEpr as explanatory variables. The
descriptions of the variables are summarized in Table 1. The
references are in Table 2. We start the analysis with the panel SDM.

Eini,t � αi + ρ∑n
j�1

WijEini,t + β6Urbai,t + β7Isti,t + β8lnCECi,t

+ β9lnEpri,t + φ6 ∑n
j�1

Wi,jUrbai,t + φ7 ∑n
j�1

Wi,jIsti,t

+ φ8 ∑n
j�1

Wi,jlnECi,t + φ9 ∑n
j�1

Wi,jlnEpri,t + ui + ut + εi,t

(5)

As most of the damaged land has been caused by coal mining
activities, Cpro was used as a new explanatory variable and Ist
and lnEpr as the remaining explanatory variables. GS2SLS
methods were applied (Kelejian and Robinson, 1993; Kelejian
and Prucha, 1999) if coal production was endogenous. Finally,
because of the spatial heterogeneity of coal distribution, China’s
territory was divided into three regions: the east, central, and west
(Supplementary Figure S3). The GS2SLS method was applied in
order to perform a regional analysis and provide a basis for
interaction between regions during CO2 emission mitigation.

RESULTS AND DISCUSSION

Multicollinearity Tests
Tables 3 and 4 show that the selected variables for Eqs 4, 5 are
correlated to a low degree. The values of the coefficients are all less
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than 0.8. The VIF values are all less than 10. We could conclude
that multicollinearity does not exist in explanatory variables in
the equations.

Statistical Descriptions and Spatial
Characterization of CEC, CO2 Emissions,
and Energy Intensity
Supplementary Figures S2A,B show the spatial distribution of
CO2 emissions in each province. Data indicated that CO2

emissions in China display spatial agglomeration. High-carbon
emission areas are those rich in coal resources, such as Shanxi,
Inner Mongolia, and Xinjiang and the developed provinces such
as Shandong, Jiangsu, and Guangdong. Supplementary Figures
S2C,D show that energy intensity is also spatially agglomerated.
The high-value provinces are leading coal producers, such as
Inner Mongolia, Shanxi, Xinjiang, and Ningxia.

Table 5 shows the results of Moran’s I for CEC, CO2

emissions, and energy intensity. The values are all positively

significant at the 5% level, indicating that CEC, Emc, and Ein
are spatially converged.

The scatterplot points mostly fall in the first (the upper-right
region formed by the x-coordinate and the y-coordinate) and
third quadrants (the lower-left region formed by the
x-coordinate and the y-coordinate) (Figure 2). When the
scatter falls in the first quadrant, it means that the high value
is adjacent to the high value, and when the scatter falls in the
third quadrant, it means that the low value is adjacent to the low
one. CEC is closely related to the land damaged by coal mining.
However, the distribution of coal resources in China has
significant regional differences and shows the characteristics
of relatively concentrated aggregation. Specifically, it is mainly
distributed in the north, the northeast, northwest, and
southwest. That is the reason why CEC (Figures 2A,B)
presents spatial aggregation. These results indicated that
energy intensity (Figures 2C,D) and CO2 emissions (Figures
2E,F) are highly spatial correlated. In other words, it shows
high–high agglomeration and low–low agglomeration.

TABLE 2 | Summary of factors determining dependent variables.

Dependent variable Explanatory variable Findings in the
previous research

Carbon emissions Per capita GDP or GDP Yang et al. (2019); Zhang et al. (2020); Wu et al. (2020); Li and Li (2020); Li et al. (2020); Liu and Liu
(2019); Liu and Song (2020); Cui et al. (2019); Chen and Lee (2020)

The squared term of GDP Wu et al. (2020); Li and Li (2020)
Population Yang et al. (2019); Li et al. (2020); Liu and Liu (2019); Chen and Lee (2020)
Energy intensity or energy
efficiency

Zhang et al. (2020); Li and Li (2020); Li et al. (2020); Liu and Liu (2019); Liu and Song (2020)

FDI Cheng et al. (2014); Long et al. (2020)
Energy intensity or carbon
intensity

Industrial structure Wang et al. (2019); Song et al. (2018); Lv et al. (2017); Long et al. (2016); Cheng et al. (2014)
Energy price Wang et al. (2019); Lv et al. (2017); Zhong et al. (2018); Neng (2011)
CEC of destructed land Our new idea

TABLE 3 | Correlation coefficient matrix and VIF tests for lnEmc.

Dependent variable:
lnEmc

VIF lnEMC lnGDP lnPop Ein FDI

lnEMC 1.000
lnGDP 4.36 0.466*** 1.000
lnPop 3.81 0.522*** 0.697*** 1.000
Ein 1.46 0.041*** 0.251*** 0.127*** 1.000
FDI 1.31 0.010 0.054*** 0.000 0.129*** 1.000

Notes: ***p < 0.1.

TABLE 4 | Correlation coefficient matrix and VIF tests for Ein.

Dependent variable:
Ein

VIF Ein Urba Ist lnCEC lnEpr

Ein 1.000
Urba 1.34 0.111*** 1.000
Ist 1.27 0.009 0.038*** 1.000
lnCEC 1.51 0.049*** 0.195*** 0.120*** 1.000
lnEpr 1.21 0.007 0.019** 0.082*** 0.120** 1.000

Notes: **p < 0.05, ***p < 0.1.
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Spatial Spillover Effects of Energy Intensity
on CO2 Emissions
According to Table 2, when we estimate the equation with
carbon emissions as the dependent variable, GDP, the squared
term of GDP, population, and FDI could be chosen as the
explanatory variables. When energy intensity was selected as the
dependent variable, FDI, industrial structure, energy price, and
CEC could be used as independent variables. Thus, we tried to
establish a carbon emission determination model using the
above explanatory variables with the help of the GS2SLS
method. In the equation, Ein was chosen as the endogenous
explanatory variable. Hausman specification test (Hausman,
1978) results (Hausman value equals −0.621, and the p value
equals 0.987) show that the Ein is not endogenous. Given this
result, we used the xsmle estimator7 in Stata, according to Belotti
et al. (2016), and obtained the spatial panel estimation models.
Ein was used as an explanatory variable analyzing CO2

emissions (Table 2). The results (Table 6) indicate that the
SDM model shows the best specification of all three models.
Table 6 shows the results for spatial spillover effects of energy
intensity on CO2 emissions. The Hausman tests indicated that
fixed effects are suitable for all the models. Thus, the SDM
model was chosen in the initial. In addition, the spatial ρ is
significant, which denotes that spatial correlation ship exists
among provinces (Table 6). Moreover, results indicate that
GDP is positive, and the coefficient of GDP squared is
negative. These data support the validity of the EKC
hypothesis for Chinese provinces. In addition, the coefficients
of Pop, FDI, and the corresponding lagged terms are all
insignificant. Ein and its spatially lagged term are all

statistically significant. Their coefficients are equal to 0.533
and 0.643, respectively. Besides, the indirect effect of Ein is
significant (Table 7).

Carbon constraints have not been implemented in China,
which is probably why Ein is not endogenous. In addition, the
bidirectional transmission channel between CO2 emissions and
energy intensity has not been established. However, it can be
predicted that if a carbon-restraint mechanism is established in
the future, Ein will become an endogenous variable for CO2

emissions. The significant coefficients of GDP and its squared
term imply that China’s carbon peak target is achievable. Data for
CO2 emissions show an inverted U-shaped curve. As GDP grows,
CO2 emissions will inevitably present an inflexion point. This
conclusion can be supported by Baz et al. (2020) and Yue et al.
(2020). The lagged term of the FDI is not significant, which
indicates that FDI does not significantly influence China’s CO2

emissions. On the other hand, our results differ from those that FDI
can reduce carbon productivity by bringing technological
innovation (Long et al., 2020). And our results are against the
previous conclusion that FDI has a positive impact on CO2

emissions (Shahbaz et al., 2018). Thus, China cannot expect to
use FDI to reduce the energy intensity but should seek other
motivation. However, the variable Ein and its spatially lagged term
indicated that if energy intensity can be reduced by 1%, CO2

emissions can also be reduced by approximately 0.53%, CO2

emissions in neighboring provinces can be reduced by
approximately 0.65%. The indirect effect of Ein proves that the
spatial spillover effect of Ein is significant. Furthermore, the total
effect of Ein is significant and higher than its direct effect. It may
indicate that energy intensity affects CO2 emissions not only of the
local region but also other regions. Thus, in the process of CO2

emission mitigation, attention should be paid to the spillover effect
of energy intensity. The spillover effects are attributed to industrial
transfer among regions (Li et al., 2018) and the mimicry of the
neighborhood (Wang et al., 2019). This study insists that the
unbalanced distribution and consumption of coal resources lead
to the spatial spillover effect of energy intensity on CO2 emissions.
A decrease in energy intensity of neighboring provinces will cause
coal exporting decline from coal production provinces.

Spatial Spillover Effects of CEC on Energy
Intensity
Although compelling evidence for spatial convergence and
correlation of energy intensity in China has been recovered
(Liu et al., 2017; Lv et al., 2017; Yu et al., 2018; Wang et al.,
2019), we should find out how to reduce Chinese energy intensity.
Table 8 shows spatial spillover effects of CEC on energy intensity,
which presents the results of SDM, SAR, and SEM models in the
second stage. The spatial error parameter, ρ, was statistically
significant in these three spatial panel data models, indicating that
energy intensity displays spatial correlation. The SDMmodel was
chosen as it showed the best specification of all three models
(Table 8). Table 8 also indicates that the Urba was significantly
negative at the 1% level. The indirect effect of CEC negatively
impacts energy intensity, with the coefficient value significantly
equaling −0.121 (Table 7).

TABLE 5 | Moran’s I statistics of CEC, CO2 emissions and energy intensity from
2009 to 2017.

Moran’s I CEC Emc Ein

2009 0.039** 0.163** 0.155**
[0.036] [0.093] [0.088]

2010 0.167** 0.191*** 0.163**
[0.094] [0.094] [0.087]

2011 0.028 0.181** 0.170**
[0.085] [0.095] [0.085]

2012 0.044 0.218*** 0.197**
[0.093] [0.095] [0.089]

2013 0.019* 0.229*** 0.146***
[0.034] [0.090] [0.077]

2014 0.134* 0.237*** 0.143***
[0.095] [0.089] [0.076]

2015 0.014* 0.237*** 0.144***
[0.034] [0.090] [0.076]

2016 0.024** 0.212*** 0.144***
[0.034] [0.091] [0.077]

2017 0.040*** 0.197*** 0.169***
[0.032] [0.089] [0.083]

Notes: The values in brackets correspond to standard errors, *p < 0.01, **p < 0.05,
***p < 0.1.

7It is a computer command for spatial econometrics.
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The Urba variable indicated that the direct impact of
urbanization on energy intensity is negative. Urbanization-
brought related industries developed. As a result,
infrastructures were improved, and energy intensity was
reduced (Chen et al., 2019). The spatial lagged lnCEC
coefficient implies that CEC presented a spillover effect on
energy intensity. Therefore, CEC should no longer be an issue
of one single region; it should be spatially related. Thus, CEC

should be performed at a national level. Combined with the
conclusions of The Definition of CEC (as the indirect effects are
shown in Table 7, the spatial spillover effect of CEC on CO2

emissions can be proven). It reflects a transmission mechanism:
CEC has a spatial spillover effect on energy intensity. Meanwhile,
energy intensity also has a spatial spillover effect on CO2

emissions. In other words, for every 1% increase in CEC in
the neighboring regions, local CO2 emissions may be mitigated by

FIGURE 2 | Scatterplots of Moran ’I of CEC, Energy intensiy and Carbon emissions for 2009 and 2017.
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approximately 0.03%. Previous research insisted people use
resources tax (Lin and Jia, 2020; Wang and Yu, 2021) to
manage negative environmental externalities and mitigate CO2

emissions. Others suggested that the coal resources tax is helpful
to solve the issue of land damage and CO2 emissions (Li et al.,
2019a). However, this study proved that CEC is helpful for
mitigating CO2 emissions through the intermediate variable of
energy intensity because CEC could increase the cost of fossil
energy consumption and then drive down coal consumption.
More importantly, CEC should be included as one of the carbon
management tools.

Spatial Effect of Coal Production on Energy
Intensity
In China, the CEC standard is not determined according to the
real amount of ecological value loss. Instead, it is determined by
coal production. That is why we choose coal production as an
explanatory variable. Another reason is that CEC will eventually
affect coal production. We built a model that used coal prices
(lnEpr) and industrial structure (Ist) as explanatory variables in
order to simulate their impacts on energy intensity. Table 9
shows the results of ordinary two-stage least squares (2SLS) and

TABLE 6 | Spatial model estimation results in the initial.

SDM SAR SEM

lnGDP 3.974*** 4.504*** 4.574***
[1.155] [0.942] [0.949]

(lnGDP)2 −0.086*** −0.104*** −0.106***
[0.033] [0.026] [0.025]

lnPop −0.568 −0.815 −0.843*
[0.455] [0.104] [0.500]

Ein 0.533*** 0.503*** 0.505***
[0.094] [0.089] [0.092]

FDI 0.589 0.099 0.190
[6.778] [1.051] [1.060]

W·lnGDP 5.603
[4.187]

W·(lnGDP)2 −0.139
[0.115]

W·lnPop −1.649
[3.474]

W·Ein 0.643***
[0.247]

W·FDI 11.054
[6.777]

Spatial ρ −0.333** −0.024
[0.167] [0.140]

Lambda −0.169
[0.210]

Hausman 41.16*** 15.12*** 15.97**
Model selection test statistics SAR vs SDM SEM vs SDM

χ2 13.99 13.64

p value 0.016 0.018

Notes: Standard errors in brackets **p < 0.01, **p < 0.05, ***p < 0.1.

TABLE 7 | Direct, indirect, and total effects of the SDM models.

Dependent variable: lnEmc Dependent variable: Ein

Variable Direct effects Indirect effects Total effects Variable Direct effects Indirect effects Total effects

lnGDP 3.933*** 2.560 6.493*** Urba −3.008** 1.213 −1.795*
[1.183] [2.484] [1.964] [1.251] [1.611] [0.983]

(LnGDP)2 −0.085** −0.066 −0.151*** lnCEC 0.007 −0.121*** −0.114**
[0.034] [0.069] [0.054] [0.042] [0.047] [0.055]

lnPop −0.554 −0.874 −1.428 Ist −2.229 2.672 0.443
[0.467] [2.081] [1.951] [1.857] [1.750] [0.656]

Ein 0.528*** 0.279* 0.807*** lnEpr 0.988 −0.984 0.004
[0.092] [0.142] [0.177] [0.868] [0.862] [0.053]

FDI 0.486 6.496 6.982
[1.097] [4.015] [4.448]

Notes: Standard errors in brackets *p < 0.01, **p < 0.05, ***p < 0.1.

TABLE 8 | Spatial model estimation results of energy intensity.

SDM SAR SEM

Urba −2.949** −4.947*** −4.262***
[1.192] [1.503] [0.987]

lnCEC 0.001 0.810 −0.008
[0.041] [0.045] [0.050]

Ist −2.100 −1.401 −1.175
[1.732] [1.241] [0.998]

lnEpr 0.941 0.083 0.028
[0.809] [0.060] [0.041]

W·Urba −0.015
[2.976]

W·lnCEC −0.264***
[0.096]

W·Ist 3.949
[2.487]

W·lnEpr −1.302
[1.129]

Spatial ρ −0.905** −0.352
[0.368] [0. 401]

Lambda −0.766***
[0.274]

Hausman 28.64*** 3.48 3.99
Model selection test statistics SAR vs SDM SEM vs SDM
χ2 15.97 16.75

p value 0.001 0.002

Notes: Standard errors are shown in brackets *p < 0.01, **p < 0.05, ***p < 0.1.
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GS2SLS. The Hausman specification test (Hausman, 1978) of
both 2SLS and GS2SLS showed that lnCpro is endogenous
nationwide. CEC was chosen as the instrumental variable to
substitute coal production to build 2SLS and GS2SLS model
because it will negatively affect coal mining activities.

Table 9 indicates that the coefficient of the spatial lagged Ein
was significant at the 1% level. It shows that energy intensity
presents a significant spatial spillover effect. Besides, lnCpro
displays a positive impact on energy intensity. Combining
with the results in Data Processing, we can conclude that
reducing coal production in the neighbor will reduce local
CO2 emissions. Ist negatively affected energy intensity. It
indicates that the upgrading of the industrial structure in the
neighbor will reduce the local CO2 emissions. The result implies
that the economic losses caused by the reduction in coal
production should be partly accepted by the beneficiaries of
CO2 emission mitigation in neighboring provinces.

Because of the spatial heterogeneity of China’s coal resource, the
eastern region is traditionally known as the coal consumer, and the
Western is the coal provider. However, CO2 emissions are high to
the east and low to west China (Long et al., 2016). Therefore, in
order to determine the impact of coal production on energy
intensity, a regression analysis was carried out considering the
different regions (Supplementary Figure S3). The statistical
characteristic values of the variables show that the CEC value
ranks first in the central, whereas the Western has the highest
energy intensity. All values in the eastern are significantly smaller
than those in the central and west (Table 10). Table 11 implies that

(1) although the influence of coal production on energy intensity is
significantly positive in the eastern region, the endogenous test
showed that coal production and energy intensity did not display a
mutual relationship. The possible reason is that although coal is also
produced in the eastern, it is the traditionally net coal import area.
Therefore, reducing coal production in the east cannot reduce
energy intensity. Meanwhile, the industrial structure of the
eastern has also an insignificant impact on energy intensity. The
reasonmaybe is that the value of industrial structure in the eastern is
relatively high; the potential for upgrading in the short term is not
easy. In the short term, it is not feasible to reduce energy intensity by
improving the industrial structure in the eastern region of China. (2)
The spatial lagged Ein coefficient was not significant in the central.
It indicates that there is no spatial correlation between energy
intensity among provinces. However, both the reduction in coal
production and the upgrading of the industrial structure can reduce
the energy intensity in the local. It implies that the central region has
the potential to reduce energy intensity. (3) The spatial lagged Ein
coefficient for the west was significant, indicating that energy
intensity in the west is positively correlated. The significantly
negative correlation between coal production and energy
intensity indicated that reducing coal mining will cause energy
intensity to decrease. The Western characters as the net coal
exporter require reducing coal supply to the east and the central.
However, the pathways to reduce coal consumption in the eastern
and the central should be different. The east should actively
transform the energy structure and reduce the proportion of
coal, whereas in the central, improving the industrial structure

TABLE 9 | Impact mechanism of coal production on energy intensity using 2SLS
and GS2SLS.

2SLS GS2SLS

W·Ein 1.336***
[0.311]

lnCpro 0.072*** 0.543***
[0.009] [0.162]

lnEpr 0.275 0.023
[0.189] [0.121]

Ist −0.185 −3.530***
[0.371] [0.862]

Constant −1.272 −2.987***
[1.151] [0.944]

Hausman specification test 4.96** −15.662***

Notes: Standard errors are shown in brackets *p < 0.01, **p < 0.05, ***p < 0.1.

TABLE 10 | Statistical properties of CEC, Ein, and Cpro in different regions.

Variables Mean Std.Dev Minimum Maximum Observations

Est CEC 276610.40 333742.60 0 1499751.00 99
Ein 0.55 0.24 0.14 1.21 99
Cpro 3023.42 4681.44 0 17667.60 99

Central CEC 431716.80 476868.70 26931.20 2783452.00 81
Ein 1.08 0.89 0.20 4.23 81
Cpro 25025.21 34309.06 315.50 104190.90 81

West CEC 322764.80 300433.00 15077.00 1583978.00 90
Ein 1.15 0.68 0.34 3.52 90
Cpro 10963.27 13175.97 425.45 57102.48 90

TABLE 11 | Impact mechanism of coal production on energy intensity using
GS2SLS by region.

East Central West

W·Ein 1.394*** 0.738 1.052***
[0.270] [0.866] [0.395]

lnCpro 0.141** 0.558** −0.562*
[0.057] [0.240] [0.299]

lnEpr −0.013 0.135 0.145
[0.064] [0.265] [0.193]

Ist −0.707 −3.362*** 1.842
[0.489] [1.225] [1.735]

Constant −0.219 −4.031** 3.591
[0.320] [1.857] [0.142]

Hausman specification test −5.947 −10.174** −8.435*

Notes: Standard errors are shown in brackets *p < 0.01, **p < 0.05, ***p < 0.1.
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and reducing energy intensity can reduce the demand for coal. If
coal demand and energy structure remain unchanged nationwide,
even energy intensity decreases in central China caused by the
reduction of coal production in the west will inevitably increase. In
the west, renewable energies such as photovoltaics and wind power
should be promoted to mitigate the pressure on coal production. Of
course, adjusting the price gap between coal and alternative energies
is the crux point. CEC could be considered an instrument. At the
same time, the relatively advanced industries should be partly
relocated from the east and the central to the west in order to
reduce energy intensity in these regions.

Policy Implication
The spatial spillover effect of energy intensity and CEC implies
that CEC policies should focus on its impact on the neighboring
areas. Pigou tax can support our view, and CEC can be seen as a
kind of tax that internalizes external effects. However, the focus
of the Pigou tax is only on how to make up for the direct gap
between private costs and social costs. It does not tell us that
external effect charges will also produce spatial spillover effects.
Because energy has cross-regional input and output, charging
for the externals should pay more attention to the synergy
between regions. And this article proves that external
charges, that is, CEC has the spatial spillover effect of
mitigating CO2 emissions across provinces. The practical
enlightenment of this article is as follows: (1) The goal of
carbon neutrality is difficult to achieve only by relying on
regulations and policies. The government should guide the
market formation in the process of environmental
governance. Ecological costs should be paid to internalize
external costs. The increased prices will promote a decline in
energy intensity and then mitigate CO2 emissions. The CEC
proposed in this article can be used as a marketable tool to
achieve carbon neutrality. (2) Establishing the CEC mechanism
is the crux to promoting the coordinated achievement of carbon
neutral goals among regions. On the spatial scale, the
interregional ecological compensation mechanism with
spatial spillover effects can promote the alignment of carbon
neutral actions between neighboring provinces, especially the
developed provinces and energy resource endowment
provinces. The spatial correlation proposed in this article
provides the basis. (3) Ideas are provided for the
development strategies of coal resources in different regions.
Because of the uneven spatial distribution of coal resources and
the various resource endowments of provinces, this article
proposes coal resource-mining strategies suitable for regional
characteristics.

In order to achieve carbon peak and carbon neutrality, we
suggest that (1) the Chinese government increase CEC in order to
reduce CO2 emissions. (2) CEC should not be limited to the loss
of ecological value itself or consider only one area. Policymakers
should contemplate a national perspective. (3) In the process of
implementing carbon quotas, the standards for non–coal-
producing regions should be strengthened, whereas in coal-
producing areas, they should be lessened. At the same time,
non–coal-producing regions are encouraged to purchase quotas
from coal-producing provinces to compensate for the economic

losses of coal-producing regions due to coal production
reduction. These will have a spatial spillover effect on CO2

emission mitigation in the neighbor.

CONCLUSION

In this study, we used panel data of 30 Chinese provinces from
2009 to 2017 and different spatial econometric models to recover
the spillover effect of CEC on CO2 emissions. The results support
the validity of the EKC hypothesis. Moreover, we determined that
(1) reducing energy intensity will spatially mitigate CO2 emissions.
Likewise, CEC also presents a spillover effect on energy intensity.
Thus, CEC is spatially related to CO2 emissions. (2) Coal
production positively affects energy intensity; industry structure
negatively affects energy intensity. Reducing coal production and
upgrading the industrial structure in the neighbor will mitigate
local CO2 emissions. (3) The regression analysis of the different
regions indicated that interregional cooperation is necessary to
reduce energy intensity. In addition, the east and the central should
develop alternative energy to collaborate with the Western to
reduce coal production and energy intensity. In the future,
other developing countries that rely on resources for economic
development should pay more attention to the impact and the
spillover effects of ecological compensation on CO2 emissions.
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