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Abstract. Structural geomodeling is a key technology for the
visualization and quantification of subsurface systems. Given
the limited data and the resulting necessity for geological in-
terpretation to construct these geomodels, uncertainty is per-
vasive and traditionally unquantified. Probabilistic geomod-
eling allows for the simulation of uncertainties by automat-
ically constructing geomodel ensembles from perturbed in-
put data sampled from probability distributions. But random
sampling of input parameters can lead to construction of geo-
models that are unrealistic, either due to modeling artifacts or
by not matching known information about the regional geol-
ogy of the modeled system. We present a method to incorpo-
rate geological information in the form of known geomodel
topology into stochastic simulations to constrain resulting
probabilistic geomodel ensembles using the open-source ge-
omodeling software GemPy. Simulated geomodel realiza-
tions are checked against topology information using an ap-
proximate Bayesian computation approach to avoid the spec-
ification of a likelihood function. We demonstrate how we
can infer the posterior distributions of the model parameters
using topology information in two experiments: (1) a syn-
thetic geomodel using a rejection sampling scheme (ABC-
REJ) to demonstrate the approach and (2) a geomodel of a
subset of the Gullfaks field in the North Sea comparing both
rejection sampling and a sequential Monte Carlo sampler
(ABC-SMC). Possible improvements to processing speed of
up to 10.1 times are discussed, focusing on the use of more
advanced sampling techniques to avoid the simulation of un-
feasible geomodels in the first place. Results demonstrate the
feasibility of using topology graphs as a summary statistic to

restrict the generation of geomodel ensembles with known
geological information and to obtain improved ensembles of
probable geomodels which respect the known topology in-
formation and exhibit reduced uncertainty using stochastic
simulation methods.

1 Introduction

Structural geomodeling is an elemental part of visualizing
and quantifying geological systems (Wellmann and Caumon,
2018). Topology relationships in geological systems (e.g.,
how layers are connected to each other stratigraphically, or
their across-fault connectivity) are important constraints for
fundamental geological processes, such as fluid and heat flow
(Thiele et al., 2016a, b). Each unique interpretation (model)
of a geological setting has a specific topology. And as geol-
ogy is not only an experimental science, but also an interpre-
tive and historical science (Frodeman, 1995), the deduction
of the geomodel – often from sparse amounts of data – can
inherently lead to numerous potentially valid geological in-
terpretations (Bond et al., 2007), which themselves can lead
to equally numerous topology graphs. This aspect is com-
pounded by the complex nature of geological systems and
interpretation bias imparted by geoscientists in the explicit
creation of geomodels (Bond et al., 2007; Polson and Curtis,
2010; Bond, 2015). It also leads to the creation, and favoring,
of specific models that fit expectations and prior knowledge
(Baddeley et al., 2004) rather than consideration of the full
range of possible models. However, methodologies to create
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models often focus on the creation of a single deterministic
model (Bond et al., 2008) and lack systematic consideration
of data uncertainty (Thore et al., 2002; Tacher et al., 2006;
Bardossy and Fodor, 2013). These facts call for the develop-
ment of alternative approaches. The increasing development
of implicit modeling algorithms (Mallet, 2004; Hillier et al.,
2014; Laurent et al., 2016) allows for the creation of vast
structural geomodel ensembles by making use of interpola-
tion functions, which makes the analysis and visualization
of uncertainty using probabilistic simulation approaches pos-
sible (Bistacchi et al., 2008; Suzuki et al., 2008; Wellmann
et al., 2010; Lindsay et al., 2012; Wellmann and Regenauer-
Lieb, 2012; Wellmann, 2013).

The mathematical nature of implicit modeling, in combi-
nation with the use of a probabilistic modeling process, often
leads to geologically unsound model realizations and mod-
eling artifacts. Additionally, the modeling algorithms only
take a limited set of input data types, e.g., layer interface
locations and structural orientation data, which significantly
limits the amount of geological information that can be in-
cluded in the modeling process. Wellmann et al. (2017) and
de la Varga and Wellmann (2016) showed how Bayesian in-
ference can be used to reduce uncertainty and modeling arti-
facts in both synthetic and real, implicit, structural geomodel
ensembles. Their concept uses supplemental geological in-
formation (e.g., layer thicknesses or fault offsets) in the form
of likelihood functions to constrain stochastic geomodel en-
sembles. In other words, by conditioning the probability of
model parameters to some additional data, we are able to
increase the overall information of the probabilistic model.
Additional data can be, for example, a range of possible layer
thicknesses in a depositional setting, geophysics or arguably
geological knowledge in the form of valid geometrical con-
figurations.

While the overall idea has been demonstrated in some spe-
cific cases, the general question of how to define suitable
likelihood functions for specific types of observations – given
specific geological systems and diverse types of prior geolog-
ical knowledge – still remains.

Geological expert knowledge contains much more infor-
mation that is vital to model creation, such as understand-
ing the geological processes that result in the thickening and
thinning of sedimentary deposits and their relative spatial
distribution. One key knowledge-based input into geomod-
eling is the understanding of the kinematic evolution of the
rock units into their present configuration. While kinematic
modeling software exists (see Groshong et al., 2012; Brandes
and Tanner, 2014, for reviews), it is limited to “end-member”
kinematic models, resulting in geometrical deformations de-
fined by few parameters not taking into account a range of
other factors, not least of which being the mechanics of the
different units (Butler et al., 2018). But we can capture cer-
tain kinematics using topology information – for example,
the across-fault connectivity of layers, for which extensional

deformation leads to fundamentally different topological re-
lationships than compressional deformation (see Fig. 1).

We therefore hypothesize that topological information
about a geological system can be used as a meaningful con-
straint for probabilistic 3-D geomodeling outputs.

This topological information is difficult to incorporate into
the mathematical foundations of implicit modeling functions
and is highly case-dependant.

The origin of topological information is generally qualita-
tive. For this reason, choosing a likelihood function, or trying
to connote any probabilistic meaning to the comparison of
topological graphs, does not seem to enhance the inference
(Curtis and Wood, 2004). This work, favoring model sim-
plicity, adopts an approximate Bayesian computation (ABC)
approach to compute the posterior using a distance function
instead of a likelihood function.

To test this approach we designed two distinct experi-
ments: one synthetic and one case study.

1. We construct a synthetic fault model and explore its
topological uncertainty. We do this by describing our
input data not as fixed parameters, but as probability
distributions. We then use Monte Carlo sampling to ob-
tain input data realizations from which geomodels are
constructed. We then show how a single topology graph
can be used as a summary statistic in an ABC-rejection
scheme to approximate the posterior model ensemble
that honors the added information.

2. To test the same ABC approach on a real-world dataset,
we apply it to a model extracted from a seismic inter-
pretation of the North Sea Gullfaks field. We also ex-
plore a more advanced sampling technique to demon-
strate possibilities for reducing the computational costs
of the method.

In the following section we will give an overview of the
applied implicit geomodeling approach, the basic concept of
Bayesian inference and its use in probabilistic geomodeling,
as well as the theory behind approximate Bayesian compu-
tation. We further describe how we analyze model topology
and use it as a summary statistic. We will then introduce, in
detail, both the synthetic fault model and the case study, fol-
lowed by a comprehensive discussion of our findings.

2 Methodology

2.1 Implicit geomodeling

Several approaches exist for creating structural geomodels,
which can be separated into three main categories: (a) inter-
polation, (b) kinematic methods and (c) process simulation.
The interpolation of surfaces and volumes from spatial data
is currently the most widely used approach in geosciences,
typically performed manually by geoscientists, which re-
quires robust knowledge of the geological setting and exten-
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Figure 1. Idealized horst (a) and graben (b) structures with topol-
ogy graph overlay, showing the difference in graph structure for
different tectonic settings (modified from Fossen, 2010). The black
nodes represent the centroids of the geobodies and the black edges
the topology connections, together building a topology graph.

sive amounts of data in order to robustly approximate real-
ity. Additionally, highly complex structures such as extensive
fault networks and repeatedly folded areas are challenging to
recreate using current interpolation methods (Jessell et al.,
2014; Wellmann et al., 2016; Laurent et al., 2016).

The open-source, Python-based implicit modeling pack-
age GemPy1 (de la Varga et al., 2019) is used here. It is
based on the work of Lajaunie et al. (1997) and Calcagno
et al. (2008), and it allows the interpolation of geological in-
terface position and plane orientation data by using a scalar
field method in combination with cokriging (Chilès et al.,
2004). For a detailed overview of the algorithm and the func-
tionality of GemPy, we refer the reader to de la Varga et al.
(2019).

2.2 Geological topology

Topology, referring to “properties of space that are main-
tained under continuous deformation, such as adjacency,
overlap or separation” (Thiele et al., 2016a; Crossley, 2006),
is a highly relevant concept in structural geology, as it pro-
vides a useful description of the relations between strati-
graphic units across layer interfaces, faults or the contact to
an intrusive body. Generally, eight binary topological rela-
tionships can exist between three-dimensional objects (Egen-
hofer, 1990), while a total of 69 relations are possible be-
tween simple lines, surfaces and bodies (e.g., surfaces with-
out holes; see Zlatanova, 2000). From these eight Egenhofer–
Herring relationships, meets (i.e., adjacency) is the most
relevant one for describing structural and stratigraphic re-

1URL: https://github.com/cgre-aachen/gempy (last access:
26 June 2021)

lationships, such as the across-fault connectivity of layers
(see Fig. 1). The topology relationships of geological mod-
els can be represented by an adjacency graph, which repre-
sents topological units as individual nodes and their connec-
tions by edges (see Fig. 1). The adjacency topology of geo-
logical structures is highly dependent on deformation: com-
pressional deformation leads to different connectivities in the
topology graph than extensional, but even within the same
type of deformation they can lead to different topologies –
as visualized by the horst and graben structures in Fig. 1.
Not only does the type of deformation have an important in-
fluence on the system topology, but also the quantity – e.g.,
the fault throw. For an in-depth introduction and discussion
of topology in geology see Thiele et al. (2016a) for the fun-
damental theory and Thiele et al. (2016b) and also Pakyuz-
Charrier et al. (2019) for the influence of structural uncer-
tainty on geomodel topology.

2.2.1 Computing geomodel topology

To compute the geomodel topology with the necessary com-
putational efficiency to conduct a feasible stochastic simula-
tion of realistic geomodels, we implemented a topology al-
gorithm using theano (Theano Development Team, 2016)
into the core of GemPy. This enables the topology compu-
tation to run alongside the geomodel interpolation on graph-
ical processing units (GPUs). As theano is a highly opti-
mized linear algebra library, the employed method is mainly
focused on utilizing matrix operations for the computation
of the geomodel topology. When the implicit geomodel is
discretized using a regular grid, it becomes a 3-D matrix of
lithology IDs L (Fig. 2a), which we use for the calculation
of the geomodel topology. For each geomodel we also have
access to the 3-D Boolean matrices Fn for each fault, repre-
senting the two sides of the respective fault by two ascending
consecutive integers (Fig. 2b). Given these two types of input
data, we compute the geomodel topology as follows.

1. The lithology matrix L and the summed fault matrices∑nfault
i=1 Fi , where nfault is the total number of faults in the

geomodel, are combined into a matrix in which each
lithology in each fault block is represented by its own
unique integer, referred to as the topology labels matrix
T (see Fig. 2c):

T= L+ nlith

nfault∑
i=1

Fi, (1)

with nlith being the total number of lithology IDs in the
geomodel.

2. The topology labels matrix T is then shifted twice (for-
ward and backward) along each axis X, Y and Z. The
two resulting shifted matrices S1 and S2 along each axis
are then subtracted from each other to result in a differ-
ence matrix D, in which only the cells along a lithology
or fault boundary are nonzero (Fig. 3).
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3. The topology labels matrix T is then evaluated at all
nonzero cells of D to obtain the two topology labels
na and nb of each topological connection (referred to
as an edge e) in the geobody, which are stored in a set
of unique edges E representing the geomodel topology.
For the example shown in Figs. 2 and 3 the abbreviated
set is E = {(0,4), (0,5), (0,1), . . ., (3,7)}.

This method of topology calculation works on regular
grids, which imposes a strong bias on the result: if the main
lithological and structural features are not aligned with the
grid orientation, the resulting topology graph could thus con-
tain (or miss) connections. For a more detailed discussion on
the effects of model discretization see Wellmann and Cau-
mon (2018).

2.3 Stochastic modeling approach

2.3.1 Bayesian inference

Bayesian inference is fundamentally different to the classical
frequentist approach of inference. It treats probabilities as de-
grees of certainty of a parameter θ , which is inherently con-
sidered to be a random variable itself (Bolstad, 2009; Van-
derPlas, 2014). It is based on Bayes’ theorem (Eq. 2), which
allows updating of a given probability – the prior probability
p(θ) of a parameter θ – after the occurrence of a connected
event (Bolstad, 2009). This updating process relies on the use
of a likelihood function p(y|θ), representing the conditional
probability of the observed data y given the prior probability
of the underlying parameter θ and the theoretical connection
of the occurring event. It is used to condition the prior into
the posterior distribution p(θ |y), which represents the de-
gree of certainty over the parameter θ given the occurrence
of the event and its observed data y.

p(θ |y)=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

(2)

In this paper, we consider Bayes’ equation as a general way
to combine conditional probabilities as in the interpretation
of, for example, probabilistic graphical models (Koller et al.,
2009). For use in geomodeling, the terms in Eq. (2) can be
seen as (de la Varga and Wellmann, 2016; Gelman et al.,
2013) follows.

– Model parameters, θ , are model-defining parameters
(e.g., layer interface positions, dip or fault parameters)
used for the interpolation of the geomodel, which can be
either deterministic (thus be exactly defined and known)
or probabilistic. The latter represent uncertain parame-
ters, which is expressed in the form of probability dis-
tributions (e.g., a normal distribution expressing the un-
certainty of the vertical subsurface position of a layer
interface). We will use θ ′ as the notation for a sample
from these parameter distributions.

– Observed data: y represents additional measurements
or any other source of data, which should enhance the
model definition by providing additional information
with the goal of reducing model uncertainty or enabling
the comparison of the model to reality (e.g., by com-
paring geophysical potential-field measurements with
the according forward simulation on the basis of a ge-
omodel). In this work we use topology information in
the form of a topology adjacency graph as the observed
data. Notice that when the terms “observation” or “ob-
served data” are used in the context of a probabilistic
model, we refer to this mathematical term y instead of
to the literal semantic meaning of the words.

– Likelihood functions, p(y|θ): these form the relation-
ship between the model parameters θ and the observed
data y. Essentially, this function describes the condi-
tional probability for observing the data y given the pa-
rameters θ (e.g., MacKay and Kay, 2003). In the case
of structural modeling, this essentially means that we
compute the geomodel from the input parameters θ and
compare model predictions (e.g., the thickness of a cer-
tain layer at a certain position or topology adjacency
graphs) with additional observed data.

While constructing meaningful likelihood functions for
physical properties such as layer thickness or geobody vol-
ume from observed data is straightforward (de la Varga and
Wellmann, 2016), we have no proper framework to construct
them for more abstract or “soft data”, such as our understand-
ing of the geological setting or the topology relationships of
our layers across faults or unconformities. For this reason, we
chose to apply methods to estimate our posterior distributions
given abstract geological information without specifying a
likelihood function: approximate Bayesian computation.

2.3.2 Approximate Bayesian computation

Geoscientists often have extensive implicit knowledge of ge-
ological settings (e.g., our understanding of the tectonics of a
system), but only a limited amount of this knowledge can be
incorporated into the geological interpolation function (Well-
mann and Caumon, 2018). Additionally, it is often difficult
to define formal likelihood functions for geological knowl-
edge as required for conventional Bayesian inference meth-
ods (Wood and Curtis, 2004). A less formal but valid alter-
native approach is to approximate the posterior distributions
using approximate Bayesian computation (ABC) methods.
These methods, also referred to as likelihood-free inference
methods by some (Marin et al., 2012), evaluate the distance
of stochastically generated models to our additional data us-
ing one or multiple summary statistics, S, instead of a proba-
bilistic likelihood function. While summary statistics are of-
ten measures such as the mean, mode or median of a model,
they tend to be insufficient in summarizing geomodels. In
this work we use the geomodel topology graph as a summary
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Figure 2. (a) Lithology matrix L of an example 2-D geomodel that consists of four layers and a vertical fault in the center; (b) fault matrix
F of the geomodel; (c) topology labels matrix T of the geomodel.

Figure 3. Vertical (a) and horizontal (b) difference matrix D show-
ing all cells (red) in the shifted matrices S1 and S2, which are next
to the interface between two different layers or of any layers across
a fault. The highlighted (yellow) part shows the area in which the
implicit interface must be located.

statistic of the geomodel to provide a meaningful comparison
between geomodels.

To obtain the approximate posterior distribution we need
to sample from our prior parameter distributions, plug the
sample values θ ′ into our simulator function y (our geomod-
eling software), compute the summary statistic S(y(θ ′)) (ge-
omodel topology) and evaluate its distance to our observed
summary statistic (data) S(y) (e.g., a geomodel topology
graph). The most fundamental sampling scheme for ABC is
based on rejection sampling (ABC-REJ; see Algorithm 1),
for which the distance between our simulated data y(θ ′) (the
simulated geomodel) and observed data y (initial geomodel)
is calculated using a distance function of their summary
statistics (topology graphs) d

(
S(y),S(y(θ ′))

)
. The simulated

model is accepted if the distance is below a user-specified er-
ror bound ε ≥ 0 (Sadegh and Vrugt, 2014); otherwise, it is
rejected. The accepted samples form the approximate pos-
terior. Thus, this method circumvents the need to specify a
likelihood function for our additional data, while still approx-
imating the posterior distributions incorporating the informa-

tion of both our priors and our additional information (Sun-
nåker et al., 2013). Within this work we use the Jaccard index
(1− J ) as a distance function between topology graphs.

A more advanced sampling scheme for ABC is sequential
Monte Carlo sampling (ABC-SMC). In its simplest form it
can be seen as an extension of rejection sampling by chain-
ing rejection sampling simulations together (each referred to
as an epoch). During the first epoch of rejection sampling,
a large error threshold ε1 is used while sampling from the
prior distributions p(θ). The accepted samples, forming the
posterior distributions of the first epoch, form the updated
priors of the second epoch by replacing the priors with the
kernel density estimation f̂h(θaccepted) of the posterior sam-
ples. Iteratively, with every epoch, the error threshold ε is re-
duced to the target value (e.g., ε = 0) to obtain the final pos-
terior sample. Thus, every epoch, the sampler “learns” from
the previous epoch by adjusting the prior distributions fur-
ther towards the posterior distributions. As ABC-REJ tends
to suffer from potentially low computational efficiency when
using low error thresholds ε, the iterative shrinking paired
with adjustment of the prior distributions can potentially ob-
tain the approximate posterior much more quickly. We apply
this sampling scheme to our Gullfaks case study to show the
potential speed-ups.
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2.4 Topology distance functions

To use geomodel topology as a constraint for probabilistic
geomodels in an ABC framework, we need a consistent way
of comparing geomodel topologies – i.e., suitable distance
functions. We consider three possible comparison methods
here.

1. Presence or absence of defined connections. As the re-
lational topology information is captured in adjacency
graphs, the most fundamental approach is to check if
two relevant nodes n1 and n2 (e.g., representing two re-
gions in the model) share an edge e = (n1,n2) (are ad-
jacent) and if this edge exists in both models. This is the
most simple way of comparing specific aspects of rela-
tional topology between geomodels. This approach can
be viewed as a Boolean comparison that is true if the
given edge exists in both models and false if not. This
also enables the direct comparison of i multiple edges,
which would result in a vector of i Boolean statements
for each comparison [e1,e2, . . .,ei].

2. Comparing entire graphs. To compare topology graphs
as a whole, Thiele et al. (2016b) describe the use of the
Jaccard index (Jaccard, 1912). It can be used to com-
pare the similarity of sets by creating the ratio of the
intersection and union of two graphs A and B.

J (A,B)=
|A∩B|

|A∪B|
(3)

For two topology graphs A and B, this means we calcu-
late the ratio of edges (representing connected regions)
shared in both (intersection: A∩B) and their total com-
bined number of edges (union: A∪B). This ratio can be
used to efficiently identify all unique topology graphs in
a given ensemble, as only an identical pair of graphs re-
sults in a Jaccard index of J (A,B)= 1. A comparison
using the Jaccard index yields ratios of integers and thus
a discrete comparison. This method also allows specify-
ing a tolerance 0< ε < 1 for model acceptance, i.e., to
accept models within the range 1− ε ≤ J ≤ 1.

3. Contact area. Comparing the number of actual edge
pixels (or voxels) representing the area of the contact

Table 1. Distribution parameters for prior parameterization of the
synthetic fault model.

Name Distribution µ (m) σ (m)

Sandstone_2_Z Normal 0 50
Siltstone_Z Normal 0 70
Shale_Z Normal 0 90
Sandstone_1_Z Normal 0 110
Main_Fault_X Normal 0 60
Main_Fault_Z Normal 0 60

Ae between two geobodies could yield a more granular
comparison that allows us to take into account trends of
the contact size. Thus, the ABC error tolerance ε could
be used to reject geomodels wherein certain topological
contact areas are above and/or below a certain value:
Ae− εlow ≤ Ae ≤ Ae+ εhigh.

In this work we demonstrate the second approach, as it
allows us to directly compare entire geomodel topologies.
We have chosen to compare the simulated results to a sin-
gle topology graph – the initial geomodel topology. This ap-
proach was selected as a base case to demonstrate how large
variations in geomodel topology observed in the stochas-
tic simulation of input data uncertainties in geomodels (see
Thiele et al., 2016b) can be constrained to a base topology
(i.e., conceptual model). This of course reinforces the bias
of the initial base model in the uncertainty simulation, but
it allows for the reliable exploration of the uncertainty of all
possible geomodels honoring the topology constraint.

2.5 Quantifying uncertainty using Shannon entropy

Stochastic simulations yield vast ensembles of geomodel re-
alizations, and their variability (and thus uncertainty) needs
to be analyzed and understood. The uncertainty of a single
geological entity (e.g., a layer or a fault) can be estimated
from its frequency of occurrence in each single geomodel
voxel. In order to analyze the whole geomodel uncertainty at
once, more sophisticated measures can be applied: the con-
cept of Shannon entropy H can be used in a spatial context
to evaluate the uncertainty of an entire geomodel ensemble at
once, as described by Wellmann and Regenauer-Lieb (2012).
Average model entropy H collapses the uncertainty of a ge-
omodel ensemble into a single number. It will be equal to 0
if all cells x have only one possible outcome (no uncertainty)
and reach its maximum when all outcomes are equally likely
for all cells of the model (maximum uncertainty).

2.6 Experiment design

2.6.1 Synthetic fault model

As a proof of concept we show how ABC can be used to
incorporate geological knowledge and reasoning into an un-
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Figure 4. (a) 3-D view of the synthetic fault model, with top surfaces of the four lithologies shown and the fault surface in blue. (b) X–Z
slice through the center of the discretized model showing partial input data (for visual brevity) and example standard deviations of prior
parameters used for the stochastic simulation. (c) Model overlaid with its topology graph used as our summary statistic for the ABC.

certain synthetic geomodel. This model represents a folded
layer cake stratigraphy that is cut by a N–S-striking normal
fault to represent an idealized reservoir scenario frequently
encountered in the energy industry (see Fig. 4a).

The prior parameterization is schematically visualized in
Fig. 4b and consists of two different kinds of uncertain pa-
rameters: (i) vertical location of the layer and fault interfaces
and (ii) lateral location of the fault interface, with the spe-
cific parameterization displayed in Table 1. As this work fo-
cuses on developing and describing a novel methodology for
constraining uncertain geomodels, we have chosen the un-
certainty parameterization of the synthetic geomodel entirely
subjectively as normal distributions increasing in uncertainty
with depth. The uncertainty is individually applied to each
set of surface points to preserve surface shape within each of
the two fault blocks. Proper prior parameterization of uncer-
tain geomodels is a vital branch of research on its own (e.g.,
Pakyuz-Charrier, 2018; Krajnovich et al., 2020) and out of
the scope of this work.

Two separate simulations were run for this experiment so
we can see how topology can constrain an uncertain geo-
model compared to the Monte Carlo simulation of input pa-
rameter uncertainties alone.

1. A Monte Carlo simulation of the prior parameters was
run to evaluate the uncertainty in the resulting geo-
model ensemble consisting of 2000 generated models.
This represents our “base case” uncertainty without any
topological constraints. It is important to note that this
simulation is only a forward uncertainty propagation
and does not entail any type of inference.

2. An approximate Bayesian computation was done using
the initial model topology graph (see Fig. 4c) to repre-
sent our geological knowledge. This graph is extracted
from the initial geological model, which has been manu-
ally built by an expert. The assumption is that this topo-
logical graph encapsulates important aspects of the geo-

logical knowledge used during its construction, and thus
geometrical configurations more similar to this graph
can be considered more likely (see also Thiele et al.,
2016b; Pakyuz-Charrier et al., 2019). This graph would
be treated from this point on as an “observation” y due
to its use as a constraint within the probabilistic model.
We are employing a rejection sampling scheme (ABC-
REJ) with an error tolerance of ε = 0 to obtain 500
generated posterior models. The resulting posterior geo-
model ensemble will contain only samples with match-
ing topology graphs.

2.6.2 Case study: the Gullfaks field

To demonstrate the applicability of the method to real
datasets we apply it to a model of part of the Gullfaks field,
located in the northern North Sea. The field is located in the
western part of the Viking Graben and consists of the NNE–
SSW-trending 10–25 km wide Gullfaks fault block (Fossen
and Hesthammer, 1998). For a detailed overview of the re-
gional and structural geology we refer to Fossen and Rørnes
(1996), Fossen and Hesthammer (1998), Fossen et al. (2000),
and Schaaf and Bond (2019).

For the experiment, we constructed a base geomodel
(Fig. 4a) founded in an interpretation of the training dataset
provided with the seismic interpretation software Petrel™.
We have chosen a relatively simple subset of the interpreta-
tion containing two faults, three horizon tops (Tarbert – red,
Ness – purple and Etive – green) and the Base Cretaceous
Unconformity (BCU, yellow). To create the geomodel, we
exported the corresponding seismic interpretation data from
Petrel and imported them into Python. The surface interpre-
tations were then decimated down to 510 surface points and
187 surface orientations via a target reduction of 80 % per
fault block or surface using the VTK-based decimation func-
tionality of pyvista (Sullivan and Kaszynski, 2019) to re-
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Figure 5. (a) 3-D view of the Gullfaks geomodel used as the mean prior model in our case study. (b) X–Z section through the discretized
geomodel with an overlaid observed topology graph showing the inter- and intra-fault block relations of geobodies.

Table 2. Distribution parameters for prior parameterization of the
Gullfaks case study.

Name Distribution µ (m) σ (m)

BCU Z Normal 0 43.3
Fault 3 X Normal 0 90.9
Fault 4 X Normal 0 90.5
Tarbert A Z Normal 0 46.5
Tarbert B Z Normal 0 45.5
Tarbert C Z Normal 0 44.2
Ness A Z Normal 0 48.6
Ness B Z Normal 0 46.7
Ness C Z Normal 0 45.1
Etive A Z Normal 0 50.9
Etive B Z Normal 0 48.1
Etive C Z Normal 0 46.3

tain the best possible surface shape while allowing fast im-
plicit geomodel construction times in GemPy.

The prior parameterization consists of two different kinds
of uncertain parameters: (i) vertical location of the layer in-
terfaces within each fault block and (ii) the lateral location
of the fault interfaces. This parameterization is similar to the
synthetic fault model (all specifications are listed in Table 2),
and all sets of surface points within each individual fault
block were perturbed together to retain surface shape. This
parameterization was chosen to demonstrate how even a few
uncertain parameters in an uncertainty modeling workflow
can lead to highly uncertain results, especially regarding the
topology graphs of the resulting geomodel ensembles in real-
world geomodels. We then conducted a sensitivity study of
the topological spread with respect to the geomodel resolu-
tion. This allowed us to determine the appropriate geomodel
resolution necessary for our experiment. Next, we performed
three separate simulations to compare different approaches.

1. A Monte Carlo simulation was run of the prior uncer-
tainty for 1000 samples to evaluate the spatial uncer-
tainty and the topological spread of the resulting geo-
model ensemble. This serves as our base case uncer-

tainty for comparison with the following two simula-
tions.

2. An ABC-REJ simulation was run using the initial ge-
omodel topology graph (see Fig. 4b) to represent our
geological knowledge. We used an error threshold of
ε = 0.025 for 1000 accepted posterior samples, as the
threshold was small enough to constrain the posterior
topology spread to the initial geomodel topology graph.

3. An ABC-SMC simulation was run using the same ini-
tial geomodel topology graph. We ran six SMC epochs
using ε values of 0.3, 0.2, 0.1, 0.075, 0.05 and 0.025.
Each epoch was run for 1000 accepted posterior sam-
ples.

3 Results

3.1 Synthetic fault model

Simulating the uncertainties encoded in the prior parame-
terization resulted in 100 unique model topologies within
the geomodel ensemble of 2000 models, with 18 topology
graphs occurring at least 10 times and the most frequent
14 making up 90 % of geomodel ensemble topologies. It is
also notable that the most frequent topology graph (29.5 %)
is not the initial (mean prior) topology graph (15.6 %), but
rather represents models wherein the shale layer (green) of
the footwall shares an across-fault connection with the sand-
stone 2 layer (red) of the hanging wall. The uncertainty of
the prior geomodel ensemble is visualized in Fig. 5a–c in X–
Z, Y–Z and X–Y sections as Shannon entropy, as described
in the Methodology section. All three sections through the
model clearly show the uncertainty of the layer interface po-
sition and the highest uncertainty around the fault surface. In
comparison, applying a single topology graph as a summary
statistic to the simulation using ABC leads to significantly
reduced uncertainty throughout the geomodel ensemble (see
Fig. 5d–f), with average geomodel ensemble entropy being
reduced fromH prior = 0.44 down toH posterior = 0.31, which
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Figure 6. Shannon entropy slices in the X–Z (a, d), Y–X (b, e) and X–Y plane of the prior (top, a–c) and posterior (bottom, d–f) geomodel
ensemble. The white lines show the location of other respective cross sections.

is a drop in geomodel uncertainty of nearly 30 %. Visualizing
the entropy difference between the prior and the posterior ge-
omodel ensembles shows the highest reduction in entropy for
the two inner layer interfaces (see Fig. 6) and not around the
fault surface. As expected, constraining the simulation using
a single topology graph with an error of ε = 0 collapses the
number of geomodel ensemble topologies from 100 down to
1.

Figure 7 plots the kernel density estimations (KDEs) of
the input parameter distributions of prior (grey) and posterior
(colored) samples. The strongest change in the mean from
prior to posterior distributions occurred for the vertical inter-
face location perturbation priors of sandstone 2 (red), shale
(green) and sandstone 1 (brown; see Fig. 7), with the first
shifted to higher mean z values and the latter two shifted
deeper by −72 and −53 m, respectively. Additionally, the
initially normally distributed prior of sandstone 1 shows a
strong negative skewness of −0.61 in the posterior distribu-
tion. The standard deviation for the siltstone and shale inter-
face distributions was reduced by roughly 32 % and 40 %, re-
spectively. The prior and posterior distributions for the lateral
and vertical fault parameter uncertainties show no significant
difference (panels e and f).

3.2 Case study: the Gullfaks field

Forward simulation of the prior uncertainties of the Gull-
faks geomodel resulted in 676 unique geomodel topologies

Figure 7. X–Y section of entropy difference between the forward
simulated entropy and the approximate posterior entropy. The plot
highlights areas where the entropy was reduced (blue), increased
(red) and kept constant (white).

within a 1000-model ensemble, with 116 unique topologies
occurring more than once. Again, the most frequent topol-
ogy graph is not the initial (mean prior) topology graph. The
uncertainty of an X–Z section of the forward ensemble is vi-
sualized in Fig. 9a using Shannon entropy. The section illus-
trates the general trend of uncertainty throughout the forward
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Figure 8. Prior (grey) and posterior (color) kernel density estimations for the different stochastic model parameters for our synthetic fault
model.

simulation: we observe the highest uncertainty surrounding
the two faults in the geomodel, especially around the east-
ern fault. The area also shows increased uncertainty due to
the interaction of layer interfaces, the fault and the vertical
vicinity of the BCU.

The initial topology graph is used as a constraining sum-
mary statistic using ABC with rejection sampling (ABC-
REJ) and a threshold of ε = 0.025. The absolute threshold
value will be directly proportional to the sensitivity of the
model geometry with respect to the stochastic parameters.
This prevents the selection of a value independent of the ac-
tual geological model under study. In this case study, the
value of ε has been chosen empirically by performing sev-
eral predictive simulations. Results were evaluated based on
their correspondence to the geological setting, as judged by
expert knowledge.

The results shows that this approach leads to reduced un-
certainty, as exemplified by the entropy section shown in
Fig. 9b. At this threshold, the approximate posterior geo-
model ensemble contains only the applied initial topology
graph. Using rejection sampling with such a strict threshold
resulted in a very low acceptance of only 0.59 % of simulated
geomodels, which required about 40 h of simulation time to
obtain 1000 posterior samples2. In contrast, using a sequen-
tial Monte Carlo sampling scheme (ABC-SMC) required
only 3.96 h to obtain the same number of posterior samples
at the same threshold – a speed-up of 10.1. This includes the
five sampling epochs using ε = {0.3,0.2,0.1,0.075,0.05}
with 1000 accepted samples each, which are used to sequen-
tially adapt the priors.

Figure 11a shows the number of unique topologies for for-
ward simulations and each threshold of the ABC-SMC. As

2The experiment was run on consumer-grade hardware and
leveraging GPU computation: Intel Core i5-8600 K @ 3.60 GHz,
Nvidia GeForce RTX 2070 8 GB GDDR6, 16 GB DDR4 RAM @
2133 MHz.

we iteratively lower the acceptable threshold during the SMC
simulation, the simulated and accepted topologies iteratively
converge towards the topology graph we used as our prior
geological knowledge. The average geomodel ensemble en-
tropyH also iteratively decreases from 0.233 for the forward
simulation down to 0.112 at ε = 0.025 (see Fig. 11b), show-
ing how fixing a probabilistic geomodel to a single topology
graph can significantly reduce, or rather significantly con-
strain, the simulated uncertainty.

Figure 8 shows how the ABC-SMC simulation iteratively
affects the probability distributions of selected probabilistic
geomodel parameters with decreasing thresholds ε. Each row
shows the consecutive epochs of the ABC-SMC simulation
and corresponds to a specific ε. Each column describes a dif-
ferent stochastic parameter in the stochastic model. By ap-
plying the initial topology graph of the geomodel as our sum-
mary statistics, we can directly see here how the parameter
distribution for the BCU (Fig. 8a) shifts its mean µ by 47.4 m
upwards and reduces its standard deviation σ by 35.8 % to
accommodate our geological knowledge about the geomodel
topology. We can observe this effect in the entropy section of
the posterior geomodel ensemble as well (Fig. 9b). In Fig. 10,
we show the difference in entropy between the prior and
approximate posterior geomodel ensemble shown in Fig. 9,
where areas with decreasing entropy values are shown in blue
and increasing values in red. We observe here how the BCU
moves upward and increases the entropy there, while lower-
ing entropy in the lithologies below. The parameter distribu-
tions for Tarbert B (Fig. 8b, red) and Etive B (Fig. 8c, green)
show similar behavior: a shifted mean and reduced standard
deviation to accommodate the topology information. We see
a much stronger reduction in standard deviation for the two
faults (Fig. 8d, e): 80.4 % and 80.0 % for Fault A and Fault
B, respectively. This is also shown as the strongest reduction
in entropy in Fig. 10.
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Figure 9. Prior (grey) and posterior (colored) kernel density estimations for selected model parameters (a–e) for the six epochs (each
row represents an epoch) of the ABC-SMC simulation of the Gullfaks case study, showing how the simulation iteratively approaches the
approximate posterior distribution, which shows the possible parameter uncertainty given our topological information. The mean µ and
standard deviation σ are shown for the first and last epochs.

Figure 10. (a) Section of the entropy block of the forward simulation for the prior uncertainty (HT = 0.223). (b) Section of the entropy
block of the final epoch (ε = 0.025) of the ABC-SMC simulation (HT = 0.113).

4 Discussion

We showed how topology information, as an encoding for
important aspects of geological knowledge and reasoning,
can be included in probabilistic geomodeling methods in a
Bayesian framework. The simulation experiments for our
two case studies demonstrated that we are able to approxi-
mate posterior distributions to obtain probabilistic geomodel

ensembles that honor both our prior parameter knowledge
and qualitative geological knowledge. If the applied topolog-
ical information is meaningful, then the constrained stochas-
tic geomodel ensemble will see a meaningful reduction
in uncertainty and will subsequently allow for more pre-
cise model-based estimates and decision-making (Stamm
et al., 2019). More importantly, the (approximate) Bayesian
approach requires the explicit statement of the geological

https://doi.org/10.5194/gmd-14-3899-2021 Geosci. Model Dev., 14, 3899–3913, 2021



3910 A. Schaaf et al.: Constraining stochastic 3-D structural geomodels with topology information

Figure 11. X–Z section of entropy difference between the forward-simulated entropy and the approximate posterior entropy H (ε = 0.025).
The plot highlights areas where the entropy was reduced (blue), increased (red) and kept constant (white).

Figure 12. (a) Number of unique topologies within the geomodel
ensembles of each SMC epoch, showing the iterative reduction in
topological uncertainty throughout the SMC simulation. (b) Aver-
age geomodel entropy of the ensembles for each epoch, showing
how the reduction of topological uncertainty shown in (a) affects
the total geomodel uncertainty.

knowledge (here the topology information) used in the prob-
abilistic geomodel, increasing the transparency of assump-
tions made during the geomodeling process and any subse-
quent decisions.

With our approach, we directly address a scientific chal-
lenge raised in recent work by Thiele et al. (2016b) that
known topological relationships are frequently not honored
during the probabilistic modeling process, thus potentially
invalidating large parts of the resulting geomodel ensemble.
Injecting topology information into a Bayesian approach al-
lows us to obtain topologically valid, and hence geologically
reasonable, geomodel ensembles. And, although we have
only used simple topology information within this study, the
demonstrated ABC approach allows us to easily scale the
amount of topology information used: from simple true–false
comparisons of single topology graphs to the use of a whole
range of topology graphs and relationships. If a set of ac-

ceptable topologies is used, one could, for example, accept
a simulated model if it matches at least one within the error
tolerance.

The work of Pakyuz-Charrier et al. (2019) shows how
clustering of probabilistic geomodel topologies can be used
to differentiate between different modes of topologies. Their
approach compares geomodel topologies by describing them
as half-vectorized adjacency matrices, resulting in a binary
string that can be compared using the Hamming distance
(Hamming, 1950). It could be considered as a different dis-
tance metric in the ABC approach presented in this work to
constrain the simulated probabilistic geomodel. And, while
their work focuses on the analysis of existing probabilistic
geomodel ensembles, our approach focuses on training prob-
abilistic geomodels on topology information.

As more complex geomodels strongly increase the re-
quired parameterization to accurately describe the model do-
main in a probabilistic framework, constraining them with
topological information could help keep this parameteriza-
tion at computationally feasible levels by reducing the pa-
rameter dimensionality, while still obtaining meaningful ge-
omodels (e.g., free of modeling artifacts caused by random
perturbations of the limited input data). This would not work
using an inefficient rejection sampling scheme (e.g., ABC-
REJ) but would rather require the use of “adaptive” sam-
pling algorithms to efficiently explore the posterior parame-
ter space without wasting too much computing power on re-
jected models (e.g., ABC-SMC). In our Gullfaks case study,
we have not only shown the efficacy of the method in a real-
world example, but have also demonstrated the stark increase
in computational efficiency when using advanced sampling
techniques. The SMC sampler used in our work requires
manual setting of the acceptance thresholds, which directly
influence the algorithm’s efficiency in acquiring samples of
the approximate posterior distribution. Adaptive SMC meth-
ods automatically tune acceptance thresholds to increase
sampling efficiency “on the fly” to minimize computation
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time and avoid manual (subjective) selection of thresholds
(Del Moral et al., 2012).

Sadegh and Vrugt (2014) describe a more complex
ABC algorithm based on Differential Evolution Adap-
tive Metropolis (DREAM-ABC) and demonstrate its much
higher efficiency in approximating the posterior. It might be
of particular interest for the approximate inference of com-
plex structural geomodels with topology constraints, as it has
shown promise to very efficiently explore high-dimensional
(read: large amount of prior parameters) and multi-modal
parameter spaces. When using multiple topology graphs
(which are discrete) in an ABC framework, the posterior pa-
rameter space may potentially become multi-modal, which
poses significant challenges for traditional Markov chain-
based samplers (Feroz and Hobson, 2008). The approach by
Sadegh and Vrugt (2014) is based on combining multiple
Markov chains, which natively supports parallel computing
and would thus allow for a high scalability of the approach
to complex, computationally intensive geomodels.

Alternatively, Bayesian optimization for likelihood-free
inference (BOLFI; Gutmann and Corander, 2016) could be
worth considering for complex structural geomodels. The
method abstracts the simulator and/or implicit function into
a statistical surrogate model between the priors and the
summary statistics and then attempts to minimize their dis-
tance, with the potential to significantly reduce the number
of needed computations of the geomodel. Overall, the spa-
tial and discrete nature of geomodels and the use of discrete
summary statistics pose unique challenges for sampling algo-
rithms, requiring further research to identify algorithms that
can confidently converge and minimize the high computa-
tional cost of probabilistic 3-D geomodels.

The method demonstrated the effect of topology informa-
tion on geomodel uncertainty – showing how well the pa-
rameterization of a probabilistic geomodel fits our geologi-
cal assumptions. The acceptance rates during sampling could
potentially be used as a proxy for the validity of our assump-
tions: low acceptance rates could reveal a bad fit between
our model and our added geological knowledge and reason-
ing. Using entropy-difference plots, the effect of geological
assumptions on geomodel uncertainty can be analyzed spa-
tially, e.g., how it changes around faults and other structures
in the geomodel ensemble.

5 Summary

– We have shown how to use approximate Bayesian com-
putation to constrain probabilistic geomodels so that the
approximate posterior incorporates known topology in-
formation.

– The method enables additional geological knowledge
and reasoning to be explicitly encoded and incorporated
into probabilistic geomodel ensembles, potentially in-
creasing the transparency of the modeling assumptions.

– As opposed to standard MC with rejection, the imple-
mented SMC approach makes the use of ABC feasible
in realistic settings. Further research into using more
advanced sampling schemes could provide additional
speed-ups in obtaining the posterior geomodel ensem-
ble, which is especially relevant for computationally
more expensive complex geomodels with large parame-
terizations.
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