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Recently there has been a surge of interest in adopting deep neural networks (DNNs) for solving the optimal power flow (OPF)
problem in power systems. Computing optimal generation dispatch decisions using a trained DNN takes significantly less time when
compared to conventional optimization solvers. However, a major drawback of existing work is that the machine learning models
are trained for a specific system topology. Hence, the DNN predictions are only useful as long as the system topology remains
unchanged. Changes to the system topology (initiated by the system operator) would require retraining the DNN, which incurs
significant training overhead and requires an extensive amount of training data (corresponding to the new system topology). To
overcome this drawback, we propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach. The
key idea behind this approach is to find a common initialization vector that enables fast training for any system topology. The
developed OPF-predictor is validated through simulations using benchmark IEEE bus systems. The results show that the MTL
approach achieves significant training speed-ups and requires only a few gradient steps with a few data samples to achieve high
OPF prediction accuracy and outperforms other pretraining techniques.

Index Terms—Deep neural networks, Meta-learning, Optimal power flow, Topology reconfiguration.

[. INTRODUCTION

HE optimal power flow (OPF) problem involves the

computation of minimum cost generation dispatch sub-
ject to the power flow equations and the grid’s operational
constraints (e.g., voltage/power flow limits, etc.). Power grid
operators must solve the OPF problem repeatedly several times
a day in order to ensure economical operation. The OPF
problem under the generalized alternating current (AC) power
flow model is non-convex, and solving them using conven-
tional optimization solvers can be computationally expensive.
The growing integration of renewable energy and the power
demand uncertainty necessitates solving the OPF problem
repeatedly at a significantly faster time scale (in the order to
seconds) to respond to the changing system states, leading to
significant computational challenges [1].

To overcome this challenge, there has been a significant
interest in adopting machine learning (ML) techniques to
speed up the computation of the OPF problem. The ML
models can be trained offline, and the trained model can
be used online to support the computation of the optimal
generation dispatch. The main advantage of this approach is
that online computations are cheap, and hence, they can speed
up OPF computation significantly. ML has been applied in a
number of different ways to support OPF computation.

The most straightforward approach is to use ML models
(e.g., DNNs) to directly learn the mapping from the load
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inputs to the OPF outputs. The real-time load demands are
fed as inputs to the trained ML model, and the corresponding
OPF solution is computed as outputs. This approach was
used to solve the direct-current optimal power flow (DC-OPF)
problem in [2]], in which, the inputs to the DNN are the active
power demand at the load buses and the outputs are the active
generation power. This approach was shown to provide up
to 100 times speed-up as compared to using conventional
optimization solvers. A similar approach was used to solve
the AC-OPF problem in [3], in which, the inputs to the
DNN are the active/reactive power demand at the load buses
and the outputs are the active power generations and voltage
magnitudes at the generator buses. This framework was shown
to achieve 20 times speed-up as compared to conventional
OPF solvers. A similar approach has been used for other
applications such as scheduling under outages [4]. During the
training stage, the outage schedules are used as inputs to the
DNN, and the corresponding OPF costs are obtained as the
DNN outputs. This model can effectively assess the impact
of a given outage schedule on the OPF solution. Furthermore,
ML methods have been used to provide decentralized decision
support for distributed energy resources (DERs). For example,
[S]] designs a local controller by training an ML model using
the historical generation and consumption data. The developed
model is used for scheduling generation that minimizes the
cost of DER control and network loss. In [6], ML methods
are used to predict the optimal inverter actions (DER control
policy) based on local measurements.

Different from this approach, ML can also be used indirectly
to speed up conventional optimization solvers. For example,
ML can be used to learn the set of active constraints at
optimality; this approach was used to solve the DC-OPF
problem in [7]], [8]], [9]. Alternatively, ML can also be used
to compute the so-called warm start points for optimization
solvers, an approach that is especially useful to solve the non-
linear AC OPF problem [[10], [11]. Compared to these indirect
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approaches [7]-[L1], the direct approach can achieve greater
computational speed-up.

Other machine learning techniques have also been adopted
for the OPF problem. For instance, [12] proposes a stacked
extreme learning machine to speedup the parameter tuning
process and reduce the learning complexity. Reference [13]
builds a random forest model to calculate a near-optimal OPF
solution and to perform post-contingency analysis. Further,
[14] compares the performance of OPF solvers developed
according to different ML methods (random forest, multi-
target decision tree, and extreme learning machine). The
results show that ML methods can significantly reduce the
OPF computation time with minimal constraint violations and
optimality loss.

Recent works have also provided feasibility guarantees,
i.e., provide theoretical results to show that the solutions
proposed by the ML models satisfy the power grid’s opera-
tional constraints (e.g., line/voltage limits, etc.). In particular,
a preventive framework to ensure feasibility for the DC OPF
problem was proposed in [[15] by calibrating the transmission
line capacity limits and the slack bus generation limits to
compensate for the inherent approximation errors of DNNs.
Similar ideas were extended for the AC OPF problem in [3]].
The worst-case guarantees with respect to physical constraint
violations for the DNN’s OPF solution were derived in [16],
[17]], and the results were used to reduce the worst-case error.
Reference [[18] combined DNNs with robust optimization tech-
niques to directly achieve feasible solutions for the security-
constrained OPF problem.

Despite the growing research literature on this topic, a major
drawback of existing work [2]]-[[18]] is that they are designed for
a specific system configuration. As such, they remain effective
only as long as the system topology remains fixed. Never-
theless, topology reconfigurations by transmission switching
and impedance changes are essential parts of grid operations
that can improve the grid’s performance from both opera-
tional efficiency and reliability point of view [19], [20], [21].
These measures have gained increasing attention recently. For
instance, perturbation of transmission line reactances (using
distributed flexible alternating-current transmission systems,
D-FACTS devices [22]) is finding increasing applications
in power flow control to minimize the transmission power
losses [21] and cyber defense [23]], [24], [25]. Similarly, grid
operators also perform transmission switching and topology
control to ensure economic and reliable system operations
[19], [20].

Active topology control poses significant challenges in the
use of DNNs for OPF prediction. A DNN trained under a
specific system configuration might not be able to provide
correct OPF outputs under a different system configuration.
This is because the mapping between the load inputs and the
OPF outputs will change due to the changes in the system
topology. Indeed, our results show that DNNs trained on
a specific topology have a poor generalization performance
when the system topology changes. Complete retraining with
the new system configuration will require significant amounts
of training data and time, thus negating the computational
speed-up achieved by DNN prediction.

2

To address these shortcomings, we propose a novel approach
in which we train the DNN-based OPF predictor using a meta-
learning (MTL) approach. The main idea behind MTL is to
a find good initialization point that enables fast retraining for
different system configurations. Specifically, we use the so-
called model-agnostic MTL approach [26]], which finds the
initialization point in such a way that a few gradient steps
with a few training samples from any system configuration will
lead to good prediction performance. This is accomplished by
appropriately tuning the loss function of the offline training
phase (that finds the initialization point), such that the ML
model (DNN in our case) learns internal features that are
broadly applicable to the different tasks at hand (i.e., OPF
prediction for different variants of the power grid topology),
rather than a specific task [26]. Then during the online training
phase, these features can be fine tuned to achieve good OPF
prediction performance using a few data samples from that
topology. Thus the method is well suited to predict OPF
solution under planned topology re-configurations. To the best
of our knowledge, this work is the first to utilize MTL in a
power grid context.

We conduct extensive simulations using benchmark IEEE
bus systems. We compare the performance of MTL against
several other approaches. They include (i) “Learn from
scratch”: in which, there is no pretraining, i.e., when the sys-
tem is reconfigured, we initialize the DNN weights randomly
and train them using the OPF data from the new system
reconfiguration. (ii) “Learn from a joint training model”: in
which, during the offline phase, we train a DNN model from a
combined dataset consisting of OPF data from several different
topology configurations. Then during the online phase, we
initialize the weights of the DNN using this model and fine-
tune it using OPF data from the new system configuration.
(iii)) “Learn from the closet model”: in which, during the
offline phase, we train several DNN models separately using
OPF datasets from different topology configurations (i.e., one
DNN for each system configuration). Then, during the online
phase, when the topology is reconfigured, we choose the
model that achieves the best prediction performance on the
new configuration and choose its weight as the initial DNN’s
weights. The weights are then fine-tuned using OPF data from
the new configuration.

We verify the efficacy of the proposed approach by simu-
lations conducted using IEEE bus systems. We generate the
OPF data using the MATPOWER simulator and implement the
ML models using Pytorch. The results show that the proposed
MTL approach can achieve significant training speed-ups and
achieve high accuracy in predicting the OPF outputs. For
instance, for the IEEE-118 bus system, MTL can achieve
greater than 99% OPF generation prediction accuracy for a
new system configuration with less than 10 gradient updates
and 50 training samples. Furthermore, MTL can achieve a
much higher prediction accuracy as compared to complete
retraining (i.e., training from scratch), especially in the limited
data regime (i.e., when the number of training data sam-
ples from a new system configuration are limited). MTL
also outperforms the other two pretraining methods in terms
of the OPF prediction accuracy and takes significantly less
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time/storage in the pretraining phase. Thus the method is well
suited to predict the OPF solution under planned topology
reconfigurations.

We summarize our main contributions in the following:

o To address the shortcoming of existing works that train
DNNs under a fixed topology setting and require com-
plete retraining following topology reconfiguration, we
propose an MTL approach for computing the OPF so-
lution. Specifically, the MTL approach finds a good
initialization point during offline training that enables fast
retraining for different system configurations.

e We compare the performance of the MTL approach
against several other pretraining methods that are de-
signed to compute the OPF solution following topology
reconfigurations. To this end, we perform OPF computa-
tion considering several benchmark IEEE bus systems.

o Using simulation results, we quantify the performance
gain of the MTL approach as compared to other pre-
training methods in terms of the OPF prediction accuracy,
feasibility, and computational speed. Our results show
that MTL outperforms other pretraining methods on all
these metrics, making it suitable for computing OPF
under real-world settings that include topology reconfig-
urations.

The rest of this paper is organized as follows. Section
introduces the power grid model, OPF problem and DNN
approach. Section details the proposed MTL method.
Section [[V] presents the simulation setting. Section [V] analyses
the simulation results and prove the effectiveness of MTL over
other pretraining methods. The conclusions are presented in
Section [VIl Some additional simulation results are included in
Appendix.

II. PRELIMINARIES

A. Power Grid Model

We consider a power grid with N' = {0,1,...,N — 1}
buses, where N is the total number of the buses and N > 2.
Without the loss of generality, we assume bus 0 to be the
slack bus whose voltage is set to 1.0£0 pu. A subset of the
buses G C N are equipped with generators. Since the interest
of this paper is grid topology reconfigurations, we consider
M different grid topologies, where each topology differs with
respect to the bus-branch connectivity and transmission line
impedances. We assume that the nodes of the power grid al-
ways remain connected (among all the considered topologies).
We let £0™) = {1,..., L™} denote the set of transmission
lines under topology m € {1,2,...,M}. Further, we let
Y = G 4 jB(™) denote the bus admittance matrix
under topology 7, where G("™) and B(™) denote conductance
and susceptance respectively [27].

Under topology m, let Pg?) (Pg:l)) and Q(g:) (Q(m)
denote the active and reactive power generations (demands) at
node i € N respectively. The complex voltage at node i € N’
under topology m is denoted by V(m) |V(m) |40(m) where
|Vi(m)| is the voltage magnitude and 6, is the voltage phase

(m) .
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Fig. 1: The online operation framework of DNN based OPF
predictor

angle. According to the AC power flow model, these quantities
are related as

PSP = VST v (G cos (67
JEN
+ B,(’T”sm(ew)), (1)
Qg:) — Q Z V(m sm(ﬁfj ))
JjEN
(m) (m)
— B, "cos(0; 7)), (2)
where 9 G(m) G(m)

Opnmal Power Flow Problem: The OPF problem com-
putes the minimum cost generation dispatch for a given
load condition constrained to the power flow equations and
power generation/voltage constraints. Mathematically, the OPF
problem can be stated as follows:

o ; Ci(Pg) 3)
QU™ ytm)
s.t. (@), @),
Ppin < P < PR Ve G (4)
QEn < QU < QExVieg )
ymin < pim < ymax e A (6)

where C;(-) is the generation cost at bus i € G. Further, Pg'™*
(PEI™), QE™ (QE™) and V™ (V™) denote the maximum
(minimum) real/reactive power generations and nodal voltage
limits at node 7 respectively.

B. DNN Approach for the OPF problem

We now summarize the approaches proposed by existing
works that use DNNs for the OPF problem [2], [3]]. Fig. E]
shows an illustration of the overall methodology. The goal of
the DNN is to approximate the non-linear mapping between
the system load and the OPF solution. Let h(xgn), w) denote a
parametric function, specifically a DNN under topology m, in
our case, that takes the system load as inputs and produces the
OPF outputs. Herein, w denotes the parameters of the DNN.
Further, let 7,, = {x§C ,yk )},C denote the input-output
pair for the OPF problem under conﬁguratlon m. Herein,
K,, denotes the number of training samples and subscript k
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denotes the training sample’s index. For the AC OPF problem,
the inputs correspond to the real and reactive power demand at

each nodes, i.e., X,(;") = [p(D"f;; q(Dm,z], where p(Dmlz and q(D"f,l

are the vector of real/ reactive power demands, i.e., pgjmlz =

[Pg:)k}ie A (and q(Dm,l follows a similar definition). The output

corresponds to the real power generation dispatch and the
generation voltages, i.e., y,(cm) = [pg”,z,vgnlg] obtained by
solving the AC OPF problem. Herein, p(Gmlz = [Pg%]ieg\{o}
consists of a vector of power generation at all buses except
the slack bus (note that the generation at the slack bus can
be determined by solving the AC power flow problem with
the other generations specified) and vgnk) = V™ ]icg. The
parameters of the DNN under topology m are trained to
minimize the objective function given by

K
1 = m m
(W) = == > Iy b wlP @)
™ k=1

This objective function is the mean square error between
DNN’s predicted value h(xgn)7 w) and the corresponding real

value y,(cm) generated by a traditional OPF solver. Following
offline training, the DNN is deployed online to predict the
generation outputs for given load inputs. We note that once
[pgfg; vgn,z] are predicted by a trained DNN, the other system
parameters (such as the nodal voltages/power injections, etc.
at the non-generator buses) can be recovered by solving AC
power flow problem as shown in Fig. [I] Note that solving the
AC power flow problem is computationally extremely fast as
compared to solving the AC OPF problem, and hence, adds
only a small computational overhead on the DNN approach
[3].

Drawbacks of Existing Work: The main drawback of ex-
isting works is that the DNN predictions remain effective
only as long as the topology of the system remains fixed.
As noted before, topology reconfigurations are increasingly
being adopted in power grids to ensure the economic operation
and reliability [19], [20], [21]. While it is certainly possible
to retrain the model when the system topology is changed,
retraining from scratch will require significant amounts of
training data and time. Alternatively, the system operator can
train separate DNNs for each system configuration. But this
would require a significant amount of computational resources.
Moreover, the operator must know all possible topology recon-
figurations beforehand, which is not possible, since unforeseen
contingencies may arise during power system operations.

III. A META LEARNING APPROACH FOR THE OPF
PROBLEM UNDER TOPOLOGY RECONFIGURATION

To overcome these challenges, in this work, we seek to build
an ML model for the OPF problem that can be rapidly adapted
to a new system configuration. MTL is ideally suited to tackle
this problem [26]]. MTL is a training methodology that is suited
to learn a series of related tasks; when presented with a new
and related task, MTL can quickly learn this task from a small
amount of training data samples. MTL algorithm consists of
two phases, an offline training phase (also called the meta-
training phase) and an online training phase (adaptation for

4

the new task). During the offline training phase, MTL finds a
set of a good initialization parameters for the series of related
tasks. During the online phase, MTL uses the initialization
parameter to quickly adapt the model parameters to a new task
using a few gradient updates with a few training samples.

A. MTL Description

We now present the details of the proposed MTL ap-
proach. As noted in Section [, we consider M different grid
topologies. Assume that during the offline training phase, the
system operator has access to OPF training data samples from
M* < M topologies. We denote the offline training data set
by %fﬂine training phase — {7-17 7—2; AR 77\1* } During the offline
training phase, MTL uses Toffiine training phase t0 find a set of
parameters wyrr, that minimizes the loss function given by

e
JvrL = Z IT. (W = VJT, (W), ®)

m=1

where Jr is defined in (7). The objective function Jyry, is
the sum of MSE loss for all the topologies in 7oggine training phase
following a single-step gradient descent. The MTL parameters
are given by wyr, = argmin,, JyrL. As evident from (g),
MTL aims to find an initialization point wy, from which
a single gradient update on each topology in {1,2,..., M*}
yields minimal loss on that topology. Since the OPF prediction
task under different topologies are related, if we succeed to
find a good initialization point for the tasks in {1,2,..., M*},
we can expect this point to be a good initialization point
for any topology. Reference [26] proposed a gradient based
method to solve the optimization problem (8), which we
summarize in Algorithm 1.

Algorithm 1 Offline Training for MTL
Input: Training dataset Toine training phase, St€P Sizes .,
Output: wy: Optimal meta parameter

1: Randomly initialize Wy,

2: while not done do

3 Sample batch of tasks 7., € Tofftine training phase

4:  for all 7,, do

5: Evaluate VJ7,, (WyL) using 7,

6: Compute adapted task model parameters with gradi-
ent descent: W/, = wyrL — SVJ7, (WMmTL)

7:  end for

8 Update WMTL < WMmTL — oV Z:\n/lzl JTm (W;n)

9: end while
10: Return wyrL

In Algorithm 1, wyry are the meta-weights (i.e., the ini-
tialization weights) for the related tasks, and w!, are the task-
specific weights for the training topology m (obtained from
a single gradient update on wyrp). The notation VJr, (w)
denotes the gradient of the loss function (defined in
computed using the dataset 7,,,) with respect and weights w.
Finally « and /3 denote the step sizes for the gradient updates.
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Fig. 2: Schematic diagram of MTL implementation for OPF.

During the online training process, assume that the system
operator changes the power system topology to a new config-
uration that does not belong to the dataset in offline training
phase. Let 7 ("ew) ¢ Toffline training phase denote the training
dataset from the new system configuration. Note that 7 ("¢)
may consist of only a few data points K., as compared to
the offline training data. The objective function of the online
training is given by

K(new)
1 new new
JT(’H.CUJ)(W) = ﬁ Z IIY;(C w) _ h(Xi- ‘ ),W)H2.
new k::l

€))

MTL finds the task-specific parameters for this new topology
by performing gradient update, which starts from the optimal
initialization point wy, obtained in offline training phase.

Wnew = WMTL — ’YVJT(new) (W)

The overall procedure for OPF using the MTL approach is
presented in Algorithm 2.

Algorithm 2 MTL Procedure

Input: wyrp, 7%y
Output: w,,.,,: Adapted parameters for new configuration

1: while system in operation do

2:  Change system to new configuration

3:  Obtain training samples from the dataset of new con-
figuration 7 ("ew)

4:  Compute the adapted parameters with gradient descent:
Whew = WML — 7YV I (new) (W)

5: end while

B. Implementation

A schematic diagram illustrating the proposed MTL im-
plementation is shown in Fig. 2] In the offline phase, the
system operator uses a power grid simulator to generate the
training data set 7oine training phase- 1he data is subsequently
used to train a DNN as in Algorithm 1. During real-time

operation, assume that the system operator plans a topology
reconfiguration. During the online training phase, the system
operator takes the new system configuration as input to a
power grid simulator and generates a few new data samples
for the online training phase. Then, the new samples are
used to quickly fine-tune the machine learning model as in
Algorithm 2. Following retraining, the new model can be used
to predict the generator outputs. The online training procedure
must be repeated once the system topology is changed.

C. Ensuring Feasibility

The OPF solution predicted by the DNN is feasible when
it satisfies the active power generation/ nodal voltage limits,
which are specified in @), (©), (6). In order to ensure the
feasibility of DNN proposed solution, we take the following
approach proposed in [3l], [15]. First, we perform a linear
transformation for the active power generation/ nodal voltage
magnitudes as follows:

PGi(/)i) = pi(PCI?iaX - (r;:in) + PCI?iinapi € [07 1]7i €g \ {0}7
(10)

Vi(oy) = o3 (V™™ = V™M) + V™ oy € [0,1],6 € G. (1)

Note that once we make these transformations, we must have
0 < Pg,(pi) <1,0 < Vi(o;) < 1. Then, we use the DNN
to predict these scaled versions of real power generation and
voltages (Pg,(p;i), Vi(0;)), rather than predicting Py, and V;
directly. To this end, at the output layer of the DNN, we
use the sigmoid activation function. Recall that the sigmoid
function always outputs a number within the range of [0, 1].
Thus, we can guarantee that the prediction of the scaled
versions Pg, (p;) and V;(o;) predicted by the DNN lie between
[0,1], and consequently, the predictions of Pg, and V; will
lie between their upper and lower limits. Note that without
the scaling and the use of the sigmoid function, the DNN
prediction cannot be guaranteed to output a feasible solution
(i.e., one that lies in between the permissible upper and lower
limits).

While the aforementioned transformation ensures the fea-
sibility of the variables directly predicted by the DNN, i.e.,
Pg,,i € G\ {0} and V;,i € G, it does not ensure that feasibil-
ity of all the system variables — specifically, those recovered
by solving the AC power flow problem (recall Fig.[I)). For this
reason, we calibrate the voltage constraints while generating
the training dataset to avoid such violations [3]. Specifically,
in topology m we calibrate the voltage constraints as

V;_min -2 < V’Z(m) < Vvimax + )\,VZ S N; (12)

where ) is a calibration parameter that is set to a small value.
This calibration ensures that the DNN is trained to predict
voltage magnitudes that lie strictly in the interior of feasible
region, and hence mitigates the infeasibility caused by the
approximation errors of the DNN. Finally, one can also ensure
the feasbility of reactive power generations using a similar
procedure. We omit and details here and refer the reader to

(3.
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IV. SIMULATIONS

In this section, we verify the effectiveness of the proposed
MTL approach using simulations and present the results.

A. Algorithms and Metrics

Under MTL, the offline and online training are performed
according to Algorithm 1 and 2. We compare the performance
of MTL against three other training methods, namely, “learn
from scratch” and “learn from a joint training model” and
“learn from closet model”.

e In “Learn from scratch”, there is no pretraining. During
the online phase, following topology reconfiguration, a
DNN’s weights are intialized to random values, and
trained using the OPF dataset from the new topology.

e The “Learn from joint training model” is described in
Algorithm 3. During the offline training phase, a DNN
is trained using the dataset Toffiine training phase, Which com-
bines the training data from topologies 1, ..., M*. During
the online phase, following topology reconfiguration,
the DNN’s weights are fine-tuned (from the pre-trained
values) using OPF data from the new topology, similar
to the MTL online training phase.

o The “learn from closet model” is described in Algo-
rithms 5 and 6. During the offline training phase, we train
a separate DNN for each topology 1, ..., M*. During the
online phase, we choose the DNN that achieves the best
prediction performance on the new topology at hand (step
4 of Algorithm 6). Then, we fine-tune its weights using
OPF data from the new topology.

We henceforth refer to “Learn from joint training model” and
“Learn from the closest model” as “Pretrain1” and “Pretrain2”
respectively.

Algorithm 3 Offline Training for pretrainl

IHPUt: 7:)fﬂine training phase, ¥

Qutput: Wpretrainl:  The  initial parameters (model)
developed based on joint training

that

1: while not done do
2: Update W W — av‘]ﬁfﬂinc training phase (W)
3: end while

Algorithm 4 Offline Training for pretrain2

Input: 7:)fﬂine training phase, ¥

Output: Wy,ctrain2 {w1,wa,...,wp~}: The set of
parameters (model) for each task in offline training phase

%fﬁine training phase

1: for all T(m) € Toffiine training phase do

2:  while not done do

3 Update w,,, < w,,, — aVJr (W)

4:  end while
WpretTain2 apgn

5: end for

Wm

6

Algorithm 5 Online training for pretrain2

Input: Wpretrain% T(new)’,y
Output: w,,.,,: Adapted parameters for new configuration

1: while system in operation do

2:  Change system to new configuration

3:  Obtain training samples from the dataset of new con-
figuration 7 ("ew)

4:  Find the model that performs best on new task: Wyess =
argmin,, Jymew) (W)

5:  Compute the adapted parameters with gradient descent:
Whew = Whest — 7YV I (new) (W)

6: end while

The online operation framework of the two-step DNN based
OPF solver is presented in Fig|l|(used for the testing data). In
the first step, given the active and reactive power demand at
the load buses, the trained DNN predicts the active power
generations (except that on the slack bus) and the voltage
magnitudes at the generator buses. Then, all other system state
parameters (e.g. Pg,, Qg, Vi, 0 and branch power flow pf) can
be reconstructed by solving simple AC power flow equations.

The performance of the DNN based OPF solver is assessed
by three metrics. The first metric 77; is the DNN validation
loss, which is defined in . The second metric 72 is the
accuracy of the state parameters, defined in (T3], where 2|G| —
1 is the dimension of DNN output, Q,(:;) is the predicted state

(m )

parameter and y, ;' is the corresponding real value. The total

generation cost is defined as cost = ), Ci(Pg?)), and
introduced in (3)). The third metric 73 is defined in (I4), where
coAst,(Cm) is the predicted total generation cost and costém) is
the corresponding real value.

K™ 2(G|-1 - (m)

(m)

1 kd — Yk,d
2 = 1- m Z Z ‘ 7 m ’ (13)
K k=1 2lG] -1 d=1 yl(c,d)
K (m)
costk fcost
m=1- m)Z] G

cost

B. Data Creation and DNN Settings

The power system models are based on MATPOWER’s
test cases [28]. The training and testing data are generated
using MATPOWER’s AC OPF solver (specifically, we use
MATPOWER’s interior point solver). We test the algorithms
using the IEEE-14, 30 and 118 bus systems. During the data
generation phase, we create different power grid topologies by
randomly disconnecting a subset of transmission lines (e.g.,
each line is disconnected with a probability of 0.01) and
adding a random perturbation to the line reactance values
(subject to a maximum and minimum reactance limit). Some
of these topologies may not produce a feasible OPF solution,
e.g., if too many transmission lines are disconnected at once,
there may not be a feasible solution to the OPF problem that
can satisfy the load demand in that topology. Thus, we exclude
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those topologies from the dataset, since a grid operator will
not change the system to those configurations (thus, they dont
represent real-world topologies). We keep generating different
topologies in the aforementioned manner until we can find
sufficient number of ones that have resulted in a feasible OPF
solution. For instance, in the 118—bus system, we generated
100 topologies with a feasible OPF solution.

For each bus system, M = 100 different grid topologies
are generated. For each topology, we create a set of 1000 data
points, where each data point corresponds to a different load
value obtained by adding a random load perturbation to the
base values (that are obtained by the MATPOWER simulator).
The maximum load perturbation is restricted to 70% of the
original values. We consider the quadratic OPF cost, and use
the default generation cost values in MATPOWER. Changes to
the system topology will lead to changes in the power flows,
leading to a different OPF solution. In our simulations, we
allocate M™ = 70 tasks to the offline training phase, and the
rest 30 tasks (denoted as new tasks) to the online training
phase.

We implement the neural network model and the MTL
training based on PyTorch framework. We use the ReLu
activation function at the hidden layers, and the sigmoid
activation function at the output layer. The size of the input
and output layers are chosen to be consistent with the size
of the dataset. In our case, the input to the DNN is a vector
containing the active and reactive power demand at the load
buses. For instance, in the IEEE-118 bus system, the size of the
input vector is 198 (corresponding to the active and reactive
power demands of the 99 load buses), and the size of the output
vector is 107 (corresponding to the 2|G| — 1 generator buses).
Thus, the number of neurons at the input and output layers are
198 and 107 respectively. For the hidden layers, we vary the
number of neurons proportional to the size of the input/output
layers. In Table [lIl we present the prediction accuracy (72) for
different number of neurons in the hidden layers considering
the IEEE-118 bus system. The setting labelled “Ref” provides
the highest accuracy, which is the DNN setting we use in the
rest of the paper. Similarly, for each test system, we vary the
size of the hidden layers and choose the setting that gives
the best accuracy results. The settings for each layer under
different bus systems used in our simulations are enlisted in
Table [

In the offline training process, for each pretraining method,
we use the “Adam” optimizer with a learning rate of 0.001 and
use 1000 training epochs. The L2 regularization is applied to
prevent over-fitting, and weight decay is 0.001. For the online
training phase, unless specified otherwise, we use 50 training
samples during for fine-tuning the weights. Further, we use the
stochastic gradient descent (SGD) optimizier with a learning
rate is 0.1, and the weight decay is 0.001.

V. SIMULATION RESULTS

The simulation results are presented in Fig. B89 and
Tables [[TI [TV] For brevity, we only present the results from the
IEEE 118 bus system in Fig. 4 The results from the IEEE-14
and 30 bus systems are relegated to the Appendix. The results
in all the bus systems follow a similar trend.

Case Neurons of Number of | Neurons per | Neurons of
input layer hidden hidden output layer
layer layer
Casel4 22 3 64/32/16 9
Case30 40 3 128/64/32 11
Casel18 198 3 256/128/64 107

TABLE I: The neural network setting for each test case

Hidden Layers setting | Accuracy (12)
Ref 256/128/64 0.9726
300/128/64 0.9378
Modify Hidden Layer 1 200/128/64 0.9720
128/128/64 0.9687
256/200/64 0.9676
Modify Hidden Layer 2 256/100/64 0.9673
256/64/64 0.9688
256/128/100 0.9693
Modify Hidden Layer 3 256/128/50 0.9617
256/128/32 0.9723

TABLE II: Prediction performance with different neurons in
the hidden layers. This is an example based on IEEE-118 bus
system.

A. Comparison of Accuracy, Feasibility and Computational
Speed During Online Training

Fig. ] and Table [Tl present the accuracy results based on the
different metrics defined in Section[[V] It can be observed that
MTL achieves a very high prediction accuracy of over 97%
(n2) and over 99% (7n3) with less than 10 training epochs.
This shows that MTL can rapidly adapt to the new system
configuration starting from the initialization point wyr. In
contrast, training from scratch from a random initialization
takes a significantly greater number of gradient updates. For
the purpose of illustration, we choose one particular system
topology from the testing phase and present the results of the
true value and the prediction of Pg, and V; in Fig. |3| for the
IEEE-30 bus system, in which we can observe a close match
between the two quantities.

Furthermore, MTL also achieves the highest accuracy as
compared to the other pretraining methods (Pretrain 1 and
2) and lower loss. More importantly, we also observe that
online training with a very number of data samples (i.e., 50
OPF data samples from the new topology in our case) does
not significantly improve the performance of other pretraining
methods as observed in Table [[II| (sometimes, we also observed
that for other pretraining methods, online training with only a
few data samples may result in worse performance due to
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Fig. 3: Comparison of real and predicted state parameters in
IEEE-30 bus system.

over-fitting). Thus, with the other pretraining methods, the
accuracy is limited to the performance achieved during the
offline training phase.

From Fig. f] and Table [T, we observe that for MTL, most
of the performance improvement occurs within the first few
epochs. Thus, MTL is suitable for online training with a very
few data samples and a very few training epochs.

We also present the results for feasibility of the predicted
OPF solution in Table [[V] The feasibility rate is calculated as
fr= Z—{, where ny denotes the number of testing sample that
achieves feasible solution, and n; denotes the total number of
testing samples. The results show that the adjustments made
to the training process proposed in Section [[Iis able to ensure
that MTL achieves very high feasibility rate.

B. Computational Time for the Offline Training Phase

Besides the advantages of MTL in terms of accuracy,
another advantage is its ability to quickly produce an an
initialization model (i.e., the offline training). In Table |V] we
enlist the time required to produce the intialization model of
MTL and other pretraining methods for different bus systems.
It can be observed that MTL takes significantly less time than
the other pretraining methods. Moreover, as compared to the
Pretrain2 method, which requires a separate DNN to be trained
and stored for each power grid topology, MTL requires a single
DNN model to be stored. Thus, MTL also significantly reduces
the storage burden in comparison to the Pretrain2 method.

C. MTL Performance for Different Offline/Online Training
Parameters

We investigate the performance of MTL as a function of the
online/offline training parameters. To this end, first, we test
the online training performance of MTL/ learn from scratch
under different learning rates . The result of the IEEE-118
bus system is presented in Fig. 5] Increasing the learning rate
v can accelerate the speed of online training. However, it is
not desirable to set a very high learning rate since it may
risk oscillations around the minimum (as in gradient update
algorithms). For instance, in the result presented in Fig [5] we
observe that the learning speed and the accuracy of MTL is
enhanced as we increase v from 0.001 to 0.1. However, when
v is increased beyond this value (for instance v = 0.2), the
accuracy of the online learning starts to decrease. For each
test system, we similarly determine the optimal learning rate
by gradually adjusting the value of ~.
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Metric Method Epoch 0  Epoch 1  Epoch 10  Epoch100

MTL 0.0105 0.0040 0.0030 0.0028

m pretrianl 0.0051 0.0051 0.0051 0.0051
pretrian2 0.0059 0.0060 0.0060 0.0059

MTL 0.9372 0.9642 0.9707 0.9720

72 pretrianl 0.9598 0.9597 0.9597 0.9598
pretrian2 0.9567 0.9564 0.9565 0.9567

MTL 0.9886 0.9937 0.9948 0.9950

13 pretrianl 0.9925 0.9925 0.9925 0.9925
pretrian2 0.9915 0.9914 0.9915 0.9915

TABLE III: The online training performance of each pretrain

method
Feasibility \ Case
14-bus | 30-bus | 118-bus
Method
Learn from scratch | 0.978 0.989 0.991
MTL 0.998 0.994 0.994
pretrainl 0.989 0.993 0.994
pretrain2 0.989 0.993 0.994

TABLE IV: Feasibility rate after 100 epochs for each method

and test case.

Pretraining method 14-bus 30-bus 118-bus
MTL 3min 55sec 3min 40sec 9min 6sec
pretrainl I1min 34sec | 13min 29sec | 104min 31sec
pretrain2 24min 35sec | 28min 38sec | 151min 16sec

TABLE V: Computational time for the pretraining methods
during the offline training phase.

Secondly, we investigate the the prediction accuracy (mea-
sured according to the metric 7)2) as a function of the number
of training samples used in the online training progress and
present the results in Fig. [f] We observe that MTL achieves
good accuracy by fine-tuning with only 50 — 100 online
training samples. Increasing the number of online training
samples to 700 achieves a negligible improvement in the
accuracy. This implies that MTL is good for fine tuning with
a very few number of data samples, making it particularly
attractive for online training. Note that despite using only a
few data samples for during the online “training” process of
MTL, we have provided significant number of data samples
during the “testing” phase to ensure sufficient averaging and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OAJPE.2022.3140314, IEEE Open

Access Journal of Power and Energy

014 - Learn from scratch s
" -+ Meta-Learning g 098
o1zt o
i = Pretrain1 £
0.10 E =+ Pretrain2 £
2 5“‘5 § 084 wuet Learn from soratch
S oos N, 2 e Meta-Learning
E—;J A‘“. E o09z| == Pretraini
0.06 )
= 5, O Pretrain2
.
N 8
004 Y £ a0
, 3
0.02 T £ w
0.68 [t
0.00
o © @™ B> ™ 0 o © @™ > ™ 0 |

o
°
&

°
©
B m‘%f

—£— Leamn from scralch
Meta-Learring

—%— Pretraint

—#— Pretrain2

Accuracy of total generation cost

°

4 ®

= &

4
s

W % e
Number of Epochs.

(a) n1: DNN Loss

W % 6
Number of Epochs. &

(b) n2: Accuracy of State Parameter

0.75
1 20 30 40 50 6 70 80 90 100

number of epochs

(c) m3: Accuracy of Total Generation Cost

Fig. 4: Visualization of online training progress based on 50 training samples from the new task. Comparison of MTL with
other benchmarks using the different metrics for IEEE-118 bus system.

Case | Epoch | Online training time(ms) OFF computation time (ms) Speed Up
Online prediction time (DNN+PF) | MATPOWER OPF solver time
1 17.1957
14 10 180.1005 0.1821 + 1.4636 20.1868 x13
100 1928.6110
1 23.7454
30 10 236.3109 0.2193 + 1.6670 40.8395 x22
100 2327.0433
1 130.3734
118 10 1209.9692 0.2353 + 2.6613 52.6581 x19
100 12934.5649
TABLE VI: The online training performance base on operation time.
— number of topologies used in the offline training process is
095 ——— reduced. This indicates that a sufficient number of toplogies
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Fig. 5: MTL/ Learn from scratch, online training performance
under different learning rates .

that the results we present are unbiased. For instance, the result
in Fig. [] is computed based on 300 data samples during the
testing phase.

Thirdly, we investigate the the MTL prediction accuracy
as a function of the number of topologies used in the offline
training phase 7offine training phase- Lhe results plotted in Fig. |Z|
indicate that the prediction accuracy goes down when the

are required in the offline training phase to develop an efficient
MTL model.

D. Computational Gain Compared to the Traditional OPF
Solver

We further test the computational time for MTL’s online
training and prediction time (following the retraining) and
compare it with the traditional MATPOWER-based OPF solver
in Table We summarize the observations in the following.

Online Training Time: It can be observed from Table
that under the MTL approach, the DNN can be retrained
quickly to achieve high prediction accuracy. In particular,
recall that MTL’s online training achieves a very high pre-
diction accuracy within 10 retraining epochs. For the IEEE-
118 bus system, the computation time for the online training
(corresponding to 10 epochs) is only 1.2 seconds. Thus, the
MTL approach will be scalable to large OPF systems.

Online Prediction Time: The online prediction phase
consists of two steps: (1) DNN prediction (2) post-processing
to ensure feasibility (as illustrated in Fig. [I] of the paper).
We present the computational time for both these operations
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on 72: accuracy of state parameter. Each model is updated
according to ‘SGD’ optimization.The learning rate is 0.1 and
weight decay is 0.001.

in Table [VIl We compare it with the time required by the
traditional MATPOWER-based OPF solver. The results show
that the proposed approach can provide significant speed up
in comparison to the traditional solver. For instance, for the
IEEE-118 bus system, we can achieve a speed-up of 19 times
(for every computation of the OPF).

Finally, note that the online training operation is an addi-
tional computation burden incurred under the MTL approach
(that is not required by the traditional OPF solver). For the
IEEE-118 bus system, we observe that the online training
time (= 1.2 s) for MTL is approximately 23 times that of
traditional OPF solver (=~ 52 ms). From this observation, we
can conclude that MTL will be useful for a power system
operator if the system topology remains unchanged for at-
least 23 OPF computations. If the system topology is changed
faster than this rate, then the computational burden of MTL is
greater than that of using the traditional OPF solver. However,
in most practical systems, this is reasonable, since changes in
the load/renewable energy fluctuations occur at a much faster
rate compared to the rate of topology reconfigurations. Thus,

10

MTL is suitable in practical power system operation scenarios.
VI. CONCLUSIONS

In this work, we have proposed a DNN based approach
to the OPF problem that is trained using a novel MTL
approach. The proposed approach is particularly relevant for
computing OPF generation dispatch decisions under power
grid topology reconfigurations. The MTL approach finds good
initialization points from which the DNNs can be quickly
trained to produce accurate predictions for different system
configurations. Simulation results show that the proposed
approach can significantly enhance the training speed and
achieve better prediction accuracy as well as feasible results
compared to several other pretraining methods. To the best of
our knowledge, this work is the first to adopt an MTL approach
in a power grid context.

APPENDIX: SIMULATION RESULTS FOR IEEE-14 AND 30
BUS SYSTEMS
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