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Abstract—The principal component analysis (PCA) and 2-D 
singular spectral analysis (2DSSA) are widely used for spectral 
domain and spatial domain feature extraction in hyperspectral 
images (HSI). However, PCA itself suffers from low efficacy if no 
spatial information is combined, whilst 2DSSA can extract the 
spatial information yet has a high computing complexity. As a 
result, we propose in this paper a PCA domain 2DSSA approach 
for spectral-spatial feature mining in HSI. Specifically, PCA and 
its variation, folded-PCA are utilized to fuse with the 2DSSA, as 
folded-PCA can extract both global and local spectral features. By 
applying 2DSSA only on a small number of PCA components, the 
overall computational complexity has been significantly reduced 
whilst preserving the discrimination ability of the features. In 
addition, with the effective fusion of spectral and spatial features, 
the proposed approach can work well on the uncorrected dataset 
without removing the noisy and water absorption bands, even 
under a small number of training samples. Experiments on two 
publicly available datasets have fully demonstrated the superiority 
of the proposed approach, in comparison to several state-of-the-
art HSI classification methods and deep-learning models. 

Index Terms—Hyperspectral image (HSI); spectral-spatial 
feature mining; principal component analysis (PCA); singular 
spectrum analysis (SSA). 

I. INTRODUCTION 
ith rich spectral and spatial information in a 3-D 
hypercube, HSI can well characterize the material and 

objects based on their physical, e.g. moisture and temperature, 
and chemical properties. As a result, different HSI processing 
tasks, including data classification [1], spectral unmixing [2], 
and image restoration [3], have been explored to tackle various 
challenges in remote sensing.  

An HSI is usually composed of 2-D scenes in  hundreds of 
contiguous wavelengths, in which each pixel has a 1-D spectral 
signature [4]. Aside from spectral and spatial information, HSI 
data contains redundant content and noise due to environmental 
noise, sensor limitations and atmospheric impacts. As a result, 
even sophisticated classifiers like support vector machine 
(SVM) and deep learning (DL) models have limited 
classification accuracy.  Herein, the bottleneck is how to derive 
the most representative features from the HSI data, i.e. spectral 
and spatial feature mining especially of the uncorrected dataset. 

Considering the high redundancy in contiguous spectral 
bands, spectral feature extraction and dimensionality reduction 
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has been popularly used in some early studies. Although PCA 
is most widely used for unsupervised dimension reduction and 
spectral feature extraction, it often fails to extract the useful 
local spectral information. To tackle this issue, several 
variations have been explored, such as a correlation based 
segmented PCA (SPCA) [6], where the spectral bands are 
segmented into groups for group based PCA followed by 
feature concatenation. In Tsai et al [7], a spectrally segmented 
PCA was proposed and shown better performance than PCA 
and SPCA for mapping of the plant species. Similar to the 
SPCA, FPCA was also developed to extract both the local and 
global structures in the spectral domain [8]. However, the main 
difference is that FPCA reallocates the spectrum of each pixel 
into a matrix form, based on which, a partial covariance matrix 
can be directly determined and accumulated for subsequent 
Eigenvalue decomposition and data projection. In this case, it 
can be more efficient and effective than PCA and SPCA. More 
recently, Uddin et al [9], proposed a Segmented-FPCA 
approach, which was superior to PCA, FPCA and SPCA. 
However, due to noise caused intra-class variations and high 
inter-class similarity, those methods still suffer from lack of 
robustness and limited discriminability.  

Recently, a new techniques, named 1D-SSA [10], was 
developed for more effectively exploiting the spectral features. 
It can extract the trend from the original signal as well as the 
oscillations and noise components. By only taking the main 
trend and selected oscillations as features whilst abandoning the 
noisy components, the classification accuracy can be much 
improved. In an extended 2DSSA [4],  spatial features can be 
effectively extracted for significantly improved classification 
accuracy. However, 1D-SSA and 2DSSA needs to be applied 
either to every pixel or every spectral band of the HSI, thus it is 
very time-consuming. To reduce the overall computational 
complexity whilst maintaining the classification accuracy, fast 
implementation of 1D-SSA and 2DSSA were also developed 
[11], though the overall reduction of computational cost is still 
very limited. Recently, a 1.5D-SSA [12] has been proposed for 
near real-time HSI analysis yet with a much compromised 
classification accuracy.  

When applying the DL-based approaches to HSI, some 
models prominent in computer vision are modified for data 
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classification [13]. Nonconvexity is also applied into DL 
models for improved interpretability in complicated real-world 
situations. As a result, many well-performing nonconvex DL 
models were investigated for HSI classification [3], often via 
extraction of spectral and/or spatial features, where the results 
can be fairly good in classification of HSI. However, they may 
suffer from either a very high computational cost or lack of 
sufficient training data. This is why classical machine learning 
models, such as SVM, is still widely used, in combination with 
an effective feature extractor, which may achieve comparable 
performance as deep learning models in classification of HSI 
for land cover mapping [14]. 

These challenges motivate us to propose a new framework of 
applying the 2DSSA on the PCA domain (PCA+2DSSA, 
FPCA+2DSSA), resulting in improved classification accuracy 
yet with significantly reduced computational complexity. By 
fusion of FPCA and PCA with 2DSSA, we further propose 
Fusion+2DSSA, for more improved data storage efficiency, 
classification accuracy and computation cost. The main 
contributions are summarized below: 
1) We proposed a new framework of PCA domain 2DSSA 

for spectral-spatial feature extraction in HSI, where the 
computation cost can be significantly reduced whilst 
improving the classification accuracy. 

2) In the proposed framework, three different schemes i.e., 
PCA+2DSSA, FPCA+2DSSA, and Fusion+2DSSA, are 
introduced to balance the efficiency and efficacy to satisfy 
various practical needs, with parameters adaptively 
determined for ease of implementation. 

3) The superiority of our approach has been validated in two 
corrected HSI datasets and two uncorrected HSI datasets 
when benchmarked with traditional feature extraction 
methods and deep learning models. 

II. PROPOSED APPROACH  
Fig. 1 shows the workflow of the proposed method, which is 

composed of three main steps, i.e., spectral feature extraction 
and dimension reduction in HSI, 2DSSA based PCA domain 
spatial feature extraction, and feature fusion, followed by data 
classification using SVM as detailed below. 

A. PCA based spectral feature mining in HSI 
 Given an HSI hypercube 𝐷𝐷 ∈ ℜ𝐷𝐷𝑥𝑥×𝐷𝐷𝑦𝑦×𝐷𝐷𝜆𝜆, the spectral vector 

of a given pixel can be denoted as 𝑥𝑥𝑛𝑛 = �𝑥𝑥𝑛𝑛1, 𝑥𝑥𝑛𝑛2, … , 𝑥𝑥𝑛𝑛𝐷𝐷𝜆𝜆�
𝑇𝑇
, 

where 𝑛𝑛 ∈ [1,𝑁𝑁], and 𝑁𝑁 = 𝐷𝐷𝑥𝑥𝐷𝐷𝑦𝑦  is the total number of pixels. 
The mean-adjusted vector 𝐼𝐼𝑛𝑛 of 𝑥𝑥𝑛𝑛 will be used to calculate the 
covariance matrices of PCA. 

𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃 =
1
𝑁𝑁
� 𝐼𝐼𝑛𝑛𝐼𝐼𝑛𝑛𝑇𝑇

𝑁𝑁

𝑛𝑛=1
 (1) 

Let 𝐴𝐴𝑛𝑛 ∈ ℜ𝐻𝐻×𝑊𝑊  be the converted matrix where H is the 
number of band group and W is the band number in each band 
group and 𝐻𝐻𝐻𝐻 = 𝐷𝐷𝜆𝜆, the covariance matrices of FPCA can be 
obtained by  [8] 

𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =
1
𝑁𝑁
� 𝐴𝐴𝑛𝑛𝑇𝑇𝐴𝐴𝑛𝑛

𝑁𝑁

𝑛𝑛=1
 (2) 

For a covariance matrix, the Eigen problem can be solved by 
decomposing 𝐶𝐶 into the multiplication of three matrices as 

𝐶𝐶 = 𝛬𝛬𝛬𝛬𝛬𝛬𝑇𝑇 (3) 
where 𝐷𝐷 is the diagonal matrix composed by the Eigenvalues 
of 𝐶𝐶, and 𝛬𝛬 denotes the orthonormal matrix composed by the 
corresponding Eigenvectors �𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝐷𝐷𝜆𝜆� . To reduce the 
dimension of spectral features, top Eigenvectors corresponding 
bigger Eigenvalues are selected. For PCA, we take the first 
𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 components as the spectral features of 𝑥𝑥𝑛𝑛 as follows. 

𝑥𝑥𝑛𝑛(𝑃𝑃𝑃𝑃𝑃𝑃) = 𝛬𝛬𝑇𝑇𝐼𝐼𝑛𝑛 ∈ ℜ1×𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃  (4) 
For FPCA, we take the first 𝑞𝑞�  components for each band 

group, and the spectral features of 𝑥𝑥𝑛𝑛 can be derived as  
𝑥𝑥𝑛𝑛(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) = 𝛬𝛬𝑇𝑇𝐴𝐴𝑛𝑛 ∈ ℜ𝐻𝐻×𝑞𝑞�  (5) 

where the total number of components in FPCA will be 
𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐻𝐻𝑞𝑞�. For convenience, the spectral feature of 𝐷𝐷 can be 
represented as 𝐷𝐷(𝑃𝑃𝑃𝑃𝑃𝑃) ∈ ℜ𝐷𝐷𝑥𝑥×𝐷𝐷𝑦𝑦×𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃  and 𝐷𝐷(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) ∈
ℜ𝐷𝐷𝑥𝑥×𝐷𝐷𝑦𝑦×𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹. 

B. PCA domain spatial feature extraction with 2DSSA  
After spectral feature mining, the original HSI hypercube 𝐷𝐷 

is represented by PCA features 𝐷𝐷(𝑃𝑃𝑃𝑃𝑃𝑃) ∈ ℜ𝐷𝐷𝑥𝑥×𝐷𝐷𝑦𝑦×𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃  and 
FPCA features 𝐷𝐷(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) ∈ ℜ𝐷𝐷𝑥𝑥×𝐷𝐷𝑦𝑦×𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 . Note that each of 
the PCA/FPCA component is actually of the same size as the 
original spectral band, i.e. 𝐷𝐷𝑥𝑥 × 𝐷𝐷𝑦𝑦 , to which the 2DSSA [4] is 
applied to extract the spectral-spatial features. First, a squared 
window 𝐿𝐿 ∈ ℜ𝐿𝐿𝑥𝑥×𝐿𝐿𝑦𝑦 , where, 𝐿𝐿𝑥𝑥 ∈ [1,𝐷𝐷𝑥𝑥] and 𝐿𝐿𝑦𝑦 ∈ [1,𝐷𝐷𝑦𝑦], is 
used to construct a trajectory matrix 𝑇𝑇 ∈ ℜ𝑆𝑆×𝐾𝐾  of featured 
image (embedding step) where 𝑆𝑆 = 𝐿𝐿𝑥𝑥 × 𝐿𝐿𝑦𝑦 , 𝐾𝐾 = (𝐷𝐷𝑥𝑥 − 𝐿𝐿𝑥𝑥 +
1)�𝐷𝐷𝑦𝑦 − 𝐿𝐿𝑦𝑦 + 1�. Often, we have 𝐿𝐿𝑥𝑥 = 𝐿𝐿𝑦𝑦 for simplicity.  

For the derived trajectory matrix T, the singular value 
decomposition (SVD) is applied to extract the Eigenvalues 
𝑒𝑒1 ≥ 𝑒𝑒2 ≥ ⋯ ≥ 𝑒𝑒𝑆𝑆 and Eigenvectors 𝑈𝑈 ∈ ℜ𝑆𝑆×𝑆𝑆. As a result, T 

 
Fig. 1. The workflow of our proposed PCA domain 2DSSA schemes. 
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is decomposed in 𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + ⋯+ 𝑇𝑇𝑆𝑆  components. After 
that, the grouping and diagonal averaging step are applied to 
invert the embedding step and obtain the reconstructed image 
Z. Accordingly, each featured image in 𝐷𝐷(𝑃𝑃𝑃𝑃𝑃𝑃) and 𝐷𝐷(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 
can be represented by 

𝐷𝐷(∙)′ = 𝑍𝑍1 + 𝑍𝑍2 + ⋯+ 𝑍𝑍𝑀𝑀 = � 𝑍𝑍𝑚𝑚
𝑀𝑀

𝑚𝑚=1
 (6) 

where M is the number of selected Eigenvalues in the SVD. 
When M = S, the reconstructed image is equal to the original 
image. Herein, we denote 𝐷𝐷(𝑃𝑃𝑃𝑃𝑃𝑃 + 2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) and 𝐷𝐷(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 +
2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) as the PCA-based spectral-spatial features and FPCA-
based spectral-spatial features, respectively. 

For consistency, the same configuration of  2DSSA in [4] is 
adopted, where L=10 and only the first Eigenvalue component, 
M=1, i.e. the trend, is used. Although varying parameters may 
affect the final classification performance for different datasets, 
the overall difference from different configurations is estimated 
to be less than 1%. Therefore, the parameters L and M are set to 
10 and 1 in all the experiments for simplicity. 

C. Feature fusion 
 Applying the 2DSSA on the PCA/FPCA domains can reduce 

the computation cost compared to using 2DSSA on each band. 
On the other hand, as demonstrated in Fig. 2, the discrimination 
ability of features extracted from the Indian Pines dataset by 
PCA+2DSSA, and FPCA+2DSSA can be enhanced. In PCA, 
we choose 𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 = 10. For FPCA, we have H=10, W=20 and 
𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 10, i.e. the 200 bands are grouped into 10 groups, and 
only one component is extracted from each group. 

As seen in Fig. 2, low-order PCA components have smooth 
spatial features while high-order PCA components are noisy. 
2DSSA applied to PCA components makes these noisy 
components helpful in the derived trend signal. This has shown 
the added-value of 2DSSA on the PCA domain as the extracted 
spatial-domain trend signal can effectively suppress the noise 
and enhance the discrimination ability of the spectral-spatial 
features. On the other hand, PCA can extract the global spectral 
structure using a small number of low-order principal 
components, whilst FPCA can preserve local spectral features. 
As seen, PCA and FPCA features are quite supplementary to 
each other, which has motivated our fused solution below.  

As the FPCA components are extracted from locally grouped 
spectral bands, they appear to be significantly smoother than 
those from PCA. This actually shows that FPCA is more robust 
to spectral noise, hence it has the potential to achieve noise-
robust feature extraction and data classification in HSI, 
especially from the uncorrected dataset without removing the 
noisy and water absorption bands. On the other hand, the 
features extracted from FPCA seem to be more redundant, due 

possibly to inappropriate grouping of bands. In addition, when 
applying 2DSSA to FPCA components, the effect of spatial 
smoothing is not as strong as those on the PCA components. 
This actually indicates potential limitations of FPCA+2DSSA 
hence the need for fusion with PCA+2DSSA.  

For an HSI, the obtained spectral-spatial features 𝐷𝐷(𝑃𝑃𝑃𝑃𝑃𝑃 +
2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) and 𝐷𝐷(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), can be separately used for 
classification of the HSI. Meanwhile, they can also be fused to 
form a combined feature vector, denoted as 

𝐷𝐷(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 2𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴) = { 𝐷𝐷(𝑃𝑃𝑃𝑃𝑃𝑃 + 2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷),  
𝐷𝐷(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)} ∈ ℜ𝐷𝐷𝑥𝑥×𝐷𝐷𝑦𝑦×(𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃+𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 

(7) 

The combined feature has a dimension of (𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹), 
which can be much smaller than 𝐷𝐷𝜆𝜆  , though the spatial 
dimension remains the same. Note that 𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 here are 
adaptively decided as follows. For FPCA in Fusion+2DSSA, 
we divide each spectrum into 10 groups and select the first 
component of each group to form 10 combined components, 
i.e., 𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 10. For PCA, the 𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃  is decided based on the 
accumulated variance of the PCA components no less than a 
threshold of the total variance, and this threshold is empirically 
determined as 99.98% as it can help to produce particular good 
results for all the datasets. Accordingly, the 𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 values for the 
Indian Pines and Salinas are adaptively determined as 90, and 
20, respectively. To this end, the total number of combined 
features after the feature fusion for the Indian Pines and Salinas 
is 100 and 30, respectively. The detail experimental results and 
efficacy of the PCA+2DSSA, FPCA+2DSSA and 
Fusion+2DSSA schemes are presented in Section III. 

III. EXPERIMENTS  

A. Data description 
In our experiments, two publicly available HSI datasets are 

used for performance evaluation. The first is Indian Pines, 
which is collected by the AVIRIS in 1992 in the USA. This 
dataset is labelled in 16 land cover classes and contains 
145 × 145 pixels in 220 spectral bands. The second is Salinas, 
also collected by AVIRIS of the Salinas Valley in California, 
the USA, it has 512 × 217 pixels in 224 spectral bands labelled 
in 16 classes. After removing 20 noisy and water absorption 
bands, both HSI datasets will become corrected datasets.  

B. Experimental Setup 
The optimal numbers of principal components (PCs) for PCA, 

FPCA, PCA+2DSSA and FPCA+2DSSA are determined 
within [10, 100] at a step of 10 by maximizing the KP (%). To 
validate the efficacy of the extracted features, a standard 
Support Vector Machine (SVM) classifier [15] is employed for 
data classification. Consequently, the radical base function 

1st to 10th components extracted by PCA 1st to 10th components extracted by FPCA 

                    
First dimension feature from 2DSSA on each PCA component First dimension feature from 2DSSA on each FPCA component 

                    
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

Fig. 2. Obtained spatial scenes from PCA, FPCA, and 2DSSA. 
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(RBF) is used as the kernel for the SVM, where the cost (c) and 
the gamma (γ) are optimized through a grid search [8]. The 
overall accuracy (OA), average accuracy (AA) and Kappa 
coefficient (KP) are used for quantitative evaluation. Each 
experiment was repeated 10 times, where training and testing 
samples are randomly selected without overlap. Average results 
are taken for statistical significance analysis and comparison. 

C. Experimental results 
The quantitative comparison between our proposed method 

and other benchmarking techniques on two HSI datasets is 
shown in Table I and Table II. ND is the number of feature 
dimensions. Time is the running time of each method. The best 
results and the second-best results are highlighted in bold and 
italic shading, respectively. The optimal selection of principal 
component number in PCA+2DSSA, FPCA+2DSSA, PCA and 
FPCA is decided after massive experiments. It can be seen that 
Fusion+2DSSA always leads to a higher accuracy, thanks to the 
strong fusion of PCA, FPCA and, making full use of 
local/global-spectral, and spatial information while suppressing 
data noise. PCA+2DSSA and FPCA+2DSSA consistently 
produce better results than 2DSSA, and this is because PCA and 
FPCA reduce the redundant information in the spectral domain 
making 2DSSA more effective. In contrast, absence of spatial 
information causes PCA, FPCA, and 1D-SSA to generate low 
accuracy in benchmarking approaches. In addition, PCA and 
1DSSA produce worse performance than raw data in Indian 
Pines and Salinas, respectively. All these adverse factors reflect 
the importance of combining spatial and spectral features for 
HSI classification. Last but not the least, applying 2DSSA on 
PCA domain makes the computation cost much lower which 
reflects on the running time. It can be seen that three proposed 
schemes can produce faster and better classification results than 
2DSSA. Among our three schemes, FPCA+2DSSA has the 
fastest running speed, Fusion+2DSSA has the best 
classification performance and PCA+2DSSA is a balanced 

solution. Compared with other benchmarking methods such as 
CCJSR [16], SuperPCA [17] and JSRC[18], our methods are 
more effective and efficient. 

D. Comparison with deep learning methods 
To further validate the efficacy of our proposed method, we 

also do the comparison against another 4 deep learning models 
[18-21] using 200 training pixels per class (Table III). To be 
more specific, after removing classes with fewer than 200 
pixels, only nine classes are used in the Indian Pines dataset. 
The experimental results shown that our proposed frameworks, 
Fusion+2DSSA and PCA+2DSSA, can consistently yield the 
best and second-best OA on both datasets. In this way, the 
effectiveness of our approaches is validated. 

 
E. Computational complexity 

The suggested spectral-spatial fusion approach improves the 
efficiency of the standard 2DSSA by integrating PCA and 
FPCA to minimize dimensionality in the spectral domain. In 
this subsection, we briefly analyze the computational 
complexity and memory requirement of each implementation 
stage in Table IV and Table V. As seen the saving factor 
referring to 2DSSA in Table IV, applying 2DSSA on PCA 
domain decreases the 2DSSA band repetition process, which 
turns to lower computation burden. Fusion+2DSSA has slightly 
higher complexity than the other two, because of the fusion of 
both PCA and FPCA. As we only apply on the principal 
components, this has significantly reduced the computational 
cost from conventional. As presented in Table V,  due to the 
fusion of the spectral and spatial processing, our proposed three 

TABLE III  
THE OA OF OUR PROPOSED METHODS COMPARED WITH DEEP-LEARNING 

METHODS USING 200 TRAINING SAMPLES PER CLASS 

Datasets [18] [19] [20] [21] PCA+ 
2DSSA 

FPCA+ 
2DSSA 

Fusion+ 
2DSSA 

Indian Pines 95.81 98.43 96.76 98.99 99.04 97.75 99,36 
Salinas 96.07 98.33 97.42 99.58 99.64 98.51 99.77 

 

TABLE I  
CLASSIFICATION PERFORMANCE FOR INDIAN PINES DATASET WITH 5 PIXELS PER CLASS FOR TRAINING. 

 RAW PCA FPCA 1DSSA 2DSSA CCJSR SuperPCA JSRC PCA+ 
2DSSA 

FPCA+ 
2DSSA 

Fusion+ 
2DSSA 

ND 200 20 20 200 200 200 30 200 40 40 100 
Time(s) 0.14 0.27 0.74 12.01 8.78 38.05 11.11 68.37 3.31 3.06 7.28 

Corrected 
AA 60.40±2.58 53.77±2.36 65.08±2.31 65.99±2.07 73.43±2.21 70.37±1.61 83.66±1.57 77.21±1.71 83.28±1.93 77.38±2.15 85.12±1.49 
OA 46.48±4.07 41.41±3.02 51.50±3.46 53.03±4.16 59.64±4.50 56.65±4.43 71.77±2.87 64.01±2.99 72.46±3.68 62.99±3.65 75.13±2.78 

KP×100 40.36±4.18 34.83±2.94 45.84±3.66 47.47±4.47 54.96±4.75 51.50±4.39 68.29±3.04 59.70±3.19 69.10±3.97 58.80±3.89 72.06±3.00 

Uncorrected 
AA 56.62±1.42 53.77±2.36 64.58±1.71 62.71±2.71 75.31±1.96 70.62±1.23 83.99±1.84 77.18±1.82 84.01±1.77 77.40±2.01 85.15±1.50 
OA 43.14±3.36 41.41±3.02 51.47±3.95 48.61±4.23 61.53±3.12 56.82±4.37 73.00±2.48 62.96±3.10 72.56±3.09 63.41±4.15 75.14±2.76 

KP×100 36.63±3.27 34.83±2.94 45.74±4.11 42.67±4.48 56.97±3.26 51.69±4.32 69.63±2.71 58.66±3.22 69.28±3.32 59.24±4.48 72.07±2.98 

TABLE II  
CLASSIFICATION PERFORMANCE FOR SALINAS DATASET WITH 5 PIXELS PER CLASS FOR TRAINING. 

 RAW PCA FPCA 1DSSA 2DSSA CCJSR SuperPCA JSRC PCA+ 
2DSSA 

FPCA+ 
2DSSA 

Fusion+ 
2DSSA 

ND 200 10 30 200 200 200 30 200 20 50 30 
Time(s) 0.75 1,89 2.55 84.84 47.06 140.78 27.64 945.52 5.25 2.63 10.17 

Corrected 
AA 89.23±0.93 90.77±1.23 89.82±1.10 88.77±0.80 91.44±1.31 86.74±2.93 94.68±2.09 90.20±1,63 96.13±0.68 94.21±1.02 96.46±0.52 
OA 82.18±2.30 83.75±3.62 82.45±2.87 81.69±1.92 86.52±2.92 80.61±2.44 92.60±3.48 84.34±1.89 93.34±0.95 91.53±2.20 93.86±0.75 

KP×100 80.26±2.51 81.98±3.99 80.53±3.18 79.72±2.08 85.08±3.18 78.52±2.69 91.80±3.83 82.65±2.08 92.61±1.05 90.59±2.43 93.19±0.83 

Uncorrected 
AA 89.23±0.93 90.71±1.21 89.43±1.05 88.79±0.82 91.46±1.31 86.97±2.79 94.51±1.90 90.16±1.61 96.13±0.69 93.07±0.99 96.46±0.50 
OA 82.19±2.31 83.71±3.62 82.66±3.62 81.70±1.91 86.52±2.94 80.84±2.27 91.61±2.25 84.32±1.87 93.44±1.01 89.72±1.84 94.01±0.76 

KP×100 80.26±2.52 81.94±3.99 80.74±3.99 79.73±2.07 85.08±3.20 78.77±2.51 90.71±2.49 82.62±2.05 92.73±1.11 88.59±2.04 93.35±0.84 
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frameworks need more memory than the 2DSSA and 
PCA/FPCA alone. However, overall the memory requirement 
is modest, which is very close to the size of the hypercube. For 
Indian Pines and Salinas datasets, the memory requirements are 
only up to about 25M and 102M bytes respectively, a very small 
portion of the computer RAM at 32G or even more.  

Therefore, it validates the computational efficiency of the 
proposed method. Detailed computational cost in terms of 
MACs, running time and memory need on two HSI datasets can 
be found in the supplementary material (Table S1-S3).  

 
IV. CONCLUSION 

In this letter, a novel PCA domain 2DSSA framework is 
proposed, where three schemes are introduced for noise robust 
spectral-spatial feature extraction. By applying PCA/FPCA in 
the PCA domain, the computational cost of band-wise 2DSSA 
can be significantly reduced whilst preserving the dominant 
spectral information for more effective data classification in 
HSI. Experiments on two publicly available datasets have fully 
validated both the efficiency and efficacy of the proposed 
framework. Among our proposed schemes, FPCA+2DSSA has 
the lowest computation cost, yet Fusion+2DSSA can produce 
consistently the best classification accuracy on the corrected 
and uncorrected datasets when benchmarked with several state-
of-the-art approaches. Besides, PCA+2DSSA has relatively a 
good balance between the computation cost and the 
classification accuracy.    

With the advantages of low computational cost, high 
classification accuracy and robustness to noise, the proposed 
methods have many potential application scenarios in 
hyperspectral remote sensing. As the future work, superpixel 
segmentation and band selection will be focused for improved 
spatial feature extraction and dimension reduction.  
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TABLE V  
MEMORY REQUIREMENT OF DIFFERENT METHODS USING PCA/FPCA AND 2D

SSA (L=10, M=1, 20 PCS). 

 PCA FPCA 2DSSA PCA+ 
2DSSA 

FPCA+ 
2DSSA 

Fusion+ 
2DSSA 

Data 
matrix size 𝑁𝑁𝐷𝐷𝜆𝜆 𝐷𝐷𝜆𝜆 𝑁𝑁𝐷𝐷𝜆𝜆 𝑁𝑁𝐷𝐷𝜆𝜆+𝑁𝑁𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 

𝑁𝑁𝐷𝐷𝜆𝜆
+ 𝑁𝑁𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

𝑁𝑁𝐷𝐷𝜆𝜆 + 𝑁𝑁 
(𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 

Covariance 
matrix size 𝐷𝐷𝜆𝜆2 𝑊𝑊2 𝐿𝐿2 𝐷𝐷𝜆𝜆2 + 𝐿𝐿2 𝑊𝑊2 + 𝐿𝐿2 𝐷𝐷𝜆𝜆2 + 𝑊𝑊2 + 𝐿𝐿2 

Projection 
matrix size 𝐷𝐷𝜆𝜆𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 𝑊𝑊𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

/𝐻𝐻 N/A 𝐷𝐷𝜆𝜆𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 𝑊𝑊𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
/𝐻𝐻 

𝐷𝐷𝜆𝜆𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃
+ 𝑊𝑊𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹/𝐻𝐻 

 

TABLE IV  
COMPUTATIONAL COMPLEXITY IN THE DIFFERENT STAGES AND SAVING FACTORS REFERRING TO 2DSSA 

Stage PCA FPCA 2DSSA  PCA+2DSSA FPCA+2DSSA Fusion+2DSSA 
Covariance matrix 𝑁𝑁𝐷𝐷𝜆𝜆2 𝑁𝑁𝐷𝐷𝜆𝜆𝑊𝑊  𝑁𝑁𝐷𝐷𝜆𝜆2 𝑁𝑁𝐷𝐷𝜆𝜆𝑊𝑊 𝑁𝑁𝐷𝐷𝜆𝜆(𝐷𝐷𝜆𝜆 +𝑊𝑊) 

Eigen problem 𝐷𝐷𝜆𝜆3 𝑊𝑊3  𝐷𝐷𝜆𝜆3 𝑊𝑊3 𝐷𝐷𝜆𝜆3 +𝑊𝑊3 
Data projection 𝑁𝑁𝐷𝐷𝜆𝜆𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝑁𝑁𝐷𝐷𝜆𝜆𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝐷𝐷𝜆𝜆(𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 

Embed. N/A N/A N/A N/A N/A N/A 
SVD N/A N/A (𝐿𝐿2𝐾𝐾 + 𝐿𝐿3) × 𝐷𝐷𝜆𝜆 (𝐿𝐿2𝐾𝐾 + 𝐿𝐿3) × 𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 (𝐿𝐿2𝐾𝐾 + 𝐿𝐿3) × 𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿2𝐾𝐾 + 𝐿𝐿3) × (𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 

Grouping N/A N/A 2𝐿𝐿𝐿𝐿𝐿𝐿 × 𝐷𝐷𝜆𝜆 2𝐿𝐿𝐿𝐿𝐿𝐿 × 𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 2𝐿𝐿𝐿𝐿𝐿𝐿 × 𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 2𝐿𝐿𝐿𝐿𝐿𝐿 × (𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 
D.Av. N/A N/A 𝐷𝐷𝑥𝑥𝐷𝐷𝑦𝑦 × 𝐷𝐷𝜆𝜆 𝐷𝐷𝑥𝑥𝐷𝐷𝑦𝑦 × 𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝑥𝑥𝐷𝐷𝑦𝑦 × 𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝑥𝑥𝐷𝐷𝑦𝑦 × (𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 

Saving factor    ≈ 3𝐷𝐷𝜆𝜆/𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 ≈ 3𝐷𝐷𝜆𝜆/𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ≈ 3𝐷𝐷𝜆𝜆/(𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑞𝑞𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 
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