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Abstract—Resource-driven systems are affected by resource 

variability, which prevents the timely completion of important 
tasks. This paper presents BOND, a hyBrid resOurce-driveN aD-
aptation approach which addresses the issue of resource variabil-
ity by (i) prioritising tasks and making resources available for 
tasks with higher priorities, (ii) considering alternative task exe-
cutions when resources are not available, (iii) substituting re-
sources with alternative ones, and (iv) changing tasks into similar 
ones. The approach supports a proactive and reactive adaptation 
plan. A prototype tool has been implemented as a proof of concept 
and used for an initial evaluation of the approach in terms of its 
feasibility and scalability. 

Keywords—Resource-driven Adaptive System, Self-Adaptive 
System, Task Prioritisation 

I. INTRODUCTION 
A Resource-driven System (RS) consists of tasks that repre-

sent activities [1], which are bound by limited resources. For ex-
ample, automated warehouses rely on robots as resources for 
performing tasks such as preparing customer orders for delivery; 
car manufacturers rely on parts to assemble cars; while recipes 
rely on available ingredients. The variability of resources due to 
reasons such as unexpected hardware failures, excess of work-
loads, or lack of raw materials prevents RSs to execute important 
tasks on time. In addition, it is costly to compensate for short-
term resource variability by over-provisioning resources. 

Adaptation enables an RS to continue operating with its lim-
ited resources. A Resource-driven Adaptive System (RAS) is a 
type of Self-Adaptive System (SAS) [2]–[5], where adaptation 
is triggered by the variability of resources [6]. For example, the 
variability of available robots at a warehouse prevents the timely 
fulfilment of customer orders and incurs financial losses. To pre-
vent this, a RAS could adapt the way order preparation is per-
formed, to speed up the work, by allocating order preparations 
to other robots that may be executing tasks with lower priorities. 

Collective Adaptive Systems (CASs) are ensembles of col-
laborating entities that adapt their behaviour to accommodate 
changes in their environment [7]. One example of these changes 
is concerned with changes in the available resources. Therefore, 
CASs would benefit from a resource-driven adaptation approach 
to operate successfully, as per the one presented in this paper. 

Several resource-driven adaptation approaches have been 
proposed. These approaches adapt RSs in different ways such as 
disabling optional components [8] and reducing the data re-
turned by a query [9]. RASs would have more versatility in cop-
ing with resource variability by supporting multiple adaptation 

types. For example, by substituting resources with alternative 
ones, by changing the order of or delaying the execution of some 
tasks, or even by changing the tasks themselves into similar ones 
to cope with available resources. Additionally, RASs would 
benefit from task prioritisation to decide which tasks to adapt 
during situations of resource variability. Some scheduling ap-
proaches support task prioritisation [10] but do not consider ad-
aptation or multiple prioritisation criteria such as variations of a 
task based on its parameters and the role of the user who is exe-
cuting the task. Furthermore, existing approaches support spe-
cific resource types such as CPU [8] and battery [11] and could 
be more useful if they support various resource types [12]. 

This paper presents BOND (hyBrid resOurce-driveN aDap-
tation), a resource-driven adaptation approach, which supports 
RSs in handling variability of limited resources by: (i) making 
resources available for tasks in the cases where they are most 
needed, and (ii) considering different viable task execution op-
tions when resources are unavailable. BOND addresses resource 
variability by (a) prioritising tasks using multiple criteria and (b) 
applying the least costly adaptation types to low-priority tasks. 
The approach supports both proactive and reactive adaptation 
plans. In this paper, we focus on the proactive plan. 

The remainder of this paper is structured as follows. Section 
II presents an account of related work and discusses its strengths 
and shortcomings. Section III presents a motivating example. 
Section IV describes BOND’s architecture, concepts, and com-
ponents. Section V discusses the proposed approach and its ini-
tial evaluation. Section VI concludes the paper and provides an 
overview of future work. 

II. RELATED WORK 
This section presents a summary and comparison of existing 

resource-driven adaptation approaches. Some approaches fol-
low the brownout paradigm [12] to handle variability in compu-
tational resources of cloud systems due to hardware failures and 
flash crowds. These approaches temporarily deactivate optional 
webpage contents [8] and components [13]. As explained in 
Section I, supporting additional adaptation types makes RASs 
more versatile. Additionally, since components are shared by 
different tasks, if RASs make adaptation choices at the compo-
nent level it would not be possible to vary these choices among 
tasks. Hence, instead of considering a component to be either 
optional or mandatory, its importance could be more accurately 
represented by prioritising the tasks that will use the component. 

Some scheduling approaches support prioritisation [10], but 
they do not consider adaptation. Furthermore, these approaches 



order tasks using priority assignment policies of the type dead-
line-monotonic and rate-monotonic [14], [15], which assign the 
highest priorities to the tasks with the earliest deadlines and 
shortest periods, respectively. These policies rely on a single cri-
terion to assign priorities to tasks. When multiple tasks are as-
signed the same priority, the priority scheduler uses a default 
mode, for instance a first-come-first-serve prioritisation ap-
proach. This is not suitable for applications where task priorities 
can differ due to multiple criteria like variations of a task based 
on its parameters, user’s role, and even the time of the day. 

Other resource-driven adaptation approaches work at the 
task level [1], [16], but only consider the perspective of a single 
user who is performing a task, rather than multiple users execut-
ing tasks that have different priorities. Resource-driven adapta-
tion must be done at runtime because task priorities and suitable 
adaptation types are unknown at design time. Therefore, adapta-
tion approaches that perform source code reduction at design 
time [17], [18] are not suitable. 

Runtime adaptation of software systems has been the focus 
of several works [5]. Some existing works focus on the adapta-
tion of parameters and structure of the system. Parameter adap-
tation has been used to reduce the data returned by a query [9], 
support substitution of resources [19], and reduce battery usage 
[11]. Structure adaptation has been used to reduce RAM usage 
by modifying source code [17], [18], and reduce mobile battery 
usage by modifying adaptation rules [20] and altering the auto-
nomic manager [21]. However, these approaches support only 
one type of adaptation. This is not sufficient when dealing with 
resource-driven adaptation, given that RSs use various types of 
resources. Existing works focus on specific resource types such 
as CPU [8], [13], RAM [17], [18], and battery [9], [11]. Ap-
proaches that consider several resource types are useful as sug-
gested in the survey described in [12]. 

III. MOTIVATING EXAMPLE 
Consider an example of a warehouse that is automated by 

robots as shown in Fig. 1. The automated warehouse system is 
an example of CAS. This system is part of a broader logistics 
scenario involving product delivery among manufacturers, re-
tailers, and customers [7]. Suppose the warehouse is part of a 
retail store that receives customer orders throughout the day. Ro-
bots perform order preparation tasks (Fig. 2) by retrieving from 
the warehouse the products corresponding to customer orders 
and packing them in boxes ready for delivery. Consider that ro-
bots should place products of the same type together in a pile in 

boxes. Robots are essential resources for the retail store’s oper-
ations. Robots can temporarily go out of service due to unex-
pected errors or due to the need of recharging, thereby, delaying 
order fulfilment and causing financial losses. 

The negative implications of resource variability could be 
avoided by using BOND to support task prioritisation and adap-
tation. Preparing customer orders for shipping is a high-priority 
task, but robots also work on various low-priority tasks such as 
sorting returned products. Hence, it is possible to substitute in-
operative order preparation robots with robots that are working 
on low-priority tasks that could be delayed. In this way, the order 
preparation is kept on schedule until the inoperative robots are 
back in service. This demonstrates situations of resource substi-
tution and prioritisation of tasks with alternative task execution 
(leaving the sorting of returned products to be executed later). 

Another possibility is to alter robots’ behaviour by changing 
the way products are packed. Assume that the robots can pack 
products in a box using two techniques: (i) placing similar prod-
ucts next to each other in a box (e.g., trousers and shirts in dif-
ferent piles), or (ii) placing products randomly in a box. The first 
technique provides a better presentation for the customer, while 
the second technique is executed in a faster way because robots 
do not have to arrange the products. BOND’s ability to support 
task variants could be used to keep order preparations on track, 
by using the first technique for the orders of VIP customers and 
the second technique for other orders. In this case, BOND is sup-
porting changing of tasks with similar ones by allowing products 
to be packed, but in a random way. 

IV. BOND: PROPOSED APPROACH 
This section describes the proposed resource-driven adapta-

tion approach. An overview of BOND’s architecture is given, 
followed by an explanation of its concepts and components. 

A. Architecture Overview 
Fig. 3 shows an overview of BOND’s architecture, which is 

based on MAPE-K [22]. The architecture illustrates BOND’s 
stakeholders, components, and data. As shown in Fig. 3, a sys-
tem administrator uses a tool to define setup data such as re-
sources and task priorities of an RS. The setup data is stored in 
a knowledge base. The task usage is monitored and logged in a 
knowledge base as historical data. The adaptation plan is pre-
pared proactively, using setup and historical data, by three com-
ponents, namely: (i) priority calculator, (ii) priority adjuster, and 
(iii) adaptation type selector. The use of resources is monitored, 

  
Fig. 1. Motivating Example Fig. 2. Example task: Prepare order task tree (excerpt) 
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and the proactively prepared plan is partially updated in a reac-
tive way. The use of hybrid planning (proactive and reactive) 
helps to avoid the need to recreate a plan reactively over very 
short periods. This is preferable from a user’s point of view [5]. 

BOND considers different perspectives of stakeholders (e.g., 
system administrators and end-users). For example, enterprise 
resources collectively contribute to the accomplishment of tasks 
that fulfil an enterprise’s goals. System administrators offer the 
managerial view of how a system should adapt to maintain these 
goals during situations of resource variability (it is common for 
managers to consider that certain tasks are more important due 
to financial reasons). End-users’ perspectives complement sys-
tem administrators’ perspectives by indicating that an adaptation 
type is more favourable in certain situations (e.g., VIP customers 
want to receive products packed in a certain way). 

B. Tasks, Task Variants, and Resources 
A task can be either abstract or concrete. An abstract task has 

concrete subtasks that realise what it is expected to achieve. In 
the example given in Section III and shown in Fig. 2, “prepare 
order” is an abstract task that has three concrete subtasks: locate 
products in the warehouse, pack products in a box, and seal box. 
Dividing an abstract task into subtasks is useful for specifying 
different priorities and variants for the subtasks. The task tree 
shown in Fig. 2 uses the ConcurTaskTrees (CTT) notation [23] 
that is adjusted to represent task variants. 

A task variant represents a version of a concrete task that is 
executed with certain parameter values and differs in priority 
and resource consumption. For example, “pack products in a 
box” has two variants, one that the robot can complete faster; 
and another one that takes more time, but offers a better presen-
tation of the packed products. It is not necessary to define task 
variants for many combinations of possible parameter values. In 
some cases, parameters have a limited number of possible val-
ues. In the case that “pack products in a box” has a parameter 
called technique with two possible values, categorised and ran-
dom, then this task will only have two variants.  

Consider another case where a parameter has an integer 
value. Instead of creating a task variant for each discrete datum 
(e.g., 1, 2, 3, …, n), variants are created for continuous data (e.g., 
1 to 10) or sets of data (e.g., {1, 5, 20}). In order to illustrate, 
assume that task “locate products in the warehouse” has an inte-
ger parameter representing the robot’s speed with values be-
tween 1 and 100, where 100 is the fastest. Task variants are rep-
resented for meaningful ranges of speed values. There could be 

one variant for a slow speed with values between 1 and 50, and 
another variant for a fast speed with values between 51 and 100. 
The first speed would conserve battery power whereas the sec-
ond speed would get the robot to its destination faster. Task var-
iants are defined by the system administrators according to the 
needs of their organisations. The types of resources, e.g., robot, 
which a task requires are either assigned to a task individually 
or to a category that groups several tasks. 

BOND considers four resource groups based on the analysis 
of existing literature and examples of resources [8], [17], [19]. 
These groups include static, dynamic, reusable, and depletable 
resources. A static resource does not have behaviour (e.g., raw 
materials), whereas a dynamic resource has behaviour (e.g., ro-
bots). A reusable resource is used multiple times (e.g., CPU), 
whereas a depletable resource is used once (e.g., flour). For ex-
ample, CPU and RAM are static and reusable, IoT devices and 
robots are dynamic and reusable, and raw materials and fuel are 
static and depletable. An overview of BOND’s concepts of tasks 
and resources is given by the class diagram shown in Fig. 4. 

C. Priority Calculator 
Priorities play an important role in the adaptation planning 

process used in BOND because they determine whether tasks 
are executed by gaining access to resources or are adapted. The 
first step in task prioritisation involves computing an initial pri-
ority using two inputs that provide complementary perspectives: 
(i) priority assigned by the system administrator, and (ii) priority 
from forecasted task usage. The calculated priority value (Pv) is 
a real number between 1 and 3, as shown in (1). 

 𝑃! = {	𝑝	|	𝑝 ∈ ℝ ∧ 1 ≤ 𝑝 ≤ 3	}	 (1) 

The system administrator’s assigned priority (AAP) takes 
into account the following criteria: timeframe of the task execu-
tion, the role of the user who is attempting to execute the task, 
and the task variants (Section IV-B). Timeframes represent time 
intervals that are meaningful for a particular domain. For exam-
ple, order preparation has a higher priority than sorting returned 
products during the daytime, when most of the orders are 
shipped. Roles characterise users and differ among applications. 
For instance, roles can represent job titles such as warehouse 
clerk and manager in a warehouse system. Task priorities can 
differ according to roles because roles indicate that certain users 
are more privileged, and a task can have a higher priority for 
those with more privileged roles. A shelf stock count task has a 
higher priority when requested by a manager. 

 
Fig. 3. Summarised overview of BOND’s architecture 
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Let FTUC be the forecasted task usage count based on his-
torical task usage data. BOND uses thresholds to calculate pri-
ority values within the range specified in (1). A threshold (TH) 
value is calculated as described in (2), whereby tasks with a 
higher forecasted usage count have a higher priority. 

 𝑇𝐻 = 𝑚𝑖𝑛(𝐹𝑇𝑈𝐶) +𝑚𝑎𝑥(𝐹𝑇𝑈𝐶)
𝑚𝑎𝑥(𝑃!); 	 (2) 

TH is compared to FTUC to deduce the threshold forecasted 
task usage priority (TFTUP) as shown in (3). TFTUP represents 
a task priority value that is between 1 and 3. 

 𝑇𝐹𝑇𝑈𝑃 = =
	1 𝑖𝑓	𝐹𝑇𝑈𝐶 < 𝑇𝐻
	2 𝑇𝐻 ≤ 𝐹𝑇𝑈𝐶 ≤ 𝑇𝐻 × 2
	3 𝐹𝑇𝑈𝐶 > 𝑇𝐻 × 2

 (3) 

The initial priority (PI) is calculated for a task using AAP and 
TFTUP. Each value is multiplied by its corresponding weight as 
shown in (4), where the sum of the weights is equal to 1. 

 𝑃" = (𝐴𝐴𝑃 ×𝑊##$) + (𝑇𝐹𝑇𝑈𝑃 ×𝑊%&%'$) (4) 

D. Priority Adjuster 
It is possible to have multiple tasks that compete for the same 

resources with the same initial priority PI. The priority adjuster 
is used to further differentiate task priorities (deprioritisation) so 
that tasks get unique priority values. Interdependent concrete 
tasks that are mandatory for the completion of the same abstract 
task are given the same priority. Tasks are grouped by their ini-
tial priority and a cost function is applied to adjust the task pri-
orities in each group. The cost of deprioritising a task (𝐶($!) is 
shown in (5), which is measured via four criteria: cost of adap-
tation (CAD), which is explained in Section IV-E, the sum of ad-
justed priorities (PA) from previous timeframes, the total number 
of dependent tasks (DT), and the estimated execution duration 
(ED). Each of the inputs is multiplied by its corresponding 
weight, where the sum of the weights is equal to 1. 

𝐶"#! = 𝐶$" ×𝑊%"# + ∑𝑃$ ×𝑊∑#" + |𝐷𝑇| × 𝑊|"(| − 𝐸𝐷 ×𝑊)" (5) 

Grouped tasks are then sorted by the cost function’s output, 
and the initial priority value of each task is increased by an ep-
silon value ε (i.e., small positive number). The epsilon value is 
incremented after adding it to a task’s initial priority to differen-
tiate the adjusted priorities (PA) among the grouped tasks. 

 𝑃# = 𝑃" + 𝜀 (6)	

Equation (7) is used for calculating ε to ensure PA is between 
the Current Task Group PI (𝐶𝑇𝐺$*) and the Next Task Group PI 
(𝑁𝑇𝐺$*). For example, assume there are two groups G1 and G2, 
where G1 has 4 tasks and PI is equal to 1, and G2 has 7 tasks and 
PI is equal to 1.1. For each task in G1, PA should be exclusively 
between 1 and 1.1. By (7), ε is equal to 0.02. By (6), the tasks in 
G1 have 1.02, 1.04, 1.06, and 1.08 as PA values, respectively. 
Therefore, for n tasks per each group, the value of PA for each 
task in the group will not coincide with the priority values in the 
next group, making all the PA values unique among the tasks. 

	 𝜀 =
-./)* 	1	2./)*

|2./|	3	4
	 (7) 

E. Adaptation Type Selector 
After computing task priorities, BOND selects for each task 

the adaptation types that are viable when resources are unavail-
able. BOND supports multiple adaptation types that are ex-
plained in the following paragraphs. 

A task is changed into a similar one by executing a task var-
iant with alternative parameter values so a task consumes fewer 
resources. One example is using an alternative packing method 
for customer orders (refer to Section III). Another example is 
related to variants of a “verify order” task, which checks whether 
the products packed in the box are the ones ordered by the cus-
tomer. One task variant performs the verification by scanning 
the products while the second one weighs the box and compares 
the result to the expected weight. The trade-off here is between 
accuracy and speed whereby scanning is generally more accu-
rate whereas weighing the box is faster and has a satisfactory 
accuracy when the products are not very light. The faster variant 
is beneficial when many robots malfunction unexpectedly. 

Resources are substituted with alternative ones so a task can 
be executed when the resources it requires are not available [19]. 
For example, in an automated warehouse, a robot that needs re-
pairs is substituted by another type of robot to avoid interrupting 
high-priority tasks. In a semi-automated warehouse, where hu-
mans collaborate with robots, a malfunctioning robot that was 
supposed to perform a high-priority task can be substituted by a 
human employee who is working on a low-priority task. 

Alternative task executions are considered when resources 
are not available by postponing the execution of low-priority 

 
Fig. 4. Summarised overview of BOND’s concepts related to tasks and resources 
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tasks to another time until the required resources become avail-
able. For instance, the low-priority task of sorting returned prod-
ucts is delayed until more robots are available to enable high-
priority order preparation tasks to complete on time. Another ex-
ample involves queuing robot repair tasks to be processed by 
order of their priority when a single robot repair bay is opera-
tional because the others are out-of-service due to machinery 
malfunctioning or technicians being sick. 

The block adaptation type is used when no other adaptation 
type is applicable. An example is blocking optional log data 
transmission of a robot to a server for conserving battery power. 
Another example is blocking an “add decoration to box” task 
that involves adding optional decorative items such as stickers 
to the packaging. This task is blocked in situations where there 
is a low stock of decorative items due to an unexpected delay in 
the supply chain. Therefore, the addition of these optional items 
is blocked for low-priority orders and kept for the orders of VIP 
customers. This is an example where the resource is depletable. 

The abovementioned adaptation types consider the com-
puted priorities for the tasks. For example, resources of a task 
are not substituted with alternatives that are needed by higher 
priority tasks. Another example is delaying a task to a time when 
resources are available, and it is important enough to execute. 

Selecting an adaptation type for a task depends on a cost, 
which is calculated using a cost function that takes four inputs 
representing sub-costs related to changing a task’s execution 
schedule (CES), sacrificing functionality (SF), sacrificing qual-
ity (SQ), and financing a task’s execution (FTE). Each Input is 
represented via a rating scale as shown in (8). 

 𝐼𝑛𝑝𝑢𝑡 = {	𝑣	|	𝑣 ∈ ℝ ∧ 1 ≤ 𝑣 ≤ 5	} (8) 

CES is related to the effect of changing when a task begins 
execution. Even among low priority tasks, delaying one task can 
have a lower CES than delaying another. SF means functionality 
is not available during the execution of a task at a certain time. 
A functionality represents a concrete task or the ability to exe-
cute it in a certain way. A functionality is sacrificed by perform-
ing a block adaptation on a concrete task or by changing a task 
into a similar one if it has parameters that affect functionality. 
SQ means quality is reduced during the execution of a task at a 
certain time. For example, using a faster variant of an order ver-
ification task could affect accuracy. FTE is related to the finan-
cial cost of performing an adaptation (e.g., substituting a cheap 
robot that is malfunctioning with an expensive robot incurs long-
term financial costs on an enterprise because robots are assets 
that are depreciated and replaced over time). FTE is a monetary 
value that is converted to a rating scale value. Each adaptation 
type affects one or more of the abovementioned costs. The total 
cost of an adaptation type (CAD) is computed as shown in (9). 

										𝐶#( = 𝐶𝐸𝑆 +
1
𝑛R𝑆𝐹+

,

+-.

+
1
𝑛R𝑆𝑄+ +

1
𝑛R𝐹𝑇𝐸+

,

+-.

,

+-.

							(9) 

The cost values are provided by the system administrators as 
setup data and the end-users through a feedback loop. The sys-
tem administrators specify their perceived cost, for example, of 
sacrificing a certain quality for a task. The end-users provide 

their feedback after a task is done to indicate their thoughts about 
sacrificing the quality that affected their ability to do their work. 

V. EVALUATION AND DISCUSSION 
BOND’s proactive planning has been implemented as a C# 

program with 5000 lines of code and a SQL Server database, 
including the priority calculator, priority adjuster, and adapta-
tion type selector components presented in Fig. 3. ML.NET 
framework is used for forecasting task usage via a regression 
algorithm. Task models are represented by extended CTT to ac-
commodate task variants and priorities. The task models are 
stored in the database and are integrated into the implementation 
of the software system by associating each task with a corre-
sponding method when a task model is defined. Method calls are 
filtered to check whether to execute them directly because no 
adaptation is required, or to execute an updated call after per-
forming an adaptation. If a task variant should be executed the 
method call’s parameters would be changed. Task models are 
defined during software development and are accessible at 
runtime to enable the addition of priorities and variants. 

The scalability of the proactive planning was evaluated using 
a varying number of business tasks, which are commonly found 
in enterprise systems, and generated task usage data. As shown 
in Fig. 5, the fitting curve of the running time is polynomial with 

 
Fig. 5. Running time scalability of proactive adaptation planning 

 
Fig. 6. Simulation of order preparation in an automated warehouse 

 
Fig. 7. Order completion during resource variability 

 
 



R2 = 0.9988. This evaluation was done on a Windows 10 com-
puter with a Core i7 1.8 GHz CPU and 16 GB of RAM. 

A simulation of an automated warehouse with a grid struc-
ture was also developed, as shown in Fig. 6, to demonstrate the 
feasibility of the proposed approach. This simulation imple-
ments the “prepare order” task from the motivating example 
(Section III), which considers that there are two variants of the 
packing task with a trade-off between presentation and speed. 
Orders were generated with random items and the stock items 
were dispersed across the grid. The robots moved around the 
grid and located the items of the orders. The simulation included 
scenarios with full robot capacity and others with missing ro-
bots. The system adapts itself when robots are missing by using 
the faster packing task variant to speed up order preparation. The 
percentage of packing tasks that are adapted to use the faster 
variant is reactively adjusted based on the number of missing 
robots. The chart presented in Fig. 7 shows how adaptation im-
proved the order completion time when robots are unavailable. 
More diverse scenarios with additional tasks, resources, and ad-
aptation types will be added in the future. 

The motivating example presented in this paper considers 
robots as resource types. However, BOND can work with other 
types of systems and resources such as web applications and 
computational resources, respectively. Other case studies are re-
quired to demonstrate how BOND works with other types of re-
sources (e.g., depletable). Using historical task usage data and 
user feedback enables BOND to incorporate a user perspective 
of priorities and adaptation type costs in the proactively prepared 
adaptation plan. A limitation is that an RS has to run for a test 
period to collect this data. To circumvent this limitation, BOND 
uses the priorities and costs provided by the system administra-
tor until data are available to incorporate user’s perspective. 

VI. CONCLUSION AND FUTURE WORK 
This paper presented an overview of BOND, a resource-

driven adaptation approach that supports multicriteria task pri-
oritisation and multiple adaptation types. BOND’s reactive ad-
aptation part is under development. We are also developing 
techniques to integrate BOND into RSs and to support system 
administrators to define task variants and manage priorities us-
ing an extended task model. BOND will be evaluated with addi-
tional examples and metrics such as the efficiency of reactive 
adaptation and the intrusiveness of integrating it into RSs. 
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