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Abstract—Techniques for non-stationary signal analysis are
important in understanding dynamical behaviour of complex
systems. Time-frequency coherence is widely used to study time-
varying properties of non-stationary signals. In this study, we
present a wavelet-based method, using Airy wavelet, for coher-
ence analysis. The approach incorporates a novel technique for
removal of low frequency components due to envelope modulation
in non-stationary signals. The technique is demonstrated on
synthetic and real neurophysiological data. Results not only
provide a clear description of desired features in non-stationary
signals, but also suppress low frequency components due to
envelope modulation. Our novel technique shows an effectiveness
in extracting features hidden within the signals. It may lead
to improved results in coherence analysis of medical, biological,
physical and geophysical data containing low frequency envelope
modulation besides non-stationarities.

Index Terms—baseline correction, non-stationary analysis, an-
alytic wavelets, signal processing.

I. INTRODUCTION

IN nature, most signals exhibit different types of non-

stationary and time-varying characteristics. To study time-

varying properties of non-stationary signals, analytic wavelets

provide a powerful time-frequency analysis framework [1],

[2]. The wavelet transform is a localised transform in both

time and frequency. This can be achieved by mapping a

one-dimensional time-domain signal into a two dimensional

representation in time-frequency representation of the signal,

and provide time-frequency decomposition of a signal with the

possibility to adjust the time-frequency resolution [3].

There are a number of popular measures used to investigate

and characterise non-stationary signals. Here, we focus on

wavelet coherence analysis which is widely used to detect

time-localized common oscillations in bivariate non-stationary

signals. It has been applied in many signal processing applica-

tion, such as biomedical and biological signal processing [1],

[4], [5]. However, low frequency components due to envelope

modulation may occur in neurophysiological recordings. For

example, when recording electromyographic signals (EMG)

during walking, low frequency envelope modulation is an

important issue [5]–[7]. These have a frequency spectrum that

may contaminate the low-frequency part of the EMG fre-

quency spectrum, and may lead to an erroneous interpretation

of the signals.

In this paper, a wavelet-based method for coherence analysis

with suppression of low frequency envelope modulation in

non-stationary signals is presented. The measure is derived

from the same two-parameter family of generalized Morse

wavelets.

This paper is organised in four sections. Section I introduces

the conceptual overview of approach. Section II provides

details of signal processing and analysis techniques. Section

III shows examples of application to synthetic and real neu-

rophysiological data. Conclusion is included in Section IV.

II. METHODS

This section provides details of the proposed technique

for wavelet coherence analysis of non-stationary signals that

can separate desired signals from effects due to envelope

modulation.

A. The generalized Morse wavelets

Generalized Morse wavelets are a two-parameter family of

exactly analytic wavelet transform with vanishing support on

negative frequency axis [8]. They have been used for studying

time-varying properties of non-stationary signals [1], [2].

Time-frequency localisation of generalized Morse wavelets is

controlled by β and γ. The parameter β controls the time-

domain decay, and γ controls the frequency-domain decay.

Also, β and γ can be interpreted as a compactness parameter

and a symmetry parameter, respectively [8]. Normally, β and

γ are greater than zero. By varying β and γ, the generalized

Morse wavelets provide a wide variety of forms. A definition

of zeroth-order (k = 0) generalized Morse wavelets in the

frequency domain form is provided in [9] as

Ψβ,γ(ω) =
√
2H(ω)Ak;β,γω

βe−ωγ

(1)

where H(ω) is the Heaviside unit step function and Ak;β,γ is

a normalising constant that can be expressed by

Ak;β,γ =
√

πγ2rΓ(k + 1/Γ(k + r)) (2)978-1-7281-3076-7/20/$31.00 c©2020 IEEE



where Γ(•) denotes the gamma function and r = (2β+1)/γ.

The maximum amplitude occurs at the peak frequency [10],

ωβ,γ ≡
(

β

γ

)
1

γ

(3)

The rescaled second derivative of the frequency-domain

wavelets evaluated at its peak frequency is P 2
β,γ ≡ βγ, and

Pβ,γ is called the dimensionless wavelet duration [11], defined

as

Pβ,γ ≡
√

βγ (4)

The duration or inverse bandwidth Pβ,γ sets the number of

oscillations that can fit into the time-domain wavelet’s centre

window at its peak frequency. It is worth to note that Eq.

(3) and (4) are key properties which depend only on two

parameters, β and γ. With increasing β at fixed γ, the wavelet

becomes more oscillatory in the time domain or more tightly

peaked in the frequency domain [11], as seen in Figure 1.

Figure 1 is an example of one member of the generalized

Morse wavelet family. The γ = 3, called Airy wavelet, was

found to have a high degree of symmetry in the frequency

domain. More details regarding the different roles of β and

γ in controlling wavelet properties can be found in [8], [10],

and [11].

Fig. 1. Example of Airy wavelet for β = 9, with time domain form ψβ,γ(t)
(left) and frequency domain form Ψβ,γ(ω) (right). In the time domain, the
plot gives real part (the solid line) and imaginary part (the dashed line) of the
wavelet. Frequency f is in cycles per second (Hz). Time is in second (s)

B. Wavelet coherence estimates with suppression of low fre-

quency envelope modulation

Wavelet coherence analysis for removal of low frequency

envelope modulation, called practical coherence analysis, is

inspired by the study of [12], who compare two coherence

estimates. An analysis of time-frequency (τ, f) coherence esti-

mates using wavelets requires estimates for the cross spectrum

(Ŝxy(τ, f)) and auto spectra (Ŝx(τ, f)), (Ŝy(τ, t)) between two

signal, x(t) and y(t), which is given by

|R̂xy(τ, f)|2 =
|Ŝxy(τ, f)|2

Ŝx(τ, f)Ŝy(τ, f)
(5)

where

Ŝx(τ, f) =
1

N

N
∑

n=1

|Wx;n(τ, f)|2 (6)

Ŝy(τ, f) =
1

N

N
∑

n=1

|Wy;n(τ, f)|2 (7)

Ŝxy(τ, f) =
1

N

N
∑

n=1

Wx;n(τ, f)W
∗

y;n(τ, f) (8)

where Wx;n(τ, f) and Wy;n(τ, f) are the continuous wavelet

transforms for signals x(t) and y(t) of trial n, respectively. ∗
indicates conjugate. N is the number of trials.

In our case we compare the original coherence estimate

from desired signals with another derived from surrogate data.

These surrogate data are calculated from the same signals x(t)
and y(t), using Eq. (10), but after shuffling the order of all

trials for y(t). Then, Fisher’s z-transform, tanh−1, is applied

to two coherence estimates.

ẑ = tanh−1(|R̂xy(τ, f)|) (9)

where |R̂xy(τ, f)| is called magnitude coherency, with co-

herency defined by

R̂xy(τ, f) =
Ŝxy(τ, f)

√

Ŝx(τ, f)Ŝy(τ, f)
(10)

where Ŝx, Ŝy , and Ŝxy are obtained from Eq. (6), (7), and

(8), respectively. Coherency functions are complex valued, and

both phase and amplitude coupling contribute to magnitude-

squared coherence [12]. We use D̂C to represent the practical

coherence analysis. D̂C is calculated as

D̂C = tanh{ẑC − ẑCS} (11)

where ẑC and ẑCS are Fisher’s z-transform of coherence

estimates from original data and surrogate data, respectively.

A priori hypothesis on the relationship between two signals

is required. i) if two z transformed coherence estimates, ẑC
and ẑCS , have similar values, D̂C will tend to be small.

ii) if ẑC is affected by low frequency envelope modulation

component and ẑCS is expected to indicate where the low

frequency envelope modulation component is consistent across

segment, D̂C should have significant values outside that low

frequency envelope modulation. iii) Value of D̂C depends on

ẑC if ẑC is unrelated to ẑCS .

It is necessary to decide which of the coherence values are

significant. A confidence interval is used to determine if the

wavelet coherence is significantly different from zero. If the

two signals are independent and have Gaussian distributions,

the distribution of the coherence estimate is given as Pr(R2 ≤
r) = 1 − (1 − r)K−1, 0 ≤ r ≤ 1. If the confidence interval

value of 95% is chosen, then the detection threshold value is

r95% = 1− 0.051/(K−1) [4].

III. APPLICATION

For testing and validation, practical coherence analysis is

explored further by analysing surrogate and real data. Here,

the proposed technique is expected to clarify the hypothesis

stated in Section II-B.

In this section, the simulated signals are generated using

the generative model of oscillatory synchronisation proposed

by [13], which is similar to the well-known Kuramoto model



[14]. The discrete phase-evolution of oscillators X and Y used

in this study can be defined by

φx(t+ 1) = φx(t) + h
(

ωx(t) +Nx
p (t)

)

(12)

φy(t+1) = φx(t)+h
(

ωy(t) + κ sin(φy(t)− φx(t)) +Ny
p (t)

)

(13)

where φx and φy are the phase evolution of oscillator X and

Y , respectively, Np(t) is an intrinsic phase noise process, ω(t)
is an intrinsic frequency, and κ is the coupling strength.

The simulated signals have a centre frequency of 8 Hz, an

intrinsic frequency differences between oscillator X and Y
called detuning frequency (∆f ) of 3 Hz, and coupling strength

of 0.5. Step size h is set to 1 ms. Intrinsic noise is 0.05 and

SNR is 250. Three envelope windows, including 1-Hz and 5-

Hz triangular waves, and 3-Hz half wave rectified sine waves,

are then applied to simulated signals. Here, a key aspect of

our envelope windows is a substitution model of low frequency

envelope modulation that allows its exact behaviour to be pre-

dicted, for example, frequency and amplitude. So, 100 datasets

of the simulated signals modulated with envelope windows are

called the test signals shown in Figure 2(A)(column 1-3).

To further understand the nature of the practical coherence

analysis for removal of low frequency envelope modulation,

we consider a practical example of using the proposed tech-

nique. An example of its application to real sEMG data

is demonstrated. Here, rectified sEMG signals, Figure 2(A)(

column 4) obtained from one subject treadmill walking taken

from a previous study of [6], are used to validate the reliability

of the proposed technique.

Wavelet coherence and practical coherence analysis are used

in displaying features of the signals and the performance of

the technique calculated using averages over 100 trials. All

measures have a segment length of 1000 ms for the test signals,

and 1024 ms non overlapping epochs from one subject during

treadmill walking for real EMG signals. They are computed

using Airy wavelet with β = 9. The significant value for

wavelet coherence is considered if the estimate is greater than

the 95% confidence interval. In this study, The 95% confidence

interval for practical coherence estimates is 0.029 based on

analysis of 100 trials. The results are shown in Figure 2(B-

D).

Fisher’s z-transform of coherence estimates from three test

signals (ẑC) illustrated in Figure 2(B)(column 1-3) show that

strong peak magnitude of oscillatory synchronisation occurs at

frequencies 5-10 Hz around 200-500 ms (Figure 2(B)(column

1)), at 5-15 Hz around 300-600 ms (Figure 2(B)(column

2)), and at 5-6 Hz around 200-400 ms and 800-1000 ms

(Figure 2(B)(column 3). Figure 2(B)(column 4) shows that the

EMG-EMG coherence consist of a significant low-frequency

component (<5 Hz) present throughout the step cycle together

with weaker peaks of coherence arising between 8 and 12-30

Hz around early and late swing of step cycle.

Figure 2(C) shows Fisher’s z-transform of coherence es-

timates from surrogate data (ẑCS). The results in Figure

2(C)(column 1 and 2) indicate that there is no coherence

between the data. In Figure 2(C)(column 3), the result shows

peak at low frequency of 5 Hz in the beginning and the

end of the time window. Importantly, the significant features

in terms of centre frequency of 8 Hz ± 3 Hz at time

200-600 ms shown in Figure 2(B)(column 1-3) disappear in

Figure 2(C)(column 1-3). Also, weaker peaks of EMG-EMG

coherence between 8 and 12-30 Hz around early and late

swing of step cycle in Figure 2(B)(column 4) disappear as

seen in Figure 2(C)(column 4). Thus, the practical coherence

estimates (D̂C) in Figure 2(D) indicate that low frequency

components due to envelope modulation disappear, and a

distinct 8 Hz ± 3 Hz correlation located around 200-600 ms

remains, as clearly seen in Figure Interestingly, low frequency

(<5 Hz) components seen in Figure 2(D)(column 1-3). More

importantly, it is clearly seen that distinct frequencies 8 Hz

and 12-30 Hz located around early and late swing, but the

low frequency components (< 5 Hz) disappear as illustrated

in Figure 2(D)(column 4). [6] reported that coherence between

12 and 32 Hz is commonly seen and has been demonstrated

to represent a rhythmic modulation of motor unit activity.

The proposed technique gives advantage in terms of extracting

low frequency components due to envelope modulation, and

detecting the correlations where the coherence has significant

features.

IV. CONCLUSION

We propose a novel technique for removal of low frequency

envelope modulation in coherence analysis using generalized

Morse wavelets. The technique compares the original coher-

ence from the test signals with another derived from surrogate

data shown in Section II. We demonstrate the technique with

synthetic data. Three examples are presented in section III.

The results from practical coherence estimates are consistent

in terms of centre frequency of 8 Hz ±∆f 3 Hz around

time range 200-600 ms as a designated by the generative

model. When the new technique does suppress the envelope

modulation it is most likely to reduce low frequencies due to

envelope windows, 1-Hz and 5-Hz triangular waves, and 3-Hz

half wave rectified sine waves, as clearly seen in Figure 2(D),

especially Figure 2(D)(column 3). The results from real EMG

signals analysis show that the low frequency components (< 5
Hz) are removed while a rhythmic modulation of motor unit

activity (8 and 12-30 Hz) around early and late swing remains

unchanged, as clearly seen in Figure 2(D)(column 4).

Our results calculated by Eq. (11) suggest that the method

is able to successfully detect localised correlation in the time

frequency plane. The technique in this study can serve as a

useful tool for investigating and characterising the interaction

between non-stationary signals. It can be used to separate

physiological mechanisms from effects due to envelope mod-

ulation. There may still be valid effects due to low frequency

envelope modulation, now we hope to get a clearer and more

accurate assessment of these.
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