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Abstract

Motivation: Probabilistic Identification of bacterial essential genes using transposon-directed insertion-site sequencing
(TraDIS) data based on Tn5 libraries has received relatively little attention in the literature; most methods are designed
for mariner transposon insertions. Analysis of Tn5 transposon-based genomic data is challenging due to the high inser-
tion density and genomic resolution. We present a novel probabilistic Bayesian approach for classifying bacterial essen-
tial genes using transposon insertion density derived from transposon insertion sequencing data. We implement a
Markov chain Monte Carlo sampling procedure to estimate the posterior probability that any given gene is essential.
We implement a Bayesian decision theory approach to selecting essential genes. We assess the effectiveness of our ap-
proach via analysis of both simulated data and three previously published Escherichia coli, Salmonella Typhimurium
and Staphylococcus aureus datasets. These three bacteria have relatively well characterized essential genes which
allows us to test our classification procedure using receiver operating characteristic curves and area under the curves.
We compare the classification performance with that of Bio-Tradis, a standard tool for bacterial gene classification.

Results: Our method is able to classify genes in the three datasets with areas under the curves between 0.967 and
0.983. Our simulated synthetic datasets show that both the number of insertions and the extent to which insertions
are tolerated in the distal regions of essential genes are both important in determining classification accuracy.
Importantly our method gives the user the option of classifying essential genes based on the user-supplied costs of
false discovery and false non-discovery.

Availability and implementation: An R package that implements the method presented in this paper is available for
download from https://github.com/Kevin-walters/insdens.

Contact: k.walters@sheffield.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Bacterial essential genes are those required for growth and survival
(i.e. viability). They are usually defined operationally in natural or
specific conditions (Karash and Kwon, 2018) with those genes
required for basic metabolism or growth in the natural host or envir-
onment identified as essential (Tateishi et al., 2020). Genes required
for specific biological processes like motility, drug resistance, cell
division etc. can also be identified under specific conditions
(Mekalanos et al., 2001). The genes that are required under almost
all growth conditions are known to be generally or unconditionally
essential. Such genes perform essential functions that include funda-
mental processes like the DNA replication required in all organisms,
as well as other essential functions required for the organism’s

particular lifestyle (Chao et al., 2016). Genes that are only required
for growth under some specific conditions are referred to as
condition-specific essential genes or simply said to be conditionally
essential. The conditionally essential genes depend on factors rang-
ing from environmental to genetic context, and the adaptability of
the organism to survive inactivation of unconditional essential genes
(Chao et al., 2016). Due to the implications for identifying effective
and narrower biochemical drug targets, essential genes are of great
interest (Kinnings et al., 2010). The ever-growing concern about
antibiotic resistance has coincided with revolutionary progress in
the availability of genome sequences and high throughput methods
to study bacteria (Su et al., 2019). The development of new technol-
ogies and approaches has transformed pathogen studies. The devel-
opment of genome-wide experimental approaches to identify
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essential bacterial or virulence genes for in vivo survival has seen
considerable progress, which could yield potential drug targets
(Friedman and Hughes, 2003).

A transposon is a sequence of bacterial DNA that can move, either
by a ‘copy and paste’ (replication) or ‘cut and paste’ (relocation)
mechanism, within or between DNA molecules. Some transposons
have specific target sites (like the mariner family of transposons),
others [e.g. transposon 5 (Tn5)] insert into almost any target sequence
(Hickman and Dyda, 2016). Transposons have implications for the
function of essential genes since their insertion into a region of the
genome leads to disruption of the processes associated with that re-
gion (Judson and Mekalanos, 2000). Essential genes are known to be
conservative and usually do not tolerate transposon insertions, except
at the distal parts (near the 5’ or 3’ end) (Bourque et al., 2018). This
characteristic of essential genes is key to their identification. Recent
approaches to the identification of essential genes are based on the de-
velopment of hybrid methods that integrate transposon mutagenesis
with high-throughput sequencing (Chao et al., 2016).

In recent years Transposon Insertion Sequencing (TIS) technolo-
gies have been developed. The processes involved in the TIS technique
include the construction of large libraries of mutants in which genes
are disrupted randomly by transposon insertions. The expectation at
this stage is that the created libraries will have significant numbers of
insertions only in genes not required for growth. Furthermore, these
libraries are grown under certain experimental conditions of interest.
Organisms that grow and survive under the specified conditions are
those whose disrupted genes are unnecessary for such functions. The
use of next-generation sequencing to facilitate high-throughput identi-
fication of essential genes compliments experiments using random
mutant libraries (Peng et al., 2017). Different applications of second
generation sequencing to transposon mutagenesis screens have
evolved independently (Chao et al., 2016). Among them are: High-
throughput Insertion tracking by deep sequencing (Gawronski et al.,
2009), Transposon-directed Insertion-site Sequencing (TraDIS)
(Langridge et al., 2009), Insertion Sequencing (INSeq) (Goodman
et al., 2009) and Transposon Sequencing (Tn-Seq) (Van Opijnen
et al., 2009; Van Opijnen and Camilli, 2013). As highlighted in Chao
et al. (2016) these TIS approaches are conceptually identical but there
are significant differences in the protocols, as reviewed by Van
Opijnen and Camilli (2013).

Most of the statistical methods developed to analyse TIS data util-
ize insertion-level approaches. They rely on information derived from
the number of potential insertion sites to identify essential genes in
saturated libraries. They are predominantly designed for mariner-
based transposons and exploit the preference for TA site insertions in
their approaches to classification. The mariner-based transposons en-
able densely saturated libraries, that have insertions at all/nearly all
TA sites, to be constructed. A major advantage of the mariner-based
transposons is that insertions sites (TA-sites) are defined and as such
has the assumption of a uniform insertion probability (Barquist et al.,
2013). However, there exists some evidence in the literature against
this uniform insertion probability assumption (Kimura et al., 2016).

Bio-Tradis is a processing and analysis pipeline by (Barquist
et al., 2016) to support the use of TraDIS protocols for identification
of essential genes. To make a prediction of gene essentiality, it calcu-
lates the insertion index as the number of insertion sites for any gene
divided by its length. Based on the assumption that the distribution
of the insertion indices across all genes is bimodal with a mode at
zero corresponding to essential genes (Langridge et al., 2009), it fits
two gamma distributions to the insertion indices corresponding to
the two modes of the distribution of the insertion indices. It calcu-
lates Log2 likelihood ratios (LLR) comparing the likelihoods of the
insertion index under the two fitted gamma probability densities. A
gene is classified as essential if it has an LLR of less than –2, indicat-
ing that it is at least 4 times more likely under the essential gene
model than the non-essential one. Similarly, a gene is classified as
non-essential if it has an LLR greater than 2. AlbaTraDIS (Page
et al., 2020) also builds on Bio-Tradis by adopting a sliding window
approach, rather than being dependent on the genome annotation.

TRANSIT (DeJesus et al., 2015) applied the Bayesian method
for essentiality analysis. Their Bayesian method uses information on

the long consecutive sequences of TA-sites lacking insertions as the
variable of interest and has the assumption that insertion gaps of
TA-sites occur by chance in non-essential regions, with a geometric-
al decrement in the probability of a long gap. The Gumbel or
Extreme Value distribution was used to model the longest consecu-
tive sequence of TA-sites lacking insertion in a gene. Hence, they
identified essential genes by unusual long gaps and using the
Bayesian framework, the posterior probability of the longest gap is
calculated.

ARTIST (Pritchard et al., 2014) has two pipelines for the
analysis of TraDIS data: the Essential Loci Analysis (EL-ARTIST)
pipeline and Conditional Essential Loci Analysis (Con-ARTIST)
pipeline. The EL-ARTIST pipeline identifies regions that are
required for optimal growth under a given condition. It uses a slid-
ing window method to define regions that have low read numbers
after normalizing the data for incomplete DNA replication. A hid-
den Markov model is trained on the results of the sliding window
analysis and this refines the prediction of whether each TA site is in
a region required or dispensable for growth. ARTIST was developed
to analyse TIS datasets generated using mariner-based transposons
although the authors comment that it should be adaptable to Tn5
transposons.

Lariviere et al. (2020) adopted the approach developed by
Goodall et al. (2018) which involves fitting known distributions to
the distribution of saturation indices. Saturation index was com-
puted by Lariviere et al. (2020) as the number of insertions within a
coding region divided by the length of the coding region. They
applied the Bio-TraDIS package to the distribution of the saturation
indices for gene essentiality analysis.

One of the significant limitations in the existing methods is that
currently-assumed distributions may not model the insertion vari-
ability seen in Tn5-based TraDIS data. The negative binomial or
Poisson distributions used to model read counts (Seyednasrollah
et al., 2015) may not reflect characteristics of Tn5-based TraDIS
data which have greater insertion density and genomic resolution
due to the non-preferential insertion of Tn5 transposoons. Another
drawback of current methods is the way they handle low-frequency
sequencing events (Klein et al., 2012; Le Breton et al., 2015; Yang
et al., 2017). The need to develop suitable statistical approaches and
computational methods to identify essential bacterial genes using
Tn5 transposons is paramount.

Insertion-level-based methods that capitalize on the advantages
of mariner transposons dominate the literature of current statistical
methods for identification of essential genes. Gene-level methods
have not been the focus of so much attention. Nonetheless, some
studies have successfully used Tn5 transposons under different
growth conditions to classify genes (Barquist et al., 2013; Chao
et al., 2016; Christen et al., 2011). This paper presents a novel
Bayesian computational method for classifying essential bacterial
genes using Tn5-based TraDIS data. It coherently accounts for noise
that could lead to spurious findings during statistical analysis. Our
gene-level approach uses insertion density as the sole variable in the
classification. It avoids the need to arbitrarily set a threshold or to
use normalization procedures before analysis like, for example, the
trimmed mean method (Zomer et al., 2012).

2 Materials and methods

Our approach uses gene-level Tn5 transposon data in the classifica-
tion procedure. With a large number of transposon insertions, some
potential insertion positions could record multiple insertions. Rather
than focussing on the total number of insertions per gene we count
unique insertions sites (e.g. three insertions in the same position
count as one unique insertion site). Given the assumption that trans-
posons inserts randomly within the genome, the number of unique
insertion sites for any gene is assumed to increase with gene length
so we scale the number of unique insertion sites by gene length. We
define the insertion density for a given gene as the number of unique
insertion sites divided by the gene length and use insertion density as
a classifier of bacterial gene essentiality. We exploit the fact that
insertions in essential genes are lethal except at the distal portions,
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whilst taking into account the fact that what counts as distal in this
context will likely vary by gene.

We assume conditional independence of the insertion densities
for any two genes given that their essentiality statuses and the values
of any relevant parameters. Insertion densities are in the interval
½0;1� so we chose to model the probability distribution of insertion
density as a beta distribution. For each gene, we derived the poster-
ior probability that the gene is essential using Markov Chain Monte
Carlo (MCMC) via both Metropolis–Hastings (MH) and Gibbs
sampling as required. MCMC is now a common tool for the analysis
of a variety of applied genetic problems (Alenazi et al., 2019; Boggis
et al., 2016) We call our model the INSDENS model.

2.1 Bayesian model
In this paper, p is used to denote the prior probability distribution; f
is used to represent the likelihood, full conditional distributions and
joint probability distributions; underscore is used to represent a vec-
tor or set; the shape and rate parameters are used to parameterize
the gamma distribution.

Let d represent the set of insertion densities values for all genes.
Let di represent the insertion density for the ith gene. Let Zi repre-
sent a binary indicator variable indicating whether the ith gene is es-
sential (Zi ¼ 1) or not (Zi ¼ 0). Let G be the total number of genes,
Z ¼ ðZ1;Z2;Z3; . . . ;ZGÞ represent the indicator vector of essential-
ity for all genes. Let dE and dN represent the set of insertion densities
for essential and non-essential genes, respectively. Furthermore, dEj

is the jth element of the set dE with similar meanings for dNj. Let GE

be the cardinality of the set dE and GN be the cardinality of the set
dN.

2.1.1 The likelihood

For essential genes we assume that

dijZi ¼ 1; aE;bE � Betaðdi; aE; bEÞ (1)

and for non-essential genes, we assume that

dijZi ¼ 0; aN ; bN � Betaðdi; aN ; bNÞ: (2)

Let H ¼ faE; bE; aN ; bNg. Assuming conditional independence of
dm and dn given Zm and Zn and the parameters, the full likelihood is

fðdjZ;HÞ ¼
YG
i¼1

fðdijZi;HÞ: (3)

2.1.2 The prior distributions

We assume the random variable Zi, representing the essentiality sta-
tus for gene i, has a Bernoulli probability distribution with param-
eter h. This, assuming that Zi is independent of Zj, a priori, for i 6¼ j
implies

pðZjhÞ ¼ hGE ð1� hÞGN : (4)

Since 0 � h � 1 and since h is uncertain, we place a Beta distri-
bution on h to capture our prior belief in the uncertainty.

h � Betað0:1;0:9Þ: (5)

This choice of hyperparameters for the theta prior specifies a
mean of 0.1 and a monotonically decreasing probability density. Its
10th percentile is approximately 1� 10�10 and its 90th percentile is
approximately 0.4, so that there is reasonable probability density in
the range of values that, a priori, might be anticipated for the pro-
portion of essential genes. For each dataset, we used the observed in-
sertion densities to make a guess at the essentiality of each gene
(genes with insertion density below some threshold were assumed to
be essential). We calculated the mean and variance of the insertion
densities separately for those genes we guessed as essential and those
we guessed as non-essential genes. Equating expressions for the
mean and variance of the Beta distribution with the sample means
and variances of the insertion densities in both groups allows us to

obtain estimates of the parameters in H. This is similar in spirit to
an empirical Bayes approach (Spencer et al., 2016) but equating
moments is simpler than maximizing marginal likelihoods in this
case as it avoids the need for numerical optimization. To allow for
uncertainty in the parameter values in H, we place gamma priors on
each of them. We set the rate parameter of each gamma prior to be
1 and the shape parameter equal to the value of the relevant H par-
ameter determined my moment matching. This gives a prior with a
suitably large variance. For example if, by moment matching, we
guessed that a parameter in H was 3 our prior for that parameter
would be gammað3; 1Þ. The actual priors used are given in Table 1.
We also performed a marginal sensitivity analysis for the
Staphylococcus aureus dataset to determine whether our results
were sensitive to the choice of these hyperparameter values.

2.1.3 Full joint distribution

Combining the full likelihood and prior distributions, the full joint
probability distribution for our model is derived as below as:

fðh;H;Z;dÞ ¼ pðhÞpðHÞpðZjhÞ
YG
i¼1

fðdijZi;HÞ: (6)

2.1.4 The conditional distributions

To obtain posterior probabilities of each gene being essential we
derived, up to proportionality, the conditional probability densities
from which to sample. Using Equations (4) and (5) the conditional
distribution for h is given by

fðhjH;Z; dÞ / pðhÞpðZjhÞ (7)

/ hGE�0:9ð1� hÞGN�0:1 (8)

which gives

hjH;Z; d � Betað0:1þGE; 0:9þGNÞ: (9)

Let H�w represent the set H excluding the element w and let
Bð:; :Þ be the usual beta function. Using Equations (1) and (3) and
assuming aE � Gað/; kÞ, the conditional distribution for aE is given
by

fðaEjHaE
; h;Z;dÞ / af�1

E e�kaE

BðaE;bEÞGE
ð
YGE

j¼1

dEjÞaE (10)

/
a/�1

E exp ½�aE

�
k�

P
logðdEjÞ

�
�

BðaE; bEÞGE
(11)

where the limits on the summation are the same as those on the
product. The conditional distributions of the remaining parameters
in H can be obtained in a similar manner and are detailed in
Supplementary File S1. The full conditional for Zi is a
Bernoulli pE

pEþpN

� �
probability distribution where

pE ¼ h
YGE

j¼1

fðdEjjZj ¼ 1;HÞ (12)

Table 1. Shape parameters of the gamma prior distributions of the

parameters in H

Dataset Shape parameters of

aE bE aN bN

E. coli 2 166 2 17

S. aureus 1 182 11 83

S. Typhimurium 2 178 3 18
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pN ¼ ð1� hÞ
YGN

j¼1

fðdNjjZj ¼ 0;HÞ (13)

The posterior probability of gene i being essential is calculated as
the proportion of MCMC iterations (ignoring burn-in) where it is
classified as being essential.

2.1.5 Sampling from the posterior distributions

We used the a random-walk MHs algorithm to sample from the pos-
terior distribution of the parameters in H and Gibbs sampling to
sample from the posterior distributions of Z and h. We update each
element of Z sequentially. After sampling Zi both pE and pN are
recalculated to take into account which genes are currently consid-
ered to be essential.

We use the following procedure when using the MH algorithm
to update each of the parameters in H: Let Hic and Hip be the current
and proposed value of the ith parameter in H, respectively. The pro-
posed value is obtained by drawing a random deviate h from a N(0,
1) distribution and then calculating Hip ¼ Hic expðr2 � hÞ where r2

is tuned to give an appropriate acceptance rate of around 30%. Since
the proposal density is symmetric in Hic and Hip, the MH ratio is

cðHip;HicÞ ¼
f ðHipjH�i; h;Z;dÞ
f ðHicjH�i; h;Z;dÞ

(14)

We sample a realization u of a uniform[0, 1] distribution and ac-
cept the proposed value Hip with probability minð1; cðHip;HicÞÞ.
After some experimentation, we set the initial value of r2 of the
MHs sampling procedure for the parameters aE, bE, aN and bN as
0.25, 0.30, 0.04 and 0.05, respectively and manually modified each
value to get an acceptable acceptance rate.

We selected multiple sets of initial values for each chain to check
for convergence. We performed a quantitative diagnostic check for
convergence by calculating the potential scale reduction factor val-
ues for all the parameters in H. All values were sufficiently close to 1
to indicate convergence.

We specified the burn-in to be 2000 iterations. This is highly
conservative, but we wanted to be sure that the retained values were
from the posterior distribution in all analyses. Some of the parame-
ters showed moderate autocorrelation. Current practice is not to
thin the samples to reduce the autocorrelation but instead to run the
chain for longer. We ran the MCMC sampler for a 22 000 so that
after discarding burn-in we were left with 20 000 iterations to base
the posterior probabilities on.

We initialized the probability of a gene being essential as h ¼ 0:1
corresponding to a 10% chance that any given gene is essential. We
initialized the values of the parameters aE, bE, aN and bN to be the
values specified in Table 1. We initialized the essentiality assign-
ment, Zi, to be 1 if the insertion density for that gene was below
0.025 and 0 otherwise.

2.1.6 Real datasets

We apply our INSDENS model to three TraDIS datasets:
Escherichia coli; Salmonella Typhimurium and S. aureus. The E.
coli K-12 BW25113 data (Goodall et al., 2018) were sourced from
the European Nucleotide Archive under accession number
ERR2249109. The E. coli K-12 BW25113 data has a total number
of 448 854 insertions. The list of E. coli K-12 genes likely to be es-
sential was obtained from Baba et al. (2006), and the likely non-
essential genes were genes for which a deletion mutant was success-
fully generated in that study.

The S. Typhimurium data used in this study was based on the work
of Barquist et al. (2013) and was sourced from the European
Nucleotide Archive under accession numbers ERR009073 and
ERR009074. The S. Typhimurium data has a total of 639969 distinct
transposon insertions mapped to its genome. For the S. Typhimurium
dataset, the genes we listed as essential were homologues of the genes
from S. Typhimurium ST14028 which Porwollik et al. (2014)
attempted to knock out using two different approaches and were un-
successful, and also homologues of E. coli K-12 genes which could not

be knocked out by Baba et al. (2006). The genes listed as non-essential
were homologues of genes which had mapped knockout mutations by
both approaches in S. Typhimurium ST14028 (Porwollik et al., 2014),
with the exclusion of six genes which were homologues of E. coli K-12
genes defined as essential by Baba et al. (2006).

The S. aureus data (Christiansen et al., 2014) were sourced from
the database under accession numbers SRR105406 to SRR1056422.
The genes designated as essential were homologues of genes which
were identified as essential both in Fey et al. (2013) and Chaudhuri
et al. (2009). The non-essential genes were defined as genes which
had mutations in the Fey et al. (2013) study.

All datasets were re-analysed using a common pipeline.
Transposon tag sequences (where present) were removed using
Cutadapt (Martin, 2011). The tag-free reads were mapped to the
reference genome using BWA mem (Li, 2013). The mapped position
of the 5’ end of each read was determined using bedtools bamtobed
(Quinlan and Hall, 2010), and used to infer the position of trans-
poson insertions. The UNIX tool uniq was used to count the number
of reads associated with each unique insertion site.

2.1.7 Synthetic datasets

We simulated four different datasets to mimic four scenarios of
interest. Each dataset contained 4000 genes of which 200 were es-
sential. The datasets were generated using properties of the E. coli
TraDIS dataset. In the E. coli dataset, we observed that the variance
in the number of insertions by gene increases with gene length
(Supplementary File S2). To mimic this behaviour, we implemented
the following procedure: initialize the gene-specific insertion prob-
ability to be the gene length divided by the total gene length across
all genes; generate a multiplicative factor for each gene from a
beta(5, 4) distribution; randomly multiply or divide the gene-specific
insertion probability by this multiplicative factor. We determined
the number of insertions for each gene by randomly sampling genes
according to this adjusted insertion probability. Insertions in non-
essential genes were inserted at random anywhere in the gene. For
essential genes, the insertion probability decreased with distance
from the gene ends. Specifically we sample values from an exponen-
tial distribution with rate parameter k. These sampled values repre-
sent the distance from the gene ends relative to the gene length. We
considered k ¼ 50 and k ¼ 10. When k ¼ 50 we expect more than
99% of insertions to be within 10% of the gene ends. When k ¼ 10
this value drops to 63%. We also incorporated noise into our simu-
lations by allowing spurious insertions to insert anywhere in both es-
sential and non-essential genes.

We label our four scenarios as HH, HL, LH and LL. The first let-
ter specifies whether the total number of insertions across all genes
is high (H) or low (L). High corresponds to 700 000 insertions and
low to 20 000 insertions. The second letter specifies whether the ex-
ponential rate parameters is high (H) or low (L). High corresponds
to k ¼ 50, low to k ¼ 10. In all scenarios, we specified the number
of spurious reads to be approximately 5% of the number of true
insertions. Table 2 shows the different combinations used. The total
number of unique insertions for the E. coli, S. aureus and S.
Typhimurium datasets are approximately 347 133 and 353 000,
respectively.

2.1.8 Comparative study

We used receiver operating characteristic (ROC) curves to compare
the classification performance of INSDENS in both our real and

Table 2. Numbers of true insertions, spurious insertions and expo-

nential rate parameter, k, for the four simulated data scenarios

Dataset Number of Insertions Number of spurious insertions k

HH 700 000 30 000 50

HL 700 000 30 000 10

LH 20 000 1000 50

LL 20 000 1000 10
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simulated datasets. When comparing the performance of INSDENS
versus Bio-Tradis for our real datasets we compared the true positive
rates (TPRs) and false positive rates (FPRs). Rather than having to
place an arbitrary threshold on the posterior probability of essential-
ity, we used Bayesian decision theory which allows us to assign costs
to making a decision (gene is essential or non-essential), given the
truth (gene is essential or non-essential). We assume that there is no
cost in making the correct decision. There are, therefore, two costs
to assign: false discovery cost (CA) when INSDENS incorrectly iden-
tifies a gene as essential when it is actually non-essential and the
false non-discovery cost (CB) when INSDENS identifies a gene as
non-essential when it is actually essential (Walters et al., 2021).
Bayesian decision theory states that gene i is declared to be essential
if the posterior cost of declaring it to be essential is less than the pos-
terior cost of declaring it be non-essential. If pi is the posterior prob-
ability of gene i being essential then this inequality becomes
ð1� piÞCA < piCB which leads to the following classification rule:
gene i is classified as essential if

pi > R ¼ CA

CA þ CB
¼ 1

1þQ
: (15)

where Q ¼ CB=CA is a ratio of costs.

3 Results

3.1 Analysis of real datasets
The ROC curves for the INSDENS model applied to the E. coli, S.
aureus and S. Typhimurium datasets are shown in Figure 1. The
area under the curve (AUC) values are 0.975, 0.983 and 0.967 for
the S. aureus, E. coli and S. Typhimurium datasets, respectively. We
investigated the effect of changing one hyperparameter at a time
(marginal sensitivity analysis) for the S. aureus dataset to determine
the sensitivity of the results to the hyperparameter value. We took
each of the four values for S. aureus in Table 1 one at a time and
multiplied it by 2 and then by 0.5, keeping all the other values fixed.
This require eight runs of the MCMC routine. The sensitivity ana-
lysis conducted showed that the AUCs are not very sensitive to
changes in the hyperparameters with all 8 AUCs between 0.973 and
0.977 inclusive.

3.2 Analysis of synthetic datasets
The ROC curves when our model is applied to the synthetic datasets
are shown in Figure 2. The AUCs are 0.994, 0.876, 0.766 and 0.541
for HH, LH, HL and LL, respectively. The AUC values in the four

simulated scenarios are affected by both the number of insertions
(AUC increases with the number of insertions) and how far from the
gene ends insertions are tolerated in essential genes (AUC increases
as this tolerance decreases). Our simulation software could be used
as a tool to estimate the likely classification performance using our
MCMC procedure based on simple dataset-specific characteristics.

3.3 Comparison with bio-tradis
When calculating the FPRs and TPRs for INSDENS we used four values
of CAð5;30;60; 99Þ and CBð95; 70;40; 1Þ in the Bayesian decision the-
ory approach. These require the posterior probability to exceed R ¼
0:05;0:30; 0:60 and 0.99, respectively, for the gene to be declared essen-
tial. The FPRs and TPRs for INSDENS and Bio-Tradis when both meth-
ods were applied to the E. coli, S. Typhimurium and S. aureus datasets
are shown in Figure 3. Each plot shows four points for INSDENS, one
for each value of R ¼ CA=ðCA þ CBÞ, and a single point for Bio-Tradis.
We observe from Figure 3 that the FPRs and TPRs of the Bio-Tradis
analyses are on or close to the ROC curves for each of the three datasets.
We also see that our method affords considerable flexibility in the TPRs
and FPRs depending on the costs CA and CB.

4 Discussion

Our new method for classifying bacterial genes using TraDIS data
avoids the need to arbitrarily set thresholds or use normalization
procedures before analysis. It also avoids giving a hard classification
as, for example, Bio-Tradis does. This gives the user more flexibility
in determining which set of genes might be essential. Using our ap-
proach it is possible to select fewer genes by decreasing Q. This
would lead to a reduction in the both the TPR and FPR. Whilst Bio-
Tradis performs well, it offers no control over the number of genes
classified as essential.

Choosing the costs in a Bayesian decision theory approach is not
routinely undertaken and some users may feel unable to confidently
attach such costs. In this case, we suggest conducting a sensitivity
analysis to see how the selected essential gene set changes as the
costs of making incorrect decisions vary. Conceptually, the simplest
way to do this is to vary the value of Q, which measures how much
more costly it is to misclassify an essential gene than to misclassify a
non-essential gene. A user might choose a range of values of Q say
Qmin < Q < Qmax and monitor how the set of genes declared es-
sential varies for values of Q in this range. Alternatively users can
put their own threshold on the posterior probability or ranks genes
using it.

Fig. 1. ROC curves and AUCs (in the legend) for the E. coli, S. Typhimurium and S.

aureus datasets using the posterior probability of gene essentiality as the classifier

Fig. 2. The ROC curves for the simulated HH, LH, HL and LL datasets. The AUCs

are given in the legend. The classification statistic is the posterior probability of gene

essentiality (a) E. coli, (b) S. Typhimurium and (c) S. aureus
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Running 10 000 MCMC iterations on a desktop PC with a single
1.8 GHz processor with 8 GB of RAM took 100, 80 and 30 s for the
E. coli, S. Typhimurium and S. aureus datasets, respectively. It may
be possible to reduce the run-time further using importance sam-
pling or sampling importance re-sampling, provided a suitable
choice of importance distribution can be found.

There is further information that could improve the classification
of essential genes. Our current approach is potentially susceptible to
noise since we do not leverage read count information in our model.
Doing so would allow us to better distinguish true reads from spuri-
ous reads and might lead to further classification performance with
relatively little computationally cost.
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