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Abstract

The technological evolution of the fifth generation (5G) and beyond wireless networks not

only enables the ubiquitous connectivity of massive user equipments (UEs), i.e., smart-

phones, laptops, tablets, but also boosts the development of various kinds of emerging

applications, such as smart navigation, augmented reality (AR), virtual reality (VR)

and online gaming. However, due to the limited battery capacity and computational ca-

pability such as central processing unit (CPU), storage, memory of UEs, running these

computationally intensive applications is challenging for UEs in terms of latency and

energy consumption. In order to realize the metrics of 5G, such as higher data rate and

reliability, lower latency, energy reduction, etc, mobile edge computing (MEC) and un-

manned aerial vehicles (UAVs) are developed as the key technologies of 5G. Essentially,

the combination of MEC and UAV is becoming more and more important in current

communication systems. Precisely, as the MEC server is deployed at the edge network,

more and more applications can benefit from task offloading, which could save more

energy and reduce round trip latency. Additionally, the implementation of UAV in 5G

and beyond networks could play various roles, such as relaying, data collection, delivery,

SWIFT, which can flexibly enhance the QoS of customers and reduce the load of net-

work. In this regard, the main objective of this thesis is to investigate the UAV-enabled

MEC system, and propose novel artificial intelligence (AI)-based algorithms for opti-

mizing some challenging variables like the computation resource, the offloading strategy

(user association) and UAVs’ trajectory.

To achieve this, some of existing research challenges in UAV-enabled MEC can be tackled

by some proposed AI or DRL based approaches in this thesis. First of all, a multi-UAV

enabled MEC (UAVE) is studied, where several UAVs are deployed as flying MEC

platform to provide computing resource to ground UEs. In this context, the user asso-

ciation between multiple UEs and UAVs, the resource allocation from UAVs to UEs are
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optimized by the proposed reinforcement learning-based user association and resource

allocation (RLAA) algorithm, which is based on the well-known Q-learning method and

aims at minimizing the overall energy consumption of UEs. Note that in the architecture

of Q-learning, a Q-table is implemented to restore the information of all state and ac-

tion pairs, which will be kept updating until the convergence is obtained. The proposed

RLAA algorithm is shown to achieve the optimal performance with comparison to the

exhaustive search in small scale and have considerable performance gain over typical

algorithms in large-scale cases.

Then, in order to tackle the more complicated problems in UAV-enabled MEC system,

we first propose a convex optimization based trajectory control algorithm (CAT), which

jointly optimizes the user association, resource allocation and trajectory of UAVs in the

iterative way, aiming at minimizing the overall energy consumption of UEs. Considering

the dynamics of communication environment, we further propose a deep reinforcement

learning based trajectory control algorithm (RAT), which deploys deep neural network

(DNN) and reinforcement learning (RL) techniques. Precisely, we apply DNN to op-

timize the UAV trajectory with continuous manner and optimize the user association

and resource allocation based on matching algorithm. It performs more stable dur-

ing the training procedure. The simulation results prove that the proposed CAT and

RAT algorithms both achieve considerable performance and outperform other traditional

benckmarks.

Next, another metric named geographical fairness in UAV-enabled MEC system is con-

sidered. In order to make the DRL-based approaches more practical and easy to be

implemented in real world, we further consider the multi agent reinforcement learning

system. To this end, a multi-agent deep reinforcement learning based trajectory control

algorithm (MAT) is proposed to optimize the UAV trajectory, in which each of UAV

is instructed by its dedicated agent. The experimental results prove that it has consid-

erable performance benefits over other traditional algorithms and can flexibly adjusts

according to the change of environment.

Finally, the integration of UAV in emergence situation is studied, where an UAV is

deployed to support ground UEs for emergence communications. A deep Q network

(DQN) based algorithm is proposed to optimize the UAV trajectory, the power control

of each UE, while considering the number of UEs served, the fairness, and the overall
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uplink data rate. The numerical simulations demonstrate that the proposed DQN based

algorithm outperforms the existing benchmark algorithms.

Liang Wang December 2021
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Chapter 1

Introduction

1.1 Motivation

In the last few decades, human have witnessed the tremendous evolution of wireless

communications, which is initially designed to provide voice-based service in the first

generation (1G) and eventually developed as an indispensable part with ubiquitous mul-

timedia service. Driven by the launch of forth generation (4G), the forthcoming fifth

generation (5G) is expected bring up to 10 Gbps data rate, 1 ms round trip latency,

100 % coverage, and 90 % energy reduction [2], for the beyond 5G, it will achieve 1

Tbps/second data rate, 3-5 times spectral efficiency. The 5G and beyond network not

only boost the development of various kinds of user-oriented mobile applications, such as

augmented reality (AR), virtual reality (VR), online gaming, but also cultivate myriad

of industry-oriented applications in the domain of industry automation, e-healthcare,

connected vehicles. These kinds of emerging applications are normally time consuming,

energy consuming, high computational. In the early stage of 4G, the integration of mo-

bile cloud computing (MCC) is envisioned as a suitable technique, which offers storage,

computation resource for user equipments (UEs) or mobile devices in a centralized ar-

chitecture. However, as the requirement of quality-of-service (QoS) of UEs is greatly

enhanced, MCC is no longer a qualified choice and it has to face the issues in terms of

latency, security, coverage, and data rate. Consequently, mobile edge computing (MEC)

has became a significant technique, which is designed to tackle the issues for MCC and

provide sufficient resource at the edge network.
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Furthermore, in order to achieve the different QoS requirements in 5G, unmanned aerial

vehicles (UAVs), which are also known as drones, remote piloted aircrafts, are envi-

sioned as a vital role in wireless communications, due to their high mobility, low cost,

fast and flexible deployment. Primarily, UAVs are used in the domain of military, which

is deployed to reduce pilot losses. Due to the constant cost reduction of UAVs’ produc-

tion and maintenance, numerous UAV-based applications have emerged, such as weather

monitoring, fire detection, traffic control, delivery, emergence search and rescue, commu-

nication, etc [3]. Essentially, the integration of UAVs in wireless communication systems

is expected to provide connectivity for ground devices that are not under the coverage of

communication infrastructures, due to the shadowing, terrain, damage caused by natu-

ral disasters [4]. In most wireless scenarios, the direct line-of-sight (LoS) communication

links can be established between UAVs and ground devices, which significantly enhance

the system performance. Additionally, considering the dynamic communication environ-

ment, the state of UAVs can be flexibly adjusted through appropriately control UAVs’

mobility.

In order to further improve the communication performance and achieve better QoS, the

research of combination of UAV and MEC is becoming more and more popular both in

academia and industry. However, UAV-enabled MEC is still in its early state and it has

huge number of research challenges, such as the deployment of UAVs (UAVs’ trajectory

control, path planning), resource allocation, security issues, user association (offloading

strategy), energy efficiency of UAVs, channel modeling. Existing traditional algorithms

are normally based on convex optimization, dynamic programming, and evolutionary

computing, which are time consuming, near optimal and need plenty of iterations in order

to achieving considerable performance. In addition, when the environment changes, like

the UEs’ distribution, the channel model, the algorithms may not work or even re-design,

which are not practical.

Given the recent advances in machine learning or artificial intelligence [97], the combi-

nation of deep neural networks (DNNs) [98] and reinforcement learning (RL) [99], i.e.,

deep reinforcement learning (DRL) has become a hot research topic. In DRL, an agent

is assumed to interact with the environment for learning the optimal policy with the

aid of exploration. Compared to traditional RL, DRL facilitates more accurate conver-

gence and approximation by exploiting the power of DNNs for estimating the associated

functions in RL [100]. The great potential of DRL in solving complex control problems



3

UAV-enabled 

MEC

Chapter 4

Q-learning

Single agent

Q-table
RLAA

Chapter 5

Convex 

optimization

Mathcing 

algorithm

CAT

Environment

DNN

Single agent

Actor critic

Importance sampling

RAT

Chapter 6
Multi agent

DNN

Actor critic

Centralized training

Decentralized 

execution

MAT

Chapter 7

DNN

Single agent

Rescue 

communication

DQN

Figure 1.1: Thesis contribution

has also been demonstrated in [29, 31, 32, 101, 102]. In [29], Mnih et al. introduced

the deep Q network (DQN) philosophy, which ignited the field of DRL. For instance,

Wang et al.[101] systematically investigated the problem of distributed Q-learning aided

heterogeneous network association in the content of energy-efficient Internet of things

(IoT). In order to improve the training procedure, DQN relies on a pair of techniques

namely, experience replay and target networks. For the sake of tackling the typical over-

estimation problem of RL, a double DQN (D-DQN) was proposed by Van Hasselt et

al. [32]. However, DQN may suffer from the curse of high-dimensional action spaces and

cannot be readily applied to continuous domains. Thus, motivated by this, Lillicrap et

al. [31] proposed a deep deterministic policy gradient (DDPG) technique based on the

so-called actor-critic architecture, which can be readily applied for a range of challenging

problems. A comprehensive survey of multi-agent RL, have also been provided by Bu et

al [102].

Thus, the AI-based techniques can be applied to tackle the challenges in UAV-enabled

MEC, which adapt the dynamics of the environment after training procedure, and obtain

the optimal solutions in real-time. Therefore, the main goal of this thesis is to design

novel AI-based algorithms for solving the key challenges in UAV-enabled MEC.
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1.2 Thesis Contribution

We briefly demonstrate the thesis contribution in Fig. 1.1. Compared with existing

traditional approaches, our proposed approaches can tackle some of challenges in UAV-

enabled MEC sufficiently, especially considering the dynamics of the complicated en-

vironment. Precisely, the main contributions of this thesis are summarized as follows:

• We first study the multi-UAV-enabled MEC system, where several UAVs that fly in

circles are deployed to serve UEs. We assume each UE has its computation-intensive

task to be executed in each time slot, whose time duration could be flexibly changed

according to the requirement of communication environment. In this case, the energy

minimization of UEs for task execution is regarded as a mixed integer nonlinear pro-

gramming (MINLP) problem, which involves the user association between UEs and

UAVs, and the resource allocation from UAVs to UEs. Thus, we propose a reinforce-

ment learning-based user association and resource allocation (RLAA) algorithm to

solve the optimization problem efficiently. We also analyze the performance of pro-

posed RLAA algorithm by comparing it with other traditional benckmarks. In small

scale, RLAA can achieve the optimal performance with exhaustive search. While in

large-scale cases, RLAA also has considerable performance gain over other typical

algorithms, such as local execution and random offloading.

• Second, we consider a platform of flying mobile edge computing (F-MEC), which

enables task offloading from ground UEs. The objective is to minimize the overall

energy consumption of UEs while guaranteeing all tasks of UEs can be sufficiently

executed through optimizing the UAVs’ trajectory, user association between UAVs

and UEs, the resource allocation from UAVs to UEs. The optimization problem

involves both continuous variables and discrete variables, which is difficult to solve in

general. To this end, we first propose a convex optimization based trajectory control

algorithm (CAT), which solve the problem in an iterative way. Then, in order to make

the real-time decision and consider the dynamics of the communication environment,

we further propose a deep reinforcement learning based trajectory control algorithm

(RAT), which apply the prioritized experience replay (PER) scheme to improve the

convergence of the training procedure. Different from the proposed CAT algorithm

that relies on the initial feasible solution and needs iterations, the proposed RAT
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algorithm can obtain the optimal solutions in real-time and can be adapted to the

dynamics of the environment. From the experimental results, both CAT and RAT

have considerable performance and outperform other benckmark algorithms.

• Third, we study an UAV-enabled MEC framework, where a group of UAVs fly over

the target area and support UEs on the ground. We consider the geographical fairness

of UEs, the fairness of UE-load of each UAV, the energy consumption of UEs while

optimizing the UAVs’ trajectory, the offloading decision of UEs. To address this opti-

mization problem, a multi-agent deep reinforcement learning (DRL) based trajectory

control algorithm is proposed, in which a well known multi-agent deep deterministic

policy gradient (MADDPG) method is applied. In the proposed MAT algorithm, a

group of agent control their dedicated UAV and cooperate with each other to sup-

port UEs. The simulation results show that MAT can consistently outperform other

traditional algorithms in testing process.

• Fourth, we extend the implementation of UAV in emergence communication system,

where the terrestrial network infrastructure is severely destroyed by the natural dis-

aster. In order to provide temporary communication and assist rescue, we assume an

UAV is deployed to serve ground UEs without the help of terrestrial base station and

access point. We introduce a DQN based algorithm to optimize the UAV trajectory

with discrete manner and power control of UEs. We further aim at maximizing the

overall uplink data rate from ground UEs to the UAV, while considering the fair-

ness. The simulation results prove that our proposed approach outperforms other

traditional benckmarks.

This thesis includes the following journal and conference papers:

1.2.1 Journal Papers

• L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam and A. Nallanathan, ”Deep Rein-

forcement Learning Based Dynamic Trajectory Control for UAV-assisted Mobile Edge

Computing,” in IEEE Transactions on Mobile Computing, doi: 10.1109/TMC.2021.3059691.

• L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam and L. Hanzo, ”Multi-Agent Deep

Reinforcement Learning-Based Trajectory Planning for Multi-UAV Assisted Mobile

Edge Computing,” in IEEE Transactions on Cognitive Communications and Network-

ing, vol. 7, no. 1, pp. 73-84, March 2021, doi: 10.1109/TCCN.2020.3027695.
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• L. Wang, K. Wang, C. Pan, X. Chen and N. Aslam, ”Deep Q-Network Based Dy-

namic Trajectory Design for UAV-Aided Emergency Communications,” in Journal of

Communications and Information Networks, vol. 5, no. 4, pp. 393-402, Dec. 2020,

doi: 10.23919/JCIN.2020.9306013.

1.2.2 Conference Papers

• L. Wang, P. Huang, K. Wang, G. Zhang, L. Zhang, N. Aslam, K. Yang, ”RL-Based

User Association and Resource Allocation for Multi-UAV enabled MEC,” 2019 15th

International Wireless Communications & Mobile Computing Conference (IWCMC),

2019, pp. 741-746, doi: 10.1109/IWCMC.2019.8766458.

1.2.3 Submitted Papaers

• L. Wang, K. Wang, C. Pan, N. Aslam. ”Joint trajectory and passive beamform-

ing design for intelligent reflecting surface-aided UAV communications: A deep rein-

forcement learning approach,” in IEEE Transactions on Green Communications and

Networking.

• M. Khalid, L. Wang, K. Wang, C. Pan, N. Aslam ”Learning-Based Path Planning

for Long-Range Autonomous Valet Parking,” in IEEE Transactions on Intelligent

Transportation Systems.

• K. Wang, L. Wang, C. Pan, R. Hong ”Deep-Reinforcement-Learning-Based Dynamic

Resource Management For Flexible Mobile-Edge-Computing,” in IEEE Vehicular

Technology Magazine.

1.3 Thesis Structure

We introduce the structure of this thesis as follows:

• Chapter 2 introduces the relevant topics that are presented in this thesis. In the first

part of this chapter, we present necessary background on 5G and beyond network.

Also, the motivation of developing 5G is discussed in the following subsection. Then,

we study the main use cases and technical metrics for 5G. In the second part, we

introduce the essential information about UAV communication. In the third part, we
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discuss some fundamental knowledge about MEC technique, such as the motivation,

advantages, applications, and research challenges. Furthermore, the technique of

combining UAV and MEC is introduced in the following part. Finally, in order to

tackling the key challenges in UAV-enabled MEC, the machine learning technique is

introduced, such as the basics of machine learning, artificial neural network.

• Chapter 3 gives some of related work about UAV-enabled MEC system and deep

reinforcement learning.

• Chapter 4 presents an advanced RL-based user association and resource allocation

scheme in multi-UAV enabled MEC. The proposed scheme enables multi-UAV flying

in circles to serve a group of UEs and allows optimal user association and resource

allocation from UAVs to UEs in real-time.

• Chapter 5 introduces a flying-mobile edge computing (MEC) platform. In order

to provide the optimal QoS to UEs, a convex optimization based trajectory control

algorithm is proposed to optimize the UAV trajectory, user association, and resource

allocation, which has considerable performance in terms of energy consumption of

UEs. While considering the dynamics of environment, a DRL-based algorithm is

further proposed, which can obtain the optimal solutions in real-time.

• Chapter 6 further discusses the framework of UAV-enabled MEC and proposes a

multi-agent reinforcement learning based algorithm to control a group of UAVs. Ad-

ditionally, the proposed algorithm considers the fairness of UEs served by UAVs and

fairness of UE-load of UAVs during the entire process.

• Chapter 7 studies another application of UAV in emergence situation, where the

terrestrial base station is destroyed by natural disaster. The UAV is deployed as a

flying base station and a deep Q network based algorithm is proposed to optimize the

UAV trajectory with discrete manner, aiming at maximizing the data rate from UEs

to the UAV and guaranteeing the fairness of UEs.

• Chapter 8: summaries the proposed work presented in this thesis and gives some of

future work within the scope of this thesis.



Chapter 2

Background

In this chapter, we give the general background of relevant topics related to this thesis.

Particularly, we first introduce the background, the motivation, the use cases, and tech-

nical metrics for 5G and beyond network. Then, we discuss one of key techniques in 5G

named UAV-assisted wireless communication. In this section, some key use cases, ad-

vantages and challenges of UAV in wireless communication are discussed. Furthermore,

we also overview the essence of MEC, including the motivation, advantages, applications

and research challenges. In addition, the technique of combining UAV and MEC, which

is named UAV-enabled MEC, is discussed in the next section. Finally, some background

information about machine learning, such as the categories of machine learning, artificial

neural network are introduced.

In this chapter, we give the general background of relevant topics related to this thesis.

In Section 2.1, we first introduce the relevant knowledge of 5G and beyond network,

including the research background, motivation, use cases. Then, in Section 2.2, we also

first introduce the background of UAV, the categories of UAV in wireless communication

system, use cases, advantages and challenges. Followed by 2.2, we introduce MEC

in 2.3. The motivation, advantages, applications, and challenges are briefly discussed

in this section. Furthermore, in Section 2.4, we introduce the technique of combining

UAV and MEC. Finally, in Section 2.5, we discuss machine learning, including the

supervised learning, unsupervised learning, reinforcement learning, DQN, DDPG and

artificial neural network.

8
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2.1 5G and Beyond Network

In this section, we give the essential research background of 5G and beyond as follows.

2.1.1 Research Background

In the last few decades, human have witnessed the tremendous evolution of wireless

communications. In the late 20th century, the first generation (1G) wireless system

was envisioned as the symbol of changing human thinking. It is widely acknowledged

that the well-known advanced mobile phone system (AMPS) was viewed as the 1G

wireless system, which was based on frequency division multiple access (FDMA) and

frequency modulation. Note that in the 1G era, AMPS only supported voice calls and

only had up to 2.4 Kbps data rate [5], although it had forced massive scientists, re-

searchers and engineers to work on data transportation, and encryption technique. In

1991, the second generation (2G) wireless communication was launched by global system

for mobile communications (GSM) in Finland, which was based on time division multi-

ple access (TDMA) and code division multiple access (CDMA). Different from 1G, 2G

could support the short message service (SMS), international roaming, picture message,

multimedia service (MMS). Besides, 2G also enabled up to 64 Kbps and digital signals

for voice transmission [5, 6]. Based on GSM, the general packet radio service (GPRS)

was implemented, which was viewed as the major step towards 2.5G. In GPRS, as the

switching protocol was based on packet switching instead of circuit switching, the data

rate can reach up to 144 Kbps. Shortly after, enhanced data rates in GSM (EDGE)

is applied as the symbol of 2.75G. In the early 2000s, the third generation (3G) wire-

less communication was officially launched, which aims at providing up tp 2 Mbps data

rate. To achieve this, three standards of 3G, such as universal mobile telecommunication

system (UMTS), code division multiple access 2000 (CDMA2000), and time division-

synchronous code division multiple access (TD-SCDMA) were developed, which allows

web browsing, email, fax, and navigation service. Then, based on 3G, high speed packet

access (HSPA) and evolved high speed packet access (HSPA+) were launched, which

were also known as 3G+ and can support up to 5.76 Mbps data rate [6]. In late 2000s,

long term evolution (LTE) and mobile worldwide interoperability for microwave access

(WiMAX) were generally viewed as the standards of the forth generation (4G) wireless
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communication. The indication of 4G was to implement reliable communication solu-

tions based on internet protocol (IP), which means some emerging applications, such as

multimedia messaging service (MMS), digital video broadcasting (DVB), high definition

(HD) TV that rely on higher data rate and lower latency can be fulfilled [7–9].

2.1.2 The Motivation of 5G

In the era of 4G, the number of connected device and mobile data are explosively in-

creased, and new emerging applications are unquestionable becoming popular recently.

It is reported that the video traffic has occupied more than half of the global data traffic

since 2012. The average mobile user is expected to download about 1 terabyte of data

annually by 2020 [10]. Besides, the academia and industry are both working towards

exploring other applications in the domain of augmented reality (AR), internet of things

(IoT), internet of vehicles (IoV), machine to machine (M2M) communication, device to

device (D2D) communication, e-healthcare. In order to satisfy the requirement of these

enormous applications, the present 4G LTE network is no longer a sufficient choice. For

example, the standard 4G LTE network can theoretically has 150 Mbps data rate in the

downlink, which can only be able to support full HD video streaming. However, most of

current video streaming are normally 4K. Besides, in M2M and IoT networks, thousands

of devices are required to be connected, while 4G is only designed to support maximally

600 connected devices in single cell [8]. Also, the IoV network is extremely sensitive to

round trip latency, which is about 1 ms, while 4G can only have 15 ms latency. Hence, it

is time to shift to the future fifth generation (5G) wireless communication and develop

various techniques to satisfy the exponential rise of the emerging applications.

2.1.3 Use Cases for 5G

In 5G, it is expected to realize a great deal of applications, such as connected vehicles,

remote controlled robotics, mobile computing, AR, VR, etc. According to the definition

of international mobile telecommunications 2020 (IMT2020), 5G has three categories of

user cases, which are shown in Fig. 2.1.
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Figure 2.1: Use cases of 5G

• Enhanced mobile broadband (eMBB): this use case is considered to adapt to

different scenarios, such as wide-area coverage, hotspots, etc. For the wide-area cov-

erage, the network is designed to provide higher data rate when the user is in high

mobility, while the goal of the seamless coverage is to guarantee that users can be

and kept connected, no matter where they move to. For the hotspots, when the user

density is high, the network needs to provide high traffic capacity [11].

• Ultra reliable and low latency communication (URLLC): The target of URLLC

is to meet the extremely strict requirement for network reliability, latency in some sce-

narios, such as smart grids, autonomous system, remote control, tactile internet [12],

etc.

• Massive machine type communications (mMTC): the so-called mMTC is to

offer connections to a massive of devices that are not sensitive to the latency and

data volume. To realize this, the low power wide area networks (LPWAN) is triggered

in the machine-to-machine (M2M) domain. Also, other potential technologies, like

the enhanced machine type communication (eMTC) and the narrowband internet-of-

things (NB-IoT) are developed to extend battery life and reduce the cost of devices

in the network [13].

2.2 UAV-assisted Wireless Communication

In order to meet the QoS requirement of 5G, UAV-assisted wireless communication

is becoming a hot topic. In this section, we illustrate the technique of UAV-assisted
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wireless communication.

2.2.1 Research Background of UAV

Historically, UAVs are normal known as drones that are remotely controlled by pilots

or embedded computer programs. They are widely applied in the domain of military

for remote surveillance, attack, sensing, etc, which are originally designed to reduce

the pilot losses. Due to the constant reduction in the cost of UAVs and the mature

technology in UAVs’ manufacturing, UAVs are becoming vital in enormous commercial

applications, such as traffic control, search, rescue, delivery, agriculture, telecommuni-

cation, photography, etc. For standardizing the operation of launching UAVs, the U.S.

Federal Aviation Administration (FAA) released the operational rules for controlling

small unmanned aircraft systems (UASs) that are within 25 kg in 2016. One year after,

in order to further explore the usage of UAVs, including beyond-visual-line-of-sight (BV-

LoS) flights, night-time operations, flight above people, FAA also launched a national

program named “Drone Integration Pilot Program”. These programs and guidance pave

the way for the growth of UAV industry, whose scale enormously increased in the next

decade.

Generally, according to the usage and applications of UAVs, there are massive types of

UAVs. The commercial market prefer to categorize UAVs into two types, such as fix-

wing UAVs, and rotary-wing UAVs, according to the wing configuration. Specifically,

fixed-wing UAVs have advantages in terms of flying speed, payload, which are suitable

for long-distance flying task in general, but they may rely on a launcher for landing or

taking off, and can not hover in the sky. Compared to fixed-wing UAVs, rotary-wing

UAVs are more flexible, and can land or take off vertically, and even keep static at a

certain location. The details about the classifications of the types of UAVs can be found

in [14].

2.2.2 Categories of UAV-assisted Wireless Communications

In order to achieve the metrics in terms of latency, throughput, coverage in 5G, UAVs

have been a vital component in wireless communications. If the configuration of UAVs is

properly designed, they can provide much reliable solutions in most practical scenarios
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with relatively tolerant cost. According to the description in [15], the application of

UAVs in wireless communications can be normally categorized into 4 types:

1. Direct link: In this setting, the direct LoS communication links between UAVs and

ground UEs can be easily established over the industrial scientific medical (ISM) 2.4

GHz band. The ground UEs can be a remote controller, ground station and so on.

However, the communication range will be significantly influenced by the complicated

environment. For example, when UAVs are deployed in urban areas. High buildings,

trees will block the communication signals, which will have negative influences on

latency and throughput. Besides, this setting also relies on gateway for accessing

the Internet, which will definitely cause longer latency. Also, when the interference

is severe, the QoS and secure are not guaranteed, which means this simple setting is

not a good choice for large-scale deployment of UAVs.

2. Satellite communications: With the help of global coverage provided by satellites,

the UAVs can establish the link between any ground gateways through the relay of

satellites. This setting is particularly useful for the UAVs that are deployed in ocean,

desert, or other areas without terrestrial coverage. Furthermore, satellites can also

provide navigation and location service for UAVs. However, there are still challenges

for satellite-assisted UAV communications. First of all, the propagation loss will be

extreme severe as the distance between satellites and UAVs are quite long. Secondly,

as UAVs are normally sensitive to their physical size, weight, and power, they can not

carry equipment for satellite communication. Besides, operating satellites is extreme

expensive, which limits its usage in commercial market.

3. Ad Hoc network: Mobile ad hoc network (MANET) is a type of self-organizing

network that does not rely on terrestrial infrastructure. It can dynamically adjust

with the environment and offer peer-to-peer communications with different mobile

devices, such as laptops, smartphones. As mobile devices in MANET can change

their locations randomly, the communication links will also change frequently. Ad-

ditionally, in order to establish the link between two far devices, MANET enables

multi-hop relaying among other devices, which significantly reduce the energy con-

sumption and end-to-end delay. As the extension of MANET, vehicular ad hoc

network (VANET) and flying ad hoc network (FANET) are designed to integrate

UAVs for serving ground vehicles that are in high mobility. However, this setting is

only suitable for small-scale FANET network.
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4. Cellular network: Have discussed the above settings, it is clear to see that they

cannot support massive UAV communications with sufficient performance or cost ef-

ficiency. The integration of UAVs in cellular network is envisioned as a good choice.

With the aid of ubiquitous coverage of cellular network and mature wireless commu-

nication techniques, the metrics of applying UAVs can be easily met. For example,

the UAVs can be deployed as relaying node in cellular network, for achieving nearly

100 % coverage and support 1 ms latency.

2.2.3 Use Cases of UAVs in Wireless Communications

According to the components that UAVs play in wireless communications, there are

three typical use cases, which are described as follows:

1. UAV-aided ubiquitous coverage: In this use case, UAVs can be viewed as fly-

ing or aerial BSs to provide seamless coverage within certain areas. Compared to

traditional terrestrial BSs, the UAVs can flexibly adjust the altitude and location

according to communication conditions. Also, for temporary events, natural disas-

ters, UAVs are particularly useful to enhance the system performance and recover

the communication functionality.

2. UAV-aided relaying: In this use case, UAVs can be employed as relaying nodes

to extend the coverage of BSs and strengthen the connectivity for UEs that are far

from BSs.

3. UAV-aided information dissemination and data collection: In IoT or wire-

less sensor network (WSN), UAVs can be employed as aerial access points (APs) to

collect data from ground nodes.

2.2.4 Advantages and Challenges of UAV-assisted Wireless Commu-

nications

In this subsection, we summary the advantages of UAV-assisted wireless communications

as follows:

1. High altitude: Compared to traditional BSs with fixed altitude, UAVs can serve

UEs with much higher altitude. Precisely, for urban micro deployment, the height

of BSs is normally about 10 m, for urban macro deployment, the height is around
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25 m [16], while for UAV-aided cellular network, UAVs are allowed to fly up tp 122

m. Additionally, in terrestrial networks, traditional BSs only support 2-D coverage

while UAVs can offer 3-D coverage.

2. High LoS probability: In terrestrial wireless networks, ground UEs often suffer

from severe path loss because of the influence of shadowing and fading. While in

UAV-assisted wireless communications, the air-ground and LoS channel can be estab-

lished with a much higher profitability, which offers much reliable links. Moreover, as

the LoS links are less sensitive to the change in time and frequency domain, the tech-

niques of communication schedule and resource allocation can be sufficiently realized,

comparing to the traditional wireless networks.

3. Flexible 3-D mobility: Compared to the fixed location wireless networks, UAVs

can move with high speed in 3-D space. They can flexibility fly to certain locations to

adjust the dynamic communication conditions and realize different QoS requirements.

Although UAVs play a significant role in wireless communication, they still have to face

massive research challenges. In what follows, we summarize some of challenges:

1. UAV placement: In order to achieve the optimal communication performance, the

location and altitude of UAVs should be appropriate designed, which is extremely

flexible, fast and short-term. In addition, when the communication environment is

complicated, the obstacle avoidance is also needed to be considered.

2. Channel modeling: Practically, the channel characteristics of UAV-assisted wire-

less communication is more sophisticated than the terrestrial wireless communica-

tion in various aspects. In general, there are three types of communication links

named UAV-BS link, UAV-UAV link, and UAV-UE link. The UAV-UAV link can be

simply characterized by free-space path-loss channel [17, 18]. While the other two

links are more complicated and their characteristics may vary with different com-

munication environments. Some of channel models, such altitude-dependent channel

parameters [19], elevation angle-dependent channel parameters [20], depression angle-

depdendent excess path loss model [21], elevation angle-dependent probabilistic LoS

model [22], 3GPP GBS-UAV channel model, are summarized in [15].

3. Path planning (Trajectory control): Different from the traditional terrestrial

network, the performance of deploying UAVs in wireless communication network

is strictly limited by massive constraints in the domain of UAV trajectory or path

planning. We list some of constraints as follows:
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• Minimize/maximum altitude

• Initial/final location

• Maximum/minimum speed

• Maximum/minimum acceleration

• Obstacle avoidance

• Collision avoidance

The above constraints make the optimization of UAV trajectory difficult in general.

On one hand, the optimization problem is normally nonconvex with respect to the

trajectory variables. On the other hand, the optimization problem also involves in-

finite variables related to continuous time. There are several directions for tackling

the optimization of UAV trajectory. First of all, for the initial/final path planning,

the optimization problem can be transferred to the classic traveling salesman prob-

lem (TSP) or pickup-and-deliver problem (PDP). Secondly, in order to make the

optimization problem more tractable, the UAV trajectory can be discretized and be

solved with finite variables. Thirdly, the most difficult method for optimizing the

UAV trajectory is to tackle it directly, which is nonconvex and involves continuous

variables. Most approaches are based on block coordinates descent (BCD) or suc-

cessive convex approximation (SCA) techniques and they are normally sub-optimal

and need iterations.

4. Interference management: As the LoS communication link incurs in UAV-assisted

wireless communication system with high probability, the interference is an indispens-

able issue. To this end, some novel techniques for interference management should

be proposed.

5. SWAP limitations: In traditional terrestrial wireless communication systems, ground

BSs or UEs normally equip with a stable power supply from grid network or recharge-

able battery. However, UAVs deployed in wireless communication systems have

stringent constraints in size, weight, and power (SWAP), which limit the UAVs’ en-

durance and communication performance. On one hand, UAVs can only equip with

compact/tiny communication hardware for catering the limitation in size and weight,

which have to sacrifice some performance gain in terms of latency, throughput. On

the other hand, considering the communication related energy consumption, UAVs

need to consume more energy for moving and hovering, which is more important

and critical. To this end, the energy-efficient design of UAVs should be carefully
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Figure 2.2: Structure of MEC

considered.

6. Security issue: In order to serve more and more devices in UAV-assisted wireless

communication systems, security issue is another research challenge. To avoid the

network jamming or attacks from eavesdroppers, there is a need to develop more

advanced communication techniques in protocol and physical layer.

2.3 MEC

In this section, some fundamental elements of MEC are discussed.

2.3.1 The Motivation of MEC

Nowadays, more and more emerging mobile applications become popular recently and

most of them relay on extensive data and services provided by cloud computing servers

from remote data centers, which poses a huge challenge in network load. It is expected

that the demands of bandwidth will constantly double each year [23], and the novel

augmented reality based mobile applications will lead to higher requirements for band-

width and latency. In order to guarantee adequate QoS, current solution is to apply

mobile cloud computing (MCC) technique, which deploys storage, computation at the

centralized cloud. However, MCC is no longer a good choice in terms of latency, secu-

rity, coverage, and data rate transmission. Thus, thanks to the advanced 5G, MEC is

developed to address the challenges that MCC cannot tackle. The concept of MEC was
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first presented by european telecommunications standards institute (ETSI) and industry

specification group (ISG), which is further defined recently as ‘Multi-Access Edge Com-

puting’. According to the definition of ETSI, MEC is one of the emerging technology in

5G networks, which enables IT service environment and cloud computing equipments at

the edge of the mobile network. Through radio access network (RAN), the direct con-

nection between UEs and the nearest MEC server can be established. Fig. 2.2 illustrates

the architecture of MEC. Specifically, the MEC system consists of four components: 1)

UEs. 2) network infrastructures owned by mobile network operators (MNOs), such as

base stations, access points, core network. 3) Internet infrastructures like routers. 4)

application infrastructures provided by application service providers (ASPs), such as

MEC server, data center, content delivery network (CDN).

2.3.2 Advantages of MEC

Compared to the centralized MCC technique, the distributed MEC is well-known in

terms of low latency, proximity, high bandwidth. There characteristics can bring massive

profits for both consumers, MNOs, and ASPs:

1. For consumers, they can experience mobile applications (AR, VR, face recognition,

etc) that rely on low latency, high through, high computational resource through

offloading their tasks to MEC server. Furthermore, considering the limited battery

of mobile devices, the energy efficiency can be further improved, which also improves

the QoS.

2. For ASPs, they can obtain profits via building a MEC-based infrastructure-as-a-

service (IaaS) platform at the edge of network. Besides, due to the characteristics of

MEC, more mobile applications can be developed.

3. For MNOs, as the RAN access is allowed for third party companies, the deployment

of applications and service is more complex, which brings income for MNOs according

to the used storage, computation resource, bandwidth. Additionally, applying MEC

server at the edge of network will significantly reduce the network load as most of

service requests can be solved by MEC server instead of sending them to the data

center through the core network.
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2.3.3 Applications of MEC

In this subsection, we introduce some recognized applications of MEC.

1. Augmented Reality (AR): AR-based applications gain their popularity recently.

The idea of AR is to apply sound and visual contents for combining real and virtual

environment. However, AR-based applications normally require high computational

resource and low latency, in order to provide adequate QoS.

2. Healthcare: Recently, some human-interaction and wearable devices, such as smart-

phone, Google glass, smart watch are widely applied in healthcare. As these devices

are equipped with gyroscopes, accelerometers, these devices can help to prevent fall

incidents when patients have strokes. For example, recent U-fall that employ smart-

phone and MEC technology is proposed. With the combination of fall detection

algorithm, smart sensors on smartphones, and MEC server, U-fall is capable of pro-

viding real-time, accurate fall detection, which is more reliable and dependable.

3. Connected Vehicles: Recently, as vehicles are capable of connecting with other

vehicles on the road via an Internet access. However, this V2V communication relies

on MEC technology. When traffic jam or car accident happens, the vehicle can

communication with other appropriate vehicles on the road and inform them risks.

4. Video Analytics: Surveillance cameras are widely deployed in secure system. How-

ever, as the number of surveillance cameras is increasing, the data volume for storing

is also increasing. The traditional centralized client-server architecture is not capable

of managing millions of cameras, which inevitably stress the network. To this end,

MEC can assist surveillance cameras with a distributed manner. For example, with

the help of MEC, surveillance cameras can monitor traffic congestion and work in

face recognition applications, which can help to reduce the crime.

2.3.4 Research Challenges in MEC

Having discussed the above applications of MEC, we introduce some of research chal-

lenges in MEC.

1. Computation Offloading: Generally, in MEC system, most mobile applications

are sensitive to resource and power. Basically, there are two categories of offloading

strategies, which are partial offloading, and binary offloading. For partial offloading,
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the task is divided into two parts, one can be offloaded to the MEC server and

another part can be executed locally. For binary offloading, the task can be executed

locally or offloaded to MEC server. Considering the requirement of QoS of UEs, it

is crucial to optimization the offloading strategy. On one hand, the optimization

of offloading should be real-time, especially in complicated scenarios. On the other

hand, considering the constraints in computation and storage resource of MEC server,

the process of optimizing offloading strategy is extremely difficult.

2. Storage and Computation Resource Allocation: Although the storage and com-

putation resource that MEC server can provide is much more sufficient than UEs,

the resource of MEC is still insufficient in some cases, especially when large number

of UEs need to be served. Thus, the resource allocation of MEC should be optimized

for guaranteeing adequate QoS of UEs.

3. Security and Privacy Issues: In the MEC ecosystem, the security issue mainly

includes network security, core network security, MEC server security, virtualization

security, and end devices security. For instance, when deploying MEC server at

the edge of network, the network management policy will be more complicated and

the MEC server may be exposed by various DoS attacks and viruses, which can

damage the MEC server can lead to network traffic. Therefore, the appropriate

security mechanisms for identification, authentication and data encryption should

be implemented.

While deploying MEC server that is close proximity to the UEs, the privacy informa-

tion, such as credit card, emails, password, location may become easy to be obtained

by attackers. To this end, some privacy-preserving aggregation schemes, such as

homomorphic encryption can be applied [24]. Furthermore, the location information

is another privacy issue. Current mobile applications obtain the location informa-

tion or provide navigation service through the global positioning system (GPS). In

order to solve this issue, several security mechanisms can be applied to confuse the

attacker, such as the mobishare system [25].

2.4 UAV-enabled MEC

In recent years, researchers are expecting to integrate UAV into MEC systems [26], due

to the characteristics of UAV and MEC. In UAV-enabled MEC, the UAV can be viewed
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as a UE that has computational intensive tasks, a flying MEC server that has efficient

computation resource, or a flying relaying node to assist UEs to offload their tasks.

Compared to the traditional terrestrial MEC system, UAV-enabled MEC can be flexibly

deployed and has promising advantages in different scenarios, such as wild, forest, desert,

or even crowded areas, where terrestrial MEC system can not be reliably deployed.

Some leading companies, like Google, Huawei, Nokia, Amazon have established their

UAV-enabled MEC systems, and more and more applications that rely on it have been

developed.

2.4.1 Applications of UAV-enabled MEC

In this subsection, some overview applications of UAV-enabled MEC are discussed. Ac-

cording to the description in [27], there are mainly four applications.

1. Hotspots: In terrestrial MEC system, massive UEs will temporarily gather within a

crowded area and they constantly generate computation intensive tasks. For exam-

ple, in the city center, there can be more than one million people simultaneously using

their phones for taking different applications in rush hour. Traditional MEC system

may not be reliable because of the extremely high traffic volume and tremendous

computation tasks. In this case, UAV-enabled MEC can be temporarily exploited as

a powerful assistance to improve the QoS of UEs and reduce the outage probability.

2. Without terrestrial MEC system: Although terrestrial MEC system is ubiqui-

tous within most of cellular networks, which cover most of areas, there are still many

areas, such as forests, deserts, wilderness, that are out of the coverage of cellular

networks. The government and organization need to constantly monitor the envi-

ronment and take necessary measures to protect it. However, it is impossible to

establish the terrestrial MEC system, which is affordable, unreliable and inconve-

nient. In this case, deploying UAV-enabled MEC is a good alternative.

3. Battle field: UAV-enabled MEC could be a much sufficient and reliable system. For

example, in battle fields, there are many computational intensive tasks generated by

special missions like missile navigation. Establishing the terrestrial MEC system is

not reliable which can be easily destroyed and sensed by the enemy. On the contrary,

UAV-enabled MEC is more flexible and cost-efficient.
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4. Unforeseen disasters and resuce: When the unforeseen disasters happen, the

terrestrial MEC system would be severely destroyed. To this end, UAV-enabled

MEC could be a vital role that completes rescue and reconstruction tasks.

2.4.2 Architectures of UAV-enabled MEC

(a) (b)

(c)

Figure 2.3: Three architectures of UAV-enabled MEC.

According to the usage of UAVs applied, there are normally three architectures in UAV-

enabled MEC. The first architecture is shown in Fig. 2.3(a), in which the UAV is viewed

as a flying UE that needs to offload its computational intensive task to the ground MEC

server, due to the finite battery capacity. Then, the second architecture is shown in

Fig. 2.3(b), where the UAV is not equipped with MEC server but it works as relaying

node to assist ground UEs to offload their tasks to the nearest MEC server. Finally, as

shown in Fig. 2.3(c), the UAV can be viewed as a flying MEC server, which provides

computational resource and enables task offloading from ground UEs.
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Overall, the above three architectures can be flexibly applied in different scenarios. For

instance, the first architecture is suitable for the scenario that the UAV has limited

computation resource and battery capacity. The second architecture is appropriate for

the scenario that ground UEs is far away from MEC server and the UAV can assist

them to offload their tasks through relaying. The third architecture can be applied

in the scenario where the UAV is equipped with considerable battery and computation

resource. In this case, the ground UEs can benefit from offloading in unforeseen disasters

and hotspots.

2.5 Machine Learning

In this section, we start to introduce the overview of machine learning. Precisely, we

first present the basics of machine learning. Then, we introduce the concept of artificial

neural network. Finally, we give the introduction of reinforcement learning.

2.5.1 Basics of Machine Learning

The concept of machine learning is firstly described in [28], and its idea is to automat-

ically improve computer algorithms through experience. Basically, through building a

model that is based on training data, the machine learning algorithm can make predic-

tions or decisions without explicit programs. In recent years, in order to intelligently

analysis the growing volumes of data generated in the domain of healthcare, financial ser-

vices, government, technology, marketing, etc, various successful machine learning based

algorithms are ubiquitous. There are three categories of machine learning approaches,

which are:

1. Supervised Learning: In the framework of supervised learning, a training data

set is needed, in which each training sample consists of a pair of input and output

objects. Note that the input object is also named as ‘label’. The basic idea of

supervised learning is to learn a function that can approximately map the input

and output objects in the training data set by learning and analyzing the training

samples and predicting the output objects. Thus, when the supervised learning

model is trained and learned enough, it can generate the optimal output objects for

unseen examples.
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2. Unsupervised Learning: The concept of unsupervised learning is to learn the

patterns and discipline from an unlabeled data set. Precisely, the training data set

in the framework of unsupervised learning is not tagged or labeled, which means the

training sample only has input object. The unsupervised learning model is trained

and learned to find the structure or distribution in the dataset instead of finding the

optimal output objects.

3. Reinforcement Learning: Reinforcement learning has been widely used in a va-

riety of control problems like gaming, robotics and navigation while considering the

dynamics of environment. Essentially, it is different from supervised learning that

learns from a training set of labeled training examples. Also, reinforcement learning

is different from unsupervised learning that aims at finding structure hidden in the

unlabeled training data set. The idea of reinforcement learning is to learn how to

map states and actions in order to maximize the accumulated reward. Theoretically,

in the framework of reinforcement learning, there is an agent deployed to interact

with the environment (emulator). It aims at choosing the optimal actions that can

maximize the accumulated rewards by given a series of states. At time step t, the

accumulated reward can be expressed as Rt =
∑T

t′=t γ
t′−trt′ , where γ is the discount

factor, rt′ is the reward function at time step t′. Also, the optimal action-value

function, which is also known as the Bellman equation is described as

Q∗(s, a) = Es′

[
r + γmax

a′
Q∗(s′, a′)|s,a

]
, (2.1)

where s′, a′ denote the sequence of states and actions. Lots of reinforcement learning

algorithms estimate the action-value function iteratively by using the above equation.

2.5.2 DQN

In a standard reinforcement learning, an agent is assumed to interact with the environ-

ment and select the optimal actions that can maximize the accumulated reward. In [29],

a Deep Q Network (DQN) structure developed by Google Deepmind, integrates the deep

neural networks with traditional reinforcement learning. The DQN is used to estimate



25

the well-known Q-value defined as

Q(s(t), c(t)) = E[Z(t)|s(t), c(t)], (2.2)

where s(t) and c(t) denote the state and action respectively, E[·] denotes the expectation,

whereas Z(t) =
∑T

t′=t γz(t
′) is a reward and γ ∈ [0, 1] is the discount factor and z(t′) is a

reward function in the t′-th time step (or time slot). As the objective is to maximize the

reward, a widely used policy is π(s(t)|ϕQ) = argmaxc(t)Q(s(t), c(t)|ϕQ), where ϕQ is the

parameter of the deep neural network. Then, the DQN can be trained by minimizing

the loss function [29]. Also, since the deep networks are known to be unstable and very

difficult to converge, two effective approaches, i.e., target network and experience replay,

have been introduced in [29]. The target network has the same structure as the original

DQN but the parameters are updated more slowly. The experience replay stores the

state transition samples which can help the DQN converge. However, the DQN was

originally designed to solve the problem with discrete variables. Although we can adapt

the DQN to continuous problems by discretizing the action space, it may unfortunately

result in a huge searching space and therefore intractable to deal with.

2.5.3 DDPG

To deal with the problem with continuous variables, e.g., the trajectory control of UAV,

one may apply the actor-critic approach, which was developed in [30]. DeepMind has

proposed a deep deterministic policy gradient (DDPG) approach [31] by integrating the

actor-critic approach into DRL. DDPG includes two DQNs, one of the DQNs, named

actor network with function π(s(t)|ϕπ) is applied to generate action c(t) for a given

state s(t). The other DQN named critic network with function Q(s(t), c(t)|ϕQ), is used

to generate the Q-value, which evaluates the action produced by the actor network. In

order to improve the learning stability, two adjacent target networks corresponding to

the actor and critic networks, π′(·), Q′(·) with respective parameters ϕπ′
, ϕQ′

, are also

applied.
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Figure 2.4: The structure of a neuron (xi, wi, f(·), b represent the activations, weights,
nonlinear function, bias separately).

Then, the critic network can be updated with the loss function, L(ϕQ), as

L(ϕQ) =
1

K

K∑
k=1

δ2k, (2.3)

where in each time step, the mini-batch randomly samples K constituting experiences

from experience replay buffer, and δk is temporal difference (TD)-error [32] which is

given by

δk = z(k) + γQ′(s(k + 1), π′(s(k + 1)|ϕπ′
)|ϕQ′

)−Q(s(k), π(s(k)|ϕπ)|ϕQ). (2.4)

On the other hand, the actor network can be updated by applying the policy gradient,

which is described as [31].

▽ϕπJ ≈ 1

K

K∑
k=1

▽cQ(s, c|ϕQ)|s=s(k),c=π(s(k)|ϕπ) =

1

K

K∑
k=1

[
▽cQ(s, c|ϕQ)|s=s(k),c=π(s(k)) · ▽ϕππ(s|ϕπ)|s=s(k)

]
.

(2.5)
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2.5.4 Artificial Neural Network

As the subfield of machine learning, artificial neural network (ANN) was a hot topic

in last few decades and firstly called by John McCarthy in the 1950s. Its’ basic idea

is to implement intelligent machines that have the ability of learning like humans in

various domains. Since the most powerful ’machine’ for learning and solving problems

is brain, current scientists are working towards exploring the details of our brains and

some popular brain-inspired programs and algorithms are naturally developed to emu-

late how our brains work in some aspects. Specifically, in the human brain, the basic

computational element is the neuron. There are about 68 billions in the brain, each

of which is connected with massive elements named dendrites and each element has a

mechanism named axon. For better expression, we shown the structure of the neuron

in Fig. 2.4. First fo all, the neuron receives the signals through dendrites, then, it per-

forms the computation on the received signals and generates a signal on the axon. Note

that the mentioned input and output signals are referred as activations and the axon

of a neuron is connected to the dendrites of other neurons. We name the connections

between axon and dendrite as a synapse and it is estimated that there are 1014 to 1015

sysnapses in human brain. Thus, for the certain neuron, its mathematical expression is

given as follows:

yj = f

(∑
i

ωixi + b

)
, (2.6)

where xi denotes the activations, ωi is the weights, f(·) means the nonlinear function,

and b is the bias. It is worth noting that the f(·) normally refers some common functions,

such as Sigmoid(·), Tanh(·), ReLu(·). Thus, for the certain input, the different weights

will lead to different responses and the learning process of ANN is to adjust the weights

while its structure dose not change. This characteristics of ANN makes a remarkable

motivation for a machine learning-based algorithm.

Essentially, a standard Fully-connected ANN has the following components:

1. Input layer: It is a network layer with a number of neurons for representing the

input signal.

2. Output layer: It is a network layer with a number of neurons for representing the

output signal.
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3. Hidden layer: It consists of a number of neurons that are used to represent the

structure of brain.

Input layer

Hidden layer

Output layer

neurons

(a)

Input layer

Hidden layers

Output layer

…..

neurons

(b)

Figure 2.5: Structure of shallow neural network (a), DNN (b). [1]

Additionally, according to the number of hidden layers deployed in ANN, there are two

categories of ANN, named shallow ANN and deep neural network (DNN) [1] and their

main difference can be found in Fig. 2.5. More precisely, in shallow neural network,

there is only one hidden layer used, while DNN has more than 1 hidden layers.

In order to learn the information from the given input data, the weights of ANN is

needed to be updated, which we denote as training process. For simplicity, we take

the image classification problem in supervised learning as an example. Essentially, the

main objective of training the ANN for image classification is to minimize the errors

between the predicted output signals and the desired labeled signals, which can be

mathematically expressed as

E(W,b) = 0.5 ·
∑
S

(
||y(W,b,x)− yD||2

)
, (2.7)

where S denotes the training dataset, W is the set of weights, b means the set of bias,

x denotes the set of input signals or vector and YD is the desired labeled signals. In

order to minimize E(W,b), the weights of each neuron in ANN are updated via the

commonly used gradient descent algorithm. For example, for a certain neuron j, the

error between the labeled signal yD,j and the output signal yj(wj ,bj ,xj) is Ej(wj ,bj) =

0.5 ·
(
||yj(wj ,bj ,xj)− yD,j ||2

)
. Then each element wi,k in wj will be updated with the

following equation

wj,k,z+1 = wj,k,z − γ
∂Ej(wj ,bj)

∂wj,k,z
, (2.8)
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Figure 2.6: The overall process of solving image classification problem via using ANN.

and the corresponding bias will also be updated by

bj,k,z+1 = bj,k,z − γ
∂Ej(wj ,bj)

∂bj,k,z
, (2.9)

where z denotes the z-th updating iteration, γ is the learning rate.

We further demonstrate the training process of image classification problem in Fig. 2.6.

Specifically, we first give the sampled image from the training dataset as the input

vector. Then, we give the output signals as the predicted vector, which represents the

corresponding probabilities of possible classes. Note that the class with the highest

probability indicates the most likely class in the image. The target of training the ANN

is to adjust the weights that can successfully determine the correct classes from training

dataset.



Chapter 3

Related Work

There are many related works that study UAV, MEC and DRL separately, but only a

very few consider them holistically. For UAV aided wireless communications, several

scenarios have been studied, such as in areas of relay transmissions [33], cellular sys-

tem [34], data collection [35], wireless power transfer [36], caching networks [37], and

D2D communication [38]. In [39], the authors presented an approach to optimize the

altitude of UAV to guarantee the maximum radio coverage on the ground. In [40], the

authors presented a fly-hover-and-communicate protocol in a UAV-enabled multiuser

communication system. They partitioned the ground terminals into disjoint clusters

and deployed the UAV as a flying base station. Then, by jointly optimizing the UAV

altitude and antenna beamwidth, they optimized the throughput in UAV-enabled down-

link multicasting, downlink broadcasting, and uplink multiple access models. In [41],

to maximize the minimum average throughput of covered users in OFDMA system, the

authors proposed an efficient iterative algorithm based on block coordinate descent and

convex optimization techniques to optimize the UAV trajectory and resource allocation.

Furthermore, UAV trajectory optimization research were also investigated. For instance

in [18], Zeng et al. proposed an efficient design by optimizing UAV’s flight radius and

speed for the sake of maximizing the energy efficiency of UAV communication. In or-

der to maximize the minimum throughput of all mobile terminals in cellular networks,

Lyu et al. [42] developed a new hybrid network architecture by deploying UAV as an

aerial mobile base station. Different from [18, 39–41] with the single UAV system, a

multi-UAV enabled wireless communication system was considered to serve a group of

30
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users in [43]. Also, in [44], resource allocation between communication and computa-

tion has been investigated in multi-UAV systems. In [45], Mozaffari et al. investigated

the application of UAVs in Internet of Things (IoT) network, and they optimized the

mobility of UAVs, the device-UAV association and uplink power control, for minimizing

the overall transmit power of ground IoT devices.

In addition, some recent literature made efforts to mobile edge computing (MEC), which

is considered to be a promising technology for bringing computing resource to the edge

of wireless networks [46], where UEs can benefit from offloading their tasks to MEC

servers. In [47], partial computation offloading was studied. The computation tasks

can be divided into two parts, where one part is executed locally and the other part is

offloaded to MEC servers. In [48], binary computation offloading was studied, where the

computation tasks can either be executed locally or offloaded to MEC servers.

By taking advantage of the mobility of UAVs, UAV-enabled MEC has been studied

in [49, 50]. In [49], authors proposed a heterogeneous MEC (H-MEC) architecture

that consists of fixed ground stations and UAVs. In [50], the authors studied UAV-

enabled MEC, where wireless power transfer technology is applied to power Internet of

things devices and collect data from them. In [51], Zhou et al. investigated an UAV-

enabled MEC wireless-powered system, and they tackled the computation maximization

problem through optimizing UAV’s speed, partial and binary computation offloading

modes. In [52], Asheralieva et al. studied network operation problem in UAV-enabled

MEC network, and they developed a framework based on hierarchical game-theoretic

and reinforcement learning. In [53], Zhang et al. established a communication and

computation optimization model in an MEC-enabled UAV network, where the successful

transmission probability was derived through using stochastic geometry.

For most of the above works, optimization theory are mainly applied in order to obtain

the optimal and / or suboptimal solutions, e.g., trajectory design and resource allocation.

However, solving such optimization problems normally requires plenty of computational

resources and take much time. To address this problem, DRL has been applied and at-

tracted much attention recently. In [29], the authors proposed a RL framework that uses

DQN as the function approximator. In addition, two important ingredients experience

replay and target network are used for improving the convergence performance. In [54],

the authors pointed out that the classical DQN algorithm may suffer from substantial
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overestimations in some scenarios, and proposed a double Q-learning algorithm. In or-

der to solve control problems with continuous state and action space, Lillicrap at al. [31]

proposed a policy gradient based algorithm. For the purpose of obtaining faster learning

and state-of-art performance, in [55], the authors proposed a more robust and scalable

approach named prioritized experience replay. Although DRL has achieved remarkable

successes in game-playing scenarios, it is still an open research area in UAV-enabled

MEC.



Chapter 4

Q-Learning based User

Association and Resource

Allocation in Multi-UAV enabled

MEC

4.1 Introduction

Nowadays, user equipments (UEs) such as smart phones, tablets, wearable devices and

other Internet of smart things are becoming increasingly popular and bringing huge

convenience to our daily life. Moreover, many emerging mobile applications (e.g., aug-

mented reality, smart navigation and interactive service) are receiving more and more

attention but most of those applications are resource intensive, which makes the UEs

very difficult to execute them, due to limited battery and computation resource (e.g.

CPU, storage or memory) in UEs.

Fortunately, mobile edge computing (MEC) has recently been proposed as a means to

enable UEs with intensive computational tasks to offload them to the edge cloud, which

can not only prolong the battery life of UEs, but also increase UEs’ computational ca-

pacity. Offloading decision making and resource allocation have been studied in [56, 57],

while MEC with Cloud Radio Access Network (C-RAN) has been investigated in [58–60].

The above works either consider there is only one MEC (e.g., [56, 61]), or consider the

33
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MECs have fixed location (e.g., [58, 62]), which may not be practical in some scenarios.

For instance, the single MEC is normally resource-limited and may not be able to meet

the requirement of all the UEs at the same time. Also, MEC with fixed location lacks

flexibility and may not be suitable to the cases where the number and the requirement

of UEs keep changing.

Unmanned aerial vehicle (UAV), due to the features of low cost, high flexibility and easy

to deployment, has recently attracted much attention in wireless communication, e.g.,

serving as base station [63] or mobile relays [64]. UAV enabled MEC (e.g., [65]) has

been proposed by integrating MEC server to UAVs (i.e., UAVE), to provide computing

resource to ground UEs. Compared with the traditional fixed location MEC, UAVE is

of particular interest to the scenario such as 1) temporary events (i.e., in case of a large

number of people gathering in the ground celebrating a big event or watching football

match); 2) emergency situations (i.e., in case of earthquake and the infrastructure may

be destroyed or temporary unavailable) or other on-demand services. However, the

operation of UAVE faces many challenges, two of which are how to achieve 1) the

association between multiple UEs and UAVs and 2) the resource allocation from the

UAVs to the UEs, while meeting the quality of service (QoS) and minimizing the whole

energy consumption for all the UEs.

To address these challenges, we formulate above problem into a mixed integer non-linear

programming (MINLP), which is very difficult to be addressed in general, especially

in the large-scale scenario (e.g., when there is a large number of UEs in the ground

waiting to be served). We then propose a Reinforcement Learning-based user Association

and resource Allocation (RLAA) algorithm to deal with this problem efficiently and

effectively. Numerical results show that the proposed RLAA can achieve the optimal

performance compared to the exhaustive search in small scale, and have considerable

performance gain over other typical algorithms in large-scale scenarios.

The rest of this chapter is organized as follows. We show the system model and the

optimization problem in Section 4.2. Then, our proposed RLAA algorithm is introduced

in Section 4.3. The simulation result is given in Section 4.4, followed by the summary

remarks in Section 4.5.
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Figure 4.1: A Multi-UAV enabled MEC system

4.2 System Model

As shown in Fig. 4.1, we consider there are i ∈ N = {1, 2, ..., N} UEs, each of which

has a computation-intensive task to be executed. Also, we consider there are j ∈ M =

{1, 2, ...,M} UAVs deployed as the MEC platform, flying in a circle with radius Rj .

Define a new vector j ∈M′ = {0,M} to denote the possible place where the tasks from

ground UEs can be executed at, in which j = 0 denotes that UE conducts task itself

without offloading. Similar to [65], we assume that the j-th UAV’s flight period can be

discretized into t ∈ Tj = {1, 2, ..., Tj} time slots. Define a new vector t ∈ T ′j = {0, Tj}

to denote the possible time slots when the tasks from ground UEs can be executed at,

in which t = 0 denotes that UE conducts task itself. Also we assume that the UAV’s

location change within each time slot can be ignored, compared to the distances from the

UAV to all UEs. Denote the coordinate of the j-th UAV at t-th time slot as [Xjt, Yjt, Hjt]

and the coordinate of the i-th UE as [xi, yi, 0].

Similar to [58], assume i-th UE has a computational intensive task Ii to be executed as

Ii = (Di, Fi), ∀i ∈ N (4.1)

where Fi denotes the total number of CPU cycles required to complete this task and

Di denotes the amount of data needed to be transmitted to UAV if deciding to offload,

in which Di and Fi can be obtained by using the approaches provided in [66]. Assume

that each UE can decide either to execute the task locally or choose to offload to one of

the UAVs in one time slot and also assume that the task can be completed in this time

slot. Similar to [56], we do not consider the time for returning the results back to UE



36

from UAV. Thus, one can have

C1 : aijt = {0,1}, ∀i ∈ N , j ∈M′, t ∈ T ′j (4.2)

where aijt = 1, j ̸= 0, t ̸= 0 denotes that the i-th UE choose the j-th UAV in the t-th

time slot to offload, while aijt = 1, j = 0, t = 0 denotes that i-th UE execute the task

itself and otherwise, aijt = 0. Note that t = 0, if and only if j = 0.

Also, assume that the j-th (j ∈M) UAV can serve more than one UE in each time slot

and this task has to be completed either via offloading or local execution. Therefore,

one can have

C2 :
M∑
j=0

Tj∑
t=0

aijt = 1, ∀i ∈ N (4.3)

4.2.1 Task Offloading

In offloading scenario, we assume the horizontal distance between i-th UE and the j-th

UAV in t-th time slot as

Rijt =
√
(Xjt − xi)2 + (Yjt − yi)2 (4.4)

Then, the offloading data rate can be given by

rijt = B log2(1 +
αP Tr

i

H2
jt +R2

ijt

),∀i ∈ N , j ∈M, t ∈ Tj (4.5)

where B is denoted as the channel bandwidth, P Tr
i as the transmission power of the i-th

UE, α=g0G0

σ2 , G0 ≈ 2.2846, g0 as the channel power gain at the reference distance 1 m

and σ2 as the noise power [40].

Also, one can see that the time to offload the data from i-th UE to the j-th UAV in t-th

time interval can be given as

T Tr
ijt =

Di

rijt
, ∀i ∈ N , j ∈M, t ∈ Tj (4.6)

Also, the time to execute the task can be expressed as

TC
ijt =

Fi

fijt
, ∀i ∈ N , j ∈M, t ∈ Tj (4.7)
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where fijt is the computation resource that the jth UAV could provide to the i-th UE.

Then, we can have the total time consumption as

Tijt = T Tr
ijt + TC

ijt, ∀i ∈ N , j ∈M, t ∈ Tj (4.8)

Moreover, the total energy consumption of the i-th UE to the j-th UAV in t-th time

slot can be given as

ETr
ijt = P Tr

i T Tr
ijt , ∀i ∈ N , j ∈M, t ∈ Tj (4.9)

Similar to [56], we assume each UAV in every time slot can only accept limited amount

of offloaded task. Then, one has

C3 :

N∑
i=1

aijt ≤ K, ∀j ∈M, t ∈ Tj (4.10)

where K is the maximal number of UEs that each UAV can accept in each time slot.

4.2.2 Local Execution

If the UE decides to execute the task locally, the power consumption for the i-th UE

can be given by ki(fijt)
vi , where j = 0, t = 0, and ki ≥ 0 is the effective switched

capacitance and vi can be normally to 3 [56]. Then, the local execution time can be

given by TC
ijt =

Fi
fijt

, (j = 0, t = 0) and then, the total energy consumption can be given

as ki(fijt)
viTC

ijt.

4.2.3 Problem Formulation

Then, one can have the energy consumption of each UE as

[l]Eijt =


ki(fijt)

viTC
ijt, if j = 0, t = 0

P Tr
i T Tr

ijt , if j ∈M, t ∈ Tj
(4.11)

Also, the total time spent to complete each task can be expressed as

Tijt =


TC
ijt, if j = 0, t = 0

T Tr
ijt + TC

ijt, if j ∈M, t ∈ Tj
(4.12)
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One can assume that the maximal computation resource which the j-th UAV can provide

is as fmax
j . Then, one can have

C4 :

N∑
i=1

aijtfijt ≤ fmax
j , ∀j ∈M, t ∈ Tj (4.13)

Also, as the task normally has to be completed in certain amount of the time and thus

without loss of generality, we assume the task must be completed in time Tmax. In

our chapter, assume all the transmitting and computing process for each task must be

completed within one time interval Tmax. For the complicated cases, if the task can not

be executed within a single time interval, it can be automatically transformed to the

next interval. Then, we have

C5 :
M∑
j=0

aijtTijt ≤ Tmax, ∀i ∈ N , t ∈ T ′j (4.14)

Denote A = {aijt,∀i ∈ N , j ∈ M′, t ∈ T ′j }, F = {fijt,∀i ∈ N , j ∈ M′, t ∈ T ′j }. Then,

one can have

P :min
A,F

N∑
i=1

M∑
j=0

Tj∑
t=1

aijtEijt (4.15a)

subject to (4.15b)

C1 : aijt ∈ {0, 1}, ∀i ∈ N , j ∈M′, t ∈ T ′j (4.15c)

C2 :

M∑
j=0

Tj∑
t=0

aijt = 1,∀i ∈ N (4.15d)

C3 :

N∑
i=1

aijt ≤ K, ∀j ∈M, t ∈ Tj (4.15e)

C4 :

N∑
i=1

aijfijt ≤ fmax
j , ∀j ∈M, t ∈ Tj (4.15f)

C5 :
M∑
j=0

aijtTijt ≤ Tmax, ∀i ∈ N , t ∈ T ′j (4.15g)

Note that the above problem P is a MINLP problem, which is difficult to be solved

optimally in general. Some existing algorithms like exhaustive search or branch and
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bound algorithm may solve this problem, but with prohibitive complexity. Therefore, in

this chapter, we aim to obtain an efficient solution to solve this problem. To this end,

we propose the RLAA algorithm to deal with P effectively and efficiently.

4.3 Proposed Algorithm

In this section, we show our proposed RLAA algorithm. First, we introduce three

important elements in RLAA (i.e., actions, states, and reward functions).

• Actions: At each episode eps, each UE takes an action. If the UE decides to offload

the task to the j-th UAV in t-th time interval, the action is denoted as ρjt, ∀j ∈

M, t ∈ Tj . If UE decides to execute the task locally, the action is as ρ00. Then, one

can define the collection of actions as follows:

C = {ρ00, ρ11, ..., ρ1T1 , ..., ρM1, ..., ρMTM
}. (4.16)

For above offloading action ρjt, ∀j ∈M, t ∈ Tj , the minimal computation resources

of the i-th UE can be given by

fmin
ijt =

Fi

Tmax − Di
rijt

, ∀j ∈M, t ∈ Tj (4.17)

For local execution action ρ00, the minimal computation resources of the i-th UE is

given as

fmin
ijt =

Fi

Tmax
, j = 0, t = 0 (4.18)

Note that not all actions can guarantee that the task can be completed within one

time interval, as the available computation resources may be less than the minimal

computation resources (i.e., fmin
ijt in (4.17) and (4.18)). Similarly, the communication

resource can also not be guaranteed (i.e., C3 in (15e)). Therefore we may remove

some actions in C, resulting in the collection of feasible actions for the i-th UE as Ci.

• States: Then, we define the states as follows:

s = {ω1, . . . , ωi, . . . , ωN} (4.19)
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where ωi represents the decision of the i-th UE. Specifically, if the i-th UE (i ∈ N )

offloads the task to the j-th UAV in t-th time interval, we assign action ρjt ∀j ∈

M, t ∈ Tj to state ωi. It is worth mentioning that if the i-th UE decides to execute

the task locally, we assign action ρ00 to state ωi.

• Reward Functions: We define the reward function as

Z(s, ρjt) =
1

Eijt
(4.20)

The above proposed reward function can keep reducing the energy consumption of

each UE and may finally achieve the minimization of the energy consumption of all

UEs.

Then, we present RLAA in Algorithm 1. In the beginning, states s is initialized. The

Q-table is also initialized, which is used to record every state and action (i.e., line 1 in

Algorithm 1). At each episode, we obtain the collection of the actions Ci for the i-th

UE. Then, according to the ϵ-greedy policy [29], the i-th UE either chooses a random

action with probability ϵ or follows the greedy policy with probability 1 − ϵ, which is

expresses as

ρjt =


ρ, if rand(0, 1) < ϵ

argmax
ρjt∈Ci

Q(s, ρjt), otherwise
(4.21)

where ρ is an action randomly selected from Ci, rand(0,1) denotes a random number

uniformly distributed over the interval [0,1] (i.e., line 4 - line 8 in Algorithm 1).

Then, the resource allocation is conducted for the i-th UE (i.e., line 9 in Algorithm 1). If

the i-th UE offload the task to the j-th UAV in t-th time slot, the minimal computation

resource fmin
ijt in (4.17) is allocated. If the i-th UE execute task locally, the minimal

computation resource fmin
ijt in (4.18) is allocated. Based on the proposed reward function

in (4.20), the i-th UE can then obtain a reward (i.e., line 10 in Algorithm 1).

Next, we update the Q-table (line 11), where the updating rule of Q-table is given as

Q(s, c)← Q(s, c) + β{Z(s, c) + γmax
c∈Ci

Q(s′, c)−Q(s, c)}, (4.22)

where γ is the reward decay over the interval [0,1], β is the learning rate over the interval

[0,1], and s′ is the next state. Also, states s is updated based on action ρjt. Specifically,
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we assign action ρjt, ∀j ∈M′, t ∈ T ′j to state ωi.

The above process will be repeated until the maximum episode (epsmax) is reached.

Finally, each UE selects an action according to Q-table (line 16). Specifically, for the

i-th UE, the action in Ci corresponding to the largest value of Q-table is selected.

Algorithm 1 Our proposed RLAA

1: Initialize s and Q-table;
2: while eps ≤ epsmax

3: for i = 1:N
4: if rand(0,1)< ϵ
5: Select an action ρjt randomly from Ci for the i-th UE;
6: else
7: Select an action ρjt = argmax

ρjt∈Ci
Q(s, ρjt) for the i-th UE;

8: end if
9: Allocate computation resource fmin

ijt from (4.17) and (4.18) for the i-th UE;
10: Obtain a reward Z(s, ρjt) according to (4.20);
11: Update Q-table according to (4.22);
12: Update s;
13: end for
14: eps← eps+ 1;
15: end while
16: Select an action for each UE.

4.4 Simulation Results

In this section, the simulation is conducted with Python 3.6, where the parameters of

the tests are shown in Table. 4.1, in which the channel bandwidth is set to B = 1 MHz,

the noise variance is set to σ2 = −90 dbm/Hz, the channel power gain at the reference

distance 1 m is set to g0 = 1.42× 10−4 [40], the transmission power P Tr
i is set to 1 W,

the time interval Tmax is set to 1 s, the ki is set to 10−27 for all the UEs. Also, we

assume each UAV can support K = 150 UEs in one time slot. All UEs are assumed to

be randomly distributed in a rectangle area of coordinates [−2000, 2000]× [−1000, 1000]

m. We randomly select the data size Di of each task from the interval of [100, 1000] KB

and select Fi from the interval of [108, 109] cycles.

In order to evaluate the performance of our proposed RLAA, the following four algo-

rithms are used as comparison algorithms.
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Table 4.1: Simulation Parameters

Parameters Settings

Radius Rj for all UAVs 800 m

Flying height Hjt for all UAVs 350 m

Bandwidth B 1 MHz

Transmission power P Tr
i 1 W

Noise variance σ2 −90 dbm/Hz

G0 2.2846

Channel power gain g0 1.42×10−4
Data Size Di [100, 1000] KB

Execution task Fi [108, 109] cycles

Time duration Tmax 1 s

Location of UEs [−2000, 2000]× [−1000, 1000] m
fmax
j 150 GHz

ϵ-greedy policy probability 0.9

Reward decay γ 0.9

Learning rate β 0.2

ki for all UEs 10−27

vi for all UEs 3

epsmax 10000

Tj for all UAVs 12

• Exhaustive search (ES): We examine all the possibilities, with the objective of

minimizing the overall energy consumption for all the UEs.

• Local execution (LE): We assume all tasks are executed locally and there are no

offloading.

• Random offloading (RO): Each UE randomly selects the UAV and the time slot

to offload its task.

• Greedy offloading (GO): Each UE selects the nearest UAV to offload its task. If

the UAV is overloaded (i.e., C3 is violated), then selects the second nearest UAV to

offload and so on.

Firstly, we compare the performance of RLAA with its four compared algorithms on a

set of small scale instances (i.e., the number of UEs ranges from 3 to 7). We assume that

there are two UAVs flying in circles with the same radius and the center coordinates

of two UAVs are set to [1200, 1200, 350] and [−1200,−1200, 350], respectively. From

Fig. 4.2, one can see that RLAA has the same performance as ES, both of which can

achieve the minimal enery consumption. Also, one can see that GO achieves better per-

formance than RO, whereas LE achieve the worst performance for all examined values.

This is because that our proposed RLAA can choose most energy-efficient action for all
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Figure 4.2: The overall energy consumption of ES, LE, RO, GO and RLAA versus
the number of UEs.

Figure 4.3: The overall energy consumption of RLAA, LE, RO and GO versus the
number of UEs with 3 UAVs.

the UEs according to computation and communication requirement, while others either

make UE to execute all the task locally (i.e., LE), or randomly offload the tasks (i.e.,

RO), or just find the nearest UAV (i.e., GO), resulting in worse performance.

Next, we compare the performance of RLAA with LE, RO and GO on a set of large

scale instances, where the number of UEs is increased to 100∼1000. The number of the

UAVs is set to 3, where the center coordinates are [1200, 1200, 350], [−1200,−1200, 350]

and [−1200, 1200, 350], respectively. Note that we do not examine ES here, due to

its prohibitive complexity. From Fig. 4.3, one can see that our proposed RLAA still

performs best, followed by GO, RO and LE, as expected.
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Figure 4.4: The overall energy consumption of RLAA, LE, RO and GO versus the
number of UEs with 5 UAVs.

In Fig. 4.4, we further increase the number of UAVs to 5, where the center coordinates

are set to as [1200, 1200, 350], [−1200,−1200, 350], [−1200, 1200, 350], [1200,−1200, 350]

and [0, 0, 350], respectively. One sees that our proposed RLAA still outperforms other

compared algorithms, with significant amount of energy being saved for all the UEs.

4.5 Summary

In this chapter, we studied a multi-UAV enabled MEC system, in which the UAVs are

assumed to fly in circles over the ground UEs to provide the computation services. The

proposed problem is formulated as a MINLP, which is hard to deal with in general.

We propose a RLAA algorithm to address it effectively. Simulation results show that

RLAA can achieve the same performance as the exhaustive search in small scale cases,

whereas in large case scenario, RLAA still have considerable performance gain over other

traditional approaches.



Chapter 5

DRL-based Continuous

Trajectory Control for Dynamic

UAV-enabled MEC

5.1 Introduction

With the popularity of computationally-intensive tasks, e.g., smart navigation and aug-

mented reality, people are expecting to enjoy more convenient life than ever before.

However, current smart devices and user equipments (UEs), due to small size and lim-

ited resource, e.g., computation and battery, may not be able to provide satisfactory

Quality of Service (QoS) and Quality of Experience (QoE) in executing those highly

demanding tasks.

Mobile edge computing (MEC) has been proposed by moving the computation resource

to the network edge and it has been proved to greatly enhance UE’s ability in executing

computation-hungry tasks [67]. Recently, flying mobile edge computing (F-MEC) has

been proposed, which goes one step further by considering that the computing resource

can be carried by unmanned aerial vehicles (UAVs) [68]. F-MEC inherits the merits of

UAV and it is expected to provide more flexible, easier and faster computing service than

traditional fixed-location MEC infrastructures. However, the F-MEC also brings several

challenges: 1) how to minimize the long-term energy consumption of all UEs by choosing

proper user association (i.e., whether UE should offload the tasks and if so, which UAV

45
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to offload to, in the case of multiple flying UAVs); 2) how much computations the UAV

should allocate to each offloaded UE by considering the limited amount of on-board

resource; 3) how to control each UAV’s trajectory in real time (namely, flying direction

and distance), especially considering the dynamic environment (i.e., the UAV may serve

UEs from different taking off points). Traditional approaches like exhaustive search are

hardly to tackle the above problems due to the fact that the decision variable space

of F-MEC, e.g., deciding the optimal trajectory and resource allocation, is continuous

instead of discrete. In [56], the authors propose a quantized dynamic programming

algorithm to address the resource allocation problem of MEC. However, the complexity

of this approach is very high as the flying choice of UAV is nearly infinite (as continues

variables). Moreover, the authors in [41] discretize the UAV trajectory into a sequence of

UAV locations and make their proposed problem tractable. Similarly, in [69], the authors

assume that the UAV’s trajectory can be approximated by using the discrete variables

and then they deal with it by using the traditional convex optimization approaches.

However, the above treatment may decrease the control accuracy of the UAV and also is

not flexible. Furthermore, the above contributions only considered a single UAV case. In

practice, one UAV may not have enough resource to serve all the users. If the served area

is very large, more than one UAV are normally needed, which will undoubtedly increase

the decision space and make it very difficult for the traditional convex optimization-

based approaches to obtain the optimal control strategies of each UAV. In [70], Liu et

al. propose a deep reinforcement learning based DRL-EC3 algorithm, which can control

the trajectory of multiple UAVs but did not consider the user association and resource

allocation.

Inspired by the challenges mentioned above, in this chapter, we first propose a Con-

vex optimizAtion based Trajectory control algorithm (CAT) to minimize the energy

consumption of all the UEs, by jointly optimizing user association, resource allocation

and UAV trajectory. Specifically, by applying block coordinate descent (BCD) method,

CAT is divided into two parts, i.e., subproblems for deciding UAV trajectories and for

deciding user association and resource allocation. In each iteration, we solve each part

separately while keep the other part fixed, until the convergence is achieved.

Next, we propose a deep Reinforcement leArning based Trajectory control algorithm

(RAT) to facilitate the real-time decision making. In RAT, two deep Q networks
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(DQNs), i.e., actor and critic networks are applied, where the actor network is respon-

sible for deciding the direction and flying distance of the UAV, while the critic network

is in charge of evaluating the actions generated by the actor network. Then, we pro-

pose a low-complexity matching algorithm to decide the user association and resource

allocation with the UAVs. We choose the overall energy consumption of all the UEs as

a reward of the RAT. In addition, we deploy a mini-batch to collect samples from the

experience replay buffer by using a Prioritized Experience Replay (PER) scheme.

Different from traditional optimization based algorithms which normally need iterations

and are susceptible to initial points, the proposed RAT can be adapted to any taking off

points of the UAVs and can obtain the solutions very rapidly once the training process

has been completed. In other words, if the taking off points of UAV are input to the

RAT, the trajectories of UAVs will be determined by the proposed RAT with only

some simple algebraic calculations instead of solving the original optimization problem

through traditional high-complexity optimization algorithms. This attributes to the

fact that during the training stages, excessive randomly taking off points of UAV are

generated and used to train the networks until they are converged. Also, with the help of

prioritized experience reply (PER), the convergence speed will be increased significantly.

RAT can be applied to the practical scenarios where the UAVs needs to act and fly swiftly

such as the battlefields. By inputting the current coordinates as the taking off points

to the networks, the trajectories of the UAVs will be immediately obtained and then all

the UAVs can take off and fly according to the obtained trajectories. Also, the resource

allocation and user association are determined by the proposed low-complexity matching

algorithm. This is particularly useful to some emergence scenarios (e.g., battlefields,

earthquake, large fires), as fast decision making is crucial in these areas.

In the simulation, we can see that the proposed RAT can achieve the similar performance

as the convex-based solution CAT. They both have considerable performance gain over

other traditional algorithms. In addition, we can see that during the learning procedure,

the proposed RAT is less sensitive to the hyperparameters, i.e., the size of mini-batch

and the experience replay buffer, when comparing to tradtional reinforcement learning

where PER is not applied.

The remainder of this chapter is organized as follows. Section 5.2 describes the system

model. Section 5.3 introduces the proposed CAT algorithm, whereas Section 5.4 gives
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the proposed RAT algorithm including the preliminaries of DRL. Section 5.5 extends

the application of proposed RAT algorithm to 3-D scenario. The simulation results are

reported in Section 5.6. Finally, summary is given in Section 5.7.

5.2 System Model

y

x

z

[xi, yi]

[Xj(t), Yj(t), Zj(t)]

Rj
max aij(t)

T

Figure 5.1: Multi-UAV enabled F-MEC architecture.

As shown in Fig. 5.1, we consider a scenario that there are N UEs with the set denoted

as N = {1, 2, ..., N} and M UAVs with the set denoted as M = {1, 2, ...,M}, which

form an F-MEC platform. To make it clear, the main notations used in this chapter are

listed in Table. 5.1.

We assume that the i-th UE generates one task Ii(t) in the t-th time slot, which has

to be executed within a maximal time duration Tmax, due to the QoS requirement. In

this chapter, we assume the entire process lasts for T time slots. Thus, T tasks will be

generated for each UE and we have t ∈ T = {1, 2, ..., T} and

Ii(t) = {Di(t), Fi(t)}, ∀i ∈ N , t ∈ T , (5.1)

where Di(t) denotes the size of data required to be transmitted to a UAV if the UE

chooses to offload the task, and Fi(t) denotes the total number of CPU cycles needed to

execute this task. Assume that each UE can choose either to offload the task to one of
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Table 5.1: Main Notations.

Notation Definition

i,N,N index, number, set of of UEs.

j,M,M index,number,set of UAVs.

t, T, T index, number, set of time slots.

Ii(t), Di(t), Fi(t) i-th UEs’ task in t-th time slot.

aij(t) user association between i-th UE and j-th UAV.

Rmax
j maximal horizontal coverage radius of j-th UAV.

θhj (t), θ
v
j (t), dj(t) flying action of j-th UAV.

dmax, vj(t) maximal distance, velocity of j-th UAV.

[Xj(t), Yj(t), Zj(t)] coordinate of j-th UAV.

Xmax, Y max side length of rectangle-shaped area.

Tmax maximal time duration.

V max, fmax maximal number of tasks, computation resource.

[xi, yi] coordinate of i-th UE.

Rij(t) horizontal distance between UE and UAV.

B,PTr channel bandwidth, transmitting power.

g0, σ
2 channel power gain, noise power.

TO
ij (t), T

Tr
ij (t), TC

ij (t) time for task completion, offloading, executing.

ETr
ij (t), E

L
ij(t) energy for offloading, local execution.

U ,G set of UAV trajectory, UAV coordinates.

A,F set of user association, resource allocation.

s(t), a(t), z(t) state, action and reward.

π(·), Q(·), L(·) policy function, Q function, loss function.

K,X size of mini-batch, experience replay buffer.

ϕ, δ, J network parameter, TD-error, policy gradient.

Zmin, Zmax minimal, maximal altitude value.

dij(t) distance between the j-th UAV and i-th UE.

the UAVs or execute the task locally. Then one can have

aij(t) = {0, 1},∀i ∈ N , j ∈M, t ∈ T , (5.2)

where aij(t) = 1, j ̸= 0 implies that the i-th UE decides to offload the task to the j-th

UAV in the t-th time slot, while aij(t) = 1, j = 0 means that the i-th UE executes the

task itself in the t-th time slot, and otherwise, aij(t) = 0. Define a new set j ∈ M′ =

{0, 1, 2, ...,M} to represent the possible place where the tasks from UEs can be executed,

where j = 0 indicates that UE conducts its own task locally without offloading.
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In addition, we assume that each UE can only be served by at most one UAV or itself,

and each task only has one place to execute. Then, it follows

M∑
j=0

aij(t) = 1, ∀i ∈ N , t ∈ T . (5.3)

Additionally, in this chapter, the OFDM is applied, which means that each UAV can

only accept V max tasks in each time slot, due to the number of limited sub-carriers.

Thus, one has
N∑
i=1

aij(t) ≤ V max,∀j ∈M, t ∈ T . (5.4)

5.2.1 UAV Movement

Assume that the j-th UAV flies at the altitude and it has a maximal horizontal coverage,

which depends on the azimuth angle of antennas and the flying altitude [40]. Also,

assume that in the t-th time slot, the j-th UAV can fly with a horizontal direction as

0 ≤ θhj (t) ≤ 2π,∀j ∈M, t ∈ T , (5.5)

and distance as

0 ≤ dj(t) ≤ dmax, ∀j ∈M, t ∈ T , (5.6)

where dmax is the maximal flying distance that the UAV can move in each time slot, due

to the limited power budget. In our chapter, we describe the UAV’s movement based

on the Cartesian Coordinate system. Thus, we denote the coordinate of the j-th UAV

in the t-th time slot as [Xj(t), Yj(t), Zj ], where Xj(t) = Xj(0) +
∑t

l=1 dj(l)cos
(
θhj (l)

)
,

Yj(t) = Yj(0)+
∑t

l=1 dj(l)sin
(
θhj (l)

)
and [Xj(0), Yj(0), Zj ] is the initial coordinate of the

j-th UAV.

Additionally, each UAV can only move within a rectangle-shaped area, whose side length

is denoted as Xmax, and Y max. Then, it has

0 ≤ Xj(t) ≤ Xmax, ∀j ∈M, t ∈ T , (5.7)
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and

0 ≤ Yj(t) ≤ Y max, ∀j ∈M, t ∈ T . (5.8)

We denote that the j-th UAV can move with a constant velocity vj(t), which varies with

the flying distance dj(t) in each time slot. Thus, it has

vj(t) =
dj(t)

Tmax
, ∀j ∈M, t ∈ T . (5.9)

In this chapter, we ignore the communication related energy, including communication

circuitry and signal processing.

5.2.2 Task Execution

If the i-th UE decides to offload the task to the j-th UAV in the t-th time slot, then the

horizontal distance Rij(t) can be written as

Rij(t) =
√
(Xj(t)− xi)2 + (Yj(t)− yi)2, (5.10)

where [xi, yi] is the coordinate of the i-th UE. Additionally, we assume that each UAV

has a maximal azimuth angle θmax 1. Thus, in each time slot, the maximal horizontal

coverage of the j-th UAV Rmax can be obtained as follows

Rmax = Zjtan(θ
max). (5.11)

Thus, it has

aij(t)Rij(t) ≤ Rmax, ∀i ∈ N , j ∈M, t ∈ T . (5.12)

In this chapter, the free space channel model is applied. Thus, the uplink data rate is

given by

rij(t) = B log2

(
1 +

αPTr

Z2
j +R2

ij(t)

)
, ∀i ∈ N , j ∈M, t ∈ T , (5.13)

where B is the bandwidth for each communication channel; PTr is the transmitting

power of the i-th UE; α=g0G0

σ2 with G0 ≈ 2.2846 [44]; g0 is the channel power gain at

the reference distance 1 m and σ2 is the noise power.

1We define the azimuth angle with respect to a 3-D reference axis, such as x axis, y axis, z axis.



52

If the i-th UE decides to offload its task to the j-th UAV in the t-th time slot, the total

task completion time is given by

TO
ij (t) = TTr

ij (t) + TC
ij (t), ∀t ∈ T , (5.14)

where TTr
ij (t) is the time to offload the data from the i-th UE to the j-th UAV in the

t-th time slot, given by

TTr
ij (t) =

Di(t)

rij(t)
, ∀t ∈ T , (5.15)

and TC
ij (t) is the time required to execute the task at the UAV as

TC
ij (t) =

Fi(t)

fC
ij (t)

, ∀t ∈ T , (5.16)

where fC
ij (t) is the computation resource that the j-th UAV can provide to the i-th UE

in the t-th time slot.

Note that the time needed for returning the results back to UE from UAV is ignored,

similar to [62]. The overall energy consumption of the i-th UE to the j-th UAV in the

t-th time slot is given by

ETr
ij (t) = PTrTTr

ij (t), ∀t ∈ T . (5.17)

If the UE decides to execute the task locally, the power consumption can be evaluated

as ki(f
L
ij(t))

vi [71], where ki ≥ 0 is the effective switched capacitance, vi is typically set

to 3, and fL
ij(t) is the computation resource that the i-th UE applies to execute the task.

The overall time for local execution can be given by

TL
ij(t) =

Fi(t)

fL
ij(t)

. (5.18)

Thus, the total energy consumption for local execution is

EL
ij(t) = ki(f

L
ij(t))

viTL
ij(t), t ∈ T . (5.19)

To sum up, the overall energy consumption for task execution Eij(t) is given by

[l]Eij(t) =


EL

ij(t), local execution,

ETr
ij (t), offloading,

(5.20)
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and the time to complete the task Tij(t) is expressed as

[l]Tij(t) =


TL
ij(t), local execution,

TO
ij (t), offloading.

(5.21)

Without loss of generality, we assume that each task has to be completed within maximal

time duration Tmax, which is consistent with the maximal flying time in each time slot

as

Tij(t) ≤ Tmax, ∀i ∈ N , j ∈M′, t ∈ T . (5.22)

In each time slot, since the computation resource that each UAV can provide is limited,

we have
N∑
i=1

aij(t)f
C
ij (t) ≤ fmax, ∀j ∈M, t ∈ T , (5.23)

where fmax is the maximal computation resource that the j-th UAV can provide in each

time slot. Next, we show our proposed problem formulation.

5.2.3 Problem Formulation

Denote U = {θhj (t), dj(t),∀j ∈ M, t ∈ T }, A = {aij(t), ∀i ∈ N , j ∈ M′, t ∈ T }, F =

{fij(t),∀i ∈ N , j ∈M′, t ∈ T }. Then, the energy minimization for all UEs is formulated

as
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P1 : min
U ,A,F

N∑
i=1

M∑
j=0

T∑
t=1

aij(t)Eij(t) (5.24a)

subject to:

aij(t) = {0, 1},∀i ∈ N , j ∈M′, t ∈ T , (5.24b)
M∑
j=0

aij(t) = 1, ∀i ∈ N , t ∈ T , (5.24c)

N∑
i=1

aij(t) ≤ V max, ∀j ∈M, t ∈ T , (5.24d)

0 ≤ θhj (t) ≤ 2π,∀j ∈M, t ∈ T , (5.24e)

0 ≤ dj(t) ≤ dmax,∀j ∈M, t ∈ T , (5.24f)

0 ≤ Xj(t) ≤ Xmax,∀j ∈M, t ∈ T , (5.24g)

0 ≤ Yj(t) ≤ Y max,∀j ∈M, t ∈ T , (5.24h)

aij(t)Rij(t) ≤ Rmax,∀i ∈ N , j ∈M, t ∈ T , (5.24i)

Tij(t) ≤ Tmax, ∀i ∈ N , j ∈M′, t ∈ T , (5.24j)
N∑
i=1

aij(t)f
C
ij (t) ≤ fmax, ∀j ∈M, t ∈ T . (5.24k)

One can see that the above problem P1 is a mixed integer nonlinear programming

(MINLP), as it includes both integer variable, A and continuous variables, F and U ,

which is very difficult to solve in general. We first propose a convex optimization based

algorithm CAT to address it iteratively. Then, we propose a Deep Reinforcement Learn-

ing (DRL) based RAT to facilitate fast decision-making, which can be applied in dynamic

environment. Note that in practice, if the i-th UE does not generate the tasks in the

t-th time slot and then the corresponding Di(t) and Fi(t) can be set to zero.

5.3 Proposed CAT Algorithm

In this section, a convex optimization based CAT is proposed to solve the above problem

P1. We first define a set of new variables to denote the trajectories of UAVs as G =

{Gj(t), ∀j ∈M, t ∈ T }, where the coordinate is Gj(t) = [Xj(t), Yj(t)], Xj(t) = Xj(0) +∑t
l=1 dj(l)cos

(
θhj (l)

)
and Yj(t) = Yj(0) +

∑t
l=1 dj(l)sin

(
θhj (l)

)
. Thus, the optimization

problem P1 can be reformulated as
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P2 : min
G,A,F

N∑
i=1

M∑
j=0

T∑
t=1

aij(t)Eij(t) (5.25a)

subject to: (5.24b), (5.24c), (5.24d), (5.24g), (5.24h), (5.24j), (5.24k),

aij(t)||Gj(t)− qi||2 ≤ (Rmax)2, ∀i ∈ N , j ∈M, t ∈ T , (5.25b)

||Gj(t+ 1)−Gj(t)||2 ≤ (dmax)2, ∀t ∈ {0, 1, ..., T − 1}, (5.25c)

where qi = [xi, yi]. In order to solve P2, we divide it into two subproblems and apply

the block coordinate descent (BCD) method to address it. To this end, we first optimize

the user association A and resource allocation F given the UAV trajectory G. Then, we

optimize the UAV trajectory G given the user association A and resource allocation F .

We solve the two optimization problems iteratively, until the convergence is achieved.

5.3.1 User Association and Resource Allocation

Given the UAV trajectory G, the subproblem to decide user association A and resource

allocation F can be formulated as

min
A,F

N∑
i=1

M∑
j=0

T∑
t=1

aij(t)Eij(t) (5.26a)

subject to: (5.24b), (5.24c), (5.24d), (5.24j), (5.24k), (5.25b).

One can see that (5.24j) can be written as

fC
ij (t) ≥

Fi(t)

Tmax − Di(t)
rij(t)

, ∀j ∈M, t ∈ T , (5.27)

if the i-th UE chooses to offload the task, and

fL
ij(t) ≥

Fi(t)

Tmax
, j = 0, ∀t ∈ T , (5.28)

if the i-th UE decides to execute the task locally. It is readily to see that equality holds

for both (5.27) and (5.28).
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Then, (5.26) can be re-written as

min
A,F

N∑
i=1

M∑
j=0

T∑
t=1

(
aij(t)E

Tr
ij (t) + (1− aij(t))E

L
ij(t)

)
(5.29a)

subject to: (5.24b), (5.24c), (5.24d), (5.25b),

fL
ij(t) =

Fi(t)

Tmax
, j = 0, ∀t ∈ T , (5.29b)

N∑
i=1

aij(t)
Fi(t)

Tmax − Di(t)
rij(t)

≤ fmax, ∀j ∈M, t ∈ T . (5.29c)

It is ready to find (5.29) is similar to a Multiple-Choice Multi-Dimensional 0-1 Knapsack

Problem (MMKP), which is difficult to solve in general. Fortunately, it may be addressed

by applying Branch and Bound method via a standard Python package PULP [72].

5.3.2 UAV Trajectory Optimization

Given the user association and resource allocation from (5.29) and removing the con-

stant, P2 can be simplified as

min
G

N∑
i=1

M∑
j=1

T∑
t=1

aij(t)
PTrDi(t)

Blog2(1 +
αPTr

Z2
j+||Gj(t)−qi||2

)
(5.30a)

subject to: (5.24g), (5.24h), (5.25b), (5.25c),

Di(t)

Blog2(1 +
αPTr

Z2
j+||Gj(t)−qi||2

)
+

Fi(t)

fC
ij (t)

≤ Tmax, ∀i ∈ N , j ∈M, t ∈ T . (5.30b)

It is easy to see that the above optimization problem is non-convex with respect to

Gj(t). Next, we introduce a set η = {ηij(t), ∀i ∈ N , j ∈ M, t ∈ T }, where ηij(t) =

aij(t)
PTrDi(t)

Blog2(1+
αPTr

Z2
j
+||Gj(t)−qi||2

)
, then, problem (5.30) can be transformed into

min
G,η

N∑
i=1

M∑
j=1

T∑
t=1

ηij(t) (5.31a)

subject to: (5.24g), (5.24h), (5.25b), (5.25c),

Blog2
(
1 +

αPTr

Z2
j + ||Gj(t)− qi||2

)
≥ aij(t)P

TrDi(t)

ηij(t)
,∀i ∈ N , j ∈M, t ∈ T , (5.31b)

Blog2
(
1 +

αPTr

Z2
j + ||Gj(t)− qi||2

)
≥ Di(t)

Tmax − Fi(t)

fC
ij(t)

, ∀i ∈ N , j ∈M, t ∈ T . (5.31c)
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One observes that (5.31b) and (5.31c) are convex with respect to ||Gj(t) − qi||, respec-

tively. Thus, (5.31b) and (5.31c) are non-convex constraints. Then, similar to [41, 69],

we apply the successive convex approximation (SCA) to solve this problem. Specifically,

for any given local point Gr
j(t) in Gr = {Gr

j(t),∀j ∈ M, t ∈ T }, one can have the

following inequality as

wij(t) = Blog2
(
1 +

αPTr

Z2
j + ||Gj(t)− qi||2

)
≥ Kr

ij(t)(||Gj(t)− qi||2 − ||Gr
j(t)− gi||2) +Br

ij(t)

≜ wlb,r
ij (t),

(5.32)

where Kr
ij(t) = −

BαPTrlog2(e)
(Z2

j+||Gr
j (t)−qi||2)(Z2

j+||Gr
j (t)−qi||2+αPTr)

, and

Br
ij(t) = Blog2

(
1 + αPTr

Z2
j+||Gr

j (t)−qi||2
)
.

Then, problem (5.31) can be written as

min
G,η

N∑
i=1

M∑
j=1

T∑
t=1

ηij(t) (5.33a)

subject to: (5.24g), (5.24h), (5.25b), (5.25c),

wlb,r
ij (t) ≥ aij(t)P

TrDi(t)

ηij(t)
, ∀i ∈ N , j ∈M, t ∈ T , (5.33b)

wlb,r
ij (t) ≥ Di(t)

Tmax − Fi(t)

fC
ij(t)

, ∀i ∈ N , j ∈M, t ∈ T . (5.33c)

The above problem is a convex quadratically constrained quadratic program (QCQP)

and it can be solved by a standard Python package CVXPY [73].

5.3.3 Overall Algorithm Design

In this section, a convex optimization-based CAT is proposed to solve Problem P2,

where we optimize user association and resource allocation subproblem iteratively with

the UAV trajectory subproblem until the convergence is achieved. We describe the

pseudo code of proposed CAT in Algorithm 2.

Discussions: Algorithm 1 needs to run once the initial taking off locations of the UAVs

change. However, the complexity of Algorithm 1 is high as the solutions are iteratively
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Algorithm 2 CAT Algorithm

1: Set r = 0, and initialize Gr;
2: repeat
3: Solve Problem (5.29) by Branch and Bound method for given Gr, and denote the

optimal solution as Ar+1 and F r+1;
4: Solve Problem (5.33) for given Ar+1 and F r+1, and denote the solution as Gr+1;
5: r = r + 1;
6: until the convergence is achieved.

obtained and each subproblem involves a huge number of optimization variables espe-

cially when the total number of time slots is high. Precisely, as shown in Algorithm 2,

assume that the overall iteration number is Kr. In each iteration, Problem (5.29) has

N(M + 1)T variables, and it can be solved by Branch and Bound method, in which

the Simplex technique for solving linear programs is used. Thus, the computational

complexity is O
(
2N(M+1)T

)
in the worst case. Furthermore, according to the analysis

in [41, 74], in Problem (5.33), G has 2MT variables, η has NMT variables. Hence, the

total number of variables is (N+2)MT . As a result, the number of iterations required is

O
(√

(N + 2)MT log2(
1
ϵ1
)
)
, where ϵ1 is the accuracy of SCA for solving Problem (5.33).

Similarly, the overall number of constraints in Problem (5.33) is MT (3N+2)+T . Then,

the computational complexity is O
((

(N+2)MT
)2√

(N + 2)MT log2(
1
ϵ1
)
(
MT (3N+2)+

T
))

, which is equivalent to O
(
3(NMT )3.5log2(

1
ϵ1
)
)
. Overall, the total complexity of

CAT algorithm is O
(
Kr
(
2N(M+1)T + 3(NMT )3.5log2(

1
ϵ1
)
))
. Hence, Algorithm 1 is not

suitable for some emergence scenarios (e.g., battlefields, earthquake, large fires), where

fast decision making is highly demanded. This motivates the algorithm developed based

on DRL in the following section.

5.4 Proposed RAT Algorithm

To facilitate the fast decision making, the DRL-based RAT algorithm is proposed in this

section.

5.4.1 The RAT Algorithm

In this section, we introduce the DRL based RAT algorithm, which includes deep neural

networks (i.e., actor and critic networks) and the matching algorithms. In order to apply
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the DRL, we first define the state, action and reward as follows:

1) State s(t): s(t) = {[Xj(t), Yj(t), Zj ], ∀j ∈ M}, s(t) is the set of the coordinates of

all UAVs.

2) Action c(t): c(t) is the set of the actions of all UAVs, including the horizontal

direction θhj (t) and distance dj(t). Then, the action set can be defined as c(t) =

{[θhj (t), dj(t)], ∀j ∈M}.

3) Reward z(t): z(t) is defined as the minus of the overall energy consumption of all

the UEs in each time slot as

z(t) = −
N∑
i=1

M∑
j=0

aij(t)Eij(t)− p, (5.34)

where p is the penalty if any of UAV flies out of the target area, which means (5.24g)

or (5.24h) is not satisfied.

Figure 5.2: The structure of RAT algorithm.

The algorithm framework used in this chapter is depicted in Fig. 5.2, where an agent,

which could be deployed in the control center of the base station, is assumed to in-

teract with the environment. An actor network π(s(t)|ϕπ) is applied to generate the

action, which includes the flying direction and distance for each UAV. The critic net-

work Q(s(t), c(t)|ϕQ) is used to obtain the Q-value of the action (i.e., to evaluate the

action generated by actor network). In each time slot, the agent sends the action gen-

erated by actor network to each UAV. Then, each UE tries to associate with one UAV

in its coverage, i.e., (5.12) by using a matching algorithm in Algorithm 4. More specifi-

cally, each UE tries to connect the UAV which can save more offloading energy. If the
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minimum offloading energy is larger than the energy of local execution, the UE will

decide to conduct the task locally. Note that RAT has the same optimization strategy

for resource allocation as CAT.

Also, each UAV selects the UEs based on the following criteria: 1) UE should be within

its coverage area; 2) UE could save more energy, i.e., the more of EL
ij(t) − EC

ij(t) will

be given higher priority in offloading to this UAV. We will introduce the details of the

proposed matching algorithm in Algorithm 4. After the matching algorithm, the reward

in (5.34) can be obtained.

We assume that there is an experience replay buffer for the agent to store the experience

[s(t), c(t), z(t), s(t+1)]. Once the experience replay buffer is full, the learning procedure

starts. A mini-batch with K experiences can be obtained from the experience replay

buffer to train the networks.

In the classical DRL algorithms, such as Q-learning [75], SARSA [76] and DDPG [31], the

mini-batch uniformly samples experiences from the experience replay buffer. However,

since TD-error in (2.4) is used to update the Q-value network, experience with high

TD-error often indicates the successful attempts. Therefore, a better way to select

the experience is to assign different weights to samples. Schaul et al. [55] developed

a prioritized experience replay scheme, in which the absolute TD-error |δk| is used to

evaluate the probability of the sampled k-th experience from the mini-batch. Then, the

probability of sampling the k-th experience can be given by

P (k) =
pβk∑

m∈K pβm
, (5.35)

where pk = |δk| + ϵ, ϵ = 0.001 is a positive constant to avoid the edge-case of transi-

tions not being revisited if |δk| is 0, β = 0.6 is denoted as a factor to determine the

prioritization [55].

However, frequently sampling experiences with high |δk| can cause divergence and os-

cillation. To tackle this issue, the importance-sampling weight [77] is introduced to

represent the importance of sampled experience, which can be given by

ωk =
1

(X · P (k))µ
, (5.36)
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where X is size of experience replay buffer, µ is given as 0.4 [55]. Thus, the loss function

L(ϕQ) in (2.3) is updated as

L(ϕQ) =
1

K

K∑
k=1

ωkδ
2
k, (5.37)

which is used in our proposed RAT to train the networks. Next, we describe the pseudo

code of the overall RAT framework in Algorithm 3.

Algorithm 3 RAT Algorithm

1: Initialize actor network π(s(t)|ϕπ) with parameters ϕπ and critic network
Q(s(t), s(t)|ϕQ) with parameters ϕQ;

2: Initialize target networks Q′(·) with parameters ϕQ′
= ϕQ and π′(·) with parameters

ϕπ′
= ϕπ;

3: Initialize experience replay buffer X ;
4: for epoch =1,..., kmax do
5: Initialize s(t);
6: for time slot t =1,..., T do
7: π(s(t)|ϕπ) + ρN ′ where N ′ is the random noise and ρ decays with t;
8: for UAV j=1,..., M do
9: Execute c(t);

10: Obtain s(t+ 1);
11: end for
12: Obtain the user association with UAVs using matching algorithm proposed in

Algorithm 4;
13: Obtain the reward z(t) from (5.34);
14: Store experience [s(t), c(t), z(t), s(t+ 1)] into the replay buffer;
15: if the replay buffer is full then
16: for k = 1,..., K do
17: Sample k-th experience with probability P (k) from (5.35);
18: Calculate |δk| and ωk from (2.4) and (5.36) respectively;
19: end for
20: Update parameters of the critic network ϕQ by minimizing its loss function

according to (5.37);
21: Update parameters of the actor network ϕπ by using policy gradient approach

according to (2.5);
22: Update two target networks with the updating rate τ :
23: end if
24: end for
25: end for

We first initialize the actor, critic, two target networks, and experience replay buffer in

Line 1 - 3. In the beginning of each epoch, all UAVs start to serve UEs from different

taking off points. Note that for better exploration, we add a random noise N ′ to the

action, where N ′ follows a normal distribution with 0 mean and variance 1, ρ is set

to 2 and decays with a rate of 0.9995 in each time step. From Line 8-11, each UAV

flies according to the generated action c(t) and enters the next state s(t + 1). Then,
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we obtain the user association by using Algorithm 4. Next, the reward z(t) is obtained

according to (5.34) (i.e., Line 13). The experience is also stored in the replay buffer.

When the buffer is full, the mini-batch samplesK experiences by applying the prioritized

experience replay (i.e., Line 16-19). Then, we update the actor and critic networks by

using loss function in (5.37) and policy gradient in (2.5) respectively. Finally, we update

the target networks by using the following equations as (i.e., Line 22)

ϕQ′ ← τϕQ + (1− τ)ϕQ′
, (5.38)

and

ϕπ′ ← τϕπ + (1− τ)ϕπ′
, (5.39)

where τ is the updating rate.

Algorithm 4 Matching Algorithm

1: Initialize A and Fj , ∀j ∈M, ∀i ∈ N ;
2: for UAV j = 1,..., M do
3: for UE i = 1,..., N do
4: if (5.12) is met then
5: Calculate EL

ij(t), E
Tr
ij (t) and fC

ij (t);

6: if EL
ij(t) > ETr

ij (t) then
7: Store i into Ej ;
8: end if
9: end if

10: end for
11: Sort the element in Ej in descending order with respect to EL

ij(t)− ETr
ij (t);

12: end for
13: repeat
14: for UAV j = 1,..., M do
15: i = GetTopItem(Ej);
16: if (5.4), (5.23) are met then
17: if ETr

ij (t) < ETr
iA(i)(t) or A(i) = 0 then

18: A(i) = j;
19: end if
20: RemoveTopItem(Ej);
21: end if
22: end for
23: until Each UE in Ej is checked.
24: Return A

Next, we introduce the low-complexity matching algorithm which can decide the user

association and resource allocation given UAVs’ trajectories, as shown in Algorithm 4.

First, we denote A with size N to record the user association between UEs and UAVs.
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If A(i) = j, the i-th UE matches with the j-th UAV, while if A(i) = 0, the i-th UE is

not matched yet and has to execute its task locally. In addition, we denote a preference

list Ej for the j-th UAV to record UEs that can benefit from offloading. Then, from

Line 2 to 10, we generate the preference list Ej for the j-th UAV. Precisely, if constraint

(5.12) is met, we obtain EL
ij(t), E

Tr
ij (t), and fC

ij (t) according to (5.19), (5.17), and (5.27),

respectively. UEs that benefit from offloading will be stored in Ej . Since UAVs need to

save as much energy of UEs as possible, we sort the preference list Ej with descending

order with respect to EL
ij(t)−ETr

ij (t), as shown in Line 11. The UE that can save more

energy via offloading will be matched with a higher priority. Next, from Line 13 to

23, we conduct the matching process. Each UAV keeps selecting UEs according to its

preference list, and constantly checking the constraints (5.4) and (5.23) based on A. In

the meantime, the selected UE will determine whether to match with the UAV or not.

Precisely, from Line 17 to 19, if the selected UE is not matched before, or matching with

the j-th UAV could save more energy than previous match, the corresponding A(i) will

be updated. We do this process until all the UEs in each preference list are checked.

Then, the final user association can be obtained from A.

According to [31], our RAT algorithm is an offline learning and off-policy DRL-based

algorithm as the experience replay mechanism is applied, and the mini-batch will sample

several uncorrelated experiences for training networks in each time step. Additionally,

the training procedure can be deployed in a simulator, and the RAT model can be

easily deployed in reality when the convergence is achieved, which will inevitably reduce

the payoff of implementation. Furthermore, once the whole networks are converged, the

solutions can be generated very fast with only some simple algebraic calculations instead

of solving the original MINLP. This is due to the fact that during the training stages,

random taking off points of all the UAVs are generated and the networks are trained to

converge.

Discussions: after adequate training process, the RAT model, including the networks

is saved for testing. In each time slot, the action of all UAVs is generated together

by actor network. In our chapter, as the fully-connected hidden layers are applied, the

computational complexity for generating action of UAVs is O
(∑L

l=1 nl · nl−1
)
, where L

is the number of network layers, nl is the number of neurons in the l-th layer. Then, the

computational complexity of matching algorithm is O(NM). The overall complexity of

RAT algorithm in testing process is O
(
(
∑L

l=1 nl · nl−1 +NM)T
)
.
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5.5 Extension to 3-D Channel Model

In this section, in order to consider the more practical environment and the impacts

of blockage and shadowing, we extend the previous free-space to 3-D channel model

proposed in [39]. In each time slot, we assume the UAV can fly with a vertical direction

θvj (t) ∈ [0, π], a horizontal direction θhj (t) ∈ [0, 2π], and a flying distance dj(t) ∈ [0, dmax].

We define the coordinate of the j-th UAV in the t-th time slot as [Xj(t), Yj(t), Zj(t)],

where

Xj(t) = Xj(0) +
t∑

l=1

dj(l)sin
(
θvj (l)

)
cos
(
θhj (l)

)
, (5.40)

and

Yj(t) = Xj(0) +
t∑

l=1

dj(l)sin
(
θvj (l)

)
sin
(
θhj (l)

)
, (5.41)

and

Zj(t) = Zj(0) +
t∑

l=1

cos
(
θvj (l)

)
, (5.42)

in which, [Xj(0), Yj(0), Zj(0)] is the initial coordinate of the UAV. For collision avoid-

ance, we consider

Zmin ≤ Zj(t) ≤ Zmax, ∀t ∈ T , (5.43)

where Zmin and Zmax are the minimal and maximal flying altitude of the UAV.

Thus, the distance between the j-th UAV and the i-th UE in t-th time slot is given by

dij(t) =
√(

Xj(t)− xi
)2

+
(
Yj(t)− xi

)2
+ Z2

j (t), ∀j ∈M, i ∈ N , t ∈ T . (5.44)

The coverage radius of the j-th UAV in the t-th time slot can be given by

Rmax
j (t) = Zj(t)tan(θ

max). (5.45)

The mean path loss between the j-th UAV and the i-th UE in the t-th time slot can be

expressed as [39]

Lij(t) =
ηLoS − ηNLoS

1 + aexp(−b(θij(t)− a))
+ 20log10

(
dij(t)

)
+ 20log10

(4πfc
c

)
+ ηNLoS, (5.46)
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where ηLoS, ηNLoS are the path loss of achieving LoS and NLoS links, a and b are

constant values that can be obtained in [39], θij(t) = arctan

(
Zj(t)
Rij(t)

)
is the elevation

angle between the UAV and the UE, fc is the carrier frequency, and c is the light speed.

Then, we can show the data rate as follows:

rij(t) = Blog2

(
1 +

PTr

σ2
10−

Lij(t)

10

)
. (5.47)

Additionally, we consider to maximize the energy efficiency of UAVs and motivated

by [78], we show the power consumed by the j-th UAV in the t-th time slot as follows

Pj(t) =Po

(
1 + 3

(vj(t)
Ub

)2)
+ Ps

(√
1 +

1

4

(vj(t)
Vh

)4 − 1

2

(vj(t)
Vh

)2) 1
2

+
π

2
d0ρarsR

2
rvj(t)

3 + wgvj(t)cos
(
θvj (t)

)
,

(5.48)

where Po and Ps are fixed constants that can be obtained in [79], Ub is the tip speed

of the rotor blade, Vh denotes the mean rotor induced velocity when hovering, d0 is the

drag ratio of main body, ρa is the air density, rs is the rotor solidity, Rr means the rotor

radius, w is the weight of UAV, and g is the gravity acceleration.

Thus, the remaining energy of the j-th UAV in the t-th time slot is defined as

ej(t) = emax −
t∑

l=1

Pj(l)T
max, (5.49)

where emax is the maximal energy of each UAV.

Thus, the optimization problem can be written as follows:

P1 : min
U ,A,F

T∑
t=1

( M∑
j=0

N∑
i=1

aij(t)Eij(t) + kz

M∑
j=1

Pj(t)T
max

)
(5.50a)

subject to: (5.24b), (5.24c), (5.24d), (5.24e), (5.24f),

(5.24g), (5.24h), (5.24j), (5.24k),

0 ≤ θvj (t) ≤ π, ∀j ∈M, t ∈ T , (5.50b)

Zmin ≤ Zj(t) ≤ Zmax, ∀j ∈M, t ∈ T , (5.50c)

aij(t)Rij(t) ≤ Rmax
j (t), ∀i ∈ N , j ∈M, t ∈ T . (5.50d)
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where U = {θvj (t), θhj (t), dj(t), ∀j ∈M, t ∈ T }, kz is the weight factor.

To solve the above problem, we define the state and action as follows:

1) State s(t): s(t) = {[Xj(t), Yj(t), Zj(t), ej(t)], ∀j ∈M}.

2) Action c(t): the action set can be defined as c(t) = {[θvj (t), θhj (t), dj(t)], ∀j ∈M}.

3) Reward z(t): we define the reward as follows

z(t) = −
M∑
j=0

N∑
i=1

aij(t)Eij(t)− kz

M∑
j=1

Pi(t)T
max − p, (5.51)

where p is the penalty if any of UAV flies out of the target area, i.e., if (5.24g), (5.24h)

or (5.50c) is not satisfied.

Thus, having defined the state, action and reward, the above problem can be solved by

the proposed RAT algorithm as introduced before.

5.6 Simulation Results

In this section, both convex optimization-based CAT and DRL-based RAT are evaluated

with simulations implemented on Intel i5-3450t, NVIDIA GTX 1050Ti, Python 3.6,

PULP 1.6.10, CVXPY 1.1.7, and Tensorflow 1.15.0. We deploy three fully-connected

hidden layers with 1024, 800 and 600 neurons in both actor and critic networks in RAT.

The actor network is trained by applying RMSPropOptimizer with the learning rate

0.001, whereas the critic network is trained by using AdamOptimzer with the learning

rate 0.001. In the simulation, we assume there are 60 time slots in each training epoch.

There are 100 UEs randomly distributed in a rectangle-shaped area with the side length

of Xmax = 400 m and Y max = 400 m. Additionally, there are 2 UAVs deployed to serve

UEs within the target area. Note that for RAT, each UAV has 20 different taking off

points during the training procedure. Besides, in each time slot, UE generates a task

with communication requirement Di(t) ∈ [10, 50] KB and computation requirement

Fi(t) ∈ [2 × 109, 2 × 1010] cycles. Other parameters are summarized in Table 5.2. We

assume in each time slot, UAVs will send a signal to activate the corresponding UEs,

which will either offload the task or execute locally, within the delay requirement.



67

Table 5.2: Simulation Parameters

Parameters Settings Parameters Settings

T 60 N 100

M 2 V max 30

dmax 30 m Tmax 1 s

Xmax 400 m Y max 400 m

θmax π
4 Zj(0) 75 m

vi 3 g0 1.42 ×10−4
PTr 0.1 W B 10 MHz

σ2 -90 dbm emax 106 J

ki 10−28 fmax 100 GHz

γ 0.999 p 100

kmax 3000 ρ 2

w 2 kg g 10 m/s2

τ 0.001 Zmin 50 m

Zmax 120 m ηLoS 1.6

ηNLoS 23 a 12.08

b 0.11 fc 2.5 GHz

c 3×108 m/s kz 0.0025

Po 79.86 Ub 120 m/s

Ps 88.63 Vh 4.03

d0 0.6 ρa 1.25 kg/m3

rs 0.05 Rr 0.4 m

In order to evaluate the performance of the proposed CAT and RAT, we present the

following three algorithms for comparison purpose.

• Local Execution (LE): All tasks are executed locally without offloading.

• Random moving (RM): In this setting, each UAV randomly selects the horizontal

direction and flying distance to take.

• Cluster moving (CM): We group all the UEs into 10 clusters and each UAV flies

in the trajectory connecting all the cluster center one by one. Note that it takes T
10

time slots for each UAV to move from one cluster center to another one.

• Deep Deterministic Policy Gradient (DDPG) [31]: We set the parameter of

DDPG the same as actor and critic networks of RAT, but do not apply the prioritized

experience replay. In other words, DDPG uniformly samples the experiences from the

experience replay buffer in the training procedure.

Note that both RM, CM, DDPG apply the matching algorithm proposed in Algorithm 4

to decide the user association and resource allocation.
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5.6.1 Convergence Evaluation of CAT and RAT

In this subsection, we show the convergence of proposed CAT and RAT. In Fig. 5.3,

we depict the convergence performance of CAT with three different pairs of initial tra-

jectories. Specifically, we group all UEs into one cluster and the UAVs fly in a circle

around the cluster center with radius 80 m, 100 m, and 120 m respectively. We denote

these three pairs of UAV trajectories as the initial trajectories. As shown in Fig. 5.3,

we can conclude that for any initial trajectory, the overall energy consumption of UEs

achieved by CAT always decreases and finally remains stable after several iteration

times. However, one can also observe that the convergent solution achieved by CAT will

be influenced by the initial trajectory.
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Figure 5.3: The convergence performance of proposed CAT.

It is worth noting from Fig. 5.3, 5.4, and 5.5 that when the training cure or iteration

curve keeps within particular range, we can conclude that the convergence is obtained.

Additionally, as the agent in DRL framework keeps trial and error during the training

process, that is to say the training curve will be unavoidable fluctuating.

Then, we show the convergence performance of RAT in training process. From Fig. 5.4

to Fig. 5.5, we compare the influence of hyperparameters to both DDPG and RAT.

Prioritized experience replay is applied in RAT. Both RAT and DDPG start the learning
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ferent batch size.
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Figure 5.4: The convergence performance of RAT and DDPG with different size of
mini-batch.
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Figure 5.5: The convergence performance of RAT and DDPG with different experi-
ence replay buffer.

procedure once the experience replay buffer is full. In Fig. 5.4, we depict the overall

energy consumption of RAT and DDPG for different size of mini-batches, where the size

of experience replay buffer is 50000. To be more specific, from Fig. 5.4(a), we can see

that RAT has the similar convergence performance for different size of mini-batches and

it becomes more stable during the learning procedure. In Fig. 5.4(b), when the batch

size is 128, DDPG has an obvious fluctuation during the learning procedure. When the

batch size is 256, the convergence performance of DDPG becomes worse after the 1400-

th epoch. While DDPG can only have a promising convergence performance when the

batch size is 512. Overall, from Fig. 5.4, it is clear to see that the RAT is less sensitive

to the change of mini-batch than DDPG.

In Fig. 5.5, we depict the overall energy consumption of RAT and DDPG for different
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sizes of experience replay buffer, where the size of mini-batch is set as 128. From

Fig. 5.5(a) and 5.5(b), when the buffer size is 10000, the proposed RAT finally remains

stable between 450 J and 500 J, although it has an obvious fluctuation during the

learning process. The DDPG has no convergence tendency during the entire learning

procedure. When the buffer size is 50000, DDPG becomes worse after 1000-th epoch,

and finally reaches 550 J. Overall, we can observe that DDPG can only have a promising

performance when the buffer size is 30000, while RAT can always converge and remain

stable during the learning procedure, no matter which the buffer size is. Thus, we can

conclude that RAT is less sensitive to the size of experience replay buffer than DDPG.

5.6.2 Trajectory Evaluation of CAT and RAT
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Figure 5.6: Multi-UAV enabled F-MEC controlled by RAT.

In Fig. 5.6 and Fig. 5.7, we show the trajectories obtained by RAT and CAT, respectively.

Note that during the training procedure, the UAVs controlled by RAT always starts to

serve UEs from 20 different taking off points. Additionally, for fairness, the UAVs

controlled by CAT have the same taking off points as RAT. For the initial trajectories,

we group all the UEs into 6 clusters and each UAV flies in the trajectory connecting all

cluster centers one by one. Note that the iteration number of CAT is 10.
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Figure 5.7: Multi-UAV enabled F-MEC controlled by CAT.

As shown in Fig. 5.6, we randomly select 5 pairs of taking off points for comparison. One

can observe that no matter which the taking off points of the UAVs are, the proposed

RAT can guide the UAVs to their certain areas and move around to serve different UEs.

This is due to the fact that we train the RAT to converge during the training stage by

randomly generating several taking off points of the UAVs. Then, during the testing

stage, RAT can intermediately output the best solutions once taking off points are given.

In Fig. 5.7, one can also see that the trajectories obtained by CAT are similar with

the initial trajectories. This may indicate that CAT may fall into the local optimum,

whereas the proposed RAT has the global search ability due to the exploration feature

of DRL.

5.6.3 Energy Consumption Evaluation of CAT and RAT

In Fig. 5.8, we compare the performance of RAT, CAT, CM, RM and LE in terms

of energy consumption of UEs. As shown in Fig. 5.8(a), we depict the overall energy

consumption of UEs achieved by RAT, CAT, CM, RM, and LE with different taking

off points. It is obvious to see that LE has the worst performance. This is because
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Figure 5.8: The performance comparison of RAT, CAT, RM, CM, and LE.

all UEs execute their tasks locally without offloading, which will inevitably consume

more energy. RM outperforms LE but it fluctuates with the index of taking off points.

CM has better performance than RM, which always remains between 520 J and 550 J.

CAT outperforms LE, RM, and CM, which remains about 500 J. Additionally, one can

observe that RAT achieves the best performance, as expected.

Furthermore, we depict the overall energy consumption of UEs achieved by RAT, CAT,

RM, CM, and LE in different number of time slots in Fig. 5.8(b), with the index of taking

off points setting as 1. It is readily to see that both the energy consumption of RAT,

CAT, RM, CM, and LE increase as the number of time slots increases. LE performs

the worst, which consumes above 700 J eventually. Additionally, we can observe that

RAT outperforms other algorithms. Moreover, CAT still has considerable performance,

which is only slightly worse than RAT.

Table 5.3: Executed Time of CAT and RAT

Index CAT (s)
RAT

Training (s) Testing (s)

1 1405.23

10534.88

1.23
2 1491.74 1.22
3 1460.46 1.20
4 1445.11 1.21
5 1402.48 1.21

In Table 5.3, we show the time consumed by CAT and RAT for each pair of taking off

points in Fig. 5.8. Note that RAT is trained for 3000 epochs, while the iteration number
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of CAT is 10. One can see that for all the taking off points, the proposed CAT takes over

1400 seconds to find solutions, while RAT only takes 1.2 seconds in average, although it

takes longer time in training process. This is because once the RAT are trained properly,

it only needs a few number of algebra calculations to obtain the solution.

Additionally, in Fig. 5.9, we analyse the overall energy consumption of RAT, CAT, RM,

CM and LE when we have different number of UAVs. Note that for fairness, the UAVs

controlled by RAT, CAT, RM, CM have the same taking off points. Specifically, in

Fig. 5.9, one observes that the energy consumption of UEs achieved by RAT, CAT, RM,

and CM decrease with the increasing number of UAVs. This is because deploying more

UAVs provides higher computational capacity. Therefore, more UEs will benefit from

offloading, which will decrease their overall energy consumption. Besides, we observe

that for all the cases, RAT can achieve the best performance, whereas CAT performs

slightly worse than RAT. Also, CM, LM and RM have worse performance than CAT,

as expected.

1 2 3 4 5
Number of UAVs

300

400

500

600

700

Ov
er
al
l E

ne
rg
y 
Co

ns
um

pt
io
n 
(J)

RAT
CAT

CM
RM

LE

Figure 5.9: The overall energy consumption of RAT, CAT, RM, CM, LE with different
number of UAVs.
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5.6.4 Extension to 3-D channel model

In this subsection, we analyse the performance of proposed RAT in 3-D channel model.

We set the number of time slots T as 50, the channel bandwidth as 20 MHz, Di(t) ∈

[5, 10] KB, Fi(t) ∈ [7.5×108, 2×109] cycles, the size of mini-batch is 512, and the size of

experience replay buffer is 100000. In each training epoch, each UAV starts to serve UEs

with the altitude of Zj(0) = 50 m. Firstly, we depict the overall energy consumption

achieved by the proposed RAT algorithm during the training procedure in Fig. 5.10.

One can see that the overall energy consumption of UEs remains between 600 J and 700

J in the beginning. When the learning process starts, the curve decreases and eventually

remains slightly above 350 J.
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Figure 5.10: The convergence performance of proposed RAT in 3-D UAV trajectory
and 3-D channel model scenario.

Then, we depict the UAV trajectories obtained by RAT during testing phase in Fig. 5.11.

Note that blue dots represent UEs, red stars represent the trajectories of UAV1 and green

triangles represent the trajectories of UAV2. As shown in Fig. 5.11, one can see that the

UAVs always move from their taking off points to the certain areas, and move around to

serve different UEs with the most sufficient distance. In addition, one can observe that

each UAV will increase its altitude at the beginning. This is because higher altitude
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may increase the coverage radius of the UAV, thereby serving more UEs, although it

also decreases the data rate of the offloading process.
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Figure 5.11: 3-D trajectories obtained by RAT in 3-D scenario (blue dots for UEs,
red stars for UAV1 and green triangles for UAV2).

Furthermore, we analyse the overall energy consumption of UEs and UAVs achieved by

RAT, CM, and RM in different scenarios in Fig. 5.12, where the UAVs controlled by CM

first climb from the minimal altitude Zmin to the maximal altitude Zmax in the first 10

time slots, and after that fly horizontally. Also, the RM randomly selects the available

flying action for each UAV, including the horizontal flying direction, the vertical flying

direction, and the flying distance. More precisely, in Fig. 5.12(a), one can observe that

our proposed RAT consistently outperforms CM and RM, whereas CM performs worse

than RAT but better than RM, as expected.

Finally, we show the overall energy consumption of UAVs achieved by RAT, CM and

RM in Fig. 5.12(b). One observes that our proposed RAT has the best performance,

whereas CM has the worse performance than RAT, but better than RM.
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Figure 5.12: The performance comparison of RAT, CM, and RM.

5.7 Summary

In this chapter, we have considered the flying mobile edge computing architecture, by

taking advantage of the UAVs to serve as the moving platform. We aim to minimize

the energy consumption of all the UEs by optimizing the UAVs’ trajectories, user as-

sociations and resource allocation. To tackle the multi-UAVs’ trajectories problem, a

convex optimization-based CAT has been first proposed. Then, in order to conduct fast

decision, a DRL-based RAT including a matching algorithm has also been proposed.

Simulation results show that CAT and RAT have considerable performance.



Chapter 6

Multi-Agent DRL-based

Trajectory Planning for

Cooperative UAV-enabled MEC

6.1 Introduction

As a benefit of their compelling features, unmanned aerial vehicles (UAVs) are expected

to play a vital role in wireless communication systems. To elaborate a little further,

UAVs are capable of providing wireless connectivity even without network infrastruc-

ture, or complement the conventional base stations (BSs), whose coverage may suffer

from severe blockage due to tall buildings or by the damage caused by natural disas-

ters [26]. In order to support reliable communication links, UAVs can promptly adjust

their locations according to the dynamic communication environment. Furthermore,

since UAVs can be deployed freely and flexibly in three-dimensional (3D) space, direct

line-of-sight (LoS) communication with ground-UEs can be readily established, which

can potentially boost the throughput in practical scenarios [41]. As a benefit of the above

appealing features, in [80] and [81], both fixed-wing UAVs and rotary-wing UAVs were

considered as the relaying nodes, for providing seamless connectivity. In [82], Wang et

al. investigated a fixed-wing UAV-to-UAV communication system, and they proposed a

path planning algorithm for minimizing the latency of information transmission, under

the constraints of accelerations, location uncertainties and throughput. In [83], Cui et

77
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al. studied the problem of maximizing the average data rate among UEs in mobile-

UAV-enabled networks both in orthogonal multiple access (OMA) and non-orthogonal

multiple access (NOMA) modes. Furthermore, in agricultural applications, as well as

in weather monitoring and wildfire management, UAV can be utilized as a mobile data

collector [42]. As a future development, in [36], the authors deployed the UAV as the

mobile energy transmitter (ET) in a wireless power transfer (WPT) system.

In order to fully exploit the potential of UAVs in wireless communication systems, it

is important to investigate their path planning, hovering altitude and trajectory con-

trol [84–86]. In [86], Wang et al. creatively proposed a joint UAV altitude and power

allocation optimization method, which beneficially alleviated the inter-cell interference

of each UAV network. In [22], Al-Hourani et al. optimized the latitude of UAVs in

order to provide the maximum radio coverage area on the ground. In [87], both static

and mobile UAVs were considered in device-to-device (D2D) networks. Additionally,

the UAV’s altitude was optimized for maximizing the system’s sum-rate and coverage

probability. To tackle the throughput maximization problem of UAV-aided mobile re-

laying systems, Zeng et al. [88] proposed an iterative algorithm to optimize the UAV’s

trajectory and power allocation. In the content of multi-UAV enabled multiuser systems,

Wu et al. [43] maximized the minimum throughput over all ground users by jointly op-

timizing the user scheduling, power control and UAV trajectories. In order to meet the

different quality-of-service (QoS) requirement of users, Alzenad et al. [89] investigated

coverage-placement problem of UAV-BSs and proposed an optimal placement algorithm

for maximizing the number of users supported.

In recent years, mobile edge computing (MEC) has been shown to dramatically improve

the user experience [67, 90]. By providing both computing and storage hardware at the

network edges, namely at the BSs or access points (APs), the resource-limited UEs have

the option of offloading their computation-intensive and latency-critical applications to

the MEC servers [91]. Due to the mobility of UAVs, recent years have seen research

progress on the integration of UAVs with MEC [92, 93]. In [94], Motlagh et al., were

amongst the first who proposed UAV-enabled MEC, in which UEs can significantly re-

duce the energy consumption via offloading. In order to minimize the overall energy

dissipation of UEs while meeting their QoS requirement, Jeong et al. [95] proposed an

efficient successive convex approximation-based algorithm for jointly optimizing the bit
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allocation and UAV’s trajectory. Considering a multi-UAV system, Hua et al. [96] in-

vestigated the multi-UAV scenario, and they optimized the UAVs’ trajectories, transmit

power and user scheduling.

Given the recent advances in machine learning [97], the combination of deep neural net-

works (DNNs) [98] and reinforcement learning (RL) [99], i.e., deep reinforcement learning

(DRL) has become a hot research topic. In DRL, an agent is assumed to interact with

the environment for learning the optimal policy with the aid of exploration. Compared

to traditional RL, DRL facilitates more accurate convergence and approximation by ex-

ploiting the power of DNNs for estimating the associated functions in RL [100]. The

great potential of DRL in solving complex control problems has also been demonstrated

in [29, 31, 32, 101, 102]. In [29], Mnih et al. introduced the deep Q network (DQN)

philosophy, which ignited the field of DRL. For instance, Wang et al.[101] systematically

investigated the problem of distributed Q-learning aided heterogeneous network asso-

ciation in the content of energy-efficient Internet of things (IoT). In order to improve

the training procedure, DQN relies on a pair of techniques namely, experience replay

and target networks. For the sake of tackling the typical over-estimation problem of

RL, a double DQN (D-DQN) was proposed by Van Hasselt et al. [32]. However, DQN

may suffer from the curse of high-dimensional action spaces and cannot be readily ap-

plied to continuous domains. Thus, motivated by this, Lillicrap et al. [31] proposed

a deep deterministic policy gradient (DDPG) technique based on the so-called actor-

critic architecture, which can be readily applied for a range of challenging problems. A

comprehensive survey of multi-agent RL, have also been provided by Bu et al [102].

Against the above background, we conceive a cooperative UAV-enabled MEC framework,

where each UAV is controlled by a dedicated agent. We aim for jointly maximizing the

geographical fairness1 among the UEs covered, the fairness of UE-load of each UAV2,

while minimizing the overall energy consumption of UEs by optimizing each UAV’s

trajectory and offloading decisions. This is a complex problem which includes both

integer and continuous variables. Hence it is challenging to address it by traditional

algorithms, such as convex optimization and dynamic programming. Therefore, we

conceive a multi-agent deep reinforcement learning based solution, with the help of the

popular Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [103] for solving

1The geographical fairness reflects the QoS level of UEs served by UAVs from the initial time slot to
the current time slot.

2The UE-load of UAV is defined in (6.18).
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it. Given the UAVs’ trajectories, a low-complexity approach is introduced for optimizing

the offloading decisions of UEs. Our simulation results will show that the proposed DRL

based algorithm outperforms the benchmark algorithms. We summarize the difference

between our work and the existing literature in Table 6.1.
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Table 6.1: Comparison between our work and the existing literature.

Reference
Single
UAV

Multi
UAV

Mobile edge
computing (incl.)

Path
planning

Offloading
decision

Reinforcement learning
(e.g., Q-learning)

Multi
agent learning DNN

[41] ✓ ✓
[81] ✓ ✓
[82] ✓ ✓
[83] ✓ ✓
[42] ✓ ✓
[36] ✓ ✓
[84] ✓ ✓ ✓
[85] ✓ ✓ ✓ ✓
[86] ✓ ✓
[87] ✓ ✓
[88] ✓ ✓
[43] ✓ ✓
[89] ✓ ✓
[92] ✓ ✓ ✓ ✓
[93] ✓ ✓ ✓
[95] ✓ ✓ ✓
[96] ✓ ✓
[101] ✓ ✓
[103] ✓ ✓ ✓

Our work ✓ ✓ ✓ ✓ ✓ ✓ ✓
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The rest of the chapter is organized as follows. In Section 6.2, we introduce the sys-

tem model and the optimization problem. In Section 6.3, our multi-agent based DRL

algorithm is proposed. Our experimental results are shown in Section 6.4. Finally, our

summary is drawn in Section 6.5.

The main notations used in this chapter are summarized in Table 6.2.

Table 6.2: List of main notations

Notation Description

n, N, N The index, number and the set of UEs

m, M,M The index, number and the set of UAVs

t, T, T The index, number and the set of TSs

zn,m,t Offloading decision of UE n

Sn,t Computation task of UE n in TS t

Dn,t Data volume of task Sn,t

Fn,t Overall CPU cycles required for task Sn,t

fn,m,t Computation capacity of UAV m allocated to UE n

TC
n,m,t Execution time of UAV m to UE n in TS t

T Tr
n,m,t Transmission time of UE n to UAV m in TS t

Tmax Maximal time duration of each TS

αm,t, dm,t Flying angle and distance of UAV m in TS t

dmax Maximal flying distance of UAV in each TS

[Xm,t, Ym,t, H] Coordinates of UAV m in TS t

[xn, yn] Coordinates of UE n

Rn,m,t Horizontal distance between UAV m and UE n

Rm,m′,t Horizontal distance between UAV m and UAV m′

Rmax Maximal horizontal coverage radius of UAV

rn,m,t Transmitting data rate of UE n to UAV m

EC
n,m,t Energy consumption for task execution

ETr
n,m,t Energy consumption for offloading

cm,t Relative UE-load of UAV m in TS t

fu
t Fairness index of UE-load of each UAV in TS t

fe
t Fairness index of UEs in TS t

6.2 System Model

In this section, we describe the system model. As shown in Fig. 6.1, we assume that

there are N UEs randomly distributed in a square-shaped area with side length lmax,

and the set of UEs is denoted as N ≜ {n = 1, 2, ...N}. There are M UAVs flying at

a fixed altitude H over the target area to serve the ground UEs, and the set of UAVs

is denoted as M ≜ {m = 1, 2, ...,M}. We also assume that UAVs can be deployed
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X

Z

Y

(Xm,0, Ym,0, H)

(Xm,t, Ym,t, H)

(xn, yn, 0) lmax

lmax

Figure 6.1: Overall System Architecture

and easily charged on the building roof when UAVs run out of their energy. Assume

that each UE has a computational task to be executed at each time slot (TS) over T

consecutive TSs, T ≜ {t = 1, 2, ..., T}. Each of the tasks can be executed either by the

UE or offloaded to one of the UAVs. We define a new set m ∈ M′ ≜ {0, 1, ...,M} to

denote the possible places where the tasks can be executed, with m = 0 representing

local execution. Then, we define the offloading decision variable zn,m,t as

zn,m,t = {0, 1},∀n ∈ N ,m ∈M′, t ∈ T , (6.1)

where zn,m,t = 1,m ̸= 0 means that UE n decides to offload the task to UAV m in TS

t, while zn,m,t = 1,m = 0 represents that UE n carries out the task itself in TS t, and

otherwise zn,m,t = 0. Furthermore, we assume that each task can only be executed at a

single place. Thus, we have

M∑
m=0

zn,m,t = 1,∀n ∈ N , t ∈ T . (6.2)
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Similarly to [104], in the TS t, we assume that UE n has a computationally intensive

task Sn,t to be executed, which is defined as

Sn,t = {Dn,t, Fn,t}, ∀n ∈ N , t ∈ T , (6.3)

where Dn,t denotes the data volume to be processed, while Fn,t describes the total

number of the CPU cycles required for executing this task. Both Dn,t and Fn,t can be

characterized as in [105].

Furthermore, in TS t, each of UAV flies in a direction determined by the angle of

αm,t ∈ [0, 2π), distance of dm,t ∈ [0, dmax], and cannot go beyond the border of the

target area. We assume that the initial coordinates of UAV m are set as [Xm,0, Ym,0, H].

Then, the coordinates of UAV m in TS t can be calculated as [Xm,t, Ym,t, H], where

Xm,t = Xm,0 +
∑t

t′=1 dm,t′cos(αm,t′) and Ym,t = Ym,0 +
∑t

t′=1 dm,t′sin(αm,t′). Thus, we

have

0 ≤ Xm,t ≤ lmax, ∀m ∈M, t ∈ T , (6.4)

and

0 ≤ Ym,t ≤ lmax, ∀m ∈M, t ∈ T . (6.5)

Additionally, we denote the distance between UAV m and UAV m′ in TS t as Rm,m′,t,

which can be expressed as

Rm,m′,t =
√

(Xm,t −Xm′,t)2 + (Ym,t − Ym′,t)2. (6.6)

We assume that the UAVs should keep a minimal distance of Ru for avoiding their

collision in each TS. Then, we have

Rm,m′,t ≥ Ru,∀m,m′ ∈M,m ̸= m′. (6.7)

The horizontal distance between UE n and UAV m in TS t is calculated as

Rn,m,t =
√
(Xm,t − xn)2 + (Ym,t − yn)2, ∀n ∈ N,m ∈M, t ∈ T , (6.8)
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where [xn, yn] is assumed to be the coordinate of UE n. Note that if UE n decides to

offload a task to UAV m in TS t, it must be in the coverage of UAV m. Then, we have

zn,m,tRn,m,t ≤ Rmax, ∀n ∈ N ,m ∈M, t ∈ T , (6.9)

where Rmax is the maximal horizontal coverage radius of the UAVs.

Then, the offloading data rate can be expressed by

rn,m,t = Blog2

(
1 +

ρPn

H2 +R2
n,m,t

)
, ∀n ∈ N ,m ∈M, t ∈ T , (6.10)

where B is the channel’s bandwidth, Pn is the transmission power of UE n, ρ = g0G0/σ
2,

G0 ≈ 2.2846, g0 is the channel’s power gain at the reference distance of 1 m and σ2 is

the noise power [106]. Here we do not consider any particular modulation and coding

scheme.

Thus, if UE n decides for offloading its task to UAV m in TS t, the time required for

offloading the data is given by

T Tr
n,m,t =

Dn,t

rn,m,t
, ∀n ∈ N ,m ∈M, t ∈ T , (6.11)

and the execution time of the task can be expressed as

TC
n,m,t =

Fn,t

fn,m,t
, ∀n ∈ N ,m ∈M′, t ∈ T , (6.12)

where fn,m,t represents the computational capability of UAV m that can be allocated to

UE n, and m = 0 indicates local execution. Thus, the overall time required for executing

the task can be described as

[l]Tn,m,t =


TC
n,m,t, if local execution,

T Tr
n,m,t + TC

n,m,t, if offloading.

(6.13)

We also assume that all tasks should be executed within the maximal time duration

Tmax of TS. Then, we have

zn,m,tTn,m,t ≤ Tmax, ∀n ∈ N ,m ∈M′, t ∈ T . (6.14)
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According to [56], if the UE n decides to execute a task locally, the energy consumption

is given by

EC
n,m,t = kn(fn,m,t)

vnTC
n,m,t, ∀n ∈ N , t ∈ T , (6.15)

where kn ≥ 0, vn ≥ 1 are positive coefficients.

If UE n decides to offload a task, the energy consumption of offloading is

ETr
n,m,t = PnT

Tr
n,m,t, ∀n ∈ N ,m ∈M, t ∈ T . (6.16)

Thus, the energy consumption at UE n can be expressed as

[l]En,m,t =


EC

n,m,t, if local execution,

ETr
n,m,t, if offloading.

(6.17)

Then, we define cm,t ∈ [0, 1] as the relative UE-load of UAV m in TS t, as:

cm,t =

∑N
n=1 zn,m,t

N
, ∀m ∈M, t ∈ T . (6.18)

In this chapter, our first objective is to minimize the total energy consumption of UEs

via optimizing both the offloading decisions and the UAVs’ trajectories. However, this

may lead to an unfair process since some UAVs may serve more UEs than others. To

address this issue, we define a fairness index fu
t as

fu
t =

(∑M
m=1

∑t
t′=1 cm,t′

)2
M
∑M

m=1

(∑t
t′=1 cm,t′

)2 , (6.19)

where fu
t reflects the level of fairness among the UAVs physically, if all the UAVs have

a similar UE-load commencing from the initial TS up to TS t, the value of fu
t is closer

to 1.

Then, to avoid the situation that some UEs are served during many TSs, while others

are never served at all, we define another geographical fairness fe
t as follows

fe
t =

(∑N
n=1

∑t
t′=1 zn,m,t′

)2
N
∑N

n=1

(∑t
t′=1 zn,m,t′

)2 , (6.20)
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where fe
t reflects the level of fairness among the UEs, explicitly, if all UEs are served for

a similar number of TSs commencing from the initial TS to the TS t, the value of fe
t is

closer to 1.

Then, we formulate our optimization problem as follows

P1 : max
P ,Z

T∑
t=1

fu
t · fe

t∑N
n=1

∑M
m=0 zn,m,tEn,m,t

(6.21a)

subject to:

zn,m,t = {0, 1},∀n ∈ N ,m ∈M′, t ∈ T , (6.21b)
M∑

m=0

zn,m,t = 1, ∀n ∈ N , t ∈ T , (6.21c)

0 ≤ Xm,t ≤ lmax, ∀m ∈M, t ∈ T , (6.21d)

0 ≤ Ym,t ≤ lmax, ∀m ∈M, t ∈ T , (6.21e)

0 ≤ αm,t < 2π, ∀m ∈M, t ∈ T , (6.21f)

0 ≤ dm,t ≤ dmax, ∀m ∈M, t ∈ T , (6.21g)

Rm,m′,t ≥ Ru, ∀m,m′ ∈M,m ̸= m′, (6.21h)

zn,m,tRn,m,t ≤ Rmax, ∀n ∈ N ,m ∈M, t ∈ T , (6.21i)

zn,m,tTn,m,t ≤ Tmax, ∀n ∈ N ,m ∈M′, t ∈ T . (6.21j)

where P = {αm,t, dm,t, ∀m ∈M, t ∈ T } and Z = {zn,m,t,∀n ∈ N ,m ∈M′, t ∈ T }. Our

objectives are to maximize the fairness of UE-load of each UAV and the fairness of the

number of times that each UE is served by UAVs over all the TSs, while minimizing

the overall energy consumption of UEs. It is readily observed that the optimization

problem cannot be solved by traditional approaches, since it involves both the continuous

variables P and the discrete variables Z. Thus, in this chapter, a Multi-Agent deep

reinforcement learning based Trajectory control algorithm (MAT) is proposed.

6.3 The Proposed Algorithm

In this section, we present our proposed algorithm.
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6.3.1 MAT

In this section, by applying the popular MADDPG [103], we conceive a multi-agent

MDP, namely an observable Markov game [107]. It is assumed that there are M agents

interacting with the environment characterized by a set of states S ≜ {st, t ∈ T } and a

set of actions A ≜ {at, t ∈ T }. The state st consists of the private observation om,t and

some other extra information known by each agent. Additionally, each UAV is controlled

by its dedicated agent. In each TS, each agent obtains its private observation om,t and

takes its own action am,t as well as receives a reward rm,t. Then, the environment

updates the state and traverses to a new state. Note that each agent is equipped with

an actor network am,t = πm(om,t), a critic network Qm(st, at), their target networks

am,t+1 = πm′
(om,t+1) and Qm′

(st+1, at+1), as well as an experience replay buffer Bm.

The proposed algorithm is based on the framework of centralized training combined with

decentralized execution. During the training process, each agent sends its own private

observation om,t and action am,t to the environment, and then the states st which consist

of the observations of all the agents and actions are sent back to each agent. Here, all the

agents can exchange their private information simultaneously with each other, including

coordinates. Furthermore, the critic network of each agent is trained with the states and

actions that includes all the agents’ observations and actions. Then, during the testing

process, each agent can execute its action by only receiving its own private observations

om,t, which can potentially maximize the accumulated rewards.

Thus, we define the observation, action and reward function for each agent in TS t as

follows:

1. Observation om,t: we first add the coordinates [Xm,t, Ym,t] of UAV m in TS t into

the observation of agent m. For avoiding collisions between each pair of UAVs, we

define the set of relative UAV distances {Rm,m′,t, m′ ∈ M,m′ ̸= m} as part of the

observation. Additionally, for better exploration, we also add the set of accumulated

times of UEs served by UAVs and UE-load of UAVs commencing from the initial TS

up to TS t, i.e., {
∑t

t′=1 zn,m,t′ , ∀n ∈ N}, {
∑t

t′=1 cm,t′ , ∀m ∈ M}, respectively into

the observation set.

2. Action am,t: we define the UAV’s flying direction and distance as the action am,t =

{αm,t, dm,t} of the m-th UAV in the t-th TS.
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3. Reward Function rm,t: we define the reward function as:

rm,t =
fu
t · fe

t
1
N

∑N
n=1

∑M
m=0 zn,m,t · En,m,t

− pm, (6.22)

where pm is the penalty incurred if UAV m flies out of the target area or UAV m is

collided with another UAV (i.e., the relative distance is under the defined limit).

Then, we define the entire state st, and action at as follows

1. State st: the state consists of the observations of all the agents, which is expressed

as st = {om,t, ∀m ∈M}.

2. Action at: the action consists of the actions of all the agents, which is at = {am,t, ∀m ∈

M}.

m

om,t

t t m,t t+1

om,t

am,t

st

at om,t+1

am,t+1

st, at

st+1, at+1

Q

Q’

m

am,t

Figure 6.2: Structure of UAV m (i.e., controlled by Agent m)

We show the structure of agent m in Fig. 6.2. During its interaction with the environ-

ment 1○, each UAV (controlled by agent) 2○ selects the optimal action associated with

its actor network πm(·) 6○, and then obtains the Q value from the critic network Qm(·)

8○ as well as its target action and target Q value from πm′
7○ and Qm′

(·) 9○ respec-

tively. The profile of observation, action and reward, which determine the transition are

defined as em,t ≜ {st, at, rm,t, st+1} that are stored in the experience replay buffer 4○.

However, during the training procedure, randomly sampling the mini-batch 5○ may have
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unpredictable effects, since some transitions associated with poor attempts may lead to

the termination of the training procedure or may not converge. As a result, Schaul et

al. [55] pointed out that transitions having high Temporal Difference (TD)-error often

indicate successful attempts. The TD-error δm of agent m can be defined as follows

δm = rm,t + γQm′
(st+1, at+1|θQ

m′
)−Qm(st, at|θQ

m
), ∀m ∈M, t ∈ T . (6.23)

Additionally, motivated by [55], we utilize a prioritized experience replay scheme, in

which the absolute TD-error |δm,k| was used for evaluating the probability of the k-

th sampled transition in the mini-batch. Then, the probability of sampling the k-th

transition is expressed as

Pm,k =
(|δm,k|+ ε)β∑K
k′=1(|δm,k|+ ε)β

, ∀m ∈M, (6.24)

where K is the size of mini-batch, ε is a positive constant value, and β is 0.6. Thus, the

loss function 10○ of the agent m is defined as

L(θQ
m
) = E

[ 1

(K · Pm,k)µ
(δm)2

]
, (6.25)

where µ is given as 0.4.

Then, the critic network 8○ of agent m can be updated by the loss function 10○ provided

in (6.25). Furthermore, the actor network 6○ of agent m can be trained by the policy

gradient 11○ defined as

∇θπmJ = E
[
∇θπmπm(om,t|θπ

m
)∇am,tQ

m(st, at)|θQ
m]

, ∀m ∈M, t ∈ T . (6.26)

Given the UAVs’ trajectories, we introduce a low-complexity approach for optimizing

the offloading decisions of UEs. Here, we do not consider the constraint of the maxi-

mal available computing resource in each UAV. This can be readily extended to more

practical scenarios, where each UAV can only have a certain amount of the computing

resources, with the introduction of the matching algorithm. We will leave this idea for

our future work. For each UE in TS t, we select the offloading decision based on the
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following expression

[l]zn,m,t =


1, m = argmin

m′∈M′
{En,m′,t},

0, otherwise.

(6.27)

Specifically, after the movement of UAVs, each UE can select the most suitable UAV for

offloading, which consumes the least energy. Otherwise, the UE may execute the task

itself. If UE n decides to offload a task to UAV m, the computational capacity allocated

to UE from the UAV is expressed as

fn,m,t =
Fn,t

Tmax − T Tr
n,m,t

. (6.28)

Algorithm 5 MAT

1: for UAV m inM do
2: Initialize actor network πm(·), critic network Qm(·) with parameters θπ

m
and θQ

m
;

3: Initialize target networks πm′
(·) and Qm′

(·) with parameters θπ
m′

= θπ
m

and θQ
m′

= θQ
m
;

4: Initialize experience replay buffer Bm;
5: end for
6: for Episode = 1,2,...,emax do
7: for UAV m inM do
8: Initialize observation om,t;
9: end for
10: for TS t in T do
11: Obtain st;
12: for UAV m inM do
13: Obtain action am,t = πm(om,t|θπ

m
) + ϵ;

14: Execute am,t. Note that the UAV will stay at the current location if it flies out of the target area
or it is collided with another UAV;

15: end for
16: Obtain at;
17: for UE n in N do
18: Obtain the available offloading decision zn,m,t that consumes the least energy according to (6.27);
19: Calculate En,m,t;
20: end for
21: for UAV m inM do
22: Obtain rm,t according to (6.22) ;
23: Obtain om,t+1;
24: end for
25: Obtain st+1;
26: for UAV m inM do
27: Store transition {st, at, rm,t, st+1} into experience replay buffer Bm with priority |δm|+ ε;
28: if learning process starts then
29: Sample a mini-batch of K transitions from Bm with probability Pm,k;
30: Update critic network according to (6.25);
31: Update actor network according to (6.26);
32: Update target networks with updating rate τ :

θπ
m′
← τθπ

m
+ (1− τ)θπ

m′
;

θQ
m′
← τθQ

m
+ (1− τ)θQ

m′
;

33: Update priorities of K transitions;
34: end if
35: end for
36: end for
37: end for
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We provide the pseudo code of proposed procedure in Algorithm 6. Specifically, we carry

out the initialization between Line 1 and 5 at the beginning, where each UAV initializes

its actor, critic and two target networks. Then, the training procedure starts from Line

6, where each UAV first obtains its observation from the environment 1○. Note that each

UAV is controlled by its dedicated agent 2○. Then, based on the achieved observation,

each UAV selects the action am,t, which is generated by its actor network 6○. In order

to achieve a better exploration, we add a noise parameter ϵ, which follows a normal

distribution with zero mean and a variance of 1. The exploration noise decays with the

rate of 0.9995. Then, the UAV executes the action. Note that the UAV will stay at the

current location and obtains a penalty pm, if the next location is obtained outside the

target area or the UAV is collided with other UAVs. Then, UE selects the UAV which

consumes the least energy according to (6.27). Next, we obtain the reward rm,t and the

next observation om,t+1. Then, each UAV stores the transition 3○ into its experience

replay buffer Bm 4○. From Line 28 to 34, when the learning procedure starts, the mini-

batch 5○ with prioritized experience replay 12○ scheme samples K transitions from Bm.

Furthermore, the critic network 8○ is updated by the loss function 10○ provided in (6.25),

and the actor network 6○ is also updated by the policy gradient 11○ provided in (6.26).

After that, the pair of target networks are updated at a rate of τ . Finally, we update

the priorities of the K sampled transitions.

6.4 Simulation Results

In this section, we rely on our simulations for evaluating the performance of the proposed

MAT algorithm. The simulations are conducted by using Python 3.7 and Tensorflow

1.15.0. We employ four fully-connected hidden layers having [400, 300, 200, 200] neurons

in both the actor and critic networks. The actor network is trained at the learning

rate of 3 × 10−5, while the critic network is trained at the learning rate of 10−4. The

AdamOptimizer [108] is used for updating the actor and critic networks. We set the

target region to be a square-shaped area with side length of lmax = 100 m, where 50

UEs are randomly and uniformly distributed. We set the initial coordinates of UAVs to

[10, 10], [90, 90], [10, 90] and [90, 10] m. Additionally, each UE generates a single task in

each TS. The rest of the parameters can be found in Table 6.3.
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Table 6.3: Simulation parameters

Notation Description

N 50

T 20

lmax 100 m

Dn,t [10, 14] Kb

Fn,t [1800, 2000] cycles/bit

Tmax 1 s

dmax 20 m

Rmax 20 m

Ru 1 m

H 50 m

B 10 MHz

Pn 0.1 Watt

σ2 -90 dBm

kn 10−28

vn 3

g0 1.42× 10−4

γ 0.95

K 256

τ 0.01

ε 0.001

Bm 105

emax 3000

pm 10
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Figure 6.3: Accumulated reward versus training episodes (with 3 UAVs).
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Figure 6.4: Accumulated reward versus training episodes (with 4 UAVs).

Firstly, we depict the training curve of MAT in Fig. 6.3, where 3 UAVs are deployed.

Observe from Fig. 6.3 that the accumulated reward achieved by MAT remains under

50 at the beginning and starts increasing from the 1000-th episode. After about 2000

training episodes, the curve reaches about 300 and then convergence is achieved.

Then, we increase the number of UAV to 4 and in Fig. 6.4, we depict the accumulated

reward achieved by MAT during the training process. Similarly, the curve remains below

200 at the beginning and then increases after the 1000-th episode. It finally saturates

around 450. Observe that the accumulated reward seen in Fig. 6.4 is higher than that

in Fig. 6.3. This is because deploying more UAVs can serve more UEs at the same time,

hence resulting in increased accumulated rewards.

After the training stage, both the model and the network parameters are saved for

testing. Next, we compare our algorithm in the cases of 3 and 4 UAVs to the following

benchmark solutions:

• RANDOM: In this setup, each UAV randomly selects a flying direction within αm,t ∈

[0, 2π), and a flying distance dm,t ∈ [0, dmax]. Note that the UAVs are restricted to

the target area.

• CIRCLE: We group all the UEs into a single cluster according to the UEs’ coordinates

and then all the UAVs fly in a circle twice around the center of the cluster having a

radius of Rmax.
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Figure 6.5: UAVs’ trajectories (with 3 UAVs and the locations of UEs are represented
by dots.)
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Figure 6.6: UAVs’ trajectories (with 4 UAVs and the locations of UEs are represented
by dots.)

Note that the MAT, RANDOM, and CIRCLE benchmarks have the same starting points

for the UAVs and their offloading decisions are described in Eq. (6.27).

We first depict the UAV trajectories in Fig. 6.5, where 3 UAVs are deployed. In this

figure, dots represent the location of UEs. We apply a heat map to show the number

of times that each UE is served by the UAV commencing from the initial TS to the

final TS. The darker the dots, the less amount of time that the UE is spent by the

UAV serving. Observe from this figure that all the UAVs move around certain areas,
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since their coverage range is limited and they have to move for the sake of serving more

UEs to increase the fairness index. Additionally, we can see that each UAV covers the

particular area in a cooperative manner, so as to maximize the reward defined. For

instance, ’UAV2’ moves to the lower right corner from its initial location for serving

more UEs, while ’UAV3’ moves to the upper right corner to help users in this region.

Then, we increase the number of UAVs to 4 and depict the trajectories in Fig. 6.6.

Observe that more UAVs result in better coverage. Again, the UAVs cooperate for

serving more UEs within the required number of TSs. Furthermore, compared to the

heat map shown in Fig. 6.5, 4 UAVs can serve each UE more times than 3. More

specially, 4 UAVs can increase the minimum number of serving occurrences from about

2.5 TSs in Fig. 6.5 to about 6 TSs in Fig. 6.6.

In Fig. 6.7, we show the fairness attained by 3 UAVs while serving all UEs, the fairness

of each UAV’s UE-load and the overall energy consumption of all the UEs. Observe from

Fig. 6.7(a) that the average fairness fe
t among all the served UEs achieved by the MAT,

CIRCLE and RANDOM regimes increases with the increase of the number of TSs, as

expected. Specifically, MAT increases from 0.53 to 0.85, while CIRCLE increases from

about 0.5 to 0.6. Finally, RANDOM remains under 0.4.

Then, we show the fairness fu
t of each UAV’s UE-load achieved by the MAT, CIRCLE

and RANDOM regimes in Fig. 6.7(b). Observe that both MAT and CIRCLE approach

the fairness of 1, because both solutions can control the UAVs to serve a similar number

of UEs. However, RANDOM can only achieve a fairness of 0.75.

Next, in Fig. 6.7(c), we analyse the energy consumed by UEs. We can see that our

proposed MAT achieves the best performance, followed by CIRCLE and RANDOM.

This is because after training, MAT assists the UAVs in a cooperative way serving the

UEs. Hence, more UEs can offload their tasks to UAVs, which results in reduced energy

consumption for all the UEs.

Next, in Fig. 6.8, we increase the number of UAVs to 4 and evaluate the performance

of three compared solutions. One can see from Fig. 6.8(a) that the average fairness fe
t

increases with the increase of TSs, as expected. Our proposed MAT can achieve the

best performance, reaching at 0.9, whereas the RANDOM performs the worst, which

can only achieve about 0.5.
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versus different number of TSs, in terms of overall energy
consumption of all the UEs (with 3 UAVs).

Figure 6.7: The performance of MAT, CIRCLE and RANDOM versus different num-
ber of TSs, in terms of (a) fairness index fe

t , (b) fairness index fu
t and (c) overall energy

consumption of all the UEs (with 3 UAVs).
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Figure 6.8: The performance of MAT, CIRCLE and RANDOM versus different num-
ber of TSs, in terms of (a) fairness index fe

t , (b) fairness index fu
t and (c) overall energy

consumption of all the UEs (with 4 UAVs).
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Then, in Fig. 6.8(b), we draw the fairness of each UAV’s UE-load fu
t achieved by MAT,

CIRCLE and RANDOM. One sees that MAT outperforms CIRCLE and RANDOM, as

expected. CIRCLE performs worse than MAT but has much better performance than

RANDOM.

Additionally, we show the performance of energy consumed by UEs in Fig. 6.8(c). Similar

with before, one can observe that MAT can always achieve the best performance and

help UEs to save the energy consumption, while CIRCLE performs the second, followed

by RANDOM. This further proves that with proper training, MAT can control the UAVs

to provide better service to UEs.

6.5 Summary

In this chapter, we have proposed a multi-agent deep reinforcement learning based tra-

jectory control algorithm for jointly maximizing the fairness among all the UEs and the

fairness of UE-load of each UAV, as well as minimizing the energy consumption of all

the UEs by optimizing each UAV’ trajectory and offloading decision from all the UEs.

Simulation results show that the proposed MAT has the considerable performance gain

over the compared benchmark algorithms.



Chapter 7

DQN based Discrete Trajectory

Design for UAV-Aided

Emergency Communications

7.1 Introduction

Unmanned aerial vehicles (UAVs), also known as drones, have been playing an increas-

ingly important role in emergency situations such as earthquake and large fires, where

UAVs could be deployed to provide emergency communications for user equipments

(UEs) and support life saving activities. It also has the potential to provide other wireless

communication related services, such as ubiquitous coverage, relaying, information dis-

semination, mobile edge computing (MEC) and data collection [109–111]. Considering

their low cost, high mobility, fast deployment and the direct Line-of-Sight (LoS) connec-

tivity, UAV-enabled wireless communications are expected to achieve higher throughput

compared to traditional terrestrial wireless communications.

In order to fully exploit the potential of UAVs, much research has been conducted in

the trajectory design of UAV-enabled communications [50, 65, 112]. In [88], Zeng et al.

maximized the throughput of UAV-enabled mobile relaying system, whereas in [113], the

authors maximized the energy efficiency in a point-to-point UAV-ground communication

system. In [39], the authors optimized the altitude of UAV to maximize the radio

coverage on the ground. In [65], the UAV was utilized as a mobile base station to

100
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serve the ground UEs, and the authors proposed a successive convex approximation

(SCA) based algorithm to maximize the minimum average throughput of UEs. In [114],

Lyu et al. proposed a new cyclical multiple access scheme, where UAV flies cyclically

to serve the ground users. In [37], an UAV-enabled secure transmission scheme was

proposed in hyper dense networks. For UAV-enabled wireless power transfer networks,

Xu et al. optimized the trajectory of UAV for the purpose of maximizing the sum of

energy received by users. For multi UAV-enabled multiuser system, Yang et al. [92]

minimized the sum power of user equipment via jointly optimizing the user association,

power control, computation capacity allocation, and location planning in a mobile edge

computing (MEC) network.

Recently, UAV has been playing an increasingly important role in emergency commu-

nications. For instance, during the earthquake, if the local ground station is destroyed,

UAV could be deployed to serve as the flying base station to serve the users. They

can dynamically move towards the UEs that are out of the communication range, and

transmit/receive the data to/from them. In [38], Mozaffari et al. addressed some key

challenges of deploying UAVs to serve the ground users, such as the optimal deployment

and energy efficiency of UAVs. In [115], multiple UAVs were deployed to receive the in-

formation from ground UEs, and in order to achieve the reliable uplink communications,

the authors proposed to optimize the UAV trajectory and the transmit power of UEs.

In [116], Huang et al. proposed a differential evolution algorithm to minimize the energy

consumption via optimizing the UAV’s deployment, such as the number and location of

stop points.

Among the recent development in the field of artificial intelligence (AI) and machine

learning (ML), reinforcement learning (RL) [117] has become a hot topic both in academia

and industry. In [75], Watkins et al. introduced a model-free reinforcement learning:

Q-learning, which can be viewed as a method of asynchronous dynamic programming

(DP). Also, some fundamental elements like agent, state, action, penalty, reward and Q-

value were discussed. However, Q-learning is not practical for complicated applications

since the number of states and actions will increase exponentially. Thus, combining

deep neural networks (DNNs) with RL creates a feasible approach, which could provide

more accurate convergence and approximation. In [29], Mnih et al. developed a novel

solution, i.e., a deep Q-network (DQN), which has achieved an outstanding performance

in the challenging domain of Atari 2600 games.
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Against the above background, in this chapter, we propose a joint UAV trajectory and

power control optimization problem to maximize the number of served UEs, the fairness

and the overall uplink data rate of UEs in the emergency communication scenario. To

this end, we address the UAV trajectory problem by applying DQN framework. Then,

based on the given UAV trajectory, we solve the power control problem via using the

convex optimization based algorithm.

The rest of this chapter is organized as follows. Section 7.2 introduces the system model.

In Section 7.3, we introduce the proposed algorithm. In Section 7.4, numerical results

are presented to verify the proposed algorithm. Finally, we summary the chapter in

Section 7.5.

The main notations used in this chapter are summarized in Table 7.1.

Table 7.1: Main Notations.

Notation Definition

n,N,N the index, the number, and the set of UEs,

t, T, T the index, the number, and the set of TSs

lmax the side length of the square area

Zmin, Zmax minimal and maximal height of the UAV

emax the maximum energy level of UAV

et the remaining energy level of UAV in TS t

αt, βt, ωt the flying action of UAV in TS t

Xt, Yt, Zt the coordinate of UAV in TS t

xn, yn the coordinate of UE n

dn,t distance between UE n with UAV in TS t

cn,t coverage status of UE n in TS t

L(θn,t, dn,t) path loss between UE n and UAV is TS t

γn,t SINR at UAV from UE n in TS t

rn,t uplink data rate from UE n to UAV in TS t

7.2 System Model

As shown in Fig. 7.1, we consider the emergence situation, where the ground base

station is destroyed and the UAV is deployed to provide communication to all the UEs.

Assume the UAV flies over a square area with the side length lmax. We assume there

are N UEs randomly distributed in the target area, and the set of UEs is denoted as

N ≜ {n = 1, 2, ..., N}. Also assume the uplink data transmission lasts for T time slots
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Figure 7.1: UAV-Aided Emergency Communication System

(TSs), and the set of TSs is denoted as T ≜ {t = 1, 2, ...T}. In each TS, the UAV

has a flying action [αt, βt, ωt] to conduct, where αt is the horizontal angle of the flying

direction, βt is the vertical angle of the flying direction, and ωt is the flying distance.

For simplicity, in this chapter, we assume that the possible action At is chosen from the

following set:

At = {[αt, βt, ωt] =
[ 2π
Nα

i,
π

Nβ
j,
ωmax

Nω
k
]
, ∀i ∈ 0, ...Nα, j ∈ 0, ...Nβ, k ∈ 0, ...Nω}, t ∈ T ,

(7.1)

where Nα, Nβ, and Nω are the numbers of flying angles and distance that UAV can

move in each TS. This means that the UAV can only fly with some specific angles

and distance values. ωmax is the maximal flying distance in each TS. Note that if

the UAV stays at the current location, the action [αt, βt, ωt] = [0, 0, 0], where one can

see i = 0, j = 0, k = 0. Otherwise, it moves with the corresponding angles 2π
Nα

i,

π
Nβ

j and the distance ωmax

Nω
k. Hence, the coordinate of UAV in TS t can be denoted as

[Xt, Yt, Zt], whereXt = X0+
∑t

t′=1 ωt′sin(βt′)cos(αt′), Yt = Y0+
∑t

t′=1 ωt′sin(βt′)sin(αt′),

and Zt = Z0+
∑t

t′=1 ωt′cos(βt′), with [X0, Y0, Z0] being the initial coordinate of the UAV.
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Since the UAV can not fly out of the target area, we have

0 ≤ Xt ≤ lmax, ∀t ∈ T , (7.2)

and

0 ≤ Yt ≤ lmax, ∀t ∈ T . (7.3)

Additionally, in this chapter, we set

Zmin ≤ Zt ≤ Zmax, ∀t ∈ T , (7.4)

where Zmin, Zmax, are the minimal and maximal flying height of the UAV, for collision

avoidance.

Thus, the distance between the UAV and UE n in TS t can be given by

dn,t =
√

(Xt − xn)2 + (Yt − yn)2 + Z2
t , ∀n ∈ N , t ∈ T , (7.5)

where [xn, yn] is the coordinate of UE n.

Furthermore, in this chapter, the UAV has a azimuth angle value of antenna θ′, which

is based on 3-D Cartesian coordinate, such as x axis, y axis, z axis. Hence, in TS t, the

UAV has a maximal horizontal coverage circle with the radius of Rmax
t = Zttan(θ

′) [92]

and it varies with the height of the UAV. We also assume that the UAV has the energy

constraint emax. We define the remaining energy level et of the UAV in TS t as:

et = emax −
t∑

t′=0

▽et′ . ∀t ∈ T , (7.6)

where ▽et′ is the energy consumed by UAV in TS t′, which is defined as

▽et′ =

(
P0

(
1 + 3

v2t
V 2
r

)
+ P1

(√
1 +

v4t
4V 4

0

− v2t
2V 2

0

) 1
2

+
1

2
d0ρsπR

2
bv

3
t

)
Tmax, (7.7)

where vt is the flying velocity of UAV in TS t, Tmax is the maximal time duration of

each TS, Vr is the tip speed of the rotor blade, V0 is the mean rotor velocity when
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hovering, d0 is the drag ratio, ρ means the air density, s denotes the rotor solidity, Rb is

the radius value of rotor disc. And P0, P1 are constant values that can be found in [79].

For simplicity, in this chapter, we set vt = ωt
Tmax . Note that we do not consider the

energy consumption of data receiving/transmission since it is negligible compared with

the moving and hovering energy consumption. Also, to simply the model, we adopt

the simplified energy consumption model above, which could be readily extended to the

more general model considering different types of UAVs. In practice, we also assume

there is some preserved battery for UAV flying back to the ground, which is ignored

here to make the model compact.

In this chapter, the 3-D channel model proposed in [39] is adopted. Thus, the mean

path loss between the UAV and the UE n in TS t is given by

L(θn,t, dn,t) =
ηLoS − ηNLoS

1 + aexp
(
− b(θn,t − a)

) + 20log10(dn,t) + 20log10
(4πfc

c

)
+ ηNLoS, (7.8)

where ηLoS and ηNLoS (in dB) are the path loss corresponding to the LoS and non-LoS

links respectively. a and b are positive constants which can be obtained in [39]. fc is the

carrier frequency (Hz), c is the light speed (m/s), and θn,t = arctan
(

Zt√
(Xt−xn)2+(Yt−yn)2

)
.

We denote cn,t as the coverage status of UE n in TS t, and it can be defined as

[l]cn,t =


1, if

√
(Xt − xn)2 + (Yt − yn)2 ≤ Rmax

t ,

0, Otherwise.

(7.9)

Additionally, we assume that if the UE n is under the coverage of UAV in TS t, i.e.,

cn,t = 1, the UE n is served by UAV and the data collection from UE n to UAV is

started. Thus, the corresponding signal-to-interference-plus-noise ratio (SINR) at the

UAV can be expressed as

γn,t =
cn,tPn,t10

−L(θn,t,dn,t)

10∑N
n′=1,n′ ̸=n cn′,tPn′,t10

−
L(θn′,t,dn′,t)

10 + σ2

, (7.10)

where Pn,t means the transmit power of UE n in TS t; σ2 is the additive white Gaussian

noise (AWGN) at the receiver. Therefore, the uplink data rate from UE n to the UAV
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in TS t is expressed as

rn,t = log2
(
1 + γn,t

)
, ∀n ∈ N , t ∈ T . (7.11)

One can also apply the power constraint as follows, then we have

0 ≤ Pn,t ≤ Pmax, ∀n ∈ N , t ∈ T , (7.12)

where Pmax is the maximum transmit power of UEs.

In this chapter, we also aim to maximize the number of UEs served by UAV via opti-

mizing the UAV trajectory. Then we define Ct as follows

Ct =
1

N

N∑
n=1

cn,t,∀t ∈ T , (7.13)

which can represent the proportion of the number of UEs served by UAV in TS t.

However, this may lead to unfair serving process since some UEs are covered for many

TSs and the rest UEs may be never covered at all. Therefore, similar to [118, 119], we

apply the fairness index among all UEs, which is defined as

ft =

(∑N
n=1

∑t
t′=1 cn,t′

)2
N
∑N

n=1

(∑t
t′=1 cn,t′

)2 , (7.14)

where ft reflects the quality of service (QoS) level that the UEs served by UAV from the

initial TS to the TS t. More precisely, if all the UEs are served for the similar number

of TSs, the fairness value ft is closer to 1.

Additionally, we define the overall data rate of UEs served by UAV in TS t as

Rt =
N∑

n=1

cn,trn,t, ∀t ∈ T . (7.15)

Thus, we formulate the optimization problem as follows
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P1 :max
U ,P

T∑
t=1

(
ft · Ct ·Rt

)
, (7.16a)

subject to:

At = {[αt, βt, ωt] =
[ 2π
Nα

i,
π

Nβ
j,
ωmax

Nω
k
]
,

∀i ∈ 0, ...Nα, j ∈ 0, ...Nβ, k ∈ 0, ...Nω}, t ∈ T , (7.16b)

0 ≤ Xt ≤ lmax, ∀t ∈ T , (7.16c)

0 ≤ Yt ≤ lmax, ∀t ∈ T , (7.16d)

Zmin ≤ Zt ≤ Zmax, ∀t ∈ T , (7.16e)

0 ≤ Pn,t ≤ Pmax, ∀n ∈ N , t ∈ T , (7.16f)

where U = {Xt, Yt, Zt,∀t ∈ T } and P = {Pn,t,∀n ∈ N , t ∈ T }. It is readily to see that

the above problem cannot be solved by traditional optimization approach as it involves

discrete variables U and continuous variables P . Additionally, all three factors cannot

be achieved optimally at the same time since each factor will have a negative effect

on others. Thus, we aim to achieve the optimal balance between them. Then, in this

chapter, we first propose a DQN-based algorithm to solve the UAV trajectory problem.

Next, based on the optimized UAV trajectory, we further propose a successive convex

approximation (SCA) based algorithm to solve the power control problem.

7.3 Proposed Algorithm

Before presenting the proposed algorithm, we first introduce some important knowledge

of deep reinforcement learning.

7.3.1 Background Knowledge

In the traditional reinforcement learning structure, there is an agent interacting with

the environment through a series of states, actions and rewards. In each time step, the

agent selects the policy that maps the state and action with the aim of maximizing the

accumulated reward. Specifically, the process of interacting with the environment can
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be expressed with an action-value function named Q-function, which is defined as

Q(s, a) = maxπE
[
Z|st = s, at = a], (7.17)

where Q is known as Q-value, π denotes the policy by taking the action a at the state

s and Z is the reward.

Although DRL combines DNN with Q-learning, it may still have instability or diver-

gence. Since DNN may be seen as the non-linear function approximator, small updates

to Q-value may significantly vary the policy, or even change the data distribution as

well as the correlations between action-value and target value. Therefore, to address

this issue, in [29], Mnih et al. introduced the DQN framework, which contains a pair of

mechanisms: Firstly, they applied the experience replay, where the mini-batch randomly

samples several transitions {st, at, zt, st+1} to train the DQN. This mechanism removes

the correlation of state sequences and smooths over changes in the data distribution.

Secondly, an iterative updating mechanism was deployed. Specifically, there is a target

network periodically updating for the purpose of adjusting the action-value towards the

target value.

7.3.2 The Proposed DQN based UAV trajectory design Algorithm

In this section, the proposed DQN algorithm is presented, where we assume there is

an agent interacting with the environment. The agent controls the UAV and aims to

select the optimal policy that can maximize the accumulated reward Zt =
∑T

t′=t γ
t′−tzt′

by giving a set of states S ≜ {st = s1, s2, ...sT } and actions A ≜ {at = a1, a2, ..., aT },

where γ ∈ [0, 1] is the discount factor. More specifically, we describe the state, action

and reward in TS t as follows:

1. State st: the state of agent in TS t has two components.

(a) UAV ’s current coordinate: {Xt, Yt, Zt}.

(b) UAV’s current energy level: {et}.

2. Action at: we define action at = {αt, βt, ωt} as the UAV’s horizontal angle αt, vertical

angle βt and distance ωt in TS t, where at ∈ At.

3. Reward Function zt: we define the reward function as:
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zt = ft · Ct ·Rt − p, (7.18)

where p is the penalty if UAV flies out of the target area and Rt can be obtained by

the proposed convex optimization based solutions in Algorithm 7.

In the proposed DRL shown in Fig. 7.2, there are two DQN networks, namely evaluation

and target networks, respectively [29]. Note that the evaluation and target networks have

the same structure but the latter updates periodically. The agent selects the action

according to the evaluation network and the agent follows an ϵ-greedy policy.

According to the state st and action at, the agent obtains the reward rt and then

the environment transfers to the next state st+1. The transition {st, at, zt, st+1} can

be stored in the experience replay memory with size Mmax. Once the learning process

starts, the mini-batch randomly samplesK transitions from the memory. The evaluation

network is trained by the sequence of the loss function, which can be expressed as

Li(θi) = Es,a

[(
yi −Q(s, a|θi)

)2]
, (7.19)

where i is the index of iteration, yi = E
[
z + γmax

a′
Q(s′, a′|θi−1)

]
and it can be obtained

by the target network.
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Figure 7.2: Structure of proposed DQN
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Algorithm 6 The proposed DQN algorithm

1: Initialize evaluation network, target network with parameters θ;
2: Initialize experience replay memory with size Mmax;
3: for Episode = 1,2,...,Emax do
4: Initialize state st = [X0, Y0, Z0, e

max];
5: for TS = 1,2,...T do
6: Obtain st;
7: ϵt = rand(0,1);
8: if ϵt ≤ ϵ then
9: at = argmaxQ(st, at);

10: else
11: Select a random action at from At;
12: end if
13: Execute at;
14: Obtain zt according to Algorithm.7;
15: Obtain st+1;
16: Store transition {st, at, zt, st+1} into experience replay memory;
17: if the learning process starts then
18: Randomly sample K transitions from memory;
19: Obtain loss value according to (7.19);
20: Perform a gradient descent step on loss value with respect to the network

parameters θ;
21: Update evaluation network;
22: Update target network periodically;
23: end if
24: end for
25: end for

During the interaction with the environment, the agent selects the optimized action of

UAV associated with the evaluation network, which follows a ϵ-greedy policy. Specifi-

cally, the agent can select the action that has the largest Q-value with probability ϵ, or

randomly select the action from the action set At with probability 1− ϵ. Also, the agent

obtains state st, next state st+1 and reward zt from the environment. Note that the

data rate Rt of reward zt is calculated by the proposed convex optimization based algo-

rithm provided in Algorithm 7. Then, the transition, which consists of {st, at, zt, st+1},

is stored in the experience replay memory. Once the learning procedure starts, the mini-

batch randomly samples K transitions from the experience replay memory. Given the

Q-value Q(s, a) and the target value yi obtained by the evaluation and target network,

the loss function provided by (7.19) is used to update the evaluation network and the

target network is updated periodically.

Furthermore, we provide the pseudo code of proposed DQN algorithm in Algorithm 6.

Specifically, from Line 1 to 2, we initialize the evaluation network, target network and
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experience replay memory. Then, in each training episode, we initialize the state st, and

the evaluation network generates the action by the given state st. Note that a ϵ-greedy

policy is employed to select the optimized action. Specifically, a variable ϵt ∈ [0, 1] is

generated. If ϵt ≤ ϵ, we select the action at that has the largest Q-value. Otherwise, we

select a random action at. Next, the agent executes the action at, obtains the reward

zt provided by (7.18) and the environment transfers to the next state st+1. Note that

the UAV stays at the current location and the agent receives a penalty if the UAV flies

out of the target area. The transition is stored in the experience replay memory. From

line 17, once the learning process starts, the learning procedure starts. The mini-batch

randomly samples K transitions from the memory for calculating the loss value. Then,

we perform a gradient descent step on loss value calculated by loss function with respect

to the network parameters θ. Finally, we update evaluation network and target network

periodically.

7.3.3 Power Control Algorithm

In order to maximize the reward zt with the given trajectory, we further propose a

convex optimization-based algorithm for handling the power control of all UEs. Then,

in TS t, given the UAV trajectory, the maximization problem of reward function (7.18)

is transformed into the following problem:

max
P

ft · Ct ·Rt − p, (7.20a)

subject to:

0 ≤ Pn,t ≤ Pmax, ∀n ∈ N , (7.20b)

from which, both ft, Ct and p are fixed. Motivated by [43], via introducing the auxiliary

variable η, the problem is transformed into

max
η,P

η, (7.21a)

subject to:

ft · Ct ·
N∑

n=1

cn,trn,t − p ≥ η, ∀n ∈ N , (7.21b)

0 ≤ Pn,t ≤ Pmax, ∀n ∈ N . (7.21c)
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Problem (7.21) is a non-convex optimization since (7.21b) is a non-convex constraint. It

is noted that rn,t can be expressed as

rn,t = log2

(
1 +

cn,tPn,t10
−L(θn,t,dn,t)

10∑N
n′=1,n′ ̸=n cn′,tPn′,t10

−
L(θn′,t,dn′,t)

10 + σ2

)

= log2

( N∑
n=1

cn,tPn,t10
−L(θn,t,dn,t)

10 + σ2

)
− r̃n,t, ∀n ∈ N ,

(7.22)

where

r̃n,t = log2
( N∑
n′=1,n′ ̸=n

cn′,tPn′,t10
−

L(θn′,t,dn′,t)
10 + σ2

)
, ∀n ∈ N . (7.23)

In order to solve the above non-convex constraint of (7.21b), we apply the successive

convex approximation (SCA) to calculate the value of r̃n,t. Specifically, we define P k =

{P k
n,t, ∀n ∈ N} as the given transmission power of UEs in TS t in the k-th iteration.

Inspired by [120], any concave function can be globally upper-bounded by its first-order

Taylor expansion at any point. Hence, by given P k, one has

r̃n,t = log2

( N∑
n′=1,n′ ̸=n

cn′,tPn′,t10
−

L(θn′,t,dn′,t)
10 + σ2

)

≤
N∑

n′=1,n′ ̸=n

cn′,t10
−

L(θn′,t,dn′,t)
10 log2(e)∑N

l=1,l ̸=n cl,tP
k
n′,t10

−
L(θl,t,dl,t)

10 + σ2

(Pn′,t − P k
n′,t)

+ log2

( N∑
n′=1,n′ ̸=n

cn′,tP
k
n′,t10

−
L(θn′,t,dn′,t)

10 + σ2

)
≜ r̃upn,t.

(7.24)

With any given local point P k and the upper bound r̃upn,t, Problem (7.21) can be trans-

formed into
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max
ηk,P

ηk, (7.25a)

subject to:

ft · Ct ·
N∑

n=1

cn,t

(
log2

( N∑
n=1

cn,tPn,t10
−L(θn,t,dn,t)

10 + σ2
)
− r̃upn,t

)
≥ ηk, ∀n ∈ N , (7.25b)

0 ≤ Pn,t ≤ Pmax, ∀n ∈ N . (7.25c)

One can see that the above problem is now been converted to the convex optimiza-

tion, which can be solved efficiently by the standard convex optimization solver, e.g.,

CVX [120]. Then, we provide the pseudo code in Algorithm 7.

Algorithm 7 The proposed convex optimization based power control algorithm

1: Obtain at according to the DQN network;
2: Execute at;
3: Obtain ft, Ct according to Eq. (7.14) and Eq. (7.9);
4: Initialize P 0;
5: k = 0;
6: repeat
7: Solve Problem (7.25) for given P k;
8: Denote the optimal solution as P k+1;
9: k = k + 1;

10: until The convergence is achieved

As shown in Algorithm 7, we first obtain the state of UAV st, execute at and obtain ft

and Ct. Then, we initialize P
0, and solve Problem (7.25) for given P k. Next, we repeat

the process until the convergence is achieved.

7.4 Simulation Result

In this section, we evaluate the performance of proposed DQN and convex optimization

based algorithm. The simulation is executed by using Python 3.7, Tensorflow 1.15 [121].

CVXPY 1.0.24 [73] is used in the convex optimization based algorithm. We deploy two

fully-connected hidden layer with [400 × 300] neurons in DQN networks. The learning

rate is 0.001 and RMSOptimizer is used to update DQN networks. We set the target
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Figure 7.3: Overall reward versus training episodes.

area to be a square with side length lmax = 400 m and 30 UEs are randomly distributed

in the target area. In each training episode, the UAV always starts from the same initial

point, i.e., [X0, Y0, Z0] = [5, 5, 70]. In each TS, once the UE is covered by UAV, UAV

starts data collection from the UE. More parameters can be found in Table. 7.2.

Table 7.2: Parameter Setting.

Parameter Description Parameter Description

N 30 ωmax 30 m

lmax 400 m Nα 6

Nβ 5 Nω 4

Zmin 50 m Zmax 100 m

Pmax 0.1 W ϵ 0.9

emax 200 KJ Tmax 1 s

θ′ π
4 P0 79.85

P1 88.63 Vr 120

V0 4.03 d0 0.6

ρ 1.225 s 0.05

Rb 0.4 m ηLoS 1.6 dB

ηNLoS 23 dB fc 2.5 GHz

c 3× 108 m/s a 12.08

b 0.11 σ2 -100 dBm

γ 0.99 K 256

Mmax 105 p 2

We first analyze the overall reward achieved by DQN algorithm in each training episode

(i.e., 20 TSs) in Fig. 7.3, from which, we observe that the overall reward remains negative

at the beginning. This is because the UAV always flies out of the target area, which

means the penalty is always incurred. When the learning process starts, the agent

learns to optimize the UAV trajectory from the exploration process and the DQNs start

converging, which increases the overall reward. Once the convergence is achieved, the
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overall reward remains about 5, which shows the best UAV trajectory and transmission

power of each UE are obtained.
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(a) The accumulated fairness over one episode during test-
ing.
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(b) The accumulated coverage over one episode during
testing.
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(c) The accumulated data rate over one episode during
testing.

Figure 7.4: The accumulated (a) fairness, (b) coverage and (c) data rate over one
episode during testing.

After adequate training, the model and their parameters are saved for testing. We
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analyse the performance of the proposed DQN algorithm during the testing procedure

in Fig. 7.4. Specifically, we first evaluate the accumulated fairness in different numbers of

TSs in Fig. 7.4(a), from which we can observe that the accumulated fairness keeps rising

from 0 and stabilizes at 7. In Fig. 7.4(b), one can see that the accumulated coverage

increases from 0 to 6 eventually. Then, we evaluate the accumulated data rate (bps/Hz)

of UEs served by UAV in Fig. 7.4(c), from which we observe that the data rate keeps

rising with the increase of the number of TSs. It reaches about 4 bps/Hz finally. Overall,

one can see from Fig. 7.4 that our proposed DQN algorithm can learn from experience

and reach the considerable performance.

Then, for comparison, we present the following baseline algorithms:

• Random: In each TS, UAV randomly selects a horizontal angle value αt, a vertical

angle value βt and distance value ωt from the action set At. Additionally, it randomly

selects the power control Pn,t for each UE. It is worth mentioning that the UAV is

restricted to the target area.

• Maximum rate: In each TS, the UAV always selects the action at from At that can

maximize the instantaneous data rate, which is defined as

at = max
at

Rt|at∈At . (7.26)

Note that in this solution, the UEs served by UAV always transmit their data with

maximal power consumption as Pmax.

• Maximum reward: In each TS, the UAV selects the action of UAV at that can maxi-

mize the reward.

Similar as before, the maximum transmission power Pmax is applied for each UE.

Then, we evaluate the performance of the proposed DQN algorithm and the above

baseline solutions in different number of TSs in Fig. 7.5. It is worth mentioning that

it is quite challenging to achieve the best solution in all three factors, i.e., fairness,

coverage and data rate at the same time. On one hand, the UAV will keep flying for

serving different UEs for maximizing the fairness, which will inevitably reduce the data

rate and consume more energy of UAV. On the other hand, the UAV will tend to stay

at the location that can maximize the data rate, which will have a negative effect on

fairness and coverage. Besides, maximizing the number of UEs served by the UAV will

lead to severe interference between UEs, which will also reduce the overall data rate.
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(c) The average data rate overall reward versus differ-
ent number of TSs which UAV possesses.
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Figure 7.5: The average (a) fairness, (b) coverage, (c) data rate, and (d) overall
reward versus different number of TSs which UAV possesses.

However, as our objective is to maximize the overall reward consisting of all the three

factors. Our proposed solution can achieve the best performance in this regard and will

be shown below.

First, in Fig. 7.5(a), we analyse the impact of the number of TSs on fairness. One

can observe that the proposed DQN algorithm outperforms other baselines in all the

examined cases. It can always achieve the fairness above 0.35, where as the other three

algorithms can only achieve fairness below 0.2.

Then, in Fig. 7.5(b), one can see that in terms of coverage, our proposed DQN-based

solution performs the best, which can reach close to 0.45, However, other benchmark

algorithms can reach at most around 0.2.

Furthermore, we evaluate the performance in terms of average data rate of UEs served

by UAV in Fig. 7.5(c). One observes that the “maximum rate” solution has the best
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performance, as it aims at maximizing the data rate of the users, while “random” and

“maximum reward” perform slightly better than our proposed DQN. The explanation is

that the UAV controlled by “maximum rate” only serves a few UEs, which will lead to

lower interference between UEs, however, it cannot guarantee the coverage and fairness,

as shown before. Our proposed DQN-based solution, as it will also consider the coverage,

and it may serve several UEs at the same time, resulting in lower data rate due to

interference among different UEs.

Then, as shown in Fig. 7.5(d), we depict the overall reward achieved by the DQN-based

solution and other baselines in a single episode with respect to different number of TSs.

One can observe that with the increase of the number of TSs, the overall reward of all

algorithms increase. The proposed DQN has the best performance, as expected. Other

benchmark algorithms have lower performance, as they only focus on one factor, such

as data rate.

7.5 Summary

In this chapter, we have considered the UAV-aided emergency communications, where

the UAV is deployed in the case that the ground base station is destroyed. We propose a

DRL based DQN algorithm to optimize the UAV trajectory. Additionally, we present a

convex optimization based algorithm to optimize the power transmission of UEs served

by UAV. Simulation results show that the proposed algorithm can achieve the consider-

able performance gain over the existing algorithms in terms of fairness, the total number

of UEs served and the overall data rate of UEs.
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Conclusions and Future Work

8.1 Summary of Conclusions

The forthcoming 5G and beyond network has to support massive UEs and enable various

kinds of emerging applications in terms of connectivity, data rate, latency, etc. In

order to meet the technical requirements of 5G, the combination of UAV and MEC has

shown huge potential in current wireless communication systems. However, when facing

the research challenges in UAV-enabled MEC, traditional approaches are not sufficient

enough and they are normally sub-optimal and require plenty of computational resource.

In this regard, the main purpose of this thesis is to develop novel AI-based algorithms

for solving challenges in UAV-enabled MEC. The main conclusions of this thesis is given

as follows:

• First, we have studied a multi-UAV enabled MEC system, in which the UAVs are

assumed to fly in circles over the ground UEs to provide the computation services.

The proposed problem is formulated as a MINLP, which is hard to deal with in

general. We propose a RLAA algorithm to address it effectively. Simulation results

show that RLAA can achieve the same performance as the exhaustive search in small

scale cases, whereas in large case scenario, RLAA still have considerate performance

gain over other traditional approaches.

• Second, we have considered the flying mobile edge computing architecture, by taking

advantage of the UAVs to serve as the moving platform. We aim to minimize the

119
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energy consumption of all the UEs by optimizing the UAVs’ trajectories, user asso-

ciations and resource allocation. To tackle the multi-UAVs’ trajectories problem, a

convex optimization-based CAT has been first proposed. Then, in order to conduct

fast decision, a DRL-based RAT including a matching algorithm has also been pro-

posed. Simulation results show that CAT and RAT have considerable performance.

• Third, we have proposed a multi-agent deep reinforcement learning based trajectory

control algorithm for jointly maximizing the fairness among all the UEs and the

fairness of UE-load of each UAV, as well as minimizing the energy consumption of all

the UEs by optimizing each UAV’ trajectory and offloading decision from all the UEs.

Simulation results show that the proposed MAT has the considerable performance

gain over the compared benchmark algorithms.

• Forth, we have considered the UAV-aided emergency communications, where the UAV

is deployed in the case that the ground base station is destroyed. We propose a DRL

based DQN algorithm to optimize the UAV trajectory. Additionally, we present

a convex optimization based algorithm to optimize the power transmission of UEs

served by UAV. Simulation results show that the proposed algorithm can achieve the

considerable performance gain over the existing algorithms in terms of fairness, the

total number of UEs served and the overall data rate of UEs.

8.2 Future Work

The algorithms and approaches proposed in this thesis have addressed some of existing

issues in UAV-enabled MEC system. In order to sufficiently broaden the usage of UAV-

enabled MEC in the future wireless network, in this section, we overview some of future

research challenges as follows:

• UAV trajectory control for multi objectives: Current DRL-based solutions for

optimizing the UAV trajectory is based on the single objective, which is not suffi-

cient enough for practical scenarios. For some complicated tasks or objectives that

have spare rewards, such as UAV can fly back to the initial area, or land at cer-

tain area after serving process, the DRL-based solutions can not handle this. In this

end, it is essential to develop novel hierarchical reinforcement learning (HRL)-based

algorithms [122].
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• Combination of UAV and autonomous vehicles (AVs) in MEC: With the re-

cent development in AV systems, various kinds of mobile MEC systems are appearing.

The MEC server can be deployed on the UAV or other AVs, which means the mobile

MEC system is hybrid. Thus, in order to fulfill the potential of MEC system and

guarantee the QoS of UEs, the hybrid MEC system should be carefully designed.

However, as the mobile MEC servers are deployed with different usages and play-

ing with different roles, it is quite challenging to control them simultaneously. In

this end, one future direction is to develop general multi-agent reinforcement learning

(MARL) algorithms that can cooperate a group of UAVs, AVs or other autonomous

components in mobile MEC systems.

• Training Data Acquisition: As discussed above, the AI-based algorithms need

to take advantages of training data that is obtained from the real-world. However,

the acquisition of real training data is normally expensive and time consuming. In

addition, most of data is related to the privacy of consumers, which is well protected

by the commercial companies. In this case, how to generate relevant and diverse data

that can be used in the training process is a huge challenge. In this end, the generative

adversarial network (GAN) [123] is becoming a suitable alternative.

• Online Training: In order to make the training performance more efficient and prac-

tical, it is necessary to consider about online training method, especially considering

the research challenge on how to guarantee the well-trained DRL model or DNN can

work still well in real-world. In this case, in the future, the combination of online

training method and DRL will be further studied.
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