
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/161736                                       
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/161736
mailto:wrap@warwick.ac.uk


 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number 

Identification of Traffic Accident Patterns via 
Cluster Analysis and Test Scenario 
Development for Autonomous Vehicles 

Emre Esenturk*1, Albert Wallace1, Siddartha Khastgir1, Paul Jennings1 
1WMG, University of Warwick, Coventry, CV4 7AL, UK 

Corresponding author: Emre Esenturk (e-mail: e.esenturk.1@warwick.ac.uk). 

The work presented in this paper has been carried under the Innovate UK and Centre for Connected and Autonomous Vehicles (CCAV) 

funded OmniCAV project (Grant No. 104529). This work is also supported by UKRI Future Leaders Fellowship (Grant MR/S035176/1). 

The authors would like to thank the WMG center of HVM Catapult and WMG, University of Warwick, UK, for providing the necessary 

infrastructure for conducting this study. WMG hosts one of the seven centers that together comprise the High Value Manufacturing 

Catapult in the UK. 

 

ABSTRACT Increased safety is one of the main motivations for traffic research and planning. The arduous 

task has two components: (i) improving the existing traffic policies based on a good understanding of risk 

factors related to trends in traffic accidents, and (ii) underpinning the emerging technologies that will advance 

the safety of vehicles. For the latter route, the introduction of connected and automated vehicles (CAVs) is a 

promising option as CAVs can potentially reduce the number of accidents. However, to reap their benefits, 

they need to be introduced in a safe manner and tested for their ability to safely deal with risky scenarios. 

Unfortunately, the identification of such test scenarios remains a key challenge for the industry. This study 

contributes to increased safety by (i) analyzing UK’s STATS19 accident data to identify patterns in past 

traffic accidents, and (ii) utilizing this information to systematically generate scenarios for CAV testing. 

For task (i), the patterns in the accidents were identified in terms of static and time-dependent internal and 

external factors. For this purpose, the study employed a clustering algorithm, COOLCAT, which is 

particularly suitable for dealing with high-dimensional categorical data. Six different clusters emerged 

naturally as a result of the algorithm. To interpret the clusters, we applied a frequency analysis to each cluster. 

The frequency tests showed that in each cluster, certain distinct real-world situations were represented more 

significantly compared to the non-clustered reference case, which are the markers of each cluster. The second 

task (ii) complemented the first task by synthesizing the relationships between attributes. This was done by 

association rule mining using the market basket analysis approach. The method enabled us to develop, 

drawing from the characteristics of the clusters, non-trivial test scenarios that can be used in the testing of 

CAVs, especially in virtual testing. 

INDEX TERMS Accident analysis, scenario development, cluster analysis, market basket analysis  

I. INTRODUCTION 

Over the past five years, more than a half million 

traffic accidents have been reported in the UK, distributed 

more or less evenly in each year [1] (“Road Safety Data - 

STATS19,” 2020). Despite the traffic safety measures taken 

by the UK government, there has been a steady figure of over 

seventeen hundred on-road fatalities annually. In addition to 

the tragedy of losing loved ones, such accidents incur heavy 

costs to the economy overall, such as support services and 

healthcare systems. Clearly, as the first order of business, it 

is of prime importance to identify and analyze the factors 

leading to severe accidents in order to reduce the chances of 

occurrence. A promising and ambitious solution to reduction 

of traffic accidents is the introduction of Connected and 

Autonomous Vehicles (CAVs) which can significantly 

reduce the rate and severity of traffic accidents [2]-[4]. 

However, to reap the safety benefits of CAVs, it is essential 

to ensure that their introduction is done in a safe manner, and 

second, they are trusted, accepted, and used by the public. 

Establishing the capabilities and limitations of the CAVs and 

communicating them to the public is key to creating a state 

of “informed safety” which, in turn, leads to the development 
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of trust in CAVs [5]. However, owing to the increased 

complexity of CAVs [6], ensuring and evaluating their true 

capabilities and limitations remains a challenge [7]. It is 

suggested that to prove that CAVs are safer than human 

drivers, they need to be driven for over 11 billion miles [8]. 

This might seem to be an unrealistic proposition, but an 

alternate school of thought of Hazard Based Testing, that 

focuses on the quality of miles, suggests testing for “how a 

system fails” as compared to “how a system works” [9]. 

Understanding how a system may fail can be either done in 

a proactive manner (e.g., via safety assessments involving 

hazard identification) [10], or in a reactive manner (e.g., by 

analyzing road accident databases), [11]. While the former 

would be intrinsic to the system, the latter would yield 

extrinsic factors that may lead to hazards. Identifying 

extrinsic factors, even for normal, human-driven systems, 

requires a deep understanding of the relationships between 

them. Once such an understanding is achieved for human-

driven systems, it can serve as a basis for developing tests 

and test scenarios to help train CAVs. 

   The goal of this study is to devise a systematic way that 

underpins the aforementioned reactive path by creating 

realistic real-world scenarios that are archetypal of high-risk 

traffic situations. This is a two-stage problem requiring one 

to develop an approach that is capable of (i) detecting 

patterns in a wealth of accident data and (ii) synthesizing 

scenarios based on the significant relationships within these 

patterns. In this study, improving on [12], we used a cluster 

analysis approach for stage (i) and association rule mining 

for stage (ii). We demonstrate our approach using the UK 

traffic accident database. 

   The approach presented in this study offers several 

prospects. First, cluster analysis can provide an efficient way 

to cast scattered accidents into natural groups which exhibit 

collective characteristics. These groups can sometimes be of 

very small sizes (or have very small sub-groups), which 

depict rare but distinct traffic situations that might be omitted 

using other traditional methods such as regression. Second, 

many existing traffic data analysis methods, a priori, 

categorize variables as dependent and independent. Our 

methodology does not require such assumptions and allows 

the extraction of naturally occurring relationships within the 

data (i.e., stage (ii)). Third, thanks to the particular clustering 

algorithm used in this study, streams of new incoming 

scenarios can be classified appropriately and efficiently, 

helping with maintenance of large databases. 

   Applying the suggested methodology, it was found that the 

accident dataset can be differentiated into six distinct 

clusters, each of which shows different characteristics. These 

are (i) fatal, late night, off-junction accidents on motorways 

with high-speed limit, (ii) two-wheeler (bicycles and 

motorbikes) accidents on minor roads at a junction while 

turning left or right, (iii) fatal, two-wheeler accidents on slip-

roads connecting to major roads in foggy weather; (iv) off-

junction accidents involving buses on unclassified roads; (v) 

accidents on private drives involving reversing and parked 

vehicles; and (vi) night accidents at multi-armed junctions of 

major roads with low speed limits involving buses and 

bicycles. Following the identification of these clusters, 

market basket analysis was applied to each cluster to 

ascertain the quantitative relationships between the in-cluster 

attributes, which can be regarded as proto scenarios. These 

rules are then combined to obtain scenarios that represent the 

corresponding clusters.  

The remainder of this paper is organized as follows. Section 

2 provides a brief review of the literature on accident data 

analysis concentrating on data mining methods. Section 3 

provides an overview of the data format and how the data was 

processed into the form that was used in the study. Section 4 

introduces our analysis method and the algorithms used. In 

Section 5, we present our findings. In Section 6, these findings 

are interpreted in the context of scenario generation and are 

utilized to systematically develop natural pre-crash exemplary 

scenarios. Finally, Section 7 concludes the paper. 

 
II. BACKGROUND 

A vast literature exists on traffic accidents and their 

relationships to surrounding conditions [13]. A commonly 

used approach for analysis is to   formulate the relationships 

in a correlational setting using classical or contemporary 

techniques, including various types of regression 

models [14]-[20], [11], [57], [58]; Bayesian analysis [22]-

[25]; neural-network models [21],[26]-[29].  

   An alternative approach is not to assume a pre-set 

relationship and let the data reveal itself. This provides more 

flexibility and fidelity for data mining methods. Following 

this spirit, in recent years, data mining strategies have 

attracted increased attention in safety research and 

automated driving systems (ADSs) such as association rule 

mining [30-32]; and decision trees [33-37].     

   One type of data mining strategy, which has been explored 

to a lesser extent (in the context of traffic accident data) is 

cluster analysis [38]. The crux of this technique is to group 

traffic accidents according to microscopically or 

macroscopically defined criteria, which allows for 

comparative examination of these groups [39]. Among the 

past studies, in [40] k-means clustering method was used to 

analyze accident hotspots whereas in [41] and [42] the same 

method was used to support the severity prediction of 

accidents. More recently, related k-means clustering 

methods were used by [12] for crash analysis at road 

junctions, by [43] for pedestrian pre-crash scenarios and by 

[44], [45] for the assessment of automated emergency 

braking systems in accidents. 

    

   To leverage the use of clustering methods, one needs to be 

mindful of the algorithms’ data processing procedures. To 

this end. the first order of consideration is the suitability of 

the method for the data type under study. Most clustering 
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methods that have been employed in traffic research 

employed the k-means algorithm [46] and its variants, k-

medoids [47] or k-modes [48]. While k-means is a popular 

solid clustering method it is not very suitable for categorical 

data as the mean of a categorical variable is not meaningful. 

On the other hand, k-medoids and k-modes can handle 

categorical data. However, they are known to suffer from 

poor performance when working with high dimensional data 

[12] and may not be the most ideal method if one intends to 

analyze datasets with a large number of attributes, which is 

one of the central aims of this study. This problem can be 

partially circumvented by reducing the dimensions (i.e., 

discounting certain variables with educated 

decisions/guesses), as was done in some recent works [12]. 

However, one should be wary of resorting to approaches 

such as handcrafted feature selection for cluster analysis as 

they may be prone to error or bias [53]. Considering that 

most traffic accident data, especially the UK STATS19 

database, consist of attributes that are predominantly 

categorical, it is advisable to use an algorithm designed for 

categorical data clustering such as COOLCAT [49], ROCK 

[50], DBSCAN [51], and SQUEEZER [52], LIMBO [63].  

  A second point of consideration for deciding on an 

algorithm is the criterion for distinguishing clusters. Most 

clustering methods that have been employed in traffic 

research rely on distance-based algorithms using 

microscopic (local) criterion/basis for assignment to clusters 

such as DBSCAN and its many more recent variants [62]. 

However, employing an algorithm that works with criteria 

based on global properties (such as entropy) of the data 

groups can provide new insights to identify the trends in the 

data and is preferred in this study. Another issue to take into 

account is the speed. For instance, even though ROCK is a 

categorical clustering algorithm that utilises some level of 

nonlocal properties in its clustering procedure (forming 

clusters based on links instead of local distances) . However, 

due to it is agglomerative nature it is slow and not scalable.  

SQUEEZER on the other hand is fast, however, the 

clustering is very sensitive to ordering of the data, as the 

clusters are built incrementally from single element. Hence, 

considering these aspects, in this paper we use an entropy-

based algorithm, COOLCAT, which is, by design suitable 

for categorical data clustering [49]. Moreover, COOLCAT 

can work with high-dimensional data without compromising 

on the quality. It distinguishes clusters based on the measure 

of entropy which is a global feature of the data. Also, 

COOLCAT is efficient and can handle streams of incoming 

data with ease. Furthermore, clustering with COOLCAT is 

relatively less data dependent since initial cluster seeds are 

independent of the order in the data. One downside of the 

COOLCAT is the initialization stage which has quadratic 

complexity which may increase the overall time cost. This is 

a price paid for requiring a more stable and consistent 

clustering which is a comparable cost to other similar 

clustering algorithms such as LIMBO.  

 

While providing useful insight for understanding accident 

patterns, a cluster algorithm alone may not immediately 

convey a meaning to the clusters formed. In other words, one 

needs to understand what the produced clusters represent. For 

small clusters with a small number of attributes, this can be 

achieved by eyeballing the clusters. However, for clusters with 

a large number of data points and attributes, one needs a 

systematic way to interpret what each cluster signifies. 

Furthermore, even after a cluster obtains meaning in terms of 

its indicator attributes, this does not provide much clue on the 

relationship between these variables, which is crucial in 

understanding the development of individual scenarios.  For 

this purpose, we propose a two-step procedure that identifies 

the key attributes that distinctively describe each cluster and 

then extracts the previously unknown relationships between 

the attributes within those clusters. The first step is to run 

comparative frequency tests between the clusters and the 

reference distribution of the attributes. The second step 

involves employing the association rule mining method (i.e., 

market basket analysis) on the distinguished attributes. 

III. METHODOLOGY 

A. FORM OF THE DATA AND PRE-PROCESSING 

This study is based on an analysis of publicly available data 

collected from police reports in the UK [1]. Accidents from 

the 2016-2018 period were taken as the base data, which 

amounts to 389238 accidents in number. In its raw form, 

the data is stored in different files describing the 

accidents depending on the perspective of either 

common attributes (e.g., weather condition, light 

condition) or specific attributes (e.g., sex of the driver, 

vehicle type). Not all attributes recorded in the datasets were 

regarded as relevant for the analysis. For instance, the 

effects of cultural origin were discounted. Likewise, 

variables that were thought to be unimportant were 

disregarded, such as local authority district and police officer 

attendance. As the main goal of this study is 

scenario development, only those attributes (or variables) 

that have a direct influence on accidents were kept. After 

this, the data were reorganized from the perspective of the 

driver, which meant duplicating the common variables. 

Furthermore, only those accidents involving one vehicle or 

two vehicles with physical impact were considered.  The 

reason for this is to keep the scope of the paper focused on 

test scenario generation for AVs. Since overwhelming 

majority of the traffic accidents involve one or two vehicles 

it was decided to restrict the analysis to such accident types.  

   Another important point is that most of the attributes 

recorded in the STATS19 database were categorical with 

many superfluous values. Therefore, certain variables are 
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restructured, for instance, by merging cases. An example of 

this is provided in the appendix. The full dictionary can be 

found in the STATS19 database [1]. Furthermore, for each 

accident with a missing value, a random value from 

the possible set of values from the respective category was 

assigned.  

B. ODD AND BEHAVIOUR COMPETENCIES 

As mentioned earlier, a major challenge in the CAV industry 

is the development of test scenarios. Considering the high 

demand in this domain, an established format for scenario 

description is instrumental for easy and standardized exchange 

of scenarios. This gave birth to the operation design (ODD) 

concept detailed in (BSI, 2020) and defined as “Operating 

conditions under which a given driving automation system or 

feature thereof is specifically designed to function, including, 

but not limited to, environmental, geographical, and time-of-

day restrictions, and/or the requisite presence or absence of 

certain traffic or roadway characteristics’. ODD consists of 

three main classes of descriptors: scenery (such as drivable 

are, junctions, physical structure, etc.), environmental 

conditions (such as weather and light conditions), and 

dynamic elements (such as traffic conditions and speed of the 

vehicle). As shown below, many of the attributes from the 

STATS19 dataset can be easily mapped onto the attributes in 

ODD. A complementary concept that is used in this paper (and 

included in STATS19 variables) is the “behavior 

competencies” (e.g., vehicle maneuver), which basically 

describes driving behavior [55]. Together, ODD and behavior 

competencies constitute the backbone for scenario 

development. 

C. CRASH DATA VARIABLES 
This study takes the perspective that the traffic accidents can 

be described solely in terms of the local effects, that is, 

factors and output that are immediately present at the time 

and location of the accident. Overall, 22 variables from the 

STATS19 database were selected to be used in the analysis: 

Accident Severity, Skidding and Overturning, Time, 1st Road 

Class, Carriageway Hazards, 2nd Road Class, Speed Limit, 

Junction Detail, Junction Location, Light Conditions, 

Weather Conditions, Road Surface Conditions, Urban or 

Rural Area, Was Vehicle Left Hand Drive, Vehicle Type, 

Vehicle Maneuver, 1st Point of Impact, Did Vehicle Leave the 

Carriageway, Week or Weekend?, Pedestrian Crossing 

Facilities, Sex of the Driver, Age Band of the Driver. 

   These variables were chosen because they either: provide 

information about the outcome of the accident e.g. Accident 

Severity and Skidding and Overturning, or provide 

information on the conditions around the accident e.g. Light 

Conditions and Road Surface Conditions or give details of 

the accident scenario e.g. Vehicle Maneuver and Sex of 

Driver. Variables that were superfluous like local authority 

district were removed. 

   Most variables included in the analysis are self-

explanatory. We only describe the 1st Road class variable 

which shows the road type. This can come as Motorway, A, 

B, C or unclassified road. These are the standard UK road 

classes. Motorways and A roads are major roads while B and 

C roads are minor roads. Unclassified roads are roads that do 

not fit into the other classifications and are usually local 

roads intended for local traffic. 

IV. DATA ANALYSIS 

After cleaning and organizing the data, here we discuss the 

method of analysis. As noted previously, the rationale for 

using unsupervised learning approaches is that these 

techniques allow one to extract important information from 

the data without making any prior assumptions on the 

relationships between data attributes, which is a significant 

advantage.  

   We used a combination of complementary learning 

techniques. The first step involved clustering the data. Once 

this step is complete, the second step of the analysis is to 

understand what these clusters mean. The following 

subsections discuss these steps in detail. 

A. CLUSTERING OF ACCIDENT DATA 

This was the first step in the analysis. As mentioned earlier, 
clustering analysis has a long history, but its use in accident 

data is a relatively recent development. Therefore, although 

there are dozens of clustering algorithms available for general 

clustering purposes, the accident data under consideration are 

exclusively categorical and general-purpose clustering 

algorithms, such as k-means (which are designed for dealing 

with continuous variables), are less likely to yield high-quality 

clustering. Second, for the purposes of this study, we are more 

interested in differentiating clusters based on the global 

features of the attributes in each cluster, rather than individual 

similarity relationships between the data points in those 

clusters. The choice makes a marked difference in the type of 

algorithm to be used. 

 
A.1. COOLCAT Categorical Clustering Algorithm 
The COOLCAT algorithm was first proposed in [49]. It was 

designed specifically for categorical datasets. Unlike most 

other clustering algorithms (such as k-medoid and k-modes) 

that have been used in accident analysis research, 

COOLCAT is not based on a distance metric. Rather, central 

to COOLCAT is the concept of entropy, which is borrowed 

from physics and information theory and measures the 

disorder in a given system. Then, the goal of the algorithm is 

to group the data points of the system in clusters in a 

configuration that minimizes the average entropy. In this 

setting, entropy in a cluster can be quantified in terms of the 

normalized frequencies of the attributes within the cluster, 

treating each variable independently from each other. This 

crucial difference, that is, distinguishing clusters with respect 
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to globally defined differences instead of local metric 

distances, is one of the advantages of COOLCAT when 

dealing with categorical data and can help better describe the 

clusters in the interpretation stage. Another advantage of 

COOLCAT over more classical algorithms (such as k-means 

and k-medoids) is that COOLCAT performs incremental 

clustering and hence can handle streams of new incoming 

data without the need for clustering from scratch. 

   Given the number of clusters, the algorithm begins by 

forming cluster seeds that are chosen as the most different 

elements from each other in the dataset.  Then, the remaining 

data points are assigned to the seed clusters one by one 

according to the average reduction in the entropy of the 

system. Once one iteration is completed, a portion of the data 

points may be redistributed among the clusters (provided that 

the new assignments decrease the overall entropy) to minimize 

path dependence effects. 

B. INTERPRETATION OF CLUSTERS 

The second step of the analysis focuses on ascertaining the 

meanings of the clusters formed by the clustering algorithm. 

This involves determining the significant variables that 

describe the clusters more distinctively and extract the a 

priori unknown relationships or rules between these 

significant variables. 

 

B.1. Frequency Analysis for Identification of Significant 
Variables 
Because the COOLCAT method is not metric-based, another 

approach for identifying the meaning of the clusters is 

needed. A frequency analysis was used to determine which 

variables appear significantly more than expected in each 

cluster compared with how frequently they are in the rest of 

the data. This is possible because the data is categorical and 

frequencies exist, whereas in continuous data, they would 

not. 

   Significant variables in each cluster were identified using 

the chi-square test. As the data is in binary form, for every 

data point, each variable has either a value of 1 if it was 

present in that accident or 0 if it was not. The chi-squared 

value for each variable is given by: 

 
2 2( 1(var) 1var)) ( 0(var) 0var))

(var)
2 1(var) 2 0(var)

O E O E
chi

E E

− −
= +  

          (1) 

where 𝑣𝑎𝑟 represents an arbitrary variable and 

• O1 –observed number of 1’s in the cluster,  

• E1 – expected number of 1’s in the cluster, 

• O0–observed number of 0’s in the cluster, 

• E0 – expected number of 0’s in the cluster. 

The expected number of 1’s is given by the size of the cluster 

multiplied by the frequency of the variable in a comparison 

set divided by the size of the comparison set. This 

comparison set contains the full data (representing the 

distribution of the entire population). E1 is then given  

(var)
1(var) _

frq
E cluster size

N
=       (2) 

where N and frq are the total number of data points in the full 

data and the frequency of the variable in question, 

respectively. The significance of a variable is determined by 

whether the frequency of that variable significantly differs 

from the expected frequency (at a significance level of 

p<0.05) under the null hypothesis that it does not. After the 

significant variables are found, the index relative frequency 

= observed/expected is calculated to identify which variables 

are more overrepresented in the cluster. In the sequel, we 

require, for the relative frequency of a variable to be larger 

than a set threshold to be deemed as the signifier or indicator 

of a cluster (see Section 5).  

 

B.2. Market Basket Analysis 
Market Basket Analysis (MBA) (Agrawal, 1993) is a method 

that is mainly used on business transactional data to identify 

which ‘products’ are found together in ‘customers 

purchases’. In general, the idea is to find association rules 

between variables that appear together unusually frequently. 

The first step in MBA is to find frequent itemsets using the 

Apriori algorithm. A k itemset is a subset of all possible 

variables of length k. For example, in a shopping context, an 

itemset could be {Bread, Milk, Eggs, Cheese}, while in a 

traffic accident context, the itemset would be {Motorbike, 

Entering Junction, Turning Left}. An itemset is said to be 

frequent if its support exceeds a given threshold. The support 

of an itemset X is given by the frequency of X, that is, the 

number of data points to which all members of the itemset 

belong to, divided by N the total number of data points, that 

is, 

( )frq A C
Support

N


=                  (3) 

The Support is essentially a measure of how rare an itemset 

is. 

   In the second step, once frequent itemsets are found, is to 

identify association rules within them. This is done by 

partitioning the itemset into two subsets, the antecedent and 

the consequent, which then gives the association rule 

antecedent  → consequent. For example, an itemset X={x1, 

x2, x3} can be split into antecedent A={x1, x2} and 

consequent C={x3}, which would give the rule A→ C. 

   Two metrics were used to identify the strength of the 

association: confidence and lift. Confidence is given by the 

frequency of the union of the antecedent and the consequent 

(the joint itemset), which corresponds to the intersection of the 

data points, divided by the frequency of the antecedent. i.e.,  
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Confidence =  
( )

( )

frq A C

frq A


        (4) 

   Intuitively, for rule A→ C, this is the probability that C 

occurs, given that A also occurs. The lift is given by the 

support of the entire itemset divided by the support of the 

antecedent multiplied by the support of the consequent.  

 

( )

( ) ( )

Support A C
Lift

Support A Support C


=


     (5) 

 

   For association A→ C, this is a comparison between how 

often A and C actually appear together, with how often A and 

C would be expected to appear together if they were 

independent, based on their support within the dataset. If the 

lift is less than 1 it indicates that A is not strongly associated 

with B any more than it coincidentally appears together. On 

the other hand, if the lift is higher than one, then this indicates 

that, even if the rule has low confidence, the items appearing 

together are not coincidental. A summary of the concepts is 

given in figure 1. 

FIGURE 1. Relevant relations for Market Basket Analysis rules  

V. RESULTS 

In this section, we present the main findings of this study in 

two stages. First, the previously explained COOLCAT 

clustering method was applied to a sample of 20000 data 

points that were randomly selected from the collection of 

accident records. As COOLCAT is robust against high 

dimensionality, no attempt was made to reduce the number of 

attributes further. In the second stage, a combination of 

frequency analyses followed by MBA was carried out to 

extract the significant associations for each cluster which 

formed the scenarios obtained from  those clusters. We report 

that the COOLCAT clustering algorithm was coded and 

executed in MATLAB 2019a while the MBA method was 

implemented in python 3.7 using the mlxtend package [59]. 

    

A. RESULTS FOR COOLCAT CLUSTERING 

Here, we present the results of the clustering method. After 

the cleaning process, the data, which is entirely categorical, 

was converted into binary form (or business transaction 

form), where each category of a variable was treated as a new 

variable. The COOLCAT algorithm was applied to a random 

sample of 20,000 accidents that were selected from the 

reference list of 549,575 accidents that took place between 

2016-2018. 

   For the differentiability and quality of the clusters, an 

assessment of the goodness of clustering needed to be 

performed in the post-clustering stage, as the total number of 

clusters is pre-specified in the COOLCAT algorithm.  The 

ideal cluster number for a clustering is one of the topics that 

there is no scientific consensus as to which clustering is the 

best (simply because clustering assessments usually depend 

on the measure that one uses). Commonly used measures 

include average silhouette (AS) scores, Dunn index (DI), and 

the DB index, which are all based on distance functions 

imposed on the data. However, COOLCAT does not use a 

distance function for clustering, and distance-based 

assessments may not be ideal. Alternatively, one can use 

normalized mutual information (NMI), which is an 

information theoretic measure of the level of clustering. For 

the best clustering, we compared the scoring indices 

mentioned above, and the majority rule was applied to 

choose the ideal cluster number.  

 
TABLE 1  

CLUSTER QUALITY SCORES 

Total 

Cluster 

Number 

NMI AS DI DB 

2 0.21 0.19 2.37 0.8 

3 0.26 0.14 2.00 0.88 

4 0.28 0.10 1.74 0.92 

5 0.31 0.05 1.75 0.93 

6 0.33 0.07 1.76 0.92 

7 0.34 0.05 1.63 0.92 

8 0.35 0.03 1.62 0.92 

9 0.34 0.05 1.75 0.91 

10 0.35 0.05 1.40 0.91 

     

Quality scores for varying total cluster numbers. 

 

   Table 1 shows that the NMI values tend to increase as the 

cluster number increases (with occasional drops). On the 

contrary, average Silhouette and Dunn scores tended to 

decrease with increasing cluster number (all computations 

were done with Hamming distance). It was observed that the 

DB score mostly stabilized after k>3 and was somewhat 

insensitive to the cluster numbers. In these respects k = 2,3 

do significantly better in obtaining high AS and DI scores. 

However, NMI scores are very low for k = 2,3 (and AS has 

a theoretical bias towards configuration with low cluster 

numbers). For k > 5, the NMI scores were considerably 

higher compared to the case with k<6; however, the AS and 

DI scores were substantially low. Therefore, considering all 

aspects, the optimal cluster number was determined to be k* 

= 6. 
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B. INTERPRETATION OF CLUSTERS 
 

As discussed in the introduction, the advantage of the 

clustering algorithm is that it groups the data into distinct 

homogenous clusters without making any assumptions about 

the relationships among the variables. However, this does 

not inform us about what each cluster represents. Here, we 

systematically investigated and interpreted the clusters at 

varying levels of detail. 

 

B.1. Frequency analysis of cluster attributes 

The first level of analysis unveils which variables are over-

or under-expressed in a particular cluster which are then 

interpreted as indicators of what that cluster is and what it is 

not. Here, the reference measure will be the entire data (all 

accidents between 2016-2018) which has its own 

distribution. Therefore, significant deviations from the 

reference distributions are interpreted as signifiers of the 

cluster under consideration. This deviation was assessed 

using the Chi-square test for each variable, as introduced in 

the previous section. The advantage of this approach is that 

it is free from human bias and provides a simple natural 

interpretation for each cluster if the clustering algorithm is 

capable of distinguishing data patterns from each other.  

   The frequencies of variables in the six clusters formed are 

compared to the reference frequencies (the whole data), and 

those variables that showed significant differences (p<0.05) 

were noted. To further strengthen the interpretation, only 

those variables (among the significant ones) that are over-

expressed with at least 1.25 times more than the reference 

variables are designated as the cluster signifiers or indicators. 

Tables 2-4 show, for each cluster, the indicator variables and 

their relative frequencies (ratio of frequency of a variable 

within a cluster to the overall ratio of in the reference set). A 

thorough discussion of each cluster is provided in section 6. 

 

B.2. Market Basket Analysis of Clusters with signifiers 

The first-level investigation by frequency analysis is 

complemented by the second-level investigation, market 

basket analysis (MBA)- which runs on significant variables 

in each cluster. This is motivated by the idea that although 

the significant variables are clustered together, they are not 

necessarily directly linked to each other. MBA helps the 

variables that are strongly associated with each other to be 

more precisely identified and provides more arguments to 

make inferences on the signifiers. Note that it is possible to 

run the MBA on each cluster with the full set of variables, 

which has been adopted by some of the previous studies 

(Pande and Abdel-Aty, 2009). However, we believe that 

restricted MBA is more meaningful. This is because, on the 

theoretical side, one is really after those associations that are 

cluster specific, which describe, with more fidelity, the 

traffic scenarios that are more likely to occur in that 

particular cluster. In fact, this has been the whole point of the 

clustering method to start with, that is, a deeper and more 

focused analysis of patterns. On the practical side, narrowing 

down the number of variables significantly reduces the 

computational time, which will prove profitable if one tries 

to perform MBA on larger samples.   

   When applying the MBA, we adjusted the thresholds for 

the parameters depending on the cluster. The values for the 

minimal support, confidence, and lift for each cluster are 

presented in Table 3-8 along with the set of multi-item 

associations obtained from the Apriori algorithm. After 

testing, the threshold values of support = 0.00001, 

confidence = 0.3, and lift = 1.5 were chosen.  Such a low 

support threshold was used to allow almost all of the rarest 

variables to potentially appear in the output rules, as 

identifying edge cases is important in scenario testing. The 

confidence and lift thresholds were chosen as they provided 

a good number of strong rules. They also guarantee that for 

every rule, the consequent appears in at least one-third of the 

accidents in the cluster containing the antecedent (from the 

0.3 confidence) and that the rule is observed over %50 

percent more often than expected compared to random 

occurrence (from the lift value of 1.5). 

   To help give a high level understanding of the generated 

associations, a plot for each cluster was generated using the 

python package pyvis which shows the strongest links 

between variables. These are shown in the appendices 

(figures 8-13). 

 

VI. DISCUSSION 

A. UNDERSTANDING CLUSTERS WITH COOLCAT 

 
TABLE 2. 

SIGNIFIERS FOR CLUSTERS 1-2. 

Cluster1 Rel. 

freq. 

Cluster2 Rel. 

freq. 

Serious 1.35 C 1.27 

Fatal 3.37 Unclassified 1.49 

Skidded/Jack-knifed 2.62 Unclassified2 2.19 

Overturned 2.73 20mph 1.26 

12am-3am 1.65 30mph 1.41 

3am-6am 2.05 T or staggered 

junction 

2.11 

Motorway / A(M) 6.17 Private drive or 

entrance 

2.09 

Object on road 1.59 Entering junction 1.54 

Pedestrian or animal on 

road 

2.23 Clearing junction 1.52 

Not a junction in 20m 2.65 Mid junction 1.73 

50mph 2.56 Give way/ stop sign 

or uncontrolled 

1.59 

60mph 3.96 Bicycles 1.72 

70mph 5.27 Motorbikes 1.36 

Not a junction within 20m 2.67 Turning left 1.90 

Not at or within 20 metres 

of junction 

2.65 Turning right 1.98 

Not at junction or within 

20 metres 

2.59   
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Traffic light/ person 1.33   

Darkness – no lights 3.80   

High Winds 1.62   

Goods 1.70   

Changing lane to left 2.08   

Changing lane to right 2.11   

Overtaking moving 

vehicle - offside 

1.56   

Going ahead-bend 3.48   

Nearside / nearside and 

rebounded 

3.06   

Offside / offside 

rebounded/crossed/etc 

2.80   

Wet/damp 1.37   

Snow/Flood 2.46   

Frost or ice 2.96   

No Pedestrian Crossing 1.25   

    

Significant variables for Clusters 1-2 and their relative frequencies with 

respect to the reference (unclustered) full data.  

 

For Cluster 1, one reads from Table 2 that it is a severe (i.e., 

serious and fatal) accident cluster. It is also a non-junction 

cluster depicting accidents that took place on motorways 

with high-speed limits (50-70 mph) in late night in dark 

places with no light. These accidents in this cluster appear to 

involve pedestrians or objects on the road, which might be 

one of the reasons why fatal and serious accidents are over-

expressed in this cluster. Adverse weather and road 

conditions such as high winds, snowy weather, and frosty 

surfaces seem to have played a role in drivers’ loss of vehicle 

control and hit the nearside and offside of the road, causing 

such severe accidents. As this is a non-junction cluster with 

a high road speed limit, the related maneuvers are, 

expectedly, overtaking and changing lanes.  

  Cluster 2 (Table 3) significant variables suggest that this is 

a minor road cluster (C roads and unclassified) at junctions 

with low-speed limit (20-30 mph) involving more 

dominantly two-wheelers (bikes and motorbikes). Being an 

at-a-junction cluster with two wheelers, the key maneuver 

types leading to accidents appear to be left turns and right 

turns (as one would expect).  

 
TABLE 3. 

SIGNIFIERS FOR CLUSTERS 3-4. 

Cluster3 Rel. 

freq. 

Cluster4 Rel. 

freq. 

Fatal 1.48 Unclassified 1.44 

Skidded/Jack-knifed 1.81 Not a junction in 

20m 

2.67 

Overturned 1.67 30mph 1.27 

A 1.37 Not a junction 

within 20m 

2.69 

Object on road 1.89 Not at or within 20 

metres of junction 

2.66 

Pedestrian or animal on 

road 

1.71 Not at junction or 

within 20 metres 

2.56 

Motorway / A(M)2 6.97 Traffic light/ person 1.34 

A2 2.00 Buses/Trams 1.58 

B2 2.16 Reversing 2.17 

C2 2.57 Parked 2.95 

40mph 2.18 Slowing or stopping 1.33 

50mph 2.63 U-turn 2.03 

60mph 2.62 Overtaking static 

vehicle - offside 

1.72 

70mph 1.59 Back 1.29 

Slip road 5.44   

T or staggered junction 1.33   

Roundabout / mini-

roundabout 

2.45   

More than 4-arms / other 

junction 

1.64   

Private drive or entrance 1.59   

Entering junction 1.71   

Clearing junction 1.58   

Mid junction 1.35   

Give way/ stop sign or 

uncontrolled 

1.45   

Darkness – no lights 1.92   

High Winds 1.67   

Fog/Mist 2.19   

Motorbikes 1.25   

Turning left 1.80   

Changing lane to left 1.98   

Changing lane to right 1.64   

Going ahead-bend 1.49   

Nearside / nearside and 

rebounded 

1.64   

Offside / offside 

rebounded/crossed/etc 

1.90   

Old 1.26   

Wet/damp 1.31   

Snow/Flood 2.19   

Frost or ice 1.80   

Oil or mud 3.93   

Was_Vehicle_LHD?Yes 3.62   

    

Significant variables for Clusters 2-4 and their relative frequencies with 

respect to the reference data.  

 
TABLE 4. 

SIGNIFIERS FOR CLUSTERS 5-6. 
Cluster5 Rel. 

freq. 

Cluster6 Rel. 

freq. 

A2 2.12 12am-3am 1.57 

C2 1.35 3am-6am 1.69 

Unclassified2 1.53 9pm-12am 1.50 

T or staggered junction 1.58 A 1.61 

Roundabout / mini-

roundabout 

2.02 A2 3.54 

More than 4-arms / other 

junction 

1.96 B2 3.27 

Private drive or entrance 2.26 C2 3.15 

Entering junction 2.35 20mph 1.31 

Clearing junction 1.43 Crossroads 3.84 

Give way/ stop sign or 

uncontrolled 

1.29 Roundabout / mini-

roundabout 

1.80 

Reversing 5.03 More than 4-arms / 

other junction 

2.26 

Parked 2.43 Clearing junction 1.65 

Waiting 6.39 Mid junction 2.26 

Slowing or stopping 3.87 Traffic light/ person 2.83 

Moving off 2.52 Darkness - lights lit 1.66 

Back 3.82 Bicycles 1.48 

Female 1.39 Buses/Trams 2.33 

  Moving off 1.42 

  Turning left 1.33 

  Turning right 1.48 

  Nearside 1.27 
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  Pedestrian Crossing 3.40 

    

Significant variables for Clusters 5-6 and their relative frequencies with 
respect to the reference data.  

 

   Cluster 3 is also a severe accident cluster indicated by the 

fatal accidents attribute. The main differences from Cluster 

1 are that Cluster 3 is a junction cluster and the accidents in 

this cluster mostly occur on A-roads instead of motorways 

which are important distinctions. Among the junctions, slip 

roads deserve special attention as they are highly over-

expressed (rel. freq.=5.44). Adverse weather and road 

conditions also play a significant role in this cluster. Driving 

on high-speed limit roads under adverse weather with risky 

maneuver types at a junction (such as changing lane to left, 

changing lane to right, going ahead with bend) seem to have 

led to vehicles losing control and leaving the carriageway 

(i.e., hitting the roadsides and getting rebounded) which may 

be the reason behind severe outcomes. This cluster also has 

an interesting element, that is, accidents of left-hand drive 

(LHD) vehicles (European vehicles) which are generally 

ignored in most accident analyses due to being rare cases (but 

nevertheless important as we shall see later in this section). 

   Cluster 4 describes the off-junction accidents like Cluster 

1. However, there are important differences. First, accidents 

in this cluster occur on roads with slow speed limit. Second, 

most of these accidents occur on unclassified minor roads 

where one can see parked or reversing vehicles. Interestingly 

the accidents frequently involve buses and trams. 

   Cluster 5 is another junction cluster but without adverse 

weather conditions. It predominantly involves roundabouts, 

many-armed junctions and private drives. The accidents in 

this cluster take place, mostly, at junction entrances. 

Interestingly, maneuvers which would normally be regarded 

as safe are substantially more expressed in this cluster such 

as parked, reversing and waiting. Therefore, a deeper 

analysis of this cluster can yield unexpected associations 

between these accident attributes. 

   Finally, Cluster 6 is a night cluster describing accidents that 

take place on A-roads. The difference from Cluster 3 is that 

the accidents happen at very low speed limit roads (20 mph). 

And differently from Clusters 2,3 and 5, in this cluster, mid-

junction accidents are more prevalent in this cluster. Another 

specialty concerning this cluster is that this is the only cluster 

with crossroads type junction as significant. Curiously, 

bicycles and buses are more commonly represented in this 

cluster.  

B. ASSOCIATION OF ATTRIBUTES IN CLUSTERS AND 
TEST SCENARIO GENERATION 

 

As emphasized in the introduction, one of the main 

motivations of this study is the identification of the test 

scenarios (temporal/spatial conditions) for CAVs that are 

correlated with important outcomes. The clusters formed in 

Section 5, along with the significant variables identified, 

enabled us to find such conditions. In this section, we 

explicitly demonstrate how this is done using MBA. It 

should be noted at the outset that the MBA procedure is 

operated only on the significant variables of each cluster to 

extract the most relevant scenarios. This means that, based 

on the analysis of Section 5, no scenario will have the 

Weekend or Weekday and Urban or Rural Area variables as 

these variables were not found to be significant. Such 

information can either be deduced from the context or be 

generated randomly if they were to be included in a 

simulation.  

   In order to mine the most interesting associations the MBA 

parameters are taken according to the characteristics of each 

cluster (e.g. by varying the support threshold of variables in 

the respective clusters). Here we first display and discuss, in 

Tables 5-10, the top-ranking associations in terms of their 

confidence or lift values. For the purposes of scenario 

generation, the standard MBA procedure is modified 

considerably. First, repeating rules (from each cluster) are 

removed. Second, associations that are not mutually 

exclusive are combined in a consistent way to yield longer 

associations. The longer the association rule, the more 

detailed the concrete scenario. The rationale is that each 

independent rule depicts the strong tendency of a set of 

variables to appear together. A natural combination of such 

rules forms the conditions/characteristics (environment-

related or driver-related) of a scenario. We note here that we 

do not require an order or direction for the associations of 

attributes that allow flexibility to focus on different accident 

settings. It should be emphasized that no hard rules (except 

for the requirement of a maneuver) are imposed to derive the 

scenarios; in principle, any compatible combination of rules 

and the attributes with high confidence and high lift could be 

a scenario candidate. Also, no claim is made on the presented 

exemplary scenarios being unique (they probably are not). 

Each exemplary scenario represents a non-trivial, interesting 

situation that is present in the respective cluster and leads to 

important consequences.       

   For each exemplary scenario a diagram was created using 

SUMO (Simulation of Urban Mobility) to aid with 

visualization [60]. 

   

   For Cluster 1, we recall that this is a serious or fatal 

accident cluster on a motorway and away from a junction 

Understandably lane-changing maneuvers (rule #1) (to right 

or left) and overtaking combined with negative 

environmental conditions are associated with serious 

outcomes such as leaving the carriageway and overturning 

(rule #2) or skidding/jack-knifing (rule #3). From the 

association rules, it can also be inferred that goods vehicles 

are more at risk of getting involved in motorway accidents 

than other vehicles. Other rules can be interpreted in a similar 

manner (Table 5). 
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   Exemplary scenario 1. A vehicle overtakes another 

vehicle that is moving off on a motorway with a wet surface. 

A possible outcome for this scenario is that it leads to an 

accident that causes skidding and rebounding from the 

nearside (rule #3) as shown in figure 2. 

 
TABLE 5. 

ASSOCIATION RULES FOR CLUSTER 1. 

# Ante. Cons. Sup. Conf

. 

lift 

1 Goods, Darkness – 

no lights, Changing 

lane to left 

Motorway / 

A(M) 7.64E-05 0.66 

20.

46 

2 Overturned, Serious, 

Motorway / A(M), 

Changing lane to left Left Nearside  2.55E-05 0.64 

8.5

1 

3 Overtaking MV-off, 

Wet/damp, 

Motorway / A(M), 

Left Nearside  

Skidded/Jack

-knifed 2.55E-05 0.54 

7.2

8 

4 Goods, Changing 

lane to right 

Motorway / 

A(M) 0.000828 0.43 

13.

46 

5 Motorway / A(M), 

Right Offside, 

Overtaking MV-off Wet/damp 4.19E-05 0.37 

1.5

1 

6 Going ahead-bend, 

Motorway / A(M), 

Darkness – no lights, 

Left Nearside  

Skidded/Jack

-knifed 1.64E-05 0.31 

4.2

0 

Association rules via application of MBA procedure on Cluster 1. 

 

 
FIGURE 2. Diagram for exemplary scenarios 1  
 

  For Cluster 2, Table 6 lists some of the main associations. 

Cluster 2, being a two-wheeler cluster, comprises traffic 

situations for bicycles or motorbikes. Rule #1 indicates that 

accidents at private drive or entrance, when clearing 

junction to an unclassified road are strongly linked to turning 

right maneuvers. Rule #2 illustrates a scenario for bicycles 

on unclassified roads, but while turning left to an 

unclassified road clearing a junction. Both rules have high 

lifts.  

   Exemplary scenario 2. A bicycle on an unclassified road 

at a T or staggered junction makes a left turn and when about 

to clearing the junction gets into an accident (rule #2) as 

shown in figure 3. 

 
TABLE 6. 

ASSOCIATION RULES FOR CLUSTER 2 

# Ante. Cons. Sup. Conf

. 

lift 

1 Clearing junction, Private 

drive or entrance, 

Unclassified 

Turning 

right 

6.66 E-

4 0.45 

4.0

3 

2 Turning left, T or staggered 

junction, Bicycles, 

Unclassified 

Clearing 

junction 

1.69 E-

4 0.31 

3.0

4 

   Association rules via application of MBA procedure on Cluster 2.  

 

 

 
FIGURE 3. Diagram for exemplary scenarios 2 

 

For Cluster 3, a number of interesting scenarios can be 

generated (Table 7). Again we describe the first few 

interesting rules (giving scenarios) and others can be 

interpreted in the same way. Rule #1 describes a situation in 

which vehicles are going ahead and bending at a T or 

staggered junction on an A road in a windy day gets into a 

crash and hit from the nearside. Such accidents are strongly 

linked to road surface being wet/damp. Rule #2 suggest that 

drivers should be careful at T or staggered junction as going 

ahead and bending to clear junctions on frosty/icy roads are 

strongly associated with accidents at such junctions. 

   Exemplary scenario 3. A vehicle during high winds at a 

roundabout of an A road goes ahead and bend in the middle 

of the junction and gets into an accident. The road surface 

was wet (rule #3) as shown in figure 4. 

 



 

11 
 

 
FIGURE 4. Diagram for exemplary scenario 3 

 
TABLE 7. 

ASSOCIATION RULES FOR CLUSTER 3 
# Ante. Cons. Sup. Conf

. 

lift 

1 Going ahead-bend, High 

Winds, T or staggered 

junction, A, Left 

Nearside 

Wet/dam

p 

2E-

05 0.65 2.68 

2 

Clearing junction, Frost 

or ice, Going ahead-bend 

T or 

staggered 

junction 

8.92

E-05 0.63 1.96 

3 Going ahead-bend, High 

Winds, Mid junction, 

Roundabout, A 

Wet/dam

p 

2.91

E-05 0.62 2.55 

4 Motorbikes, Mid 

junction, Overturned, 

Going ahead-bend, 

Wet/damp, A 

Roundab

out 

1.09

E-05 0.60 5.39 

5 Turning left, Fog/Mist, 

Entering junction, Right 

Offside 

T or 

staggered 

junction 

1.09

E-05 0.60 1.87 

6 

Turning left, Motorbikes, 

Entering junction 

T or 

staggered 

junction 

0.00

0355 0.58 1.80 

7 Skidded/Jack-knifed, 

Left Nearside ,Going 

ahead-bend, Wet/damp, 

Roundabout, A 

Clearing 

junction 

6.37

E-05 0.56 5.47 

8 Clearing junction, T or 

staggered junction, High 

Winds, Going ahead-

bend 

Wet/dam

p 

5.28

E-05 0.56 2.31 

9 Turning left, More than 

4-arms / other 

,Wet/damp, A, Left 

Nearside  

Clearing 

junction 

1.09

E-05 0.55 5.28 

10 Going ahead-bend, 

Wet/damp, LHD?Yes, 

Entering junction 

T or 

staggered 

junction 

2.37

E-05 0.54 1.69 

11 Going ahead-bend, Slip 

road, Left Nearside  

Wet/dam

p 

0.00

0111 0.51 2.12 

12 Skidded/Jack-knifed, 

Going ahead-bend, High 

Winds, Wet/damp, 

Roundabout, A 

Clearing 

junction 

1.27

E-05 0.50 4.84 

 Changing lane to right, 

A, Mid junction 

Roundab

out 

0.00

048 0.50 4.45 

13 Entering junction, 

Darkness – no lights, T or 

staggered junction, 

Going ahead-bend, A 

Wet/dam

p 

9.46

E-05 0.49 2.01 

14 Mid junction, A, 

Changing lane to left, 

Old 

Roundab

out 

6.19

E-05 0.48 4.30 

15 Clearing junction, 

Roundabout, Going 

ahead-bend, Left 

Nearside  

A, 

Wet/dam

p 

9.64

E-05 0.42 3.99 

16 A, Changing lane to left, 

Skidded/Jack-knifed 

Left 

Nearside  

0.00

0247 0.42 5.56 

17 Turning left, Right 

Offside, Skidded/Jack-

knifed 

T or 

staggered 

junction 

0.00

0202 0.41 1.27 

18 Clearing junction, 

Darkness – no lights, T or 

staggered junction, Left 

Nearside  

Going 

ahead-

bend 

9.64

E-05 0.40 5.66 

19 High Winds ,A, Mid 

junction, Going ahead-

bend 

T or 

staggered 

junction 

5.28

E-05 0.39 1.20 

20 Changing lane to left, 

Slip road, LHD?Yes 

Overturn

ed 

9.1E

-06 0.38 7.52 

21 More than 4-arms / other 

,Skidded/Jack-knifed, 

Entering junction, Going 

ahead-bend, Wet/damp, 

A 

Left 

Nearside  

1.46

E-05 0.38 5.09 

22 Going ahead-bend, 

Fog/Mist, Roundabout 

Wet/dam

p 

3.46

E-05 0.36 1.49 

23 Clearing junction, 

Skidded/Jack-knifed, 

Darkness – no lights, 

Going ahead-bend, 

Wet/damp 

T or 

staggered 

junction, 

Left 

Nearside  

2E-

05 0.35 

24.2

8 

24 Turning left, Motorbikes, 

Wet/damp, Roundabout, 

Skidded/Jack-knifed 

Clearing 

junction, 

A 

1.27

E-05 0.35 7.23 

25 Turning left, Right 

Offside, A 

Clearing 

junction 

0.00

0266 0.34 3.30 

26 Overturned,  T or 

staggered junction, Mid 

junction, Going ahead-

bend 

Left 

Nearside  

9.64

E-05 0.34 4.54 

27 Going ahead-bend, A, 

Mid junction, Left 

Nearside  

Roundab

out 

0.00

0142 0.34 3.04 

28 Motorbikes, Clearing 

junction, Skidded/Jack-

knifed, Going ahead-

bend, Wet/damp 

A, 

Roundab

out 

1.46

E-05 0.33 5.05 

29 Entering junction, 

Private drive or entrance 

,Wet/damp, Going 

ahead-bend 

Left 

Nearside  

2.37

E-05 0.32 4.24 

30 Clearing junction, T or 

staggered junction, 

Going ahead-bend, Left 

Nearside  

Skidded/J

ack-

knifed 

1.95 

E-5 0.32 4.28 

31 

Mid junction, 

Skidded/Jack-knifed, 

Darkness – no lights, 

Going ahead-bend, A 

T or 

staggered 

junction, 

Wet/dam

p 

1.27

E-05 0.30 4.15 

Association rules via application of MBA procedure on Cluster 3.  
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    Cluster 4 describes accidents with back impact points which 

are generally found on minor roads (unclassified) of urban 

areas where vehicles often need to reverse their vehicles to 

park or to get into the road. The level of detail provided by this 

rule is low. As discussed earlier, in such cases, for scenario 

development, other relevant variables defining a scenario can 

be generated randomly. 

 
TABLE 8. 

ASSOCIATION RULES FOR CLUSTER 4 
# Ante. Cons. Sup. Conf. lift 
1 

Reversing 
Back, 

Unclassified 0.009831 0.55 12.51 
 Association rules via application of MBA procedure on Cluster 4.  

 

   Exemplary scenario 4. A vehicle reverses on an 

unclassified road and gets hit from the back (rule #1) as 

shown in figure 5. 

 

 
FIGURE 5. Diagram for exemplary scenario 4 

 

   Cluster 5 is a true junction cluster that mostly involves 

female drivers. Here we discuss the most strongly associated 

conditions. Rule #1 describes situations in which the vehicles 

are hit from the back while moving off and entering the 

roundabout. Rule #2 also describes an  entering junction 

situation by reversing at a private drive or entrance. 

 
TABLE 9. 

ASSOCIATION RULES FOR CLUSTER 5 
# Ante. Cons. Sup. Conf. lift 
1 Entering junction, 

Moving off, Back, 

Female 
Rounda

bout 0.000446 0.48 4.35 
2 Entering junction, 

Private drive or 

entrance ,Back, 

Female 
Reversi

ng 0.000313 0.35 19.6 
Association rules via application of MBA procedure on Cluster 5.  

 

   Exemplary scenario 5. A vehicle reverses to a private 

drive or entrance and gets hit from the back while entering 

the junction (rule #2) as shown in figure 6. 

 

 
 FIGURE 6. Diagram for exemplary scenario 7 

  

 Finally, a set of association rules, mined from Cluster 6 

focusing on accidents involving buses/trams and bicycles, on 

crossroads are described in Table 9. Rule #1 indicates that of 

the accidents that involve buses/trams at mid-junctions that 

are trying turn right, a significant portion of them happen at 

crossroads. Also, when buses/trams that try changing lane to 

left end up, almost certainly, with crashes impacting on 

nearside (rule #2). Also, for buses/trams driving at night, 

roundabouts pose risks especially when clearing junction 

rule #3). Rule #4 depicts general situations linking crossroad 

accidents to turning left maneuvers which resulted in 

nearside crashes at low speeds at mid-junctions. On the other 

hand, 4-arm/other junction accidents which involve turning 

right happen almost always when clearing junctions (rule 

#5). Furthermore, rule #7 suggests that cyclists who are 

turning right and clearing junctions are linked to accidents at 

roundabouts. Finally, rule #8 suggests that accidents in 

which bicycles change lane left almost certainly take place 

on crossroads.  

 
TABLE 10. 

ASSOCIATION RULES FOR CLUSTER 6 
# Ante. Cons. Sup. Conf

. 
lift 

1 Mid junction, 

Turning right, 

Buses/Trams 

Crossroads, 

Traffic light/ 

person 

1.0 

E-3 
0.75 2.15 

2 Changing lane to 

left, Buses/Trams 
Nearside 1.0 

E-3 
1.00 5.20 

3 Roundabout / mini-

roundabout, 

Darkness - lights lit, 

Buses/Trams 

Clearing 

junction 
1.0 

E-3 
0.75 4.39 

4 Nearside, Mid 

junction, 

20mph,Turning left 

Crossroads 1.0 

E-3 
1.00 2.44 

5 Nearside, Darkness 

- lights lit, Turning 

right, More than 4-

arms / other 

junction 

Clearing 

junction, Traffic 

light/ person 

1.0 

E-3 
1.00 9.54 

6 Clearing junction, 

More than 4-arms / 

Nearside 1.1 

E-3 
0.6 3.12 
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other junction, 

Buses/Trams 
7 Turning right, 

Bicycles, Clearing 

junction 

Roundabout / 

mini-

roundabout 

1.0 

E-3 
0.60 3.00 

8 Changing lane to 

left, Bicycles, 

Traffic light/ person 

Crossroads 1.0 

E-3 
1.00 2.44 

Association rules via application of MBA procedure on Cluster 6.  

 

   Exemplary scenario 6. A bus driving in darkness with 

lights lit makes a right turn on a junction with more than 4-

arms and when clearing the junction gets into an accident 

(and hit from nearside) (rule #5) as shown in figure 6. 

 

 
FIGURE 7. Diagram for exemplary scenario 6 

VII. CONCLUSION 

This study aimed to achieve two high-level objectives. The 

first objective was to underpin the research on safety analysis 

of traffic accidents by identifying patterns based on past 

accident records. This was performed using a cluster analysis 

method. This approach reveals the natural patterns in the data 

without making any prior modelling assumptions, which is 

advantageous considering the complexity of factors that can 

affect the outcomes. The second objective was to develop a 

method based on the information obtained from accident 

clusters, which will help design test case scenarios for AVs, 

thus filling an important gap in the industry. To achieve both 

objectives, several novel approaches were taken deepening 

some of the existing methods to obtain more useful results 

while considering possible future challenges in industrial 

applications (such as handling of continuously growing large 

datasets). 

   For the first objective, the COOLCAT clustering algorithm 

was used on the processed STATS19 dataset to determine 

the natural grouping of accidents. COOLCAT employs 

natural global clustering criteria (entropy) which suits 

particularly well to cluster noisy categorical data and is able 

to handle large dimensions with ease. To the best of our 

knowledge, this is the first application of the COOLCAT 

algorithm in traffic accident research. Using various cluster 

quality metrics, six clusters are obtained from the algorithm. 

The frequency tests conducted on each cluster indicated that 

Cluster 1 was described by nighttime serious/fatal accidents 

on motorways away from the junctions, which involved 

changing lanes (right/left) and ended up with a 

skidding/overturning vehicle; Cluster 2 was described by 

minor road accidents by two-wheelers at junctions on low-

speed limit roads involving right/left turns; and Cluster 3 by 

fatal/serious accidents on A roads but at junctions 

(especially slip roads) by left-hand driving vehicles. 

Similarly, Cluster 4 can be represented by accidents on 

unclassified roads with low-speed limits (likely to be narrow 

street roads) away from junctions involving U-turn or 

reversing maneuvers, which often ended in hits from the 

back; and Cluster 5 depicts relatively more minor accidents 

at junctions with ‘gentle’ maneuvers such as parked, 

waiting, and moving off. Finally, Cluster 6 describes 

accidents at junctions of road A with a low-speed limit where 

the main maneuver types were turning right/left or moving 

off. The results suggest that particular care should be given 

in making policies/regulations for elements described in the 

clusters.  

   For the second objective, based on the information 

obtained from the clusters, the MBA methodology was 

applied for association rule mining.  As the standard MBA 

produces repetitive rules (when ordering is not counted), 

which may only partially describe accidents, we extended the 

method considerably by systematically combining non-

conflicting rules that provided much higher details for the 

test scenarios. As expected, scenarios obtained from this 

procedure reflect the characteristics of the cluster that they 

come from. Once the scenarios are obtained, they can be used 

in real or virtual environments for CAV training by varying 

the unspecified attributes as free variables. This will 

significantly speed up the training processes of CAVs, as 

they will be driven on quality miles rather than on random 

routes. 

   There are theoretical and practical implications of this 

work. First clustering, as a method for accident analysis, is 

underexploited. It can be used along with other existing 

methods (e.g., regression) and enhance them by 

homogenizing the data. Furthermore, data specific cluster 

models, such as COOLCAT can serve to better obtain higher 

quality results instead of more generic algorithms. On the 

practical front, the output of this work has immediate 

industrial applications. The proposed approach provides an 

a-to-z methodology to generate, in a nearly automated 

manner, high quality test scenarios that can be used in 

simulations by manufacturers. In fact, test scenarios obtained 

via the proposed method are now (after data formatting 

adjustments) deposited into the recently launched, world’s 

largest scenario repository, SafetyPoolTM [61].  
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   There are also apparent limitations of this work, mostly due 

to the scope of the data that was used. The analysis can 

provide details to the extent that the data can provide, but not 

more. Although we tried to keep the number of attributes 

high, the real world contains conditions that may be 

important but not covered in the present data (such as the 

position of the sun and curvature of the road). In future 

studies, multiple data sources can be combined to provide a 

more detailed description of each accident, which will affect 

the formation of accident clusters and the association rules 

extracted from those clusters (i.e., more detailed test 

scenarios). 

REFERENCES 

 

[1] Road Safety Data - STATS19. (2020), UK Department for 

Transport: [Online] https://data.gov.uk/dataset/cb7ae6f0-4be6-

4935-9277-47e5ce24a11f/road-safety-data 

[2] J. B. Cicchino, “Effectiveness of forward collision warning and 

autonomous emergency braking systems in reducing front-to-rear 

crash rates,” Acc. Anal. Prev., vol. 99, pp.142, 2017. 

[3] M. Guériau, R. Billot, N. E. El Faouzi, J. Monteil, F. Armetta,  

S. Hassas. “How to assess the benefits of connected vehicles? A 

simulation framework for the design of cooperative traffic 

management strategies,” Trans. Res. C, vol. 67, pp. 266–279, 2016. 

[4] C.  Tingvall, “The Zero Vision: A Road Transport System Free 

from Serious Health Losses,” In “Transportation, Traffic Safety & 

Health: The New Mobility, pp. 37–57, 1997. 

[5] S. Khastgir, S. Birrell, G. Dhadyalla, P. Jennings, “Calibrating 

trust through knowledge: Introducing the concept of informed 

safety for automation in vehicles,” Trans. Res. C, vol. 96, pp. 290–

303, 2018. 

[6] R. N. Charette. “This Car Runs on Code”. IEEE Spectrum, 

2009. [Online] http://www.real-

programmer.com/interesting_things/IEEE%20SpectrumThisCarR

unsOnCode.pdf 

[7] S. Khastgir, S. Birrell, G. Dhadyalla, P. Jennings, “Identifying 

a gap in existing validation methodologies for intelligent 

automotive systems: Introducing the 3xD simulator,” Proc. of the 

IEEE Intel. Veh. Symp.  pp. 648–653, 2015 

[8] N. Kalra, & S. M. Paddock, “Driving to safety: How many miles 

of driving would it take to demonstrate autonomous vehicle 

reliability?” Trans. Res A: Policy and Prac, vol. 94, pp. 182–193, 

Dec. 2016. 

[9] S. Khastgir, S. Birrell, G. Dhadyalla, P. Jennings, The Science 

of Testing: An Automotive Perspective. SAE Technical Paper: 

2018-01-1070. DOI. https://doi.org/10.4271/2018-01-1070 

[10] S. Khastgir, S. Brewerton, J. Thomas, P. Jennings, Systems 

“Approach to Creating Test Scenarios for Automated Driving 

Systems.” Reliab. Eng. & Syst. Safe., vol. 215, 2021, Art. No. 

107610 

[11] E. Esenturk, S. Khastgir, A. Wallace, P. Jennings, “Analyzing 

Real-World Accidents for Test Scenario Generation for Automated 

Vehicles”, IEEE Intell. Veh. Symp. Jul 2021. 

[12] P. Nitsche, P. Thomas, R. Stuetz, R. Welsh, “Precrash 

scenarios at road junctions: a clustering methods for car crash data,” 

Acc.t Anal. Prev., vol. 107, pp. 137-151, 2017. 

[13] F.L. Mannering, C.R. Bhat, “Analytic methods in accident 

research research: Methodological frontier and future directions,” 

Anal. Meth. Accid. Res. vol. 1, pp. 1–22, 2014. 

[14] C. Caliendo, M. Guida, A. Parisi, “A crash-prediction model 

for multilane roads,” Acc. Anal. Prev., vol. 39 no. 4, pp. 657–670, 

2007. DOI. https://doi.org/10.1016/j.aap.2006.10.012 

[15] D. Lord, A. Manar, & A Vizioli, “Modeling crash-flow-density 

and crash-flow-V/C ratio relationships for rural and urban freeway 

segments,” Acc. Anal. Prev., vol. 37, pp. 185–199, 2005. 

[16] P.T. Savolainen, F.L. Mannering, D. Lord, M.A. Quddus, “The 

statistical analysis of highway crash-injury severities: A review and 

assessment of methodological alternatives,” Accid. Anal. Prev. vol. 

43, pp. 1666–1676, 2011. 

[17] R. Yu, M. Abdel-Aty, “Using hierarchical Bayesian binary 

probit models to analyze crash injury severity on high speed 

facilities with real-time traffic data,” Accid. Anal. Prev. vol. 62, pp. 

161–167, 2014. DOI:10.1016/j.aap.2013.08.009  

[18] J. Ma, K.M. Kockelman,, P. Damien, “A multivariate Poisson-

lognormal regression model for prediction of crash counts by 

severity, using Bayesian methods,” Accid. Anal. Prev. vol. 40  , pp. 

964–975, 2008. DOI:10.1016/j.aap.2007.11.002 

[19] C. Lee, M. Abdel-Aty, “Comprehensive analysis of vehicle–

pedestrian crashes at intersections in Florida,” Acc. Anal. Prev., vol. 

37, pp. 775-786, 2005 

[20] M. Hossain, Y. Muromachi, “A Bayesian network based 

framework for real-time crash prediction on the basic freeway 

segments of urban expressways,” Accid. Anal. Prev. vol. 45, pp. 

373–381, 2012. DOI:10.1016/j.aap.2011.08.004. 

[21] Q. Zeng, H. Huang, X. Pei, S.C. Wong, “Modeling nonlinear 

relationship between crash frequency by severity and contributing 

factors by neural networks,” Anal. Methods Accid. Res. vol. 10, pp. 

12–25, 2016. DOI:10.1016/j.amar.2016.03.002 

[22] M. Nowakowska, “Selected aspects of prior and likelihood 

information for a Bayesian classifier in a road safety analysis,” Acc. 

Anal. Prev., vol. 101, pp. 97–106, 2017. 

[23]  C. Chen, G. Zhang, X. C. Liu, Y. Ci, H. Huang, J. Ma, Y Chen, 

G. Hongzhi, “Driver injury severity outcome analysis in rural 

interstate highway crashes: a two-level Bayesian logistic regression 

interpretation,” Acc. Anal. Prev., vol. 97, pp. 69–78, 2016. DOI. 

https://doi.org/10.1016/j.aap.2016.07.031 

[24] K. Xie, X. Wang, H. Huang, X. Chen, “Corridor-level 

signalized intersection safety analysis in Shanghai, China using 

Bayesian hierarchical models,” Acc. Anal. Prev. vol. 50, pp. 25–33, 

2013. DOI. https://doi.org/10.1016/j.aap.2012.10.003 

[25] H. Huang, & M. Abdel-Aty, “Multilevel data and Bayesian 

analysis in traffic safety,” Acc. Anal. . Prev., vol. 42 no. 6, pp. 1556–

1565, 2010. 

[26] H. T. Abdelwahab, & M. A. Abdel-Aty. “Development of 

artificial neural network models to predict driver injury severity in 

traffic accidents at signalized intersections,” Trans. Res. Rec., vol. 

1746, pp. 6–13, 2001. 

[27] N. Formosa, M. Quddus, S. Ison, M. Abdel-Aty, J. Yuan. 

“Predicting real-time traffic conflicts using deep learning,” Acc. 

Anal. Prev., vol. 136, Art no. 105429, 2020. 

[28] Y. C. Chiou,  “An artificial neural network-based expert 

system for the appraisal of two-car crash accidents,” Acc. Anal. 

Prev., vol. 38, pp. 777–785, 2006. 

[29] D. Delen, R. Sharda, & M. Bessonov, “Identifying significant 

predictors of injury severity in traffic accidents using a series of 

artificial neural networks,” Acc. Anal. Prev. vol. 38, pp. 434–444, 

2006. 
[30] S. Das, A. Dutta, R. Avelar, K. Dixon, X. Sun, M. Jalayer, 

“Supervised association rules mining on pedestrian crashes in urban 

areas: identifying patterns for appropriate countermeasures," Int. J. 

Urban Sci. vol. 23, pp. 38–40, 2019. 

[31] A. Montella, “Identifying crash contributory factors at urban 

roundabouts and using association rules to explore their 

https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
https://doi.org/10.4271/2018-01-1070
https://doi.org/10.1016/j.aap.2006.10.012
https://doi.org/10.1016/j.aap.2016.07.031
https://doi.org/10.1016/j.aap.2012.10.003


 

15 
 

relationships to different crash types,” Acc. Anal. Prev. vol. 43, pp. 

1451–1463, 2011, DOI. https://doi.org/10.1016/j.aap.2011.02.023 

[32] A. Pande, M. Abdel-Aty. “A novel approach for analyzing 

severe crash patterns on multilane highways,” Accid. Anal. Prev. 

vol. 56, pp. 95–10, 2009. DOI. https://doi.org/10.1016/j.aap. 

2009.06.003 

[33] J. De Oña, G. López, J. Abellán, “Extracting decision rules 

from police accident reports through decision trees,” Accid. Anal. 

Prev., vol. 50, pp. 1151–1160 2013. DOI. https://doi.org/10. 

1016/j.aap.2012.09.006 

[34] G. López, J. Abellán, A. Montella, J. De Oña, “Patterns of 

single-vehicle crashes on two-lane rural highways in Granada 

Province, Spain: in-depth analysis through decision rules,” Trans. 

Res. Rec. vol. 2432, pp. 133–141, 2014. 

https://doi.org/10.3141/2432-16 

[35] L. Y. Chang, W. C. Chen, “Data mining of tree-based models 

to analyze freeway accident frequency,” J. Safety Res. vol. 36 no. 

4, pp. 365–375, 2005. 

[36] C. Lee, & X. Li, “Predicting driver injury severity in single-

vehicle and two-vehicle crashes with boosted regression trees.” 

Trans. Res. Rec, vol. 2514, pp. 138–148, 2015. 

[37] A. Montella, M. Aria, A. D’Ambrosio, F. Mauriello, “Analysis 

of powered two wheeler crashes in Italy by classification trees and 

rules discovery,” Accid. Anal. Prev. vol. 49, pp. 58–72, 2012. 

[38] C. Aggarwal, C. Zhai, “A survey of text clustering algorithms. 

Mining Text Data.” New York, NY, USA. Springer-Verlag: 2012. 

pp. 77–128 

[39] S. Kumar, D. Toshniwal, “A data mining framework to analyze 

road accident data,” J. Big Data, 2015, Art. no. 26 

[40] T. K. Anderson, “Kernel density estimation and k-means, 

clustering to profile road accident hotspots,” Accid. Anal.  Prev., 

vol. 41, 2009, pp. 359–364  

[41] C. Zhang, J. N. Ivan, and T. Jonsson, “Collision type 

categorization based on crash causality and severity analysis,”  86th 

Ann. Meet. Trans. Res. Board, Washington, D.C., 2007. 

[42] A. Iranitalab, and A. Khattak, “Comparison of four statistical 

and machine learning methods for crash severity prediction,” Acc. 

Anal. Prev., vol. 108, pp. 27–36, 2017. 

[43] Z. Ta., C. Yaoyue, X. Lingyun, H Wenhao, L. Pingfei, X. Jin,  

“Research of fatal car-to-pedestrian precrash scenarios for the 

testing of the active safety system in China,” Accid. Anal. Prev., 

vol. 150, 2021, Art. No. 105857. 

[44] J. Lenard, A. Badea-Romero, R. Danton, “Typical pedestrian 

accident scenarios for the development of autonomous emergency 

braking test protocols,” Accid. Anal. Prev., vol. 73, pp. 73-80, 2014. 

[45] B. Sui, N. Lubbe, J. Bargman, “A clustering approach to 

developing car to two-wheeler test scenarios for the assessment of 

aotimated emegerncy braking in China using in-deptsh Chinese 

crash data,” Accid. Anal. Prev, vol. 131, 2019, Art. no. 105242. 

[46] J. Mcqueen, “Some methods for classification and analysis of 

multivariate observations,” Proc. 5th Berkeley Symposium Math. 

Stat. Prob., Berkeley, CA, USA, pp. 281–97, 1967. 

[47] HS Park, CH Jun, “A simple and fast algorithm for k-medoids 

clustering,” Expert Syst. App., vol. 36 no. (2), pp., 3336–41, 2009. 

[48] H. Huang, M. Abdel-Aty, “Multilevel data and Bayesian 

analysis in traffic safety,” Accid. Anal. Prev., vol. 42, pp. 1556–

1565, 2010. 

[49] D. Barbara, Y. Li, J. Couto, “COOLCAT: an entropy-based 

algorithm for categorical clustering,” Proc. 11th Int Conf Inf. Know. 

Manag., pp. 582-589, 2002. 

[50] S. Guha, R. Rastogi, K. Shim, “ROCK: A robust clustering 

algorithm for categorical attributes,” Proc. 1999 Int. Conf. Data 

Eng., Sydney, Australia, pp. 512-521, Mar., 1999. 

[51] Ester M, Kriegel H P, Sander J, Xu X. “A density-based 

algorithm for discovering clusters in large spatial databases.” In 

Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining 

(KDD'96), Portland, Oregon, USA, Aug., 1996, pp. 226-231 

[52] H. Zengyou, D. Shengchin, “Squeezer: An efficient algorithm 

for clustering categorical data,” J. Comp. Sci. Tech., vol. 17, 611-

624, 2002. 

[53] J. Zhao., J. Fang, Z. Ye, L. Zhang, “Large scale autonomous 

driving scenarios with self-supervised feature extraction”, Arxiv 

[54] BSI PAS 1883 2020: Operational Design Domain (ODD): 

taxonomy for automated driving systems (ADS).  Specification, 

2020, [Online]. https://www.bsigroup.com/en-GB/CAV/pas-1883/ 

[55] US Department of Transportation, “A framework for 

automated driving systems testable cases and scenarios.”  

https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/13882-

automateddrivingsystems_092618_v1a_tag.pdf 

[56] R. Agrawal, T. Imielinski, A. Swami, “Mining association 

rules between sets of items in large databases,” Proc. ACM 

SIGMOD, pp. 207–216, 1993. 

[57] F. G. Praticò, & M. Giunta, “Quantifying the effect of present, 

past and oncoming alignment on the operating speeds of a two-lane 

rural road,” Baltic J. of Road Brid. Eng., vol. 7, 181–190. 2012.  

DOI:10.3846/bjrbe.2012.25 

[58] A. Karimi, Ehsan K., “Investigating the effect of geometric 

parameters influencing safety promotion and accident reduction 

(Case study: Bojnurd-Golestan National Park road),” Cogent Eng, 

vol. 5, 1525813, DOI. 10.1080/23311916.2018.1525812  
[59] S. Raschka, “MLxtend: Providing machine learning and data 

science utilities and extensions to Python’s scientific computing 

stack,” J. Open Sour. Soft., vol. 3, pp. 638, 2018, DOI. 

https://doi.org/10.21105/joss.00638 

[60] P. A. Lopez, M. Behrisch; L. Bieker-Walz, J. Erdmann; Y. 

Flötteröd, R. Hilbrich, L. Lücken, J. Rummel; P. Wagner, E. 

Wiessner, “Microscopic Traffic Simulation using SUMO,” 2018 

21st Int. Conf. Intel.Trans. Sys. (ITSC), 4-7 Nov, 2018 

[61] Safety PoolTM, online. https://www.safetypool.ai/ 

[62] K. Khan, S. Rehman, K. Aziz, S. Fong, S. Sarasvady, 

“DBSCAN, Past present and future,” The Fifth Inter. Conf.  Appl. 

Digi. Info. and Web Techno., 1-19 Feb, 2014 

DOI. 10.1109/ICADIWT.2014.6814687  

[63] P. Andritsos, P. Tsaparas, R. J .Miller, K. C. Sevcik, LIMBO, 

“Scalable clustering of categorical data,” Adv. Data. Techno., pp. 

123-146, 2004 

 
II. APPENDICES 

A. PLOTS FOR ASSOCIATION RULES IN CLUSTERS 

Below are the plots of association rules represented by 

arrows between variables along with their corresponding 
confidence values 

https://doi.org/10.1016/j.aap.2011.02.023
https://doi.org/10.1016/j.aap.%202009.06.003
https://doi.org/10.1016/j.aap.%202009.06.003
https://doi.org/10.%201016/j.aap.2012.09.006
https://doi.org/10.%201016/j.aap.2012.09.006
https://doi.org/10.3141/2432-16
https://www.bsigroup.com/en-GB/CAV/pas-1883/
https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
https://doi.org/10.1080/23311916.2018.1525812
https://doi.org/10.21105/joss.00638
https://ieeexplore.ieee.org/author/37086546927
https://ieeexplore.ieee.org/author/38551542600
https://ieeexplore.ieee.org/author/37086547376
https://ieeexplore.ieee.org/author/37085678119
https://ieeexplore.ieee.org/author/38554430500
https://ieeexplore.ieee.org/author/38554430500
https://ieeexplore.ieee.org/author/37973562600
https://ieeexplore.ieee.org/author/37086543998
https://ieeexplore.ieee.org/author/37088827576
https://ieeexplore.ieee.org/author/38548839900
https://ieeexplore.ieee.org/author/37088826968
https://ieeexplore.ieee.org/author/37088826968
https://ieeexplore.ieee.org/xpl/conhome/8543039/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8543039/proceeding
https://doi.org/10.1109/ICADIWT.2014.6814687


 

16 
 

 
 

FIGURE 8. Association rules plot for Cluster 1 

 
 

FIGURE 9. Association rules plot for Cluster 2 
 



 
 
FIGURE 10. Association rules plot for Cluster 3 

 

 
 
FIGURE 11. Association rules plot for Cluster 4 
 

 
 
FIGURE 12. Association rules plot for Cluster 5 

 
FIGURE 13. Association rules plot for Cluster 6 

 

B.  RESTRUCTURING OF STATS19 TRAFFIC 
VARIABLES 

Here we provide an example of re-categorization of the data 

for the case of the traffic variable: Vehicle types. For the sake 

of simplicity of the analysis, the original categories (Table 3) 

of the raw data are restructured to give the new ones 

 
TABLE 11. 

ORIGINAL VEHICLE TYPE CATEGORIES OF STATS19 
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Code Label 

1 Pedal cycle 

2 Motorcycle 50cc and under 

3 Motorcycle 125cc and under 

4 Motorcycle over 125cc and up to 500cc 

5 Motorcycle over 500cc 

8 Taxi/Private hire car 

9 Car 

10 Minibus (8 - 16 passenger seats) 

11 Bus or coach (17 or more pass seats) 

16 Ridden horse 

17 Agricultural vehicle 

18 Tram 

19 Van / Goods 3.5 tonnes or under 

20 Goods over 3.5t. and under 7.5t 

21 Goods 7.5 tonnes and over 

22 Mobility scooter 

23 Electric motorcycle 

90 Other vehicle 

97 Motorcycle - unknown cc 

98 Goods vehicle - unknown weight 

-1 Data missing or out of range 

 

TABLE 11. 

RESTRUCTURED VEHICLE TYPE CATEGORIES 

  Cleaned Vehicle Types 

code Label 

1 Cars 

2 Bikes 

3 Buses/Trams 

4 Horses/Tractors 

5 Goods 
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