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SUMMARY
Cryoelectron tomography (cryo-ET) and subtomogram averaging (STA) allow direct visualization and struc-
tural studies of biological macromolecules in their native cellular environment, in situ. Often, low signal-to-
noise ratios in tomograms, low particle abundance within the cell, and low throughput in typical cryo-ET
workflows severely limit the obtainable structural information. To help mitigate these limitations, here we
apply a compressed sensing approach using 3D second-order total variation (CS-TV2) to tomographic recon-
struction. We show that CS-TV2 increases the signal-to-noise ratio in tomograms, enhancing direct visuali-
zation of macromolecules, while preserving high-resolution information up to the secondary structure level.
We show that, particularly with small datasets, CS-TV2 allows improvement of the resolution of STA maps.
We further demonstrate that the CS-TV2 algorithm is applicable to cellular specimens, leading to increased
visibility of molecular detail within tomograms. This work highlights the potential of compressed sensing-
based reconstruction algorithms for cryo-ET and in situ structural biology.
INTRODUCTION

Cryoelectron tomography (cryo-ET) is an increasingly popular

method for direct visualization of macromolecules in their native

environment, which, together with subtomogram averaging

(STA), allows structure determination of biological macromole-

cules (Beck and Baumeister, 2016; Briggs, 2013; Lu�ci�c et al.,

2005; Wan and Briggs, 2016). Cryo-ET is often applied to speci-

menswith a complex 3D arrangement, where standard 2D cryoe-

lectron microscopy (cryo-EM) is not sufficient. Similarly, STA as a

structuredetermination technique is often applied to specimens in

cases where cryo-EM single-particle analysis is not feasible; for

example, because of the pleomorphic nature of the sample

(Briggs, 2013; Lu�ci�c et al., 2005). Uniquely, cryo-ET and STA can

also be employed to visualize macromolecules and solve struc-

tures in situwithin cells (Beck and Baumeister, 2016; Galaz-Mon-

toya and Ludtke, 2017; Medeiros et al., 2018). Applications of

cryo-EM and cryo-ET have increased steadily over recent years

with advances in cryo-EM hardware and detector technology (Li

et al., 2013;McMullan et al., 2009) in conjunctionwith increasingly

powerful software for image processing (Bharat et al., 2015; Chen

et al., 2019; Galaz-Montoya et al., 2015; Himes and Zhang, 2018;

Kremer et al., 1996; Punjani and Fleet, 2021; Punjani et al., 2017;

Tang et al., 2007; Tegunov and Cramer, 2019; Tegunov et al.,

2021; Turo�nová et al., 2017; Zhong et al., 2021).
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Visualization of macromolecules in cells is extremely valuable

because macromolecular interactions with the cellular environ-

ment are revealed, providing a wealth of important biological

data (Melia and Bharat, 2018; Pfeffer and Mahamid, 2018; Villa

et al., 2013). If the native structure of the macromolecule needs

to be studied, then STA can be used to obtain higher-resolution

reconstructions from cryo-ET data (Gr€unewald et al., 2003). STA

is enabled by the fact that high-resolution information is pre-

served within the tilt-series images that are used to reconstruct

tomograms (Lu�ci�c et al., 2013). The high-resolution information

can be recovered by computational alignment and averaging

of numerous tomographic subvolumes containing identical

copies of the target macromolecule, called subtomograms

(Beck and Baumeister, 2016; Briggs, 2013). The potential of

STA has been impressively demonstrated in recent years, with

reports of maps from which the atomic structures could be

directly interpreted (Himes and Zhang, 2018; Schur et al.,

2016; Tegunov et al., 2021). Despite these recent successes,

there is large potential for improvements and future applications.

Most recent applications of cryo-ET and STA resulting in near-

atomic resolution focused on intrinsically thin specimens with a

large, abundant macromolecular assembly used for STA. Apart

from a handful of such success stories, typical cellular cryo-ET

resolutions are between 10 and 50 Å, where integrating orthog-

onal information about the macromolecule of interest is often
, March 3, 2022 ª 2021 The Author(s). Published by Elsevier Ltd. 1
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required to reach a satisfactory biological conclusion (Allegretti

et al., 2020; Ghosal et al., 2019; Hoffmann et al., 2019; Shi

et al., 2019; Watanabe et al., 2020; Weiss et al., 2019).

The quality of the cryo-ET data ultimately governs the success

of any study because it strongly influences, first, the possibility of

target detection in crowded cellular tomograms and, second, the

quality of the extracted subtomograms, thus determining the

resolution of the final structure after STA refinement. Tomo-

graphic reconstructions from 2D tilt-series projection images

are performed after deducing the geometrical relationship be-

tween tilt-series images. This is often enabled by assessing po-

sitions of gold fiducial markers in the images, along with prior

knowledge of specimen tilt applied during data collection. By

knowing these parameters, tomographic reconstruction can

then be performed using various algorithms (Sorzano et al.,

2017). If the study requires higher-resolution structural analysis

(i.e., when STA is needed), typically large amounts of data are

used to overcome the low signal-to-noise ratio (SNR). This pro-

cedure is well established but often requires thousands of subto-

mograms and hundreds of tomograms, which can create a huge

bottleneck in STA, depending on the abundance of the target

macromolecular complex (Böhning and Bharat, 2021). First,

sample preparation for in situ structural biology often involves

focused ion beam (FIB) milling, during which material is ablated

with an ion beam above and below the region of interest to create

thin cellular slabs that are amenable for cryo-ET (Marko et al.,

2007; Villa et al., 2013). Even with recent advances in automation

of the FIB milling process (Klumpe et al., 2021; Zachs et al.,

2020), this process is time-consuming and limited in throughput.

Secondly, cryo-ET data acquisition is much slower than in sin-

gle-particle cryo-EM. For in situ structural biology applications,

therefore, it is of utmost importance to develop methods to

improve solving structures of macromolecules with limited data-

sets at hand to reach the long-standing goal of ‘‘visualizing the

sociology’’ of the cellular proteome (Baumeister, 2002).

To this end, there is an array of reconstruction methods avail-

able to produce high-quality tomograms (Sorzano et al., 2017).

Commonly used algorithms include the simultaneous iterative

reconstruction technique (SIRT) (Agulleiro and Fernandez, 2011;

Gilbert, 1972; Lu�ci�c et al., 2005), the algebraic reconstruction

technique (ART) (Gordon et al., 1970), and algorithms derived

thereof, such as discrete ART (Batenburg and Sijbers, 2007)

and simultaneousART (SART) (Andersen andKak, 1984). Such al-

gorithms iteratively reduce the differences between calculated

projections of the tomogramand the tilt series, which often results

in increased sample contrast. The amplification of low-resolution

features, which increases visibility, coincides with a loss of high-

resolution features below the noise levels of tomograms (Wan

and Briggs, 2016). Some algorithms have been developed in

an effort to retain high-resolution features while enhancing low-

resolution contrast, such as the iterative nonuniform fast Fourier

transform reconstruction (INFR) (Chen and Förster, 2014), su-

per-sampling SART (Kunz and Frangakis, 2014), and the progres-

sive stochastic reconstruction technique (PSRT) (Turo�nová et al.,

2015). These algorithms showed an impressive boost in STA res-

olution to 20–30 Å. More recently, model-based iterative recon-

struction (MBIR) has been employed for cryo-ET, where a prior

model of the unknown3Dobject is employed to guide reconstruc-

tion. The algorithm has been shown to produce higher-contrast
2 Structure 30, 1–10, March 3, 2022
reconstructions (Yan et al., 2019), and benefit at�15-Å resolution

has been suggested in STA, although the algorithm requires

strong high-pass filtering of the resulting reconstructions for

STA because of the prevalence of low spatial frequencies within

reconstructed tomograms.

In materials science applications, atomic-resolution tomogra-

phy has been achieved at substantially higher doses and SNRs

using equally sloped tomography methods (Scott et al., 2012)

as well as mixed real and Fourier space iterative methods (Pryor

et al., 2017; Yang et al., 2017). This type of dual-space algorithm,

augmented by use of constraints such as non-negativity and to-

tal variation (TV) regularization, has recently also seen applica-

tion in cryo-ET, with improvements in contrast and noise level

(Geng et al., 2021). Machine learning approaches include dictio-

nary learning, and neural network approaches have also shown

promise for enhancing reconstruction quality in the physical sci-

ences (AlAfeef et al., 2016; Bladt et al., 2015; Liu et al., 2014). For

biological applications, the electron dose that can be applied is

severely limited because of the radiation sensitivity of speci-

mens. For such samples, ideally, tomographic reconstruction

algorithms would increase low-resolution contrast while preser-

ving high-resolution frequencies up to the secondary structure

level and beyond.

A promising method that has been shown to reduce data re-

quirements in electron tomography is compressed sensing

(CS) (Leary et al., 2013; Saghi et al., 2011). This image processing

technique allows high-fidelity reconstructions of signals in cases

where sampling is limited, which is uniquely applicable to the

data-limited case of cryo-ET. This approach has seen wide-

spread adoption in materials science at resolutions greater

than 1 Å, with particular emphasis on the reduction in the number

of projection images required for reconstructions of isolated

structures (Leary et al., 2013). Applications of CS in electron to-

mography of biological samples, where SNRs are typically much

lower than in materials science, have been far fewer (Deng et al.,

2016; Geng et al., 2021; Guay et al., 2016; Li et al., 2020; Saghi

et al., 2016), building on work exploring cryo-ET with regulariza-

tion tailored to reducing missing wedge artifacts (Aganj et al.,

2007) as well as CS-based image inpainting of high-contrast ob-

jects, such as fiducial markers (Song et al., 2012). Although CS-

based STA has been reported at a resolution of several nanome-

ters for ribosome samples (Deng et al., 2016), its ability to retain

fine molecular detail at the level of secondary structure elements

of macromolecules in cryo-EM applications and its use for STA

of limited datasets and for direct visualization ofmacromolecules

in the cellular environment remain undetermined.

In this study, we applied a CS approach to cryo-ET recon-

structions of biological specimens, leveraging CS algorithms us-

ing 3D second-order TV (TV2) (Collins et al., 2019). This work is

motivated by significant recent advances in applying higher-or-

der TV methods in electron tomography (Huber et al., 2019;

Jacob et al., 2021; Sanders et al., 2017), with the aim of estab-

lishing viability of higher-order TV methods for cryo-ET and

STA. In comparison with earlier CS-ET approaches in cryo-ET

(Deng et al., 2016), our CS-TV2 approach is compatible with

dense images of high-resolution structures, uses a real space

projection operator avoiding interpolation requirements in Four-

ier space algorithms (Goris et al., 2012), and accounts for the full

three-dimensionality of the object for improved reconstructions
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(Haberfehlner et al., 2014) by exploiting the connectivity inherent

in biological structures. We tested the CS-TV2 algorithm for

tomographic reconstruction and found that it improves the

SNR in tomograms of a wide range of specimens, facilitating

visualization of macromolecules in raw tomograms. Further-

more, CS-TV2 tomograms preserve secondary structure infor-

mation and support high-resolution STA of biological macromol-

ecules. We provide a detailed comparison of CS-TV2 with

weighted back-projection (WBP) using STA of purified speci-

mens. We find that CS-TV2 outperforms WBP at small subtomo-

gram numbers (small datasets) while providing comparable re-

sults for medium-sized datasets where secondary structure

elements could be resolved. We further applied our algorithm

to cellular specimens to highlight the ability of CS-TV2 tomo-

graphic reconstructions to remove noise and increase the visibil-

ity of macromolecular features at the level of small protein

domains. We propose that further development in CS algorithms

will be beneficial for cryo-ET, with gains in direct visualization of

macromolecules in tomograms as well as in STA of small data-

sets, which are typical for in situ structural studies.

RESULTS

Mathematical basis for the approach
The key principles of CS and TV regularization have been re-

ported in several contexts, with detailed studies of applications

to electron tomography (Leary et al., 2013), cryo-ET (Deng

et al., 2016), as well as higher-order TV for electron tomography

(Sanders et al., 2017). The central tenets are reviewed briefly

here, with a specific elaboration of the TV2 approach applied to

cryo-ET data. The mathematically rigorous foundations of CS

are considered in the context of undersampled data. Under-

sampled data refers to a limited set of measurements that would

be insufficient to recover a tomographic reconstruction with high

fidelity while maintaining strict generality. Such a general sam-

pling criterion assumes that the object may have intensities

distributed in any possible 3D arrangement. CS instead uses

the fact that objects of interest are highly structured and can

therefore be represented with high fidelity with only a few coeffi-

cients, which is also the principle of image compression. In

contrast to compression of a dense image, CS seeks to match

a limited number of measurements to identify these coefficients

directly and therefore requires far less data to complete a

reconstruction.

The CS approach depends on the sparsity of the object in this

compressed representation where few coefficients are needed.

CS further depends on the incoherence between the structure

of sampling or distribution of the measurements (i.e., the tilt-se-

ries data) and the mathematical description of the measurement

process (i.e., the Radon transform) in cryo-ET. In many CS appli-

cations, this incoherence is established by randomization in the

measurements taken. In electron tomography, these require-

ments appear to follow the asymptotic incoherence properties

for effective sampling in CS (Adcock et al., 2017), given the dis-

tribution of measurements as slices through Fourier space, and

the CS framework has demonstrated success in numerous ET

applications.

The CS-ET algorithm can be cast as a regularized reconstruc-

tion problem of the form
fðrÞ= arg min
r

n
jj bPfðrÞ � Gexp j j2[ 2 + ljjjffðrÞ g j j[ 1

o
;

where fðrÞ is the reconstruction volume over 3D coordinates r, bP
is the projection operator, Gexp is the experimental data, l is a

constant weighting factor, and jffðrÞg is a transform applied to

the volume to a selected domain requiring few non-zero coeffi-

cients to represent the object (i.e., the sparse domain). The nota-

tion jj$jj[p refers to the [p-norm for the data. The first term ac-

counts for a least-squares data fidelity (the definition of the

[2-norm), and the second term incorporates the sparsity

constraint to recover the solution or reconstruction with the in-

tended structure (sparsity) that optimally accounts for the exper-

imental data. The weighting factor l is set relative to the data fi-

delity term and so will vary with inherent sparsity of the object in

the transform domain, the size of the tilt-series images, the pro-

jection image intensities, and the noise level in the data, along

with associated errors and any inconsistencies in the re-pro-

jected reconstruction and the tilt-series data. In contrast to

pre- or post-reconstruction image processing, CS reconstruc-

tions can be thought of as the best reconstructions for a given

weight assigned to denoising (incorporating the true sparsity

and the noise in the data). The [1-norm, the magnitude rather

than square of coefficients in the transform domain, promotes

sparsity while enabling practical algorithmic implementation. In

CS-TV2 reconstructions, the sparsity term is replaced by

l TV2ffðrÞg. TV operations, although not identical to the

[1-norm, have similar properties and can be described as

capturing the magnitude of the estimates of the finite image gra-

dients. The second-order gradients imply an object that is piece-

wise linear in structure. This choice of transform domain is partic-

ularly appropriate for high-resolution structures that are dense

(i.e., they contain many non-zero intensities) images with varying

intensities (i.e., not piece-wise constant, as expected for TV reg-

ularization). Crucially, the intrinsic sparsity of a 3D object and the

associated relative weighting of the transform term apply in 3D

for the calculated CS-TV2 term in our implementation.

Figure 1 presents a schematic overview of this approach

applied to a 2D phantom dataset, derived from a model volume

of a hepatitis B (HBV) triangulation number (T) = 4 capsid with

noise added. Figure 1A highlights a conventional approach, with

projection of the phantom to generate a noisy sinogram and

reconstruction by WBP. Figure 1B illustrates the modifications

for CS-TV2. The phantom is assumed to be well approximated

by a piece-wise linear representation, meaning that only a small

number of spatial second-order gradients are non-zero. Cryo-

ET samples for STA are unlikely to exhibit first-order TV character-

istics (piece-wise constant) because of fine-scale changes in den-

sity and intensity, distinct from TV-sparse features exhibiting

homogeneous density with sharp boundaries. The second-order

gradients of the phantom show a restricted number of non-zero

intensities. The distribution is similar to the image itself; however,

the identity transform (i.e., taking the sparsity of the image itself)

as an alternative does not promote reconstructions with 3D con-

nectivity in the same way as 3D CS-TV2. In conjunction with the

data fidelity term, which seeks solutions that match the sinogram,

the CS algorithm iteratively calculates the TV2 representation and

balances these contributions in the overall minimization problem.
Structure 30, 1–10, March 3, 2022 3



Figure 1. Illustration of the key steps in com-

pressed sensing using 3D second-order total

variation (CS-TV2) ET

(A) A 2D phantom (ground truth) is projected to give a

tilt-series dataset. The projection data at each

sample orientation form a sinogram used to calcu-

late a WBP reconstruction.

(B) CS involves identifying a sparse representation,

depicted in terms of the non-zero elements (blue) in

the second-order gradient magnitude for the ground

truth; TV2 promotes sparsity in the second-order

gradient (V2) of the image. An iterative algorithm

balances data fidelity and sparsity in the transform

domain, yielding a final reconstruction with opti-

mized sparsity and fidelity to the projection data.

(C) Fourier ring correlation (FRC) curves forWBP and

CS-TV2 reconstructions of the phantom. The hori-

zontal dashed line marks zero on the vertical axis.
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In the presence of high noise levels, the CS algorithm recovers a

phantom reconstruction with a flat near-zero background and

high visibility of the structural features. Figure 1C further illustrates

the improvement in reconstruction quality by plotting Fourier ring

correlation (FRC) curves referenced to the ground truth phantom,

showing a substantial extension of the FRC profile in spatial fre-

quencies recovered by the CS-TV2 algorithm.

Applying CS-TV2 tomographic reconstruction to
biological cryo-ET data
To test the mathematical approach described above, and to

assess the level of structural details that can be resolved in biolog-

ical samples byCS-TV2 reconstructions, we used a cryo-ET data-

set of HBV T = 4 capsid particles, which has been shown previ-

ously to yield subnanometer-resolution STA structures (Bharat

et al., 2015). We used the CS-TV2 algorithm for tomographic

reconstruction of subtomograms from the tilt-series data, which

was contrast transfer function (CTF) compensated by phase flip-

ping. Data from three distinct tomograms, containing 188 parti-

cles of HBV capsids, were used for tomographic reconstruction.

We performed CS-TV2 reconstruction of the dataset using

different regularization parameters (l). For the majority of this

study, a dataset reconstructed with a parameter of l = 0.050
4 Structure 30, 1–10, March 3, 2022
was used, which showed the highest level

of self-consistency between half-maps

(gold-standard Fourier shell correlation

[FSC]) for the full dataset of 188

HBV capsid particles (Figure S1). The

reconstructed CS-TV2 subtomograms

show considerably increased contrast

compared with the WBP control, and the

molecular envelope of the HBV capsid is

clearly recognizable in the reconstruction

(Figure 2A; Video S1). The level of noise in

the WBP tomogram is significantly higher,

making straightforward identification of

the molecular envelope in the data difficult

by a visual inspection of the reconstructed

volume. This is underlined by radial aver-

aging of the intensities, where the CS-TV2
reconstruction shows a clear peak corresponding to the capsid

density comparedwithWBP,where this peak is comparable with

the background gray values, indicating a lower SNR (Figure 2A).

As a further test of the data quality, we centered a recon-

structed subtomogram of an HBV particle and applied its internal

icosahedral symmetry (I2 in RELION) (Scheres, 2012). In the

symmetrized volume, the envelope of the HBV capsid became

clearly recognizable for the CS-TV2 reconstruction, with mark-

edly lower levels of noise visible (Figure 2B). This effect is also

observed in isosurfaces of the symmetrized volume displayed

at the same contour level (Figure 2C), showing a clear molecular

envelope of the particle in the CS-TV2 reconstruction.

STA with CS-TV2-reconstructed tomograms
STA maps from the CS-TV2 dataset showed clear a-helical den-

sities after B-factor sharpening (Figures 3A and 3B; Video S2).

CS-TV2 appeared to outperformWBP according to gold-standard

estimation for the full dataset (Figure S2A). To confirm this obser-

vation, we performed a comparison against a density generated

from an atomic model (Böttcher and Nassal, 2018) in a model-

versus-map FSC measurement, with the atomic model (PDB:

6HTX) representing theground truth (Figure3C).Usinga resolution

criterion of 0.5 cutoff, model-versus-map FSC estimated a



Figure 2. CS-TV2 reconstruction of hepatis B

virus (HBV) capsids

(A) A single HBV capsid particle reconstructed using

WBP (top) and CS-TV2 reconstruction (bottom).

Radially averaged intensities of the reconstructions

were normalized and plotted onto the image.

(B) The same HBV particle as shown in (A), with

icosahedral (I2) symmetry applied. Radially aver-

aged intensities were normalized and plotted onto

the image.

(C) Symmetrized HBV particle as in (B), displayed as

isosurfaces at 3s contour level.

See also Figure S1.
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Please cite this article in press as: Böhning et al., Compressed sensing for electron cryotomography and high-resolution subtomogram averaging of
biological specimens, Structure (2021), https://doi.org/10.1016/j.str.2021.12.010
resolution of 10.9 Å for CS-TV2 and 11.4 Å for WBP. This experi-

ment further indicates that secondary structure features are pre-

served within the CS-TV2 reconstructions and can be resolved in

STA maps.

Given the considerably higher SNR of CS-TV2 subtomograms

compared with WBP, we hypothesized that CS-TV2 would be

particularly advantageous for STA at reduced dataset sizes,

where WBP averages may suffer from low SNR and poor refine-

ment. Therefore, we next tested the effect of reduced dataset

sizes on STA refinement. Using 50% of the dataset, the CS-TV2

reconstructions allowed an 11.2-Å-resolutionmap to be resolved,

compared with 11.4 Å for WBP, as estimated by model-versus-

map FSCs (Figure S2B), indicating comparable performance.

We then similarly tested STA refinements with reduced dataset

sizes (Figure S2B). At�6% of the dataset, the resolution, as esti-

mated by model-versus-map FSC, was significantly improved for

CS-TV2 compared with the WBP control (Figure 3C): 20.8-Å res-

olution for the CS-TV2 STA map compared with 31.2 Å for WBP.

This indicates that employing CS-TV2 reconstruction for small

particle numbers (small dataset sizes) can improve the quality of

STA maps, which is potentially important for applications such

as integrative molecular modeling, a commonly used technique

in in situ structural biology. Finally, the model-versus-map FSC

of just a single centered and symmetrized HBV particle recon-

structed with CS-TV2 shows higher correlation with an atomic

model compared with WBP (Figure S2C), indicating that the

gain in contrast (Figure 2) correlates with increased resolution of

molecular features. Because the aligned tilt series used for tomo-

graphic reconstruction is the same for CS-TV2 andWBP, the high-

resolution information of the target macromolecule in the source

data is the same. We thus postulate that the improved correlation

to the atomic model for STA maps made with CS-TV2 data is due

to elimination of noise within the reconstruction. This may also

explain why CS-TV2 reconstructions resemble the target macro-

molecule more than WBP reconstructions when performing STA

with small particle numbers.

To demonstrate that the method is reproducible with other

datasets, we reconstructed particles from a publicly available da-

taset (EMPIAR-10045) (Bharat and Scheres, 2016) containing pu-
rified 80S ribosomes from S. cerevisiae, us-

ing the same regularization parameter of l =

0.050 used for reconstruction of HBV

capsid particles (Figures 2 and 3). Although

the CS-TV2 reconstruction of single subto-

mograms remain noisy, CS-TV2 allows
improved visualization of the particle envelope in a projection im-

age (Figure S3A, radial average in orange) compared with WBP.

Performing STA on the dataset, we obtained a map for the CS-

TV2 reconstruction comparable with the WBP control, indicating

no significant loss of features in the CS-TV2 case. Because no

atomic model of exactly the same sample is publicly available,

we measured the FSC against a 3.7-Å single-particle cryo-EM

density of the same specimen from the same source (Bharat

and Scheres, 2016). This FSCmeasurement against the high-res-

olutionmap showed that CS-TV2 reconstruction quality was com-

parable with WBP (Figure S3C), indicating that similar perfor-

mance can be obtained without significant re-optimization of

the l parameter. This experiment agrees with our results on

HBV particles shown in Figures 2 and 3.

The l parameter is expected to be sensitive to the molecular

structure (i.e., the true sparsity of the object, which is unknown

experimentally) as well as the size and number of the tilt-series

images, the SNR determined by the acquisition parameters

and detector, and any residual inconsistencies in the tilt-series

data (e.g., misalignments or deviations from the projection

requirement). The results here show that the choice of l is

reasonably robust for very different molecular geometries

when acquired under otherwise similar conditions, such as those

generally used for cryo-ET.

Using CS-TV2 tomographic reconstructions on cellular
specimens with a complex 3D arrangement for
improving visualization of biological detail in situ

Because CS-TV2 reconstruction considerably enhanced the vis-

ibility of the molecular envelope in the raw data for purified spec-

imens shown above, we decided to test this algorithm on a more

complex 3D specimen. We processed tilt-series data from the

stalk of a Caulobacter crescentus cell (Bharat et al., 2017; Sul-

kowski et al., 2019). The stalk is a cellular appendage, a contin-

uation of the cytoplasm, which is encapsulated by a surface layer

(S-layer), made up of pseudo-hexamers of a protein called RsaA

(von Kugelgen et al., 2020). Because no STAwas performed, and

visualization of cellular macromolecular complexeswas the goal,

the l parameter (l = 0.005) was chosen according to visual
Structure 30, 1–10, March 3, 2022 5



Figure 3. STA of CS-TV2-reconstructed HBV

capsids

(A) Subtomogram averages of the full dataset (188

capsid particles) and �6% of the dataset (12

capsid particles) from WBP (top) and CS-TV2-re-

constructed (bottom) subtomograms, as visualized

in IMOD.

(B) Isosurface representation of subtomogram av-

erages shown in (A) at 4s isosurface contour level,

along with the atomic model (PDB: 6HTX) rigid body

fitted into the density.

(C) Model-versus-map FSC plots against an atomic

model of HBV representing the ground truth (PDB:

6HTX).

See also Figure S2.
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inspection. The significantly different value of l used here was

attributed to the very different object structure, image size

used in reconstructions, and experimental acquisition parame-

ters relative to the STA datasets.

A WBP tomographic reconstruction shows low SNR and

reducedcontrastwhere theS-layer hexamers are not visible in un-

processed and unfiltered tomograms (Figure 4A). Using strong

low-pass (�45 Å) and Gaussian filtration allows visualization of

some RsaA N-terminal domain hexamers (Figure 4B, marked).

The CS-TV2 reconstruction (Figure 4C) not only makes individual

RsaA hexamers clearly visible against the background without

any image processing, such as filtration applied after reconstruc-

tion, but also resolves the molecular envelope of the �25-kDa

monomers of the RsaA N-terminal domain within individual hex-

americ densities (Figure 4C; Video S3). Comparison of the RsaA

S-layersubnanometer-resolutionSTAmap(EMD-3064;Figure4D)

against the unfiltered CS-TV2 tomogram shows that the shape of

the small domain is faithfully replicated in the tomographicdensity.

As a further test, we also performed CS-TV2 reconstruction of

tomographic data from the cell body of a C. crescentus cell. The

reconstructed tomograms confirm that CS-TV2 is ideally suited

to elevate visibility of cellular features such as ribosomes, mem-

branes, and the S-layer, which are extremely difficult to detect in

the unfiltered WBP reconstruction. Strong low-pass (�45 Å) and

Gaussian filtration of the WBP reconstruction recovers some of

these features for visualization, but, by definition, the higher-res-

olution Fourier components are lost (Figure S4).

These results indicate that CS-TV2 reconstructions are helpful

at denoising cellular data and particularly useful for resolving the
6 Structure 30, 1–10, March 3, 2022
molecular envelopes of protein complexes

within their cellular environment. The

unique nature of CS-TV2, which enhances

low-frequency features but preserves

high-frequency information, means that

the tomograms can be used for visualiza-

tion and for STA structure determination

directly.

DISCUSSION

A common issue for methods that increase

contrast in cryo-ET is that, by enhancing

low-frequency information and eliminating
noise, high-resolution information is lost (Wan and Briggs,

2016). In this study, we successfully applied a CS-TV2 approach

to biological cryo-ET data, showing that it not only leads to

considerable increase in contrast of tomograms but also pre-

serves high-resolution information up to the secondary structure

level. Our results show that employing CS-TV2 for tomographic

reconstruction provides improved STA refinements from small

datasets, leading to cryo-ET densities that accurately represent

the ground truth. Improved STA maps from less data are impor-

tant for in situ structural studies because these may enable

improved integrativemodeling (Rout andSali, 2019), which is typi-

cally employed to interpret cellular cryo-ET data on a structural

level. The higher-resolution densities produced by STA of CS-

TV2 data could help produce higher-fidelity molecular models,

of significant value to cell biologists. Furthermore, requiring less

data could alleviate bottlenecks of cellular cryo-ET, which suffers

from notoriously low throughput. Although some throughput is-

sues are currently being tackled in ground-breaking studies that

produce previously unseen amounts of cellular data through auto-

mation of FIB milling procedures (Allegretti et al., 2020; Klumpe

et al., 2021; Zachs et al., 2020), the amount of instrument time

required for cryo-ET makes many projects hard to realize for

many laboratories. The data amount required for STA should be

reduced with the use of CS-TV2, which will save valuable time

on expensive cryo-electron microscopes (Figure S2). Thus, CS-

TV2 reconstruction will be another arrow in the quiver of the struc-

tural biologist to tackle these issues.

We also demonstrated in this study that CS-TV2 can enhance

the visibility of macromolecules in cellular cryo-ET data. Finding



Figure 4. CS-TV2 tomographic reconstruc-

tion improves visibility of macromolecules in

tomograms

(A–C) The same tomographic slice of (A) an unfil-

tered WBP tomogram, (B) a low-pass-filtered (45 Å)

and Gaussian-filtered WBP tomogram, and (C) an

unfiltered CS-TV2 reconstruction (l = 0.005) of a

C. crescentus stalk covered by an S-layer. Although

a low SNR in theWBP reconstruction does not allow

clear visualization of individual hexameric RsaA

molecules making up the C. crescentus S-layer, the

CS-TV2 reconstruction allows clear visualization of

hexamers and their individual monomers (�25 kDa).

(D) An appropriately rescaled isosurface of an EM

map of the RsaA N-terminal domain (EMD-3604)

was overlayed in the magnified view for comparison,

showing faithful recovery of molecular detail.

See also Figure S4.
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macromolecules in cells and tissues is notoriously difficult (Melia

and Bharat, 2018; Wang et al., 2011) and often requires additional

experiments, such as immunolabeling or cryo-fluorescence mi-

croscopy. Increased SNR in tomograms may reduce the reliance

on these additional steps, allowing more straightforward identifi-

cationof targetmacromoleculesbyvisual inspectionof thedensity

or by utilizing a template matching approach (Frangakis et al.,

2002; Wu et al., 2019). The revealed molecular detail, enabled

through the increase in contrast while maintaining high-frequency

resolution information, allows direct interpretation of the data

without the need for additional filtration or denoising procedures.

A disadvantage of the method is that CS-based algorithms are

more computationally expensive than other commonly used

reconstruction techniques, especially because several recon-

structions with different l parameters may have to be probed for

optimal results. In experimental CS methods, determination of

the optimal value of l is a persistent problem. The demonstration

here that appropriate selection of l can be performed by evalua-

tion of the FSC could facilitate CS-ET methods beyond biological

structures. The illustration of retained high-resolution information

at a low SNR suggests that much lower SNRs may be used for

electron tomography in physical sciences applications where
reduced doses may be required for beam-

sensitivematerialswithorwithout cryogenic

workflows. In cryo-ET applications, a suit-

able value of l can be determined from a

small subset of reconstructions prior to par-

allel reconstructions of multiple or large vol-

umes. The increasingly common use of

graphical processing units (GPUs) in cryo-

EM image processingwill greatly accelerate

reconstruction speed because the algo-

rithm can be easily parallelized and ease

the widespread use of CS algorithms.

Improved integration into previous STA

pipelines could also increase the usability

of the CS-TV2 algorithm.

The CS-TV2 method can thus facilitate in

situ structural biology by supporting higher-

resolution STAwith a limited amount of data
and also by improving the visibility of macromolecules in cryo-ET

data for target identification. Beyond the results presented here,

further studies using CS-TV2 and alternatives such as wavelet

CS-ET methods (Jacob et al., 2021) or other CSmethods applied

in other imaging techniques, like curvelets (Starck et al., 2002) or

shearlets (Kutyniok et al., 2016), should focus on applications on

cellular datasets to fully demonstrate the advantages for subnan-

ometer-resolution STA for in situ structural biology.
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Please cite this article in press as: Böhning et al., Compressed sensing for electron cryotomography and high-resolution subtomogram averaging of
biological specimens, Structure (2021), https://doi.org/10.1016/j.str.2021.12.010
Song, K., Comolli, L.R., and Horowitz, M. (2012). Removing high contrast arti-

facts via digital inpainting in cryo-electron tomography: an application of com-

pressed sensing. J. Struct. Biol. 178, 108–120.

Sorzano, C.O.S., Vargas, J., Otón, J., de la Rosa-Trevı́n, J., Vilas, J., Kazemi,

M., Melero, R., Del Caño, L., Cuenca, J., and Conesa, P. (2017). A survey of the

use of iterative reconstruction algorithms in electron microscopy. Biomed.

Research International 2017, 6482567.

Starck, J.-L., Candès, E.J., andDonoho, D.L. (2002). The curvelet transform for

image denoising. IEEE Trans. image Process. 11, 670–684.

Sulkowski, N.I., Hardy, G.G., Brun, Y.V., and Bharat, T.A. (2019). Amultiprotein

complex anchors adhesive holdfast at the outer membrane of Caulobacter

crescentus. J. Bacteriol. 201, e00112–e00119.

Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., and Ludtke,

S.J. (2007). EMAN2: an extensible image processing suite for electron micro-

scopy. J. Struct. Biol. 157, 38–46.

Tegunov, D., and Cramer, P. (2019). Real-time cryo-electron microscopy data

preprocessing with Warp. Nat. Methods 16, 1146–1152.

Tegunov, D., Xue, L., Dienemann, C., Cramer, P., and Mahamid, J. (2021).

Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic com-
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Caulobacter crescentus stalk CS tomographic

reconstruction

This study EMD-13881

Hepatitis B capsid WT (Böttcher and Nassal, 2018) PDB-ID 6HTX

S. cerevisiae 80S ribosome dataset (Bharat and Scheres, 2016) EMPIAR-10045

Software and algorithms

CS-TV2 reconstruction algorithm (Tovey et al., 2020) https://github.com/robtovey/ToveyTomoTools

ASTRA Toolbox (Van Aarle et al., 2015) https://www.astra-toolbox.com/

SciKit-Image (Version 0.16.2) (Van der Walt et al., 2014) https://scikit-image.org/

HyperSpy (Version 1.5.2) (de la Peña et al., 2017) https://hyperspy.org/

ChimeraX (Version 1.0.0) (Pettersen et al., 2021) https://www.cgl.ucsf.edu/chimerax/

IMOD (Version 4.9.10) (Kremer et al., 1996) https://bio3d.colorado.edu/imod/

ImageJ (Version 2.1.0/1.53c) (Schindelin et al., 2012) https://imagej.net/software/fiji/

RELION (Version 3.1) (Bharat et al., 2015; Scheres, 2012) https://github.com/3dem/relion

MATLAB (Version 2018b) MathWorks https://mathworks.com/products/matlab.html

CTFFIND 4 (Rohou and Grigorieff, 2015) https://grigoriefflab.umassmed.edu/ctffind4
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Tanmay

Bharat (tanmay.bharat@path.ox.ac.uk).

Materials availability
This study did not generate new unique materials.

Data and code availability
A cropped CS-TV2 tomogram of the S-layer as shown in Figure 4 has been deposited at the Electron Microscopy Databank (EMDB)

with the accession code EMD-13881. This paper also uses existing, publicly available data, whose accession numbers are listed in

the Key Resources Table. This paper does not report original code. Any additional information required to reanalyse the data reported

in this paper is available from the lead contact upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All data are generated from the datasets provided in the Key Resources Table.

METHOD DETAILS

WBP reconstructions
All WBP reconstructions were performed in IMOD. Prior to reconstruction of tomograms for STA, defoci of tilt images were estimated

using CTFFIND4 (Rohou and Grigorieff, 2015), and the CTF compensated via phase-flipping as implemented in IMOD. WBP subto-

mograms were cropped out of unbinned WBP tomograms (pixel size 2.17 Å) using RELION (Scheres, 2012).

CS-TV2 reconstructions
All CS reconstructions were carried out using second order total-variation (TV2) regularization with a primal-dual hybrid gradient

algorithm (Goldstein et al., 2013), implemented in Python using the ASTRA Toolbox for a projector (Van Aarle et al., 2015), enforcing

non-negativity in the reconstructions. In contrast to other CS implementations applied to cryotomography that make use of image
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sparsity in two-dimensional slice-by-slice reconstructions in the Fourier transform domain (Deng et al., 2016), this implementation

uses real-space projection and fully three-dimensional CS-TV2 calculations. Real space projection operators avoid interpolation

required in Fourier space algorithms (Goris et al., 2012), and 3D TV implementations have been shown to improve reconstruction

quality (Haberfehlner et al., 2014) as they maintain a consistent relative weighting of the transform term for the entire reconstruction

volume and also reinforce the 3D connected structure. The implementation of the component parts has been reported previously

(Tovey et al., 2020) and the code is available via Github (https://github.com/robtovey/ToveyTomoTools). Briefly, the code for CS-

TV2 reconstructions consists of a Python framework, coded in NumPy and SciPy to interface with the ASTRA toolbox and to imple-

ment linear algebra operations required for the primal-dual hybrid gradient algorithm (Goldstein et al., 2013). The primal-dual hybrid

gradient algorithm, briefly, recasts the CS-ET algorithm, which seeks to minimize both the error of the re-projected tomographic vol-

ume with respect to the tilt-series data as well as the second order total variation, to a saddle-point problem seeking to minimize the

data fidelity term and setting the total variation term derived from finite differences instead as a mathematically equivalent maximi-

zation over a ’dual’ variable. The algorithm then takes iterative gradient-guided steps to optimize the solution to the overall CS-ET

reconstruction problem with established guarantees on convergence.

Two-dimensional phantom
The two-dimensional phantomwas derived from a density map of a molecular model of the HBV capsid. For the phantom, a full 180�

angular range was used with a tilt increment of 1�. Calculations were carried out in open-source Python packages: Phantom calcu-

lations used the forward and inverse Radon transform in Scikit-Image (Van derWalt et al., 2014). Poisson noise was added to emulate

experimental conditions with low signal-to-noise ratio at low electron fluence using HyperSpy (de la Peña et al., 2017). Displayed

gradients were calculated as finite differences using NumPy.

CS-TV2 reconstruction of HBV capsid tomograms
CS-TV2 promotes reconstructions using the entire three-dimensional TV2-sparsity. In recognition of the increased memory require-

ments, advantages of parallelization, and the independence of each HBV capsid volume, CS reconstructions of HBV capsids were

carried out on a particle-by-particle basis, that is, each capsid was reconstructed separately. Tilt series were taken from the HBV

capsid dataset described in (Bharat et al., 2015). Manually clicked particle coordinates (used above in WBP) were used to center

each particle on the tilt-axis using geometrically determined lateral shifts with subpixel precision using the HyperSpy Python pack-

age, resulting in a 300 3 300 pixel2 area for each HBV capsid. Reconstructions were performed with a box size of 30033003300

voxels (pixel size 2.17 Å). No down-sampling was applied to this or any of the other datasets. In order to use the CS-TV2 algorithm

with a non-negative projector and to reinforce the compact support of the particles, the intensities were inverted: first, an area con-

taining no particles in any image in the tilt-series was selected and used to calculate the background intensity value at each tilt. The

intensities were inverted relative to this value and scaled to give an intensity maximum of one. The number of iterations to achieve

acceptable convergence was examined; reconstructions at 2000 iterations did not show significant improvements over reconstruc-

tions at 200 iterations. First order TV reconstructions were examined but exhibited either convergence to zero throughout the recon-

struction volume or highly blurred features. Reconstructions of 3003 3003300 voxel tomograms at 200 iterations took�20min each

on a local workstation with a single GPU. Due to the inherent independence of each reconstruction, the reconstructions were also

fully parallelized on a GPU-integrated cluster on the ARC3 cluster at the University of Leeds, where a typical reconstruction at

200 iterations using P100 GPU nodes took <35 min. Further optimisation of the algorithm implementation as well as increasing

computing power may reduce these times further. To remove artifacts resulting from the CS-TV2 reconstruction near the edge of

the subtomograms, boxes of 21632163216 pixels were cropped out for STA refinements. All particles were normalized within RE-

LION before subtomogram averaging.

CS-TV2 reconstruction of S. cerevisiae 80 S ribosomes (EMPIAR-10045)
CS reconstructions of S. cerevisiae 80 S ribosomes (EMPIAR-10045) were carried out using a similar approach to the HBV capsids.

Manually clicked particle coordinates (used above in WBP) were used to center each particle on the tilt-axis using geometrically

determined lateral shifts with subpixel precision using the HyperSpy Python package, resulting in a 2803280 pixel2 area for each

ribosome. Reconstructions were performed with a box size of 28032803280 voxels (pixel size 2.17 Å). Due to the higher density

of ribosomes, areas free of particles at all tilts were not identified for background subtraction. Instead, areas at 0� tilt near the centre

of the hole in the support filmwere identified containing no ribosomes. Then, assuming a film of ice slab of constant thickness, the tilt-

dependent background intensities were calculated geometrically and subtracted from each tilt separately. After inversion, areas of

thickness greater than this ice region near the center of the hole in the support film were positive and compatible with the non-nega-

tive projector for CS reconstructions.

CS-TV2 reconstruction of C. crescentus cells
Tilt series data ofC. crescentus cells from a previous study (Bharat et al., 2017) were used for tomographic reconstruction. Due to the

memory requirements for three-dimensional CS-TV2 reconstructions, a ‘chunk’-by-‘chunk’ approach was used for C. crescentus

stalk reconstructions, mimicking a conventional slice-by-slice approach of a series of two-dimensional reconstructions but incorpo-

rating CS-TV2 constraints in the third dimension of the reconstruction volume. Intensities, as with HBV capsid reconstructions, were

inverted with reference to an area in the tilt-series not containing any of theC. crescentus stalk. Chunks were 600 or 800 pixels across
e2 Structure 30, 1–10.e1–e4, March 3, 2022
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and 100 pixels in the direction parallel the tilt axis, giving reconstruction volumes of 60036003100 or 80038003100 voxels. The

larger size was used where the physical dimensions of the stalk in projection required the increased latter dimensions. Geometric

shifts were applied to center each chunk on the tilt-axis as for the HBV particle-by-particle reconstructions. Because the entire object

volume was not contained within a single reconstruction volume, chunks were selected to overlap by 25 pixels with each of the adja-

cent chunks. Any errors arising from the CS-TV2 calculations at the boundary were therefore excluded from the final reconstruction

volume (a total of 50 pixels excluded from each reconstruction volume, with the exception of the first and last 25 pixels, which were

retained as these had no overlap with a further chunk). Each reconstruction chunk was then stitched with overlap regions removed,

with geometric shifts inverted to return the chunks to the original relative locations with subpixel precision, using shift functions in the

HyperSpy Python package. For comparison of computing time with sub-volume approach, execution of this chunk-by-chunk

approach on the ARC3 cluster at the University of Leeds typically took <45 minutes for 200 iterations using P100 GPU nodes. Re-

constructions were carried out with the weighting parameter l=0.005, refined by visual inspection of a representative reconstruction

for a single chunk at varying parameter values.

For theC. crescentus cell presented in Figure S4, the background subtraction step followed the same procedure as for the stalk. A

similar chunk-by-chunk approach was used, with a chunk size of 177033058316 voxels, with 16 pixels in the direction along the tilt

axis. This chunk size was selected to balance RAM requirements with the larger volume. The weighting parameter was likewise

adjusted to l=0.0015, determined from visual inspection of a single chunk reconstruction for varying parameter values as for the stalk

reconstructions.

STA and post-processing for HBV capsids
Previous work on the HBV capsid dataset (Bharat et al., 2015) in our laboratory showed that three tomograms of the dataset were

sufficient to resolve a-helices in the capsid protein. Thus, we performed all subtomogram averaging (STA) work with the 188 particles

manually picked using IMOD (Kremer et al., 1996) from those three tomograms. Subsets of particles were randomly chosen using the

GNU shuf utility on the particle lines of the respective RELION star files. Subsets were created sequentially from larger datasets, i.e.

the 141 particle dataset was obtained from the 188 particle dataset, the 94 particle dataset was created from the previously obtained

141 particle dataset, and so on.

All STA was performed in RELION (Bharat and Scheres, 2016; Scheres, 2012). Manual star files were created for CS particles to

enable implementation into the RELION pipeline. Since CS requires CTF-corrected tilt series, per-particle CTF models in RELION

were not used, and replaced by amodel considering just themissingwedge. Parameters of the refinement in the ‘‘Refine3D’’ program

were unchanged between refinements of CS-TV2 and WBP subtomograms. An atomic model of the HBV capsid (PDB 6HTX) was

turned into an EM density using the Chimera molmap command and a heavily lowpass filtered map was used as a reference for

all refinements in the case of HBV capsids. The same map (unfiltered) was used as a basis for model-vs-map FSC estimations. RE-

LION was used for all FSC calculations. The mask used for refinement was a hollow spherical mask encompassing the HBV capsid

with an added soft edge. Post-processing was performed using the alignment mask, which was consistent between all runs. Maps

showing secondary structure were lowpass-filtered to their respective estimated resolutions as determined via gold-standard FSC

(cut-off 0.143, independent half-maps). STAmaps not showing any secondary structure were lowpass-filtered to 20 Å to allow better

comparability of map quality – this is because an EMmap of the HBV capsid lowpass-filtered to 20 Å is difficult to visually distinguish

from a map lowpass-filtered to 30 Å, and to indicate residual noise between 20-30 Å in the WBP map as shown in Figure 3. Suitable

B-factors were determined manually for both WBP and CS maps for HBV maps. We found automatic B-factor determination based

on the Guinier plot to be not applicable for B-factor sharpening of the CS reconstructions. B-factors were chosen so they resulted in

high visibility of molecular features without appearance of significant high-frequency noise within the mask. Generally, CS recon-

structions required considerably larger B-factors, due to the relative down-weighing of high-frequency information in the raw

average. The application of higher B-factors for CS reconstructions was possible due to the low amounts of high-frequency noise

in the map, compared to WBP. The spherical alignment mask was applied for all FSC calculations. The data was not down-sampled

during any step. Formodel-vs-map FSC calculations of a single HBV capsid particle against the near-atomic EMdensity, orientations

and shifts that centre and orient the capsid particle towards the reference, obtained through STA of the whole dataset, were applied.

STA and post-processing for S. cerevisiae 80 S ribosomes (EMPIAR-10045)
Data was generally processed as mentioned above for HBV capsid data, with the following differences in the workflow. A soft mask

based on a ribosome density was used for alignment and was consistent between CS-TV2 andWBP subtomogram averaging. Maps

in Figure S3 were lowpass-filtered to 15 Å for both CS-TV2 and WBP, according to gold-standard resolution. For FSC calculations, a

3.7 Å resolution SPA reconstruction of the same sample (Bharat and Scheres, 2016) was employed. Masks for FSC calculations were

consistent between WBP and CS-TV2. RELION was used for all FSC calculations.

Data visualisation
FRC profiles for phantom calculations were carried out in ImageJ using the BIOP plugin. FSC and particle number versus resolution

plots were created in MATLAB R2018b (MathWorks). Radial averaging was performed and plotted in MATLAB. EMmaps were visu-

alized in ChimeraX (Pettersen et al., 2021) or IMOD as indicated. Atomic models were rigid body-fitted in ChimeraX for visualisation

purposes. Tomograms were visualized in IMOD using auto-contrast, except for the C. crescentus stalk CS-TV2 tomogram,

where contrast was adjusted manually to increase feature visibility. Generally, CS reconstructions of cellular data required manual
Structure 30, 1–10.e1–e4, March 3, 2022 e3
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adjustment of contrast for ideal visualisation. For comparison with CS tomograms, WBP tomograms were filtered where indicated

with a 3-sigma Gaussian 2D filter and a lowpass-filter in ImageJ (‘FFT-filter’) with a 10 pixel radius, which was considered ideal

for visualisation. Data were not binned for visualisation at any step.

Movie creation
Movies were created in ChimeraX and Fiji (Schindelin et al., 2012) from images of tomographic slices written out in IMOD. The

contrast in theC. crescentus tomogram was changed from the image in Figure 4C to allow better visualisation of features throughout

the movie.

QUANTIFICATION AND STATISTICAL ANALYSIS

The methods of statistical analysis are provided in the Method Details and Supporting Information.
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