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Abstract
The majority of fulleride superconductors with unusually high transition-temperature to
kinetic-energy ratios have a face-centred-cubic (FCC) structure. We demonstrate that, within
extended Hubbard models with strong Coulomb repulsion, paired fermions in FCC lattices
have qualitatively different properties than pairs in other three-dimensional cubic lattices. Our
results show that strongly bound, light, and small pairs can be generated in FCC lattices across
a wide range of the parameter space. We estimate that such pairs can Bose condense at high
temperatures even if the lattice constant is large (as in the fullerides).

Keywords: extended Hubbard models, superlight fermion pairs, superconductivity,
Bose–Einstein condensation, face-centred cubic lattice, unconventional superconductivity,
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1. Introduction

Superlight small pairs are of interest in the context of super-
conductivity due to their potential to form Bose–Einstein con-
densates (BEC) at high temperatures [1, 2]. There are a num-
ber of low-dimensional systems within which superlight pair
states can be realised, for example the staggered ladder [2],
triangular lattice [1, 3] and quasi-two-dimensional hexagonal
lattice [4]. Pairs consisting of two fermions can be bound onto
neighbouring sites by a combination of strong intersite attrac-
tion and strong onsite repulsion. Such pairs can be light and
small (superlight) if it is possible to move to neighbouring lat-
tice sites via a single hop without breaking the pairing [2], so
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that the pair motion is a first order effect. In many materials
there is a strong onsite Coulomb repulsion, so intersite pairs are
formed via any intersite or long-range attraction, which could
originate either from phonons or other more exotic mecha-
nisms. The aim of this article is to explore the possibility of
superlight small pairs in face-centred cubic (FCC) lattices.

Extended Hubbard models [5, 6] contain the essential inter-
actions to realise superlight states. The Hamiltonian of an
extended Hubbard model is defined as:

H =
∑
〈n,a〉σ

tac†n+a,σcnσ + U
∑

n

ρ̂n↑ρ̂n↓ +
∑
〈n,a〉

V ρ̂n+a ρ̂n, (1)

where c†nσ (cnσ) creates (annihilates) an electron of spin σ at
site n, ρ̂n = ρ̂n↑ + ρ̂n↓, where ρ̂nσ is the number operator for
electrons on site n with spin σ, a is the intersite lattice vec-
tor, ta is the intersite hopping, U is the onsite interaction and
V is the intersite interaction. Both U and V may be attractive
or repulsive, although in most materials repulsive U is more
likely due to the difficulties of overcoming the Hubbard U with
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attractive interactions, such as those due to electron–phonon
interactions. In the low-density limit the model is also known
as the UV model. Properties of local pairs, which can be used
to estimate the Bose–Einstein condensation temperature, have
been studied in simple systems using the UV model [4, 7–10].
If U is highly repulsive and V is attractive, then superlight pairs
can be found on suitable lattices.

Extended Hubbard models have been extensively applied
to the quasi-2D cuprate superconductors [11, 12]. The ori-
gin of an intersite V can be from Coulomb repulsion, long
range electron–phonon interactions [13], and an intersite J
can originate from anti-ferromagnetic interactions induced by
the Hubbard U [14]. Various phases are predicted in extended
Hubbard models, such as spin triplet pairing [15], d-wave
superconductivity [12], Mott insulators [16], XY antiferro-
magnetism [17] and stripe order [18]. We note that exper-
imental evidence for strong intersite attractions mediated
by phonons has been reported recently in one-dimensional
cuprates [19, 20].

In FCC lattices, electrons paired between near-neighbour
sites can move with a single hop. An illustration of such pair
movement in an FCC lattice is shown in figure 1. If sufficient
intersite attraction is present, and there is repulsive Hubbard U
to suppress on-site pairing, the pair can move easily through
the lattice. This should result in a low effective pair mass for
small pairs, which could in turn yield a high transition tem-
perature. To our knowledge, superlight pairs have not yet been
examined in FCC systems. The complexity of the FCC lat-
tice structure and increased number of nearest-neighbour sites
complicate the calculation and we aim to fill this gap. The
detailed calculations presented in this paper explore how pair
properties evolve with Hubbard U and V in FCC lattices, and
identify regions of the parameter space where pairs are small
and light.

The microscopic understanding of complex phases in
strongly correlated systems remains a challenge. There are
many numerical techniques that are suitable for treating
strongly correlated systems, including extended Hubbard
models. These include exact diagonalisation (ED) [21], den-
sity matrix renormalisation group (DMRG) and matrix prod-
uct state calculations [22, 23], dynamical mean-field theory
(DMFT), its extensions dynamical cluster approximation, cel-
lular DMFT, and extended DMFT to treat extended Hubbard
models [12, 24–27], quantum Monte Carlo (QMC) techniques
[1], and recently quantum embedding [28–30] and machine
learning algorithms [31]. Many of these techniques are lim-
ited to 1D and 2D systems, either inherently, or because
particle numbers are limited. The exponentially growing
Hilbert space limits ED to small numbers of sites and particles,
effectively limiting application to 1D and small 2D systems.
DMRG and MPS work best in 1D. QMC techniques can suf-
fer from sign problems when the number of particles becomes
large, although the number of sites may not be limited. On the
other hand, DMFT is most accurate for large spatial dimen-
sions, although the coarse graining of the self-energy removes
some details of the lattice [24]. The integration of DMFT
and density functional theory calculations has led to powerful
techniques for the simulation of materials [32].

In spite of their ubiquity in condensed matter systems,
FCC lattices are often overlooked within the correlated elec-
trons community owing to their relative complexity compared
to other lattices. Materials of interest with FCC lattices include
the A3C60 compounds: a family of molecular compounds with
high transition temperature [33] (where A is an alkali metal
e.g. K, Rb, Cs) which are predominantly FCC structured [34].
In addition to electron–phonon interactions [33] found in these
alkali-doped compounds, strong correlation [35] is also preva-
lent. The presence of long-range phonon mediated interactions
(e.g. the intermolecular modes [34, 36]) may lead to suitable
conditions for extended Hubbard physics and superlight pairs
could also be relevant to other FCC materials.

This work aims to provide an exact solution of the two-
electron problem in an FCC lattice. We calculate the critical
potentials Uc (Vc) to bind particles into pairs, the system’s
total energy, the pair’s size and mass, and BEC transition tem-
peratures of pairs in the low-density (dilute) limit. The paper
is organised as follows: we describe the model Hamiltonian
and methodology used to solve the UV model in the dilute
limit (section 2). In section 3, the properties of the formed
pairs are reported. We conclude this work with a discussion
in section 4.

2. Methodology

We find the exact solution to a single-orbital system of two spin
1/2 fermions where the orbital energy is taken to be zero. The
two-body problem relevant to the Hamiltonian in equation (1)
must satisfy the equation below:∑

a

ta [Ψ(n1 + a, n2) +Ψ(n1, n2 + a)]

+
∑

a

V̂a δn1−n2,aΨ(n1, n2) = EΨ(n1, n2). (2)

Here E is the total energy of the system, Ψ(n1, n2) is the real-
space wave function of the fermions, and n1 and n2 are the spa-
tial coordinates. V̂a combines the interaction terms into a sin-
gle function with V̂r=0 = U and V̂r=a = V . The wave function
in Fourier space is

ψk1k2 =
1
N

∑
n1n2

Ψ(n1, n2)e−ik1n1−ik2n2 , (3)

where N is the total number of lattice points. Substituting the
inverse of equation (3) into equation (2) gives:

(E − εk1 − εk2 )ψk1k2 =
1
N

∑
aq

V̂a ei(q−k1)aψq,k1+k2−q, (4)

where k is the particle’s momentum vector.
The dispersion relation in the FCC lattice is given as

εk = −4t

[
cos

kxb
2

· cos
kyb
2

+ cos
kyb
2

· cos
kzb
2

+ cos
kxb
2

· cos
kzb
2

]
, (5)
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Figure 1. Schematic demonstrating the first-order hopping of superlight small pairs on the FCC lattice. The white vertical arrow represents
an electron with its spin, each small gray circle is a lattice site (only the 13 sites of interest are shown), the dashed oval represents a bound
state through an attractive V , the curved arrow represents electron hopping, and the two-way arrow implies that the configurations are
degenerate. The key feature here is that the pair is itinerant as long as the intersite interaction is sufficiently attractive, and there is sufficient
Hubbard U to stop on-site pairs from forming. Unlike in other cubic lattices where first-order superlight states are only attainable via an
attractive U, the superlight state in the FCC lattice corresponds to a more physical case where the local Coulomb repulsion is large.

where b is the lattice constant.
The solution to the problem involves 13 self-consistent

algebraic equations. We apply (anti-)symmetrisation to
separate the symmetric (singlet) states from the anti-
symmetric (triplet) states. Following reference [10], the (anti-)
symmetrised wave function is expressed as

(E − εk1 − εk2 )φ±
k1k2

=
1
N

′∑
qa

V̂a
{

ei(q−k1)a ± ei(q−k2) a} φ±
q,k1+k2−q,

(6)

where
φ±

k1k2
= ψk1k2 ± ψk2k1 , (7)

and + and − refer to the singlet and the triplet wave func-
tions, respectively. The summation over the lattice vector, a,
in equation (6) is split into two sets: {a+} for singlets, and
{a−} for triplets. We define them as

{a+} =

{
(0, 0, 0),

(
b
2

,
b
2

, 0

)
,

(
0,

b
2

,
b
2

)
,

(
b
2

, 0,
b
2

)
,

(
b
2

,−b
2

, 0

)
,

(
0,

b
2

,−b
2

)
,

(
−b

2
, 0,

b
2

)}
, (8)

{a−} =

{(
b
2

,
b
2

, 0

)
,

(
0,

b
2

,
b
2

)
,

(
b
2

, 0,
b
2

)
,

(
b
2

,−b
2

, 0

)
,

(
0,

b
2

,−b
2

)
,

(
−b

2
, 0,

b
2

)}
, (9)

where, again, b is the lattice constant. The primed sum-
mation in equation (6) means that a factor of 1/2 should be
included for the case a+ = 0. If we define a function

Φ±
a±(k1 + k2) = Φ±

a± (P) ≡ 1
N

∑
q

eiqa± φ±
q,P−q, (10)

where P = k1 + k2 is the total momentum of the particle pair,
then, φ±

k1k2
in equation (6) can be expressed in terms of Φ±

a± .

Replacing φ±
q,P−q in equation (10) leads to the self-consistent

equations

Φ±
a± (P) = −

∑
a′±

V̂a±L±
a±a′±

(E, P) Φ±
a′±

(P), (11)

where

L±
a±a′±

(E, P) =
1
N

∑
q

eiq(a±−a′±) ± ei[qa±−(P−q)a′±]

−E + εq + εP−q
, (12)

is the Green’s function of the lattice. The full dispersion matri-
ces for the singlets and triplets can be found in appendix A
and all calculations are at zero temperature. In the thermody-
namic limit (infinite lattice size), equation (12) is a generalised
Watson integral that in 3D converges for any energy that’s
below the threshold energy of −2W.

3. Results

3.1. Total energy

The ground state energy can be used to identify whether two
particles are bound or not. At zero momentum and zero tem-
perature, the threshold energy of two unbound particles is
ETh = −2W, where W = 12t is the half-bandwidth. The total
energy in figure 2 shows all the different pair symmetries found
in the FCC lattice. The particles are unbound when there is
a plateau at −2W and the energy drops below this threshold
value when the particles bind.

A critical attraction must be reached before the formation
of any bound state. At very large attractions U and V , the s-
states have very similar values (insets of figures 2(a) and (b)).
In figure 2(b), the s-states are formed at relatively weak inter-
site attractions V compared to other states. Additionally, for
very strong attractive V , the energies of all the pair symmetries
are separated by an energy of order t: except for the dEg- and
f - states that have approximately the same energies and are
therefore indiscernible when plotted (inset of figure 2(b)). Note
that the labels dT2g and dEg are d-states with T2g and Eg sym-
metries respectively. The separation of states at large attractive
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Figure 2. The total energy of pairs for (a) the s-states only, and (b) all states of various symmetries. The critical attractions for the s-state are
UHub.

c (V = 0) = −1.4874W and Vs
c(U = 0) = −0.4836W . All states except the s-state are unaffected by U. The excited states (p, dT2g , dEg

and f ) only appear at strongly attractive V. At very large attractions U and V , all s-states have similar values (insets of panels (a) and (b)).
For large intersite attraction, V →−∞, the dEg and f states have approximately the same energies and are indiscernible: inset of panel (b).

V occurs because the matrix elements only depend on the hop-
ping parameter t as V →−∞, as can be seen in equation (B9).
Put another way, at deep V the particles are confined to a fixed
size shell, and therefore the region of confinement, and thus the
energies, become V independent. At P = 0, the degeneracy of
the p-, dT2g-, dEg-, and f - states is three-fold, three-fold, two-
fold and three-fold, respectively. Spin singlet ground states of
pairs are common in Hubbard models [37].

3.2. Binding diagram

At zero pair momentum, we construct a phase diagram
(figure 3) which shows where bound pairs form. States with
nonzero angular momentum (i.e. p-, dT2g-, dEg- and f - states)
are insensitive to U, as evident in figure 3.

In comparison to other lattices with lower coordination
numbers, pairs require stronger attractions for their formation
in the FCC lattice. This is due to the increase in kinetic energy
with coordination number. The critical U or V required for
binding can be found analytically (refer to appendix A for
more details) via

Vs
c(U) � UL0 − 1

UL0C − C − 12UL2
1

, (13)

where L0 = −
√

3K2
0/(8π2t), L1 = 1/(24t) + L0, C = 12L0 +

1/(2t) and K0 = K
(√

3−1
2
√

2

)
= 1.598 142 . . . is the complete

elliptic integral of the first kind. Note that equation (13) only
holds when P = 0.

The required potential to create bound onsite pairs with
no intersite interaction is UHub.

c (V = 0) ≈ −1.4874W (the
negative Hubbard model, V = 0). This is a slightly greater
attraction relative to the simple cubic [9] and body-centred
cubic [10] lattices. Equation (13) also yields the criti-
cal attraction Vs

c(U = 0) ≈ −0.4836W. At infinite inter-
site repulsion, the onsite s-state is guaranteed to form if

Figure 3. Binding diagram showing pair formation at P = 0 in an
FCC lattice. The top (black) curved line is the boundary that
separates bound from unbound s-symmetry pairs, the (grey) shaded
region enclosed by the (magenta) solid line indicates a region with
two s-states, the (blue) thick dashed line represents the onset of
triply degenerate p-states, the (purple) dash-dotted line shows the
binding of a triple degenerate d-symmetry pair of T2g symmetry
(labelled dT2g ), the (green) dotted line is the line below which two
d-wave pairs with Eg symmetry start to form (labelled dEg ) and the
(red) solid line indicates the formation of a triply-degenerate f pairs.
An s-state is guaranteed to form for attractions equal to or stronger
than U = −2W , V = −0.650 23W . The boundaries are exact to at
least eight significant figures.

UHub.
c (V →+∞) � −2W. Also, Vs

c(+∞) = −0.6502W.
The non-s pairs have critical intersite binding strength

V p
c ≈ −1.3586W, V

dT2g
c ≈ −1.8945W, V

dEg
c ≈ −2.2342W,

V f
c ≈ −2.2847W.
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Table 1. Comparing critical binding strengths at P = 0 in 3D cubic lattices (simple
cubic, body-centered cubic, FCC). WS = 6t, WB = 8t, and WF = 12t are the
respective half-bandwidths. We note that there are more pairing states in the FCC
lattice than the other lattices.

Pairing symmetry Binding parameter Minimum attraction required

SC BCC FCC

s-wave U(V = 0) −1.3189WS −1.4355WB −1.4874WF

U(V = +∞) −2WS −2WB −2WF

V(U = 0) −0.6455WS −0.6358WB −0.4836WF

V(U = +∞) −0.9789WS −0.8858WB −0.6502WF

p-wave (A2u) V −1.5885WS −1.5828WB −1.3586WF

d-wave (T2g) V −1.8804WB −1.8945WF

d-wave (Eg) V −1.8034WS −2.2342WF

f -wave (T2u) V −1.9639WB −2.2847WF

Figure 4. Dispersion curve of bound pairs at U = +5W and V = −2.3W . Moving away from the Γ point, degeneracies are lifted. Spin
triplets are identified with a dashed (red) curve and spin singlets with solid (black) curve.

If measured in terms of their respective bandwidths, there
are similarities in the critical attractions needed to bind
two fermions in the simple cubic, BCC and FCC lattices.
The summary of this comparison is given in table 1.

3.3. Dispersion

The pair energy at non-zero momentum is needed to estimate
the pair mass. The dispersion of singlet and triplet states across
the FCC Brillouin zone (BZ) for U = +5W (repulsive) and
V = −2.3W (attractive) is shown in figure 4. To observe the
dispersion of the excited states (dEg and f ), an intersite inter-
action stronger than the bandwidth (−2W) is required (evident
from table 1). Away from the Γ point, degeneracies are lifted
and there are mixing and crossing of states, making it difficult
to specify pair symmetries. However, our method guarantees
unambiguous classification of singlets and triplets. The overall

form of the dispersions has been confirmed at strong coupling
with perturbation theory calculations (see appendix B).

3.4. Pair mass

The effective mass is calculated from the second derivative of
the pair energy dispersion as

[m∗
i ]−1 =

1

h̄2

∂2E
∂P2

i
, (14)

and masses can be seen in figure 5.
In some lattices (e.g. rectangular ladder [1], simple cubic

[9], and BCC [10]), a superlight itinerant state is formed only
when U and V are nearly equal and are both attractive, which
enhances the mobility of the pair via a single hop. However,
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Figure 5. Dependence of the pair mass on (a) U, (b) V . Pair mass increases with large and attractive U. In the limit V →−∞, the geometry
of the FCC lattice means the pair mass tends to a value six times heavier than a single particle (inset of panel (b)).

Figure 6. Radius in units of the lattice constant for (a) onsite interaction at different V, (b) intersite interaction for various U. The radius
diverges at the binding threshold. Intersite pairs form when V is attractive and dominates, but when attractive Hubbard U dominates, the
formation of an onsite pair is favoured.

for superlight pairs in staggered ladder [2] and triangular lat-
tices [3], attractive onsite attraction is not required: a condition
which is closer to physical systems which typically have onsite
repulsion. The FCC lattice, due to its structure, belongs to the
latter group.

In the limit where the intersite interaction is attractive and
dominant V →−∞, the pair mass (figure 5(b)) tends to m∗ =

6m0 (see appendix B for perturbation theory calculations in the
large attractive V limit) since the movement of the pair only
depends linearly on t. On the other hand, in the limit where
the onsite attraction is largely dominant U →−∞ and V is
small or repulsive, the mass of the bound pair increases with
|U|. In this case, the pair movement is second-order in the hop-
ping parameter t, with pair mass increasing with |U|, because

it is necessary to hop through a higher energy intersite state for
motion to occur.

3.5. Pair radius

The effective radius is obtained from the expression

〈r∗〉 =

√√√√√
∑
n

n2Ψ∗(n1, n2)Ψ(n1, n2)∑
n
Ψ∗(n1, n2)Ψ(n1, n2)

, (15)

where n = |n1 − n2|. The radius is plotted in figure 6.
The size of the pair diverges near the threshold energy

(E → ETh). This is because the pair is weakly bound and the
pair wave function spreads over distant lattice sites. If the

6
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Figure 7. Plots of BEC transition temperature for bound pairs in the dilute limit. The number of pairs per site nb increases from left to right.
Dark lines are used if nb satisfies the pair overlap condition. We observe a region of constant TBEC in the superlight regimes. The horizontal
lines show TBEC for pairs of mass m∗ = 2m0. The dotted regions (abrupt decrease to zero transition temperature) indicate TΔ < TBEC (so
there are no preformed pairs).

particles unbind, the size becomes infinite. When V is strongly
attractive and dominates over U, we see the formation of a
local intersite pair, with size on the order of the lattice param-
eter. In contrast, if the Hubbard attraction is very strong and
dominant, an onsite pair is formed.

3.6. Bose–Einstein condensation

We estimate BEC transition temperatures for pairs in an FCC
lattice, obtained from the Bose integral as,

TBEC =
3.31h̄2

m∗
bkB

(
nb

Ωsite

)2/3

, (16)

where Ωsite = b3/4 is the volume of the Wigner–Seitz cell
for the FCC lattice and nb is the number of pairs per lattice
site. We use lattice constant b = 14.24 Å as an example (con-
sistent with the FCC fullerides, although we note that elec-
trons are not dilute in fullerides and further manipulations
would be required to derive a UV model for such mate-
rials). Transition temperatures for fixed nb are plotted in
figure 7. For BEC to take place at TBEC, pairs must exist
above TBEC, such that TBEC < TΔ, where TΔ = Δ/kB is the

pairing temperature and binding energy Δ = 2ε0 − E0. The
value t = 0.04 eV (consistent with fulleride superconductors
[34]) is used to set the energy scale. The maximum nb for
which TBEC is consistent with the effective mass approxima-
tion is estimated to be approximately 0.015. We require that
pairs of radius R′ = αr∗ can fit into space without overlapping,
so nb16R′3/3 < 1. Selecting α = 5 is suggested to minimise
the overlap of wave functions of different pairs to ∼1%. For
nb = 0.0015, TBEC � 30 K and for nb = 0.015 TBEC � 70 K.

4. Discussion and conclusions

This paper explored the formation and properties of fermion
pairs in an FCC lattice. The binding diagram, pair energy,
effective mass and radius were calculated, and BEC transition
temperatures were estimated. When the intersite attraction is
large and U is repulsive, leading to strongly bound intersite
pairs, the bound pair was found to be six times heavier than a
single particle mass, since geometric properties of FCC lattices
allow motion of strongly bound intersite pairs as a first order
effect. Infinitely heavy pairs are found on the FCC lattice for
U →−∞.

7
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Intersite pair motion on FCC lattices differs qualitatively
from other 3D cubic lattices, where either next-nearest neigh-
bour hopping or attractive Hubbard U ∼ V would be required
to form light states when V is strong and attractive. While
effective attractive U could be created if a very strong elec-
tron–phonon interaction overcome the Hubbard U, this would
lead to very heavy pairs due to polaron effects. The geomet-
ric properties of FCC lattices which do not require the elec-
tron–phonon interaction to overcome the Hubbard U, could
lead to pairs, created by intersite electron–phonon interactions
(and other mechanisms) that are light, mobile and undergo a
superconducting transition at high temperatures.

It is possible to measure the mass of carriers in cuprate
superconductors using optical and Hall measurements. This
shows that in the quasi-2D high temperature superconductors,
typical carrier masses are three electron masses, so light car-
riers are not necessarily unique to FCC lattices, and can be
found if the intersite attraction is weak [14, 38]. We note that
superlight states may not correspond to the highest transition
temperatures for FCC lattices, and we estimate slightly higher
TBEC for weakly bound pairs. What is unusual here is that
the pair masses are small, both when the intersite attraction
is weak and when it is strong, which might allow supercon-
ductivity to be found at higher temperatures in a wider range
of the parameter space of the extended Hubbard model on FCC
lattices (perhaps making it easier to find materials with the
right properties for superconductivity). We also note that it
might be possible to probe the carrier mass in FCC fullerides
using similar optical and Hall measurements.

Optical lattices may offer an alternative way to measure the
properties of superlight pairs, since the mass enhancement of
six in the strong attraction limit is a feature of the lattice geom-
etry. FCC optical lattices can be formed using arrangements
of four laser beams [39, 40]. The Hubbard U in such systems
can be controlled via the Feshbach resonance. Intersite V is
formed using dressed Rydberg states, and can be controlled
using the principal quantum number for the Rydberg states and
the detuning from the Rydberg state. In practice, FCC optical
lattices have large lattice constants so we expect the BEC tem-
perature will be low. However it may be possible to observe
superlight pairs in optical lattice experiments in the normal
state.

Further investigations using other theoretical techniques
would be of interest. The challenge is to find techniques that
can deal with the FCC structures without losing the detail of
the lattice. For small numbers of particles, path integral QMC
could be used [1], but ED would not be appropriate in 3D as
lattice sizes would be limited to less than four sites across due
to the 4N growth in Hilbert space. Approaching the thermo-
dynamic limit is a challenge. DMFT is most suitable for 3D
systems, but the coarse graining of the BZ washes out details of
the lattice, such that results for all 3D lattices would be qualita-
tively identical. We note that transition temperatures predicted
here are similar to those in FCC fulleride materials. While the
fullerides are not dilute, we suggest that future work could also
include a determination of an effective UV Hamiltonian for
light doping away from half filling in such systems.

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).

Appendix A. UV model on FCC lattice

A.1. Schrödinger equation

The (anti-)symmetrised Schrödinger equation can be written
as,

(E − εk1 − εk2 )φ±
k1k2

=
1
N

∑′
qa± V̂a±

{
ei(q−k1)a± ± ei(q−k2)a±

}
φ±

q,k1+k2−q.

(A1)

The prime in the summation means that a factor of 1
2 must

be included for the case a+ = 0. Spin singlets have solutions
belonging to the symmetrised Schrödinger equation while spin
triplets can be found from the anti-symmetrised version of
equation (A1).

We define the vectors for the singlets and triplets respec-
tively as

{a+} = {a+0 , a+1 , a+2 , a+3 , a+4 , a+5 , a+6 } = {(0, 0, 0),

( 1
2 , 1

2 , 0), (0, 1
2 , 1

2 ), ( 1
2 , 0, 1

2 ), ( 1
2 ,− 1

2 , 0), (0, 1
2 ,− 1

2 ), (− 1
2 , 0, 1

2 )}
{a−} = {a−

1 , a−
2 , a−

3 , a−
4 , a−

5 , a−
6 } = {( 1

2 , 1
2 , 0), (0, 1

2 , 1
2 ),

( 1
2 , 0, 1

2 ), ( 1
2 ,− 1

2 , 0), (0, 1
2 ,− 1

2 ), (− 1
2 , 0, 1

2 )}.

In this section, we set b = 1.
A.1.1. Symmetrised Schödinger equation. Using the vectors
{a+} in equation (A1), we obtain

(E − εk1 − εk2 )φ+
k1k2

=
1
N

∑
q

[
1
2

U
(

ei(q−k1)a+0

+ ei(q−k2)a+0
)
+ V(ei(q−k1)a+1 + ei(q−k2)a+1 )

+ V(ei(q−k1)a+2 + ei(q−k2)a+2 )+ V(ei(q−k1)a+3 + ei(q−k2)a+3 )

+ V(ei(q−k1)a+4 + ei(q−k2)a+4 )+ V(ei(q−k1)a+5 + ei(q−k2)a+5 )

+ V(ei(q−k1)a+6 + ei(q−k2)a+6 )
]
φ+

q,k1+k2−q

=
1
N

∑
q

[
U + V e

i
(

qx
2 +

qy
2

)
(e−ik1a+1 + e−ik2a+1 )

+ V ei
(

qy
2 + qz

2

)
(e−ik1a+2 + e−ik2a+2 )

+ V ei( qx
2 + qz

2 )(e−ik1a+3 + e−ik2a+3 )

+ V ei
(

qx
2 − qy

2

)
(e−ik1a+4 + e−ik2a+4 )

+ V ei
(

qy
2 − qz

2

)
(e−ik1a+5 + e−ik2a+5 )

+ V ei(− qx
2 + qz

2 )(e−ik1a+6 + e−ik2a+6 )
]
φ+

q,k1+k2−q.

(A2)8
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The following basis functions can be used:

Φ+
0 (P) =

1
N

∑
q

φ+
q,P−q ,

Φ+
1 (P) =

1
N

∑
q

ei
(

qx
2 +

qy
2

)
φ+

q,P−q ,

Φ+
2 (P) =

1
N

∑
q

ei
(

qy
2 + qz

2

)
φ+

q,P−q

Φ+
3 (P) =

1
N

∑
q

ei( qx
2 + qz

2 ) φ+
q,P−q ,

Φ+
4 (P) =

1
N

∑
q

ei
(

qx
2 − qy

2

)
φ+

q,P−q

Φ+
5 (P) =

1
N

∑
q

ei
(

qy
2 − qz

2

)
φ+

q,P−q ,

Φ+
6 (P) =

1
N

∑
q

ei(− qx
2 + qz

2 ) φ+
q,P−q,

(A3)

where P = k1 + k2. The wave function in equation (A2)
expressed in terms of the basis functions equation (A3) is
φ+

k1k2
=

1
(E − εk1 − εk2 )

{
UΦ+

0 (P) + V Φ+
1 (P)

× (e−ik1a+1 + e−ik2a+1 ) + V Φ+
2 (P)(e−ik1a+2 + e−ik2a+2 )

+ V Φ+
3 (P)(e−ik1a+3 + e−ik2a+3 )

+ V Φ+
4 (P)(e−ik1a+4 + e−ik2a+4 )

+ V Φ+
5 (P)(e−ik1a+5 + e−ik2a+5 )

+ V Φ+
6 (P)(e−ik1a+6 + e−ik2a+6 )

}
. (A4)

Substituting equation (A4) into each entry of equation (A3)
and redefining q j = q′

j +
P j
2 leads to seven self-consistent

equations. The first is

Φ̃+
0 (P) = UL000(P)Φ̃+

0 (P) + V [L110(P)

+ L1̄1̄0(P)
]
Φ̃+

1 (P)

+ V
[
L011(P) + L01̄1̄(P)

]
Φ̃+

2 (P)

+ V
[
L101(P) + L1̄01̄(P)

]
Φ̃+

3 (P)

+ V
[
L11̄0(P) + L1̄10(P)

]
Φ̃+

4 (P)

+ V
[
L011̄(P) + L01̄1(P)

]
Φ̃+

5 (P)

+ V
[
L1̄01(P) + L101̄(P)

]
Φ̃+

6 (P), (A5)

where Φ̃+
i (P) = e

−i
2 (Pa+i )Φ+

i (where i = 0, 1, . . . , 6), have
phase factors which provides information about the centre-of-
mass motion of the bound state. Furthermore, the L’s represent
the Green’s functions of the FCC lattice which are defined as

Llmn(P) =
1
N

∑
q′

e
i

(
l q′x

2 +m
q′y
2 +n

q′z
2

)

E − ε P
2 +q′ − ε P

2 −q′

= −
∫ 2π

−2π

∫ 2π

−2π

∫ 2π

−2π

dq′
x dq′

y dq′
z

(4π)3

cos
(

l q′x
2 + m

q′y
2 + n q′z

2

)
|E|+ ε P

2 +q′ + ε P
2 −q′

.

(A6)

Instead of writing a negative subscript along a coordinate,
we place a bar above it to keep notation compact. For the
present problem where interactions are only limited to nearest-
neighbour distances, l, m and n take the values 0, ±1, and ±2.

Combining all seven independent self-consistent
equations for all spin-singlets at arbitrary momentum gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

UL000 V[L110 + L1̄1̄0] V[L011 + L01̄1̄] V[L101 + L1̄01̄] V[L11̄0 + L1̄10] V (L011̄ + L01̄1 ] V[L1̄01 + L101̄]
UL110 V[L000 + L220] V[L101̄ + L121] V[L011̄ + L211] V[L020 + L200] V[L101 + L121̄] V[L211̄ + L011]
UL011 V[L1̄01 + L121] V[L000 + L022] V[L1̄10 + L112] V[L1̄21 + L101] V[L002 + L020] V[L110 + L1̄12]
UL101 V[L01̄1 + L211] V[L11̄0 + L112] V[L000 + L202] V[L011 + L21̄1] V[L11̄2 + L110] V[L200 + L002]
UL11̄0 V[L02̄0 + L200] V[L12̄1̄ + L101] V[L01̄1̄ + L21̄1] V [L000 + L22̄0 V[L12̄1 + L101̄] V[L21̄1̄ + L01̄1]
UL011̄ V[L1̄01̄ + L121̄] V[L002̄ + L02̄0] V[L1̄12̄ + L110] V[L1̄21̄ + L101̄] V[L000 + L022̄] V[L112̄ + L1̄10]
UL1̄01 V[L2̄1̄1 + L011] V[L1̄1̄0 + L1̄12] V[L2̄00 + L002] V[L2̄11 + L01̄1] V[L1̄1̄2 + L1̄10] V[L000 + L2̄02]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ̃+
0

Φ̃+
1

Φ̃+
2

Φ̃+
3

Φ̃+
4

Φ̃+
5

Φ̃+
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ̃+
0

Φ̃+
1

Φ̃+
2

Φ̃+
3

Φ̃+
4

Φ̃+
5

Φ̃+
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A7)

A.1.2. Anti-symmetrised Schrödinder equation. The anti-
symmetrised equation is found by substituting {a−} in
equation (A1),

(E − εk1 − εk2 )φ−
k1k2

=
1
N

∑
q

[
V ei

(
qx
2 +

qy
2

)
(e−ik1a−1 − e−ik2a−1 )

+ V ei
(

qy
2 + qz

2

)
(e−ik1a−2 − e−ik2a−2 )

+ V ei( qx
2 + qz

2 )(e−ik1a−3 − e−ik2a−3 )

+ V ei
(

qx
2 − qy

2

)
(e−ik1a−4 − e−ik2a−4 )

+ V ei
(

qy
2 − qz

2

)
(e−ik1a−5 − e−ik2a−5 )

+ V ei(− qx
2 + qz

2 )(e−ik1a−6 − e−ik2a−6 )
]
φ−

q,k1+k2−q. (A8)

9



J. Phys.: Condens. Matter 34 (2022) 135601 G D Adebanjo et al

Similar basis functions can be used to the singlet case:

Φ−
1 (P) =

1
N

∑
q

ei
(

qx
2 +

qy
2

)
φ−

q,P−q , Φ−
2 (P) =

1
N

∑
q

ei
( qy

2 +
qz
2

)
φ−

q,P−q

Φ−
3 (P) =

1
N

∑
q

ei( qx
2 +

qz
2 ) φ−

q,P−q , Φ−
4 (P) =

1
N

∑
q

ei
(

qx
2 − qy

2

)
φ−

q,P−q

Φ−
5 (P) =

1
N

∑
q

ei
( qy

2 − qz
2

)
φ−

q,P−q ,

Φ−
6 (P) =

1
N

∑
q

ei(− qx
2 +

qz
2 ) φ−

q,P−q,

(A9)

leading to

Φ̃−
1 (P) = V [L000 − L220] Φ̃−

1 (P)

+ V
[
L101̄ − L121

]
Φ̃−

2 (P)

+ V
[
L011̄ − L211

]
Φ̃−

3 (P)

+ V [L020 − L200] Φ̃−
4 (P)

+ V
[
L101 − L121̄

]
Φ̃−

5 (P)

+ V
[
L211̄ − L011

]
Φ̃−

6 (P). (A10)

The combined self-consistent equations for all triplets are

⎛
⎜⎜⎜⎜⎜⎜⎝

V[L000 − L220] V[L101̄ − L121] V[L011̄ − L211] V[L020 − L200] V[L101 − L121̄] V[L211̄ − L011]
V[L1̄01 − L121] V[L000 − L022] V[L1̄10 − L112] V[L1̄21 − L101] V[L002 − L020] V[L110 − L1̄12]
V[L01̄1 − L211] V[L11̄0 − L112] V[L000 − L202] V[L011 − L21̄1] V[L11̄2 − L110] V[L200 − L002]
V[L02̄0 − L200] V[L12̄1̄ − L101] V[L01̄1̄ − L21̄1] V [L000 − L22̄0 V[L12̄1 − L101̄] V[L21̄1̄ − L01̄1]
V[L1̄01̄ − L121̄] V[L002̄ − L02̄0] V[L1̄12̄ − L110] V[L1̄21̄ − L101̄] V[L000 − L022̄] V[L112̄ − L1̄10]
V[L2̄1̄1 − L011] V[L1̄1̄0 − L1̄12] V[L2̄00 − L002] V[L2̄11 − L01̄1] V[L1̄1̄2 − L1̄10] V[L000 − L2̄02]

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

Φ̃−
1

Φ̃−
2

Φ̃−
3

Φ̃−
4

Φ̃−
5

Φ̃−
6

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Φ̃−
1

Φ̃−
2

Φ̃−
3

Φ̃−
4

Φ̃−
5

Φ̃−
6

⎞
⎟⎟⎟⎟⎟⎟⎠ .

(A11)

A.2. Pair energy for Γ point

At the Γ point,

Llmn(0) =
1
N

∑
q′

e
i

(
l q′x

2 +m
q′y
2 +n

q′z
2

)

E − 2εq′

= −
∫ 2π

−2π

∫ 2π

−2π

∫ 2π

−2π

dq′
x dq′

y dq′
z

(4π)3

cos
(

l q′x
2

)
cos

(
m

q′y
2

)
cos

(
n q′z

2

)
|E| − 8t

{
cos

(
q′x
2

)
cos

(
q′y
2

)
+ cos

(
q′x
2

)
cos

(
q′z
2

)
+ cos

(
q′y
2

)
cos

(
q′z
2

)}
= − 1

(2π)3

∫ π

−π

∫ π

−π

∫ π

−π

cos(lq′′
x) cos(mq′′

y ) cos(nq′′
z )

|E| − 8t
{

cos(q′′
x) cos(q′′

y ) + cos(q′′
x) cos(q′′

z ) + cos(q′′
y ) cos(q′′

z )
}dq′′

x dq′′
y dq′′

z :

(
q′′

j =
q′

j

2

)
.

(A12)
Because some of the Green’s functions are identical due to symmetry properties [41], we may then use the simplifications below

L000 = L0

L110 = L101 = L011 = L1̄01 = L01̄1 = L101̄

= L1̄01̄ = L01̄1̄ = L011̄ = L1̄10 = L11̄0 = L1̄1̄0 ≡ L1

L220 = L022 = L202 = L22̄0 = L022̄ = L2̄02 ≡ L2

L200 = L020 = L002 = L2̄00 = L02̄0 = L002̄ ≡ L3

L211 = L121 = L112 = L2̄11 = L12̄1 = L112̄ = L1̄1̄2 = · · · ≡ L4,

(A13)

to modify our dispersion matrices (A7) and (A11) to obtain (at the Γ point, Φ̃±
i = Φ±

i ):

10
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

UL0 2VL1 2VL1 2VL1 2VL1 2VL1 2VL1

UL1 V[L0 + L2] V[L1 + L4] V[L1 + L4] 2VL3 V[L1 + L4] V[L4 + L1]
UL1 V[L1 + L4] V[L0 + L2] V[L1 + L4] V[L4 + L1] 2VL3 V[L1 + L4]
UL1 V[L1 + L4] V[L1 + L4] V[L0 + L2] V[L1 + L4] V[L4 + L1] 2VL3

UL1 2VL3 V[L4 + L1] V[L1 + L4] V[L0 + L2] V[L4 + L1] V[L4 + L1]
UL1 V[L1 + L4] 2VL3 V[L4 + L1] V[L4 + L1] V[L0 + L2] V[L4 + L1]
UL1 V[L4 + L1] V[L1 + L4] 2VL3 V[L4 + L1] V[L4 + L1] V[L0 + L2]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
L̂singlet

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ+
0

Φ+
1

Φ+
2

Φ+
3

Φ+
4

Φ+
5

Φ+
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Φ̂singlet

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ+
0

Φ+
1

Φ+
2

Φ+
3

Φ+
4

Φ+
5

Φ+
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Φ̂singlet

, (A14)

⎛
⎜⎜⎜⎜⎜⎜⎝

V[L0 − L2] V[L1 − L4] V[L1 − L4] 0 V[L1 − L4] V[L4 − L1]
V[L1 − L4] V[L0 − L2] V[L1 − L4] V[L4 − L1] 0 V[L1 − L4]
V[L1 − L4] V[L1 − L4] V[L0 − L2] V[L1 − L4] V[L4 − L1] 0

0 V[L4 − L1] V[L1 − L4] V[L0 − L2] V[L4 − L1] V[L4 − L1]
V[L1 − L4] 0 V[L4 − L1] V[L4 − L1] V[L0 − L2] V[L4 − L1]
V[L4 − L1] V[L1 − L4] 0 V[L4 − L1] V[L4 − L1] V[L0 − L2]

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
L̂triplet

⎛
⎜⎜⎜⎜⎜⎜⎝

Φ−
1

Φ−
2

Φ−
3

Φ−
4

Φ−
5

Φ−
6

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Φ̂triplet

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Φ−
1

Φ−
2

Φ−
3

Φ−
4

Φ−
5

Φ−
6

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Φ̂triplet

. (A15)

We may rewrite the matrices above as

L̂s,tΦ̂s,t = λs,tΦ̂s,t, (A16)

to form an eigenvalue problem where L̂s and L̂t are the singlet
and triplet dispersion matrices, λs and λt being the eigenvalues
corresponding to singlet Φ̂s and triplet Φ̂t eigenvectors, respec-
tively. To find the pair energy, we select E, compute L and then
λ. A true pair state corresponds to λ = 1. Thus, all pair ener-
gies can be found by adjusting E and searching forλ = 1 using
standard binary search algorithms.

As the Green’s functions and dispersion matrices become
more simplified at the Γ point of the FCC lattice, one can take
further advantage of this high symmetry point. We use this
point to evaluate the binding conditions for the formation of
the bound states (with s-, p-, dT2g-, dEg- and f - symmetries).
Via the irreducible representations of the Oh group [42], we
can determine some linear combinations (excluding the nor-
malisation constants) of the eigenvector by performing the
48 operations on the FCC lattice. Note that the eigenfunction
Φ+

0 is at the centre of zone and therefore remains unchanged
due to the operations. These operations yield the irreducible
representations for both the singlet and triplet states as

Γfcc
singlet = A1g ⊕ Eg ⊕ T2g

Γfcc
triplet = T1u ⊕ T2u

. (A17)

A1g is s-symmetrical, Eg and T2g are of d-symmetry, T1u has p-
symmetry while T2u forms an f - symmetric state. An example
of a symmetrised linear combinations for the singlets is

χA1g = Φ+
1 +Φ+

2 +Φ+
3 +Φ+

4 +Φ+
5 +Φ+

6 , (A18)

χT2g =

⎧⎪⎪⎨
⎪⎪⎩
Φ+

1 − Φ+
4

Φ+
3 − Φ+

6

Φ+
2 − Φ+

5

, (A19)

χEg =

{
Φ+

1 − 2Φ+
2 +Φ+

3 +Φ+
4 − 2Φ+

5 +Φ+
6

Φ+
1 − Φ+

3 +Φ+
4 − Φ+

6

,

(A20)

and for the triplets is

χT1u =

⎧⎪⎪⎨
⎪⎪⎩
Φ−

1 +Φ−
2 − Φ−

4 +Φ−
5

Φ−
1 +Φ−

3 +Φ−
4 − Φ−

6

−Φ−
2 − Φ−

3 +Φ−
5 − Φ−

6

, (A21)

χT2u =

⎧⎪⎪⎨
⎪⎪⎩
Φ−

2 − Φ−
3 − Φ−

5 − Φ−
6

Φ−
1 − Φ−

3 +Φ−
4 +Φ−

6

Φ−
1 − Φ−

2 − Φ−
4 − Φ−

5

. (A22)

11
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Allowing transformation to a new orthogonal basis [43, 44]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ0

Φs

Φd1

Φd2

Φd3

Φd4

Φd5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 1 1 1 1 1
0 1 0 0 −1 0 0
0 0 0 1 0 0 −1
0 0 1 0 0 −1 0
0 1 −2 1 1 −2 1
0 1 0 −1 1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ+
0

Φ+
1

Φ+
2

Φ+
3

Φ+
4

Φ+
5

Φ+
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡ χ̂s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ+
0

Φ+
1

Φ+
2

Φ+
3

Φ+
4

Φ+
5

Φ+
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A23)

⎛
⎜⎜⎜⎜⎜⎜⎝

Φp1

Φp2

Φp3

Φ f 1

Φ f 2

Φ f 3

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 −1 1 0
1 0 1 1 0 −1
0 −1 −1 0 1 −1
0 1 −1 0 −1 −1
1 0 −1 1 0 1
1 −1 0 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

Φ−
1

Φ−
2

Φ−
3

Φ−
4

Φ−
5

Φ−
6

⎞
⎟⎟⎟⎟⎟⎟⎠

≡ χ̂t

⎛
⎜⎜⎜⎜⎜⎜⎝

Φ−
1

Φ−
2

Φ−
3

Φ−
4

Φ−
5

Φ−
6

⎞
⎟⎟⎟⎟⎟⎟⎠ . (A24)

We diagonalise the equation using

L̂diag
i = χ̂i · L̂i · χ̂−1

i . (A25)

The respective block-diagonal self-consistent equations are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

UL0 2VL1 0 0 0 0 0
6UL1 Ks 0 0 0 0 0

0 0 KdT2g
0 0 0 0

0 0 0 KdT2g
0 0 0

0 0 0 0 KdT2g
0 0

0 0 0 0 0 KdEg
0

0 0 0 0 0 0 KdEg

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ0

Φs

Φd1

Φd2

Φd3

Φd4

Φd5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ0

Φs

Φd1

Φd2

Φd3

Φd4

Φd5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A26)

⎛
⎜⎜⎜⎜⎜⎜⎝

Kp 0 0 0 0 0
0 Kp 0 0 0 0
0 0 Kp 0 0 0
0 0 0 K f 0 0
0 0 0 0 K f 0
0 0 0 0 0 K f

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

Φp1

Φp2

Φp3

Φ f 1

Φ f 2

Φ f 3

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Φp1

Φp2

Φp3

Φ f 1

Φ f 2

Φ f 3

⎞
⎟⎟⎟⎟⎟⎟⎠ , (A27)

where

Ks = V[L0 + 4L1 + L2 + 2L3 + 4L4]

KdT2g
= V[L0 + L2 − 2L3]

KdEg
= V[L0 − 2L1 + L2 + 2L3 − 2L4]

Kp = V[L0 + 2L1 − L2 − 2L4]

K f = V[L0 − 2L1 − L2 + 2L4].

These are the solutions to the two-body problem at P =
0. The 2 × 2 block in equation (A26) corresponds to the s-
symmetrical state, the next three 1 × 1 blocks are triply degen-
erate d-states of T2g symmetry and the last two are another
doubly degenerate d-states with the Eg symmetry. In the case
of spin triplet states in equation (A27), the p- and f - states
are three-fold degenerate and they belong to the T1u and T2u

symmetry respectively.

It is possible to evaluate the exact binding threshold for the
emergence of a bound state. With the symmetrised and diag-
onalised equations, we set the energy value as E →−2W =
−24t. The self-consistent equations give

s :

(
1 − UL0 −2VL1

−6UL1 1 −Ks

)
= 0. (A28)

dT2g : 1 −KdT2g
= 0, (A29)

dEg : 1 −KdEg
= 0, (A30)

p : 1 −Kp = 0, (A31)

f : 1 −K f = 0. (A32)

Following reference [45], the exact solution of the Green’s
functions in equation (A13) are
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L0 = −
√

3K2
0

8π2t
=

−0.056 027 549 298 548
t

, (A33)

L1 =
1

24t
−

√
3K2

0

8π2t
=

1
24t

+ L0, (A34)

L2 = −9
√

3K2
0

8π2t
− 3

4t
√

3K2
0

+
2
3t

= 9L0 +
3

32π2t2L0
+

2
3t

,

(A35)

L3 =

√
3K2

0

24π2t
− 1

8t
√

3K2
0

=
1

64π2t2L0
− L0

3
, (A36)

L4 =

√
3K2

0

24π2t
+

1

4t
√

3K2
0

− 1
12t

= −L0

3
− 1

32π2t2L0
− 1

12t
,

(A37)
where the complete elliptic integral of the first kind K0 =

K
(√

3−1
2
√

2

)
= 1.598 142 002 112 540.

The binding conditions are obtained from
equations (A28)–(A32) to be

Vs
c � V(U) =

UL0 − 1
UL0C − C − 12UL2

1

, (A38)

where C = L0 + 4L1 + L2 + 2L3 + 4L4 = 12L0 +
1
2t =

−0.172 330 591 582 576/t.

V
dT2g
c = −22.734 195 989 010 747t, (A39)

V
dEg
c = −26.810 644 276 320 041t, (A40)

V p
c = −16.302 567 033 831 927t, (A41)

V f
c = −27.416 574 191 996 979t. (A42)

In specific limits, the critical binding of s-states is

Vs
c(U = 0) = −5.80 280 025t, (A43)

Vs
c(U →+∞) = −7.8 028 002 504t, (A44)

Uc(V = 0) = −17.84 836 232 388t, (A45)

Uc(V →+∞) = −24t. (A46)

Appendix B. Pair mass in the superlight limit

Expanding the one-particle dispersion at small k, one obtains

εk ≈ −12t + tb2(k2
x + k2

y + k2
z ) = ε0 +

h̄2

2m0
(k2

x + k2
y + k2

z ),

(B1)
where m0 = h̄2/(2tb2) is the free particle mass.

We define six singlet dimer basis states

Di,n =
1√
2

(
|↑〉n|↓〉n+ai

+ |↓〉n|↑〉n+ai

)
. (B2)

Di,n are the only states with nonzero weights in the V →−∞
limit. Because of the topology of the FCC lattice, Di,n are
linked by first-order hopping events. The first-order Hamilto-
nian matrix is

ĤD1,n = −t
(
D3,n + D3,n+a6

)
− t

(
D4,n + D4,n+a5

)
− t

(
D5,n + D5,n+a4

)
− t

(
D6,n + D6,n+a3

)
, (B3)

ĤD2,n = −t
(
D3,n + D3,n−a5

)
− t

(
D4,n + D4,n−a6

)
− t

(
D5,n+a2 + D5,n−a5

)
− t

(
D6,n+a2 + D6,n−a6

)
,

(B4)

ĤD3,n = −t
(
D1,n + D1,n−a6

)
− t

(
D2,n + D2,n+a5

)
− t

(
D5,n + D5,n+a2

)
− t

(
D6,n+a3 + D6,n−a6

)
,

(B5)

ĤD4,n = −t
(
D1,n + D1,n+a2

)
− t

(
D2,n + D2,n+a6

)
− t

(
D5,n−a5 + D5,n+a4

)
− t

(
D6,n + D6,n+a2

)
,

(B6)

ĤD5,n = −t
(
D1,n + D1,n−a4

)
− t

(
D2,n−a2 + D2,n+a5

)
− t

(
D3,n + D3,n−a2

)
− t

(
D4,n−a4 + D4,n+a5

)
,

(B7)

ĤD6,n = −t
(
D1,n + D1,n−a3

)
− t

(
D2,n−a2 + D2,n+a6

)
− t

(
D3,n+a6 + D3,n−a3

)
− t

(
D4,n + D4,n−a2

)
.

(B8)

Applying a Fourier transform one obtains the dimer
Schrödinger equation. Its self-consistent condition yields
pair energy E for a given pair momentum P.
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∣∣∣∣∣∣∣∣∣∣∣∣

E 0 t(1 + eiPa6 ) t(1 + eiPa5 ) t(1 + eiPa4 ) t(1 + eiPa3 )
0 E t(1 + e−iPa5 ) t(1 + e−iPa6 ) t(eiPa2 + e−iPa5 ) t(eiPa2 + e−iPa6 )

t(1 + e−iPa6 ) t(1 + eiPa5 ) E 0 t(1 + eiPa2 ) t(eiPa3 + e−iPa6 )
t(1 + e−iPa5 ) t(1 + eiPa6 ) 0 E t(eiPa4 + e−iPa5 ) t(1 + eiPa2 )
t(1 + e−iPa4 ) t(eiPa5 + e−iPa2 ) t(1 + e−iPa2 ) t(eiPa5 + e−iPa4 ) E 0
t(1 + e−iPa3 ) t(eiPa6 + e−iPa2 ) t(eiPa6 + e−iPa3 ) t(1 + e−iPa2 ) 0 E

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (B9)

The general dispersion equation (B9) is too complex. How-
ever, to extract a pair mass it is sufficient to know E(P) at small
P. Utilising the isotropy property of cubic dispersion relations,
we set P = (Px , 0, 0) and expand equation (B9) to get

E3(E − 4t)

[
E2 + 4tE − 16t2

(
1 + cos

Pxb
2

)]
= 0, (B10)

which defines dispersion of six pair bands along the Px direc-
tion. The lowest band is

E1(Px) = −2t

(
1 +

√
5 + 4 cos

Pxb
2

)
. (B11)

Expanding at small Px , one obtains

E1(Pxb � 1) ≈ −8t +
1
6

t(Pxb)2 ≡ E0 +
h̄2P2

x

2 m∗ , (B12)

from where

m∗ =
3h̄2

tb2
= 6m0. (B13)

Thus even an infinitely bound intersite pair is only six times
heavier than a free particle.
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