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inviscid flow: continuous formulation
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I “Shape-optimization of 2D hydrofoils using an
Isogeometric BEM solver”, Computer Aided Design, 82,
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I consider a 2D body whose boundary is ∂ΩB moving with
constant speed ~UB in an ideal fluid of infinite extent.
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I in a body-fixed coordinate system Oxy this problem is
equivalent to a uniform stream with velocity ∇Φ∞ = ~U∞ =
− ~UB , where Φ∞(P) = u∞x + v∞y is the far-field asymptotic
form of the velocity potential Φ(P) of the resulting flow at
point P=(x , y).



inviscid flow: BVP formulation

boundary-value problem (BVP)

∇2Φ = 0, P = (x , y) ∈ Ω

∂Φ

∂n
= 0, P ∈ ∂ΩB

Φ− (u∞x + v∞y)→ 0, as x2 + y 2 →∞

I the above BVP has a unique solution up to an additive
constant and, in order to fix a unique solution, we normally
consider, for smooth bodies, zero circulation, Γ(C ) =∫
C ∇Φ·dc = 0, over any circuit C surrounding the body



inviscid flow: BVP formulation

boundary-value problem (BVP)

∇2Φ = 0, P = (x , y) ∈ Ω

∂Φ
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= 0, P ∈ ∂ΩB

Φ− (u∞x + v∞y)→ 0, as x2 + y 2 →∞

I the difference between potential flows around a smooth body
and a hydrofoil is that, in order for the flow around the
hydrofoil to have a physical meaning, Γ(C ) 6= 0 and
appropriately adjusted until the flow leaves the trailing edge
smoothly



inviscid flow: BVP formulation

boundary-value problem (BVP)

∇2Φ = 0, P = (x , y) ∈ Ω

∂Φ

∂n
= 0, P ∈ ∂ΩB

Φ− (u∞x + v∞y)→ 0, as x2 + y 2 →∞

I on the basis of Kelvin’s theorem, Prandtl concluded that if an
airfoil, which started its motion from rest in an ideal fluid, is
later found to possess Γ 6= 0 then the component of the
boundary of the fluid which coincided with the airfoil initially,
must coincide at a later time with the union of the airfoil
surface and a surface, the so-called wake, embedded in the
fluid which has circulation −Γ



inviscid flow: BVP formulation

boundary-value problem (BVP)

∇2Φ = 0, P = (x , y) ∈ Ω

∂Φ

∂n
= 0, P ∈ ∂ΩB

Φ− (u∞x + v∞y)→ 0, as x2 + y 2 →∞

I in contrast to the 3D case the location and shape of the wake
in the 2D case can be taken, without loss of generality, to be
a straight line emanating from the trailing edge and extending
to infinity



inviscid flow: BVP formulation

boundary-value problem (BVP)

∇2Φ = 0, P = (x , y) ∈ Ω

∂Φ

∂n
= 0, P ∈ ∂ΩB

Φ− (u∞x + v∞y)→ 0, as x2 + y 2 →∞

I this line is a force-free boundary along which the normal fluid
velocity and the pressure should exhibit no jump



inviscid flow: BIE formulation

boundary integral equation (BIE)

applying in Ω Green’s second identity between the potential Φ(P),
P∈Ω, and the fundamental solution,

G (P,Q) = (1/2π) ln ‖P−Q‖

of the 2D Laplace equation, we can reformulate the BVP as a
2nd -kind Fredholm integral equation on ∂ΩB

Φ(P)

2
+

∫
∂ΩB

Φ(Q)
∂G (P,Q)

∂nQ
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P ∈ ∂ΩB\PTE

µw = Φ+(P)− Φ−(P) = constant, P ∈ ∂Ωw



inviscid flow: discrete IGA-BEM formulation

IGA basis

we assume that the body boundary ∂ΩB can be (accurately)
represented as a closed parametric NURBS curve r(t), which is
regular with the exception of the trailing edge: r(0) = r(1), where
the derivative vector is not defined

r(t) = (x(t), y(t)) :=
n∑

i=0

diMi ,k(t), t ∈ [0, 1]



inviscid flow: IGA-BEM continuous formulation

BIE: an alternative form

φ(t)

2
+

∫
I
φ(τ)K (t, τ)dτ−µw

2π
arctan

(
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)
= g(t), t ∈ (0, 1)

φ(t) := φ(r(t))
G (t, τ)) : = G (r(t), r(τ))
K (t, τ) = (∂G (t, τ)/∂nτ )‖ṙ(τ)‖
g(t) = −

∫
I (
~U∞ · ~n(τ))G (t, τ)‖ṙ(τ)‖dτ .



inviscid flow: IGA-BEM discrete formulation

spline space for the perturbation potential φ(t)

project the perturbation potential φ(t) on the spline space
Sk(J (`)), Sk(J (0)) := Sk(J ), expressed in the form:

φs(t) := Ps(φ(t)) =
n+∑̀
i=0

φiM
(`)
i ,k (t), t ∈ I ,M

(0)
i ,k (t) := Mi ,k(t),

where ` ∈ N0 denotes the number of knots inserted in I .



inviscid flow: IGA-BEM discrete formulation

BIE: discretisation through collocation

1

2

n+∑̀
i=0

φiM
(`)
i ,k (tj) +

n+∑̀
i=0

φiqi (tj)−
(φn+` − φ0)

2π
arctan

(
y(tj)− ye
x(tj)− xe

)
= g(tj), j = 0, . . . n + `
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where the collocation points t = tj , are chosen to be the Greville
abscissas associated with the knot vector J (`)
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of the numerical evaluation of the integral terms q0(1− ε)
and qn+`(ε) appearing in the linear system



inviscid flow: IGA-BEM discrete formulation

discretisation through collocation

I since t ∈ (0, 1), one must consider shifting the values of the
first and the last Greville abscissa by a small value ε > 0

I this shifting process gives rise to the need of proper handling
of the numerical evaluation of the integral terms q0(1− ε)
and qn+`(ε) appearing in the linear system

I these integrals can be handled by an adaptive numerical
integration scheme provided that precautions are taken in
order that ε does not fall under a threshold value for which
the integrals cannot be numerically computed.



inviscid flow: IGA-BEM discrete formulation

error comparison for a NACA-4412 profile
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BL (boundary-layer) corrections

I for an incompressible turbulent flow past an airfoil viscous
effects are important in a small region around the foil

I in this region N-S (Navier-Stokes) equations are approximated
by the so-called BL equations

I BL model composes:

1. a model for the laminar part of the flow
2. a criterion for the transition point between the laminar and the

turbulent flow
3. a model for the turbulent part of the flow
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a one-way coupled computation model)

In this work we adopt a simple one-way coupled computation
model consisting of:

I Thwaites’ one equation for laminar flow

I Head’s two equations for the turbulent flow

I Michel’s criterion for the transition point

I Squire-Young formula for the drag coefficient



Thwaites’ one equation

Von-Karman integral momentum equation

dθ

dx
+ (2 + H)

θ

Ue
· dUe

dx
=

1

2
Cf (1)

I x/y are curvilinear coordinates measured tangentially/normal
to the airfoil boundary from the stagnation point

I Ue(x) is the free-stream velocity outside the boundary layer

θ =

∫ ∞
0

u

Ue
· (1− u

Ue
)dy : momentum thickness

H =
δ∗

θ
: shape factor , δ∗ =

∫ ∞
0

(1− u

Ue
)dy : displacement thickness

Cf =
µ∂u∂y

∣∣
y

= 0

1
2ρUe

2
: skin − friction coefficient



laminar model: Thwaites’ approach

after some manipulation on (1) we get:

Ue

ν
· dθ2

dx
= 2[(2 + H)m + `(m)] := L(m)

m =

(
θ2

Ue

)
∂2u

∂y 2

∣∣∣∣
y=0

, `(m) =
θ

Ue
· ∂u

∂y

∣∣∣∣
y=0

Thwaites’ argument

there should exist a function relating m and `(m) and suggested
L(m) = 0.45 + 6m, which reduces the Von Karman equation (1) to
an ODE for the momentum thickness θ(x):



laminar model: Thwaites’ approach

Thwaites’ ODE

Ue
d

dx

(
θ2

ν

)
= 0.45− 6

(
θ2

ν

)
dUe

dx

which is integrated to:

θ2(x) =

[
Ue(0)

Ue(x)

]6

θ2(0) +
0.45ν

U6
e (x)

∫ x

0
U5
e (x ′)dx ′

I laminar separation cannot be predicted



transition point: Michel’s criterion

transition should be exptected when

Reθ > Reθmax = 1.174

(
1 +

22.4

Rex

)
Rex

0.46

where

Reθ =
Ueθ

ν
Rex =

Uex

ν



turbulent model: Head’s model

I it is a typical integral method, where semi-empitical relations
are used to close the system



turbulent model: Head’s model

I it is a typical integral method, where semi-empitical relations
are used to close the system

I starting from Von Karman integral momentum equation and
defining a new parameter H1 = (δ − δ∗)/θ, where δ is the
thickness of the boundary layer, we get Head’s system of
equations



turbulent model: Head’s model

Head’s system of equations:

dθ

dx
+ (2 + H)

θ

Ue
· dUe

dx
=

1

2
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dx
= −H1

(
1

Ue
· dUe

dx
+

1
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)
+

0.0306

θ
(H1 − 3)−0.619

with the closure condition

H1 =

{
3.3 + 0.8234(H − 1.1)−1.287, H ≤ 1.6

3.3 + 1.5501(H − 0.6778)−3.064, H > 1.6

for the numerical solution a 2nd-order Runge-Kutta is used



turbulent model: Head’s model

Head’s system of equations:
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+

0.0306

θ
(H1 − 3)−0.619

with the closure condition

H1 =

{
3.3 + 0.8234(H − 1.1)−1.287, H ≤ 1.6

3.3 + 1.5501(H − 0.6778)−3.064, H > 1.6

for the numerical solution a 2nd-order Runge-Kutta is used

separation criterion

H1 = 3.3



drag coefficient

Squire-Young formula

Cd =

[
2θTE

(
Ue

)HTE +5

2

]
UP

+

[
2θTE

(
Ue

)HTE +5

2

]
LOW

this formula predicts the drag coefficient by relating the
momentum defect far downstream to the values of the flow field at
the trailing edge (TE)



IGA-oriented BL corrections

PABLO

I stands for “Potential flow around Airfoils with Boundary Layer
coupled One-way”

I is a subsonic airfoil analysis and design program developed in
matlab by C. Wauquiez and A. Rizzi

IGA-enhancements of PABLO

I replace PABLO’s low-order panel approximations of the
free-stream velocity Ue outside the boundary layer

I with its NURBS representation that can be obtained by using
the derivatives of the IGA-BEM rational B-spline basis



shape-optimisation environment

components

1. the optimization algorithm

2. the IGA-BEM solver
I inviscid
I with BL corrections

3. the parametric modeler



parametric modeler

I the parametric model for a general hydrofoil has been
materialized within Rhinocerosr 3D modeling software
package with the aid of its VBscript-based programming
language, Rhinoscript



parametric modeler

I our model generates a closed cubic B-Spline curve that
represents a hydrofoil, using a set of 8 parameters

a_b_p

a_b

x_z_max

z

x

x_c_max

c_max

z_max
tip

Length



parametric modeler

I all parameters, with the exception of chord’s length (L), are
defined using appropriate non-dimensional ratios so that their
values always lie in [0, 1]



parametric modeler

I all parameters, with the exception of chord’s length (L), are
defined using appropriate non-dimensional ratios so that their
values always lie in [0, 1]

I this approach eliminates the need of implementing complex
interdependent constraints while guaranteeing the robustness
of the procedure which is of significant importance in an
optimization procedure



parametric modeler

Nr. Name description symbol actual range
1 Length Length of hydrofoil’s

chord
L free

2 Max width Maximum width of
suction side wrt chord

max z
[

L
500

, L
5

]
3 Camber

width
Camber maximum
width wrt chord

max c [0, 0.91max z]

4 Max-width
position

Longitudinal position
of suction side’s max
width

x z max
[
L
5
, 7L

10

]

5 Max-
camber-
width
position

Longitudinal position
of camber’s max
width

x c max
[

0, 3L
10

]
+ 7x z max

10

6 Suction-
side angle

Suction’s side angle
at trailing edge wrt
chord

a b
[

arctan
(

z max
L−x z max

)
, 89
]

7 Camber
angle

Camber angle at trail-
ing edge wrt chord

a b p [0, a b]

8 Tip Leading edge form
factor

tip [0.1, 0.9]



optimization algorithm

I the selected optimization algorithm belongs to the category of
evolutionary ones, as experimentation with gradient and
hessian-based algorithms has indicated the existence of
multiple local minima that makes their usage problematic

I our optimizer uses the multi-objective optimization method
gamultiobj which employs a controlled elitist genetic
algorithm (GA)



optimization algorithm

I the selected optimization algorithm belongs to the category of
evolutionary ones, as experimentation with gradient and
hessian-based algorithms has indicated the existence of
multiple local minima that makes their usage problematic

I our optimizer uses the multi-objective optimization method
gamultiobj which employs a controlled elitist genetic
algorithm (GA)

I an elitist GA always favors individuals with better fitness value
(rank)



optimization algorithm

I the selected optimization algorithm belongs to the category of
evolutionary ones, as experimentation with gradient and
hessian-based algorithms has indicated the existence of
multiple local minima that makes their usage problematic

I our optimizer uses the multi-objective optimization method
gamultiobj which employs a controlled elitist genetic
algorithm (GA)

I an elitist GA always favors individuals with better fitness value
(rank)

I a controlled elitist GA also favors individuals that can help
increase the diversity of the population even if they have a
lower fitness value



optimization algorithm

I the selected optimization algorithm belongs to the category of
evolutionary ones, as experimentation with gradient and
hessian-based algorithms has indicated the existence of
multiple local minima that makes their usage problematic

I our optimizer uses the multi-objective optimization method
gamultiobj which employs a controlled elitist genetic
algorithm (GA)

I an elitist GA always favors individuals with better fitness value
(rank)

I a controlled elitist GA also favors individuals that can help
increase the diversity of the population even if they have a
lower fitness value

I it is important to maintain the diversity of population for
convergence to an optimal Pareto front



shape-optimization test

optimisation criteria

I inviscid model: maximum lift coefficient C`
I BL model: minimize Cd/C`
I minimum deviation from a reference area

options made

I the reference area is set to be the one of the NACA-4412
profile (= 0.0816764523)

I the IGA-BEM solver produces an average lift coefficient
calculated for three angles of attack, namely 1, 3 and 5
degrees

I the parameter Length (L) of the hydrofoil parametric model is
assumed to be fixed and is regularized to the value of one



shape-optimisation results

solver: IGA-BEM inviscid
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shape-optimisation results

solver: IGA-BEM inviscid: pareto instances
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shape-optimisation results

solver: IGA-BEM inviscid with BL corrections
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shape-optimisation results

solver: IGA-BEM inviscid with BL corrections: pareto instances
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future work

I inviscid flow: derive a BIE valid in the full neighborhood of TE

I inviscid flow: improve the convergence rate versus low-order
panel methods

I parametric modeler: enhancement with shape (convexity)
constraints

I BL corrections: IGA-oriented two-way coupling
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