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Abstract

Understanding spatiotemporally varying animal distributions

can inform ecological understanding of species' behavior

(e.g., foraging and predator/prey interactions) and support

development of management and conservation measures.

Data from an array of echolocation-click detectors

(C-PODs) were analyzed using Bayesian spatiotemporal

modeling to investigate spatial and temporal variation in

occurrence and foraging activity of harbor porpoises

(Phocoena phocoena) and how this variation was influenced by

daylight and presence of bottlenose dolphins (Tursiops truncatus).

The probability of occurrence of porpoises was highest on

an offshore sandbank, where the proportion of detections

with foraging clicks was relatively low. The porpoises' over-

all distribution shifted throughout the summer and autumn,

likely influenced by seasonal prey availability. Probability of

porpoise occurrence was lowest in areas close to the coast,

where dolphin detections were highest and declined

prior to dolphin detection, leading potentially to avoidance

of spatiotemporal overlap between porpoises and dolphins.

Increased understanding of porpoises' seasonal distribution,

key foraging areas, and their relationship with competitors
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can shed light on management options and potential inter-

actions with offshore industries.

K E YWORD S

bottlenose dolphin, competition, C-POD, distribution, foraging,
harbor porpoise, INLA, landscape of fear

1 | INTRODUCTION

Heterogeneous environments result in patchy distribution of resources (Fauchald, 2009), resulting in an irregular dis-

tribution of animals to maximize their foraging efficiency (Benoit-Bird et al., 2013). Unraveling the drivers (and appro-

priate proxies to use during modeling) of these spatially and temporally varying distributions is important to inform

our ecological understanding of the species, as well as to support development of effective management and conser-

vation measures (Dunn et al., 2011; Pompa et al., 2011).

The harbor porpoise (Phocoena phocoena) is the most abundant cetacean in the North Sea, Northeast Atlantic

(Hammond et al., 2017). They are often bycaught in fisheries (Hammond et al., 2002) and encountered in offshore

development sites (e.g., Bailey et al., 2010; Brandt et al., 2011; Dähne et al., 2013; Graham et al., 2019; Pirotta

et al., 2014). Knowledge of spatiotemporal patterns in both distribution and important foraging locations is therefore

required to support management measures to mitigate potential impacts from offshore industries.

Harbor porpoise distribution has been assessed previously in relation to a variety of static (e.g., depth and slope)

and dynamic habitat variables. Dynamic variables include sea surface temperature (MacLeod et al., 2007), time of

day (Carlström, 2005; Todd et al., 2009; Williamson et al., 2017), chlorophyll-a (Philpott, 2013; Wingfield

et al., 2017), high tidal flow (Isojunno et al., 2012; Marubini et al., 2009), low tidal flow (De Boer et al., 2014; Embling

et al., 2010), flood tide (Johnston et al., 2005), upwelling (Jones et al., 2014; Skov & Thomsen, 2008), tidal stratifica-

tion, and mixing (De Boer et al., 2014; Hall, 2011; Philpott, 2013); however, relationships between porpoise distribu-

tion and these variables are often inconsistent between studies. Associations between animal distribution or

behavior and environmental variables (proxies for resource distribution) can change, and interactions with environ-

mental characteristics may vary from region to region (De Boer et al., 2014) or between individuals (Johnston

et al., 2005). In addition, differences may be shaped by spatial variation in the presence of competitors or predators

that constrain habitat choice in a landscape of fear (Wirsing et al., 2008). Globally, killer whales (Orcinus orca) and

white sharks (Carcharodon carcharias) are the two main predators of porpoises (Read, 1999); however, in some

regions they are also killed/harassed by bottlenose dolphins, Tursiops truncatus (Jepson & Baker, 1998; Patterson

et al., 1998; Ross & Wilson, 1996) and gray seals, Halichoerus grypus (Leopold et al., 2015). Porpoises are not targeted

as prey by bottlenose dolphins, as there is no evidence that they are ever consumed (Ross & Wilson, 1996); this

behavior may instead represent a violent form of interference competition in which top predators kill mesopredators

to reduce competition for prey (Ritchie & Johnson, 2009).

Previous studies in areas where these interactions occur have shown that porpoises and dolphins are often

detected in the same locations, but there are fine-scale differences in temporal patterns of area use (Nuuttila

et al., 2017; Thompson & White, 2004). In Cardigan Bay, Wales (UK), dolphins and porpoises are sympatric, but each

has different relationships between occurrence and seasons, time of day, and tidal phase (Nuuttila et al., 2017). In

the Moray Firth (MF), harbor porpoises are distributed throughout the entire region with highest occurrence on the

sandy Smith Bank, in the outer MF (Brookes et al., 2013; Williamson et al., 2016). In contrast, bottlenose dolphins

are primarily found in coastal areas, while detections offshore are usually of other species of dolphin that have not

been reported to attack porpoises including common (Delphinus delphis), white beaked (Lagenorhynchus albirostris),

and Risso's (Grampus griseus) dolphins (Palmer et al., 2017; Thompson et al., 2014). Other predators such as killer
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whales occur only rarely (Waggitt et al., 2020) and, while gray seals are widespread in the MF, there is no evidence

of them killing porpoises in this area.

In this study, we used data from a large-scale array of passive echolocation-click detectors (C-PODs) to investi-

gate spatial and temporal variation in occurrence and foraging activity of porpoises, and how this may be influenced

by both daylight and the presence of bottlenose dolphins. We used hierarchical Bayesian modeling (HBM) with inte-

grated nested Laplace approximation (INLA) for model fitting (Rue et al., 2009) using the stochastic partial differential

equation (SPDE) approach (Lindgren et al., 2011).

2 | METHODS

2.1 | C-POD data

Echolocation-click data were collected in the MF between July and October 2009, 2010, and 2011 (Figure 1).

Data were collected using C-PODs (Chelonia Ltd., 2014a) as described by (Brookes et al., 2013; Williamson

et al., 2016, 2017). C-PODs were deployed 2–5 m above the seabed at sites ranging in depth from 7–73 m

(Figure 1), and data were available from 33–58 sites in each month (Table 1). Data on the occurrence of porpoise

and dolphin clicks were extracted using version 2.025 of the cpod.exe software (Chelonia Ltd., 2014b).

2.2 | Response variables

Two different models were fitted to the data: one investigating the spatiotemporal distribution of harbor porpoises

and the other investigating porpoise foraging activity (Table 2). Porpoise occurrence data were used to create a bino-

mial response variable representing the presence or absence of harbor porpoises within an hour (DPH), which was

then used in the occurrence model (Table 2). This hourly metric was selected to minimize the extent to which the

detection probability of a C-POD may be influenced by changes in sensitivity with ambient noise levels (Dähne

et al., 2013), tidal flow (Wilson et al., 2013), or deployment depth (Alonso & Nuuttila, 2014).

Buzzes, assumed to be from foraging (Verfuß et al., 2009), were also extracted from acoustic detections based

on the duration of interclick interval (ICI) using Gaussian mixture models to assign clicks with different ICIs to differ-

ent categories (Pirotta et al., 2014; Williamson et al., 2017). Echolocation clicks with ICIs of less than 10 ms were

from foraging buzzes (Carlström, 2005). A binomial response variable representing presence or absence of porpoise

echolocation clicks that were classified as foraging buzzes in each hour (for hours in which detections were made)

was created for use in the foraging model (Table 2).

2.3 | Explanatory variables

The number of hours between a porpoise detection and the nearest dolphin detection was calculated for a rolling

24 hr period at each site. This resulted in positive values when the porpoise was detected after the dolphin, and neg-

ative when the porpoise was detected before the dolphin. All detections more than ±24 hr away were excluded.

Truncation at 24 hr removed long gaps between detections (when there were no animals present) but retained any

potential diel relationships between porpoise and dolphin occurrence.

Sunrise and sunset times were obtained from the POLTIPS oceanographic model (NERC National Oceanography

Centre, Liverpool, UK) for the port of Helmsdale, in the MF. These were converted into a continuous cyclic variable,

“daylight,” at an hourly resolution in which 0.25 represented sunrise, and 0.75 represented sunset. This daylight vari-

able was used because time of day is not an appropriate metric for investigating light-mediated changes to detection
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in high latitudes across months. The time of sunrise, for example, changed by over 4 hr between the beginning of

July and the end of October and by 6 hr between the summer and winter solstices. The daylight variable represents

time of day relative to sunrise and sunset.

F IGURE 1 Locations of C-POD deployments used in analysis showing locations of outer, central, inner, and
coastal portions of the Moray Firth (MF) and the Smith Bank. Inset shows the location of the Moray Firth in relation
to the British Isles.

TABLE 1 Number of C-POD locations
surveyed and the total number of hours
of data each month.

Month # locations surveyed # hours of data

July 2009 51 11,076

August 2009 51 18,105

September 2009 48 18,346

October 2009 49 14,372

July 2010 49 8,899

August 2010 58 14,295

September 2010 50 14,079

October 2010 44 7,225

July 2011 44 12,507

August 2011 37 12,731

September 2011 33 10,793

October 2011 41 11,950
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2.4 | Modeling

Both occurrence and foraging models were fitted in a Hierarchical Bayesian framework using INLA (Rue et al., 2009).

To approximate continuous space, the SPDE approach (Lindgren et al., 2011) was used, which approximates the

Gaussian field using a flexible stochastic model that is continuous in space (Blangiardo et al., 2013). The SPDE

approach requires a triangulation mesh of the modeled area. The mesh provides a lower bound on the spatial resolu-

tion for analysis, and therefore a mesh should be developed which is fine enough so that no further changes in the

results can be observed when a finer mesh is used (Lindgren et al., 2011). The triangulation mesh for the SPDE was

created, bounded by the coastline with an inner (finer) mesh extending 10 km from C-POD locations and an outer

mesh extending from 10 to 20 km from C-PODs. The outer mesh was used to prevent boundary effects and since it

is outside the range of data, a coarser resolution can be used for computational efficiency. The mesh generator was

allowed to place vertices randomly as needed with a maximum edge length of 4 km between vertices in the inner

mesh and 10 km in the outer mesh. A minimum angle of 25� and a minimum edge length of 2 km were permitted.

The SPDE was specified using penalized complexity (PC)-priors (Simpson et al., 2017) guiding the spatial range and

standard deviation of the Matérn covariance function used in the Gaussian field approximation. These priors

informed the model that the minimum spatial range was likely to be 3 km, with a likely maximum standard devia-

tion of 2.

In both models, the Gaussian field specification was grouped into distinct time points (months), to enable the dis-

cretization of the sampling region over time. These spatiotemporal fields incorporated an autoregressive (AR1) pro-

cess as the temporal function, capturing temporal correlation between consecutive months. This enabled the spatial

distribution of the response variables to be estimated for each month of data (July–October 2009–2011), while

accounting for temporal correlation.

Both daylight and hours to dolphin detection exhibited complex nonlinear relationships with the response vari-

ables. To capture these effects, they were modeled using the SPDE approach with each explanatory variable

modeled as Matérn functions related to one-dimensional meshes based on the range of each variable (e.g., 0 to 1 for

daylight). Incorporating the explanatory variables in this way revealed the nonlinear features of the effects and

enabled the inclusion of this complexity in the overall models. This enabled inclusion of the effect of these variables

on the spatial distribution of porpoise occurrence and foraging activity, while simultaneously capturing fine-scale

temporal impact of these variables on the responses. For both occurrence and foraging models, a binomial distribu-

tion was used.

These models were then used to predict the probability of porpoise occurrence (PO, occurrence model) and the

probability of foraging activity (PF, foraging model) on a scale between 0 and 1, onto the 2D spatial mesh, for each

month of data (July–October 2009–2011). The relative widths of the 95% posterior credible interval (RWPCI), a

measure of relative uncertainty (Yuan et al., 2017), for each model were also plotted and are shown in Figures S1

TABLE 2 Summary of models fitted.

Occurrence model Foraging model

Model

components

Daylight, hours to dolphin detection, and a

spatiotemporal field including a monthly

AR1 process.

Daylight, and a spatiotemporal field including a

monthly AR1 process.

Response

variable

Presence or absence of a porpoise

detection at each C-POD location

within an hour.

Presence or absence of an echolocation click classified

as a foraging buzz at each C-POD location within

each hour in which a porpoise was detected.

Scale of

predicted

result

Probability of occurrence of porpoise (PO),

with limits 0–1.
Probability of occurrence of foraging activity (PF), with

limits 0–1.
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and S2. The effect of hours to dolphin detection and daylight on PO and daylight on PF were also predicted. The

model of PF failed to converge when hours to dolphin detection was included. Modeling smaller subsets of the data

(i.e., each month separately) revealed that the relationship between hours to dolphin detection and PF showed no

effect (i.e., the relationship was a straight horizontal line). Hours to dolphin detection was therefore removed, and

the model converged. To view how PO and PF were related to hours to dolphin detection and daylight in the differ-

ent geographic areas, simpler models were run without the spatiotemporal field for each area (inner, coastal, central,

and outer MF and Smith Bank). Theoretically, the full model should be able to include these spatial replicates; how-

ever, in practice, such a complex model was not computationally possible and had to be run as separate models. The

mean results from 1,000 samples of these predictions were then plotted (Figures 2–6).

Code can be seen in Appendix S1 for both the occurrence and foraging models. Modeling was performed in R

version 4.0.3 (R Core Team, 2020) using inlabru version 2.2.4.9000 (Bachl et al., 2019) and INLA version 20.03.17

(Rue et al., 2009).

3 | RESULTS

Between July and September each year, PO was highest on Smith Bank in the outer MF (15–23 hr/day; Figure 2),

but porpoise detections in this offshore area decreased in October to 10–12 hr/day (Figure 2 and Table 3). In the

central MF, detection was moderate in 2009 and 2010, with 8–12 hr/day. Lower detection rates were generally

recorded in the inner MF (1–5 hr/day; Table 3). Overall, sites along the south coast had detections of 9%–25% of

hours but some coastal locations in the eastern part of the study area had higher detection (20 hr/day) throughout

2009 and July/August 2010. However, this area was not included in the array after August 2010, so the longer-term

consistency of these patterns could not be evaluated (Table 3).

In contrast to the higher rates of overall detections at Smith Bank (47%–84% of hours), PF was low in these

areas compared to inner and coastal MF sites in 2009 and 2010, but similar in 2011 (Table 3). Harbor porpoises were

detected most frequently (in 41% of surveyed hours) in offshore areas that had the lowest dolphin density (Table 3).

However, harbor porpoise detections did still occur in coastal areas with higher bottlenose dolphin detection (7.6%

of hours in inner MF area and 18.8% in coastal MF), suggesting that porpoises and dolphins may be interacting in

these areas. Porpoise detections decreased 2–3 hr before dolphin detection in the inner MF, with the lowest detec-

tion 1 hr after dolphin detection, and returned to pre-dolphin levels 2–3 hr after (Figure 4). In the coastal MF, there

was a strong decrease in porpoise detections when dolphins were detected; however, in central and offshore

regions, there was no trend in porpoise vs. dolphin detections.

Porpoise occurrence in the inner and central MF was highest at night (Figure 5), while in the coastal and outer

MF, detection was highest around sunrise, and detections were high throughout the day on the Smith Bank, with a

decrease during the night. Foraging was detected more at night in all areas (Figure 6); however, PF was highest gen-

erally in the coastal and inner MF.

4 | DISCUSSION

Harbor porpoise echolocation detection was explored in relation to fine-scale temporal drivers including detection of

a potential competitor. We have shown that locations with the highest probability of porpoise foraging activity do

not necessarily coincide with areas of highest probability of occurrence, and that probability of occurrence decreases

prior to arrival of dolphins, which may (intentionally or not) result in avoidance of negative interactions at fine spatial

scales.

These data show that harbor porpoises in the Moray Firth shifted their overall distribution between summer and

autumn at a relatively fine spatial scale. Annual variation in prey movement may be a possible driver. Porpoise are
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TABLE 3 Percentage of the total number of hours of data for each area and month in which porpoise were
detected (%DP of Total). Percentage of the number of hours of data in which porpoise were detected for which
dolphins (%D of DP) and porpoise foraging buzzes (%F of DP) were also detected.

Month Type

Area

Inner MF Coastal MF Central MF Outer MF Smith Bank

July 2009 %DP of Total 5.24 14.47 35.32 39.08 56.21

%D of DP 7.01 4.85 1.35 1.26 3.16

%F of DP 33.58 49.19 25.68 26.05 3.16

August 2009 %DP of Total 7.96 16.78 31.5 52.05 84.06

%D of DP 9.16 3.72 1.94 2.36 2.41

%F of DP 39.32 44.93 25.16 38.85 0.69

September 2009 %DP of Total 9.55 20.09 29.03 51.23 69.65

%D of DP 5.91 4.57 1.48 2.88 3.43

%F of DP 36.52 45.05 21.48 43.72 1.78

October 2009 %DP of Total 19.63 25.34 41.91 41.3 57.49

%D of DP 4.79 4.86 4.39 2.35 3.01

%F of DP 50.68 54.94 42.98 32.55 0

July 2010 %DP of Total 7.97 17.12 38.5 44.63 52.08

%D of DP 9.06 4.23 1.44 1.46 0

%F of DP 44.53 41.63 39.46 36.5 20

August 2010 %DP of Total 13.56 14.48 43.31 48.64 68.32

%D of DP 8.04 3.68 2.29 1.79 2.18

%F of DP 45.14 38.81 43.51 32.14 23.27

September 2010 %DP of Total 14.39 19.54 38.76 48.73 60.83

%D of DP 6.24 3.29 2.46 2.25 3.31

%F of DP 40.65 46.2 39.8 31.28 31.46

October 2010 %DP of Total 11.09 18.51 37.9 40.13 55.43

%D of DP 6.05 4.15 2.97 2.03 2.68

%F of DP 21.37 44.81 25.25 23.76 25.21

July 2011 %DP of Total 9.86 9.15 38.44 47.32 61.29

%D of DP 6.43 2.09 2.85 2.31 4.77

%F of DP 38.96 34.29 20.73 26 45.61

August 2011 %DP of Total 10.98 12.5 57.14 48.32 59.02

%D of DP 5.28 4.07 2.38 1.86 1.85

%F of DP 40 31.67 28.57 25.52 43.83

September 2011 %DP of Total 7.43 12.41 29.29 38.72 65.72

%D of DP 2.14 5.26 1.72 2.96 2.43

%F of DP 35.94 32.35 25.86 38.52 51.89

October 2011 %DP of Total 12.39 15.07 50.38 35.78 47.78

%D of DP 3.81 3.55 1.52 2.56 4.15

%F of DP 46.69 45.9 42.59 32.4 42.09
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known to exhibit seasonal movements in some areas (e.g., Gilles et al., 2016; Nuuttila et al., 2017; Schaffeld

et al., 2016) and observed shifts in distribution between months are often considered to be related to prey availabil-

ity (Gilles et al., 2016) because harbor porpoises have a high metabolic rate and need to eat frequently to sustain

themselves (Jones et al., 2014; Santos et al., 2004; Wisniewska et al., 2016).

The overall distribution of harbor porpoises, PO (Figure 2), differed markedly from spatial patterns in PF

(Figure 3). It is important to note, that the PF recorded here is the probability of detecting a foraging buzz, not neces-

sarily the probability of a porpoise actually buzzing. Areas with highest PF were generally in the inner and central MF

(Figure 3).

Observed differences between PO and PF (Figures 2 and 3) may be influenced by a variety of drivers. Porpoises

may use different foraging strategies (potentially targeting different prey species) in different habitats. It is possible

that different foraging behaviors are not equally detectable by the C-PODs (e.g., bottom grubbing versus pelagic for-

aging); in addition, depth of deployment may impact detections, with previous studies reporting that C-PODs

moored higher in the water column detect more porpoises (Alonso & Nuuttila, 2014). In the current study, C-PODs-

were moored 2–5 m above the seabed, below mid-water in depths that varied from 7–73 m. However, the

shallowest inshore locations where C-PODs were moored relatively high within the water column were those where

porpoise detections were lowest and dolphin detections highest. Thus, while there remains uncertainty over detec-

tion probabilities, known effects of depth on detection (Alonso & Nuuttila, 2014), do not appear to be driving the

patterns we observed here.

Harbor porpoises may also exhibit behavioral changes in different areas based on competitor or predator spe-

cies, making detection probability habitat specific. Studies using animal-borne recorders indicate that harbor por-

poises' foraging buzzes are primarily produced either at the top or bottom of a dive (Linnenschmidt et al., 2013). If

foraging using techniques such as bottom grubbing, where they target prey buried in the sediment, foraging clicks

will be directed at the seabed (Schaffeld et al., 2016). Because echolocation clicks are highly directional and quiet,

foraging behaviors such as bottom grubbing are less likely to be recorded by C-PODs (Akamatsu et al., 2005;

Schaffeld et al., 2016). Sandeels are important prey for porpoises in the MF during summer (Santos & Pierce, 2003;

Santos et al., 2004). Smith Bank had the highest probability of porpoise occurrence (Figure 2), and also provides good

F IGURE 4 Effect of hours to dolphin detection on probability of porpoise occurrence (PO) in each area. Negative
values of hours are before dolphins are detected and positive are after. The dotted line at zero shows the hour in
which dolphins were detected.
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habitat for sandeels (Holland et al., 2005; Hopkins, 2011; Wright et al., 2000); however, a low PF was recorded in this

area (Figure 3 and Table 3). During summer, sandeels spend part of their time in the water column but bury them-

selves in the sediment at night (Winslade, 1974). Given current understanding of foraging patterns, it is unlikely that

foraging clicks are detected by C-PODs if the clicks are directed toward the sediment and away from the hydro-

phones. Thus, methodological constraints mean that more focused studies are required to understand the mecha-

nisms driving these patterns.

F IGURE 5 Effect of daylight on probability of porpoise occurrence (PO) in each area. Daylight is bounded

between 0 and 1, with dotted lines at 0.25 and 0.75 indicating sunrise and sunset, respectively.

F IGURE 6 Effect of daylight on probability of porpoise foraging activity (PF) in each area. Daylight is bounded
between 0 and 1, with dotted lines at 0.25 and 0.75 indicating sunrise and sunset, respectively.
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Another explanation for the higher PF recorded in 2009–2010 in the inner MF is avoidance of competitors and

predators. While porpoises have been reported to echolocate nearly continuously (Akamatsu et al., 2005; Au, 1993),

they may either vocalize less in the inner MF, to minimize violent interactions with dolphins (resulting in lower

observed occurrence), or may only enter the area at specific times to forage. It has been suggested that a similar

vocal restriction to avoid predation by killer whales caused porpoises to develop high-frequency communication and

abandon use of lower-frequency whistles in the first place (Morisaka & Connor, 2007).

Probability of porpoise occurrence was lowest 1 hr after dolphin clicks were detected by C-PODs in the inner

MF. However, PO decreased from 24 hr before dolphin detection, with decrease in detections greatest 2–3 hr prior

to dolphin detection in the inner MF (Figure 4), suggesting that porpoises may anticipate arrival of dolphins. C-PODs

only detect dolphins within approximately 1 km (Nuuttila et al., 2013) and previous estimates of the active space of

bottlenose dolphins indicate that conspecifics can be detected at up to 20 km (Janik, 2000); therefore, it seems rea-

sonable to assume that porpoises detect dolphin vocalizations at similar distances. Given a maximum swimming

speed of 20.5 km/hr (Rohr et al., 2002), porpoises should therefore be able to detect approaching dolphins at least

an hour before a C-POD; potentially much longer if dolphins are swimming more slowly or following an indirect path.

Alternatively, porpoises may use other cues such as daylight or tidal variables to determine when dolphins are less

likely to be present in particular sites, or the two species may simply be independently responding to different

dynamic habitat variables within these sites that result in temporal segregation.

In offshore areas with low densities of dolphins, harbor porpoise occurrence was unrelated to dolphin detec-

tions, potentially a result of having few dolphin detections. Alternatively, it could be that offshore dolphin detections

are most likely to be other species (Palmer et al., 2017; Thompson et al., 2014) such as common, white-beaked, or

Risso's dolphins, which have not been reported to kill porpoise. Distribution of other predators, such as killer whales,

white sharks, and gray seals (not known to kill harbor porpoise in this area) may also affect their distribution.

Trends between porpoise occurrence and daylight were similar to those observed by Williamson et al. (2017) in

which porpoise were detected more during the night in muddy areas (corresponding to the Central MF) and more

during the day in shallow sandy areas (e.g., the Smith Bank). This emphasizes that porpoise presence is also habitat

specific. Foraging in all areas increased at nighttime, as has previously been reported (e.g., Brandt et al., 2014; Todd

et al., 2009; Williamson et al., 2017).

Ultimately, disentangling drivers of these observed patterns in harbor porpoise distribution, foraging, and inter-

actions with competitors and predators will require additional research (specifically on foraging strategies and prey

targeted in different habitats); however, these trends play a vital role in an animal's use of space and can impact man-

agement options and potential interactions with offshore industries.
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