

Work With What You’ve Got: An Approach for
Resource-driven Adaptation

Paul A. Akiki
School of Computing and Communications

The Open University
Milton Keynes, United Kingdom

paul.akiki@open.ac.uk

Andrea Zisman
School of Computing and Communications

The Open University
Milton Keynes, United Kingdom

andrea.zisman@open.ac.uk

Amel Bennaceur
School of Computing and Communications

The Open University
Milton Keynes, United Kingdom

amel.bennaceur@open.ac.uk

Abstract—Resource-driven systems are affected by resource

variability, which prevents the timely completion of important
tasks. This paper presents BOND, a hyBrid resOurce-driveN aD-
aptation approach which addresses the issue of resource variabil-
ity by (i) prioritising tasks and making resources available for
tasks with higher priorities, (ii) considering alternative task exe-
cutions when resources are not available, (iii) substituting re-
sources with alternative ones, and (iv) changing tasks into similar
ones. The approach supports a proactive and reactive adaptation
plan. A prototype tool has been implemented as a proof of concept
and used for an initial evaluation of the approach in terms of its
feasibility and scalability.

Keywords—Resource-driven Adaptive System, Self-Adaptive
System, Task Prioritisation

I. INTRODUCTION
A Resource-driven System (RS) consists of tasks that repre-

sent activities [1], which are bound by limited resources. For ex-
ample, automated warehouses rely on robots as resources for
performing tasks such as preparing customer orders for delivery;
car manufacturers rely on parts to assemble cars; while recipes
rely on available ingredients. The variability of resources due to
reasons such as unexpected hardware failures, excess of work-
loads, or lack of raw materials prevents RSs to execute important
tasks on time. In addition, it is costly to compensate for short-
term resource variability by over-provisioning resources.

Adaptation enables an RS to continue operating with its lim-
ited resources. A Resource-driven Adaptive System (RAS) is a
type of Self-Adaptive System (SAS) [2]–[5], where adaptation
is triggered by the variability of resources [6]. For example, the
variability of available robots at a warehouse prevents the timely
fulfilment of customer orders and incurs financial losses. To pre-
vent this, a RAS could adapt the way order preparation is per-
formed, to speed up the work, by allocating order preparations
to other robots that may be executing tasks with lower priorities.

Collective Adaptive Systems (CASs) are ensembles of col-
laborating entities that adapt their behaviour to accommodate
changes in their environment [7]. One example of these changes
is concerned with changes in the available resources. Therefore,
CASs would benefit from a resource-driven adaptation approach
to operate successfully, as per the one presented in this paper.

Several resource-driven adaptation approaches have been
proposed. These approaches adapt RSs in different ways such as
disabling optional components [8] and reducing the data re-
turned by a query [9]. RASs would have more versatility in cop-
ing with resource variability by supporting multiple adaptation

types. For example, by substituting resources with alternative
ones, by changing the order of or delaying the execution of some
tasks, or even by changing the tasks themselves into similar ones
to cope with available resources. Additionally, RASs would
benefit from task prioritisation to decide which tasks to adapt
during situations of resource variability. Some scheduling ap-
proaches support task prioritisation [10] but do not consider ad-
aptation or multiple prioritisation criteria such as variations of a
task based on its parameters and the role of the user who is exe-
cuting the task. Furthermore, existing approaches support spe-
cific resource types such as CPU [8] and battery [11] and could
be more useful if they support various resource types [12].

This paper presents BOND (hyBrid resOurce-driveN aDap-
tation), a resource-driven adaptation approach, which supports
RSs in handling variability of limited resources by: (i) making
resources available for tasks in the cases where they are most
needed, and (ii) considering different viable task execution op-
tions when resources are unavailable. BOND addresses resource
variability by (a) prioritising tasks using multiple criteria and (b)
applying the least costly adaptation types to low-priority tasks.
The approach supports both proactive and reactive adaptation
plans. In this paper, we focus on the proactive plan.

The remainder of this paper is structured as follows. Section
II presents an account of related work and discusses its strengths
and shortcomings. Section III presents a motivating example.
Section IV describes BOND’s architecture, concepts, and com-
ponents. Section V discusses the proposed approach and its ini-
tial evaluation. Section VI concludes the paper and provides an
overview of future work.

II. RELATED WORK
This section presents a summary and comparison of existing

resource-driven adaptation approaches. Some approaches fol-
low the brownout paradigm [12] to handle variability in compu-
tational resources of cloud systems due to hardware failures and
flash crowds. These approaches temporarily deactivate optional
webpage contents [8] and components [13]. As explained in
Section I, supporting additional adaptation types makes RASs
more versatile. Additionally, since components are shared by
different tasks, if RASs make adaptation choices at the compo-
nent level it would not be possible to vary these choices among
tasks. Hence, instead of considering a component to be either
optional or mandatory, its importance could be more accurately
represented by prioritising the tasks that will use the component.

Some scheduling approaches support prioritisation [10], but
they do not consider adaptation. Furthermore, these approaches

order tasks using priority assignment policies of the type dead-
line-monotonic and rate-monotonic [14], [15], which assign the
highest priorities to the tasks with the earliest deadlines and
shortest periods, respectively. These policies rely on a single cri-
terion to assign priorities to tasks. When multiple tasks are as-
signed the same priority, the priority scheduler uses a default
mode, for instance a first-come-first-serve prioritisation ap-
proach. This is not suitable for applications where task priorities
can differ due to multiple criteria like variations of a task based
on its parameters, user’s role, and even the time of the day.

Other resource-driven adaptation approaches work at the
task level [1], [16], but only consider the perspective of a single
user who is performing a task, rather than multiple users execut-
ing tasks that have different priorities. Resource-driven adapta-
tion must be done at runtime because task priorities and suitable
adaptation types are unknown at design time. Therefore, adapta-
tion approaches that perform source code reduction at design
time [17], [18] are not suitable.

Runtime adaptation of software systems has been the focus
of several works [5]. Some existing works focus on the adapta-
tion of parameters and structure of the system. Parameter adap-
tation has been used to reduce the data returned by a query [9],
support substitution of resources [19], and reduce battery usage
[11]. Structure adaptation has been used to reduce RAM usage
by modifying source code [17], [18], and reduce mobile battery
usage by modifying adaptation rules [20] and altering the auto-
nomic manager [21]. However, these approaches support only
one type of adaptation. This is not sufficient when dealing with
resource-driven adaptation, given that RSs use various types of
resources. Existing works focus on specific resource types such
as CPU [8], [13], RAM [17], [18], and battery [9], [11]. Ap-
proaches that consider several resource types are useful as sug-
gested in the survey described in [12].

III. MOTIVATING EXAMPLE
Consider an example of a warehouse that is automated by

robots as shown in Fig. 1. The automated warehouse system is
an example of CAS. This system is part of a broader logistics
scenario involving product delivery among manufacturers, re-
tailers, and customers [7]. Suppose the warehouse is part of a
retail store that receives customer orders throughout the day. Ro-
bots perform order preparation tasks (Fig. 2) by retrieving from
the warehouse the products corresponding to customer orders
and packing them in boxes ready for delivery. Consider that ro-
bots should place products of the same type together in a pile in

boxes. Robots are essential resources for the retail store’s oper-
ations. Robots can temporarily go out of service due to unex-
pected errors or due to the need of recharging, thereby, delaying
order fulfilment and causing financial losses.

The negative implications of resource variability could be
avoided by using BOND to support task prioritisation and adap-
tation. Preparing customer orders for shipping is a high-priority
task, but robots also work on various low-priority tasks such as
sorting returned products. Hence, it is possible to substitute in-
operative order preparation robots with robots that are working
on low-priority tasks that could be delayed. In this way, the order
preparation is kept on schedule until the inoperative robots are
back in service. This demonstrates situations of resource substi-
tution and prioritisation of tasks with alternative task execution
(leaving the sorting of returned products to be executed later).

Another possibility is to alter robots’ behaviour by changing
the way products are packed. Assume that the robots can pack
products in a box using two techniques: (i) placing similar prod-
ucts next to each other in a box (e.g., trousers and shirts in dif-
ferent piles), or (ii) placing products randomly in a box. The first
technique provides a better presentation for the customer, while
the second technique is executed in a faster way because robots
do not have to arrange the products. BOND’s ability to support
task variants could be used to keep order preparations on track,
by using the first technique for the orders of VIP customers and
the second technique for other orders. In this case, BOND is sup-
porting changing of tasks with similar ones by allowing products
to be packed, but in a random way.

IV. BOND: PROPOSED APPROACH
This section describes the proposed resource-driven adapta-

tion approach. An overview of BOND’s architecture is given,
followed by an explanation of its concepts and components.

A. Architecture Overview
Fig. 3 shows an overview of BOND’s architecture, which is

based on MAPE-K [22]. The architecture illustrates BOND’s
stakeholders, components, and data. As shown in Fig. 3, a sys-
tem administrator uses a tool to define setup data such as re-
sources and task priorities of an RS. The setup data is stored in
a knowledge base. The task usage is monitored and logged in a
knowledge base as historical data. The adaptation plan is pre-
pared proactively, using setup and historical data, by three com-
ponents, namely: (i) priority calculator, (ii) priority adjuster, and
(iii) adaptation type selector. The use of resources is monitored,

Fig. 1. Motivating Example Fig. 2. Example task: Prepare order task tree (excerpt)

Prepare	Order

Locate	products	
in	the	warehouse

Pack	products	
in	a	box

Seal	box

Pack	Randomly

Pack	by	Category

V

V

VLegend: Abstract	
task

Concrete	
task

Concrete	
task	variant

>> >>

and the proactively prepared plan is partially updated in a reac-
tive way. The use of hybrid planning (proactive and reactive)
helps to avoid the need to recreate a plan reactively over very
short periods. This is preferable from a user’s point of view [5].

BOND considers different perspectives of stakeholders (e.g.,
system administrators and end-users). For example, enterprise
resources collectively contribute to the accomplishment of tasks
that fulfil an enterprise’s goals. System administrators offer the
managerial view of how a system should adapt to maintain these
goals during situations of resource variability (it is common for
managers to consider that certain tasks are more important due
to financial reasons). End-users’ perspectives complement sys-
tem administrators’ perspectives by indicating that an adaptation
type is more favourable in certain situations (e.g., VIP customers
want to receive products packed in a certain way).

B. Tasks, Task Variants, and Resources
A task can be either abstract or concrete. An abstract task has

concrete subtasks that realise what it is expected to achieve. In
the example given in Section III and shown in Fig. 2, “prepare
order” is an abstract task that has three concrete subtasks: locate
products in the warehouse, pack products in a box, and seal box.
Dividing an abstract task into subtasks is useful for specifying
different priorities and variants for the subtasks. The task tree
shown in Fig. 2 uses the ConcurTaskTrees (CTT) notation [23]
that is adjusted to represent task variants.

A task variant represents a version of a concrete task that is
executed with certain parameter values and differs in priority
and resource consumption. For example, “pack products in a
box” has two variants, one that the robot can complete faster;
and another one that takes more time, but offers a better presen-
tation of the packed products. It is not necessary to define task
variants for many combinations of possible parameter values. In
some cases, parameters have a limited number of possible val-
ues. In the case that “pack products in a box” has a parameter
called technique with two possible values, categorised and ran-
dom, then this task will only have two variants.

Consider another case where a parameter has an integer
value. Instead of creating a task variant for each discrete datum
(e.g., 1, 2, 3, …, n), variants are created for continuous data (e.g.,
1 to 10) or sets of data (e.g., {1, 5, 20}). In order to illustrate,
assume that task “locate products in the warehouse” has an inte-
ger parameter representing the robot’s speed with values be-
tween 1 and 100, where 100 is the fastest. Task variants are rep-
resented for meaningful ranges of speed values. There could be

one variant for a slow speed with values between 1 and 50, and
another variant for a fast speed with values between 51 and 100.
The first speed would conserve battery power whereas the sec-
ond speed would get the robot to its destination faster. Task var-
iants are defined by the system administrators according to the
needs of their organisations. The types of resources, e.g., robot,
which a task requires are either assigned to a task individually
or to a category that groups several tasks.

BOND considers four resource groups based on the analysis
of existing literature and examples of resources [8], [17], [19].
These groups include static, dynamic, reusable, and depletable
resources. A static resource does not have behaviour (e.g., raw
materials), whereas a dynamic resource has behaviour (e.g., ro-
bots). A reusable resource is used multiple times (e.g., CPU),
whereas a depletable resource is used once (e.g., flour). For ex-
ample, CPU and RAM are static and reusable, IoT devices and
robots are dynamic and reusable, and raw materials and fuel are
static and depletable. An overview of BOND’s concepts of tasks
and resources is given by the class diagram shown in Fig. 4.

C. Priority Calculator
Priorities play an important role in the adaptation planning

process used in BOND because they determine whether tasks
are executed by gaining access to resources or are adapted. The
first step in task prioritisation involves computing an initial pri-
ority using two inputs that provide complementary perspectives:
(i) priority assigned by the system administrator, and (ii) priority
from forecasted task usage. The calculated priority value (Pv) is
a real number between 1 and 3, as shown in (1).

 𝑃! = {	𝑝	|	𝑝 ∈ ℝ ∧ 1 ≤ 𝑝 ≤ 3	}	 (1)

The system administrator’s assigned priority (AAP) takes
into account the following criteria: timeframe of the task execu-
tion, the role of the user who is attempting to execute the task,
and the task variants (Section IV-B). Timeframes represent time
intervals that are meaningful for a particular domain. For exam-
ple, order preparation has a higher priority than sorting returned
products during the daytime, when most of the orders are
shipped. Roles characterise users and differ among applications.
For instance, roles can represent job titles such as warehouse
clerk and manager in a warehouse system. Task priorities can
differ according to roles because roles indicate that certain users
are more privileged, and a task can have a higher priority for
those with more privileged roles. A shelf stock count task has a
higher priority when requested by a manager.

Fig. 3. Summarised overview of BOND’s architecture

System	
Administrator

De#ine	setup	data
(resources,	task	priorities,	etc.)

Tool

Knowledge	
Base

Prepare	Plan
Store	data

Various	Types	of	Resources

End-user

Tasks

Monitor	task	usage

Uses

Usage	Monitor

Uses

Resource	Monitor

Store	historical	task	usage

Report	resource	data

Read	stored	data

Resource-driven	System

Monitor	resources Execute	Plan

Priority	Calculator

Priority	Adjuster

Adaptation	Type	
Selector

Let FTUC be the forecasted task usage count based on his-
torical task usage data. BOND uses thresholds to calculate pri-
ority values within the range specified in (1). A threshold (TH)
value is calculated as described in (2), whereby tasks with a
higher forecasted usage count have a higher priority.

 𝑇𝐻 = 𝑚𝑖𝑛(𝐹𝑇𝑈𝐶) +𝑚𝑎𝑥(𝐹𝑇𝑈𝐶)
𝑚𝑎𝑥(𝑃!); 	 (2)

TH is compared to FTUC to deduce the threshold forecasted
task usage priority (TFTUP) as shown in (3). TFTUP represents
a task priority value that is between 1 and 3.

 𝑇𝐹𝑇𝑈𝑃 = =
	1 𝑖𝑓	𝐹𝑇𝑈𝐶 < 𝑇𝐻
	2 𝑇𝐻 ≤ 𝐹𝑇𝑈𝐶 ≤ 𝑇𝐻 × 2
	3 𝐹𝑇𝑈𝐶 > 𝑇𝐻 × 2

 (3)

The initial priority (PI) is calculated for a task using AAP and
TFTUP. Each value is multiplied by its corresponding weight as
shown in (4), where the sum of the weights is equal to 1.

 𝑃" = (𝐴𝐴𝑃 ×𝑊##$) + (𝑇𝐹𝑇𝑈𝑃 ×𝑊%&%'$) (4)

D. Priority Adjuster
It is possible to have multiple tasks that compete for the same

resources with the same initial priority PI. The priority adjuster
is used to further differentiate task priorities (deprioritisation) so
that tasks get unique priority values. Interdependent concrete
tasks that are mandatory for the completion of the same abstract
task are given the same priority. Tasks are grouped by their ini-
tial priority and a cost function is applied to adjust the task pri-
orities in each group. The cost of deprioritising a task (𝐶($!) is
shown in (5), which is measured via four criteria: cost of adap-
tation (CAD), which is explained in Section IV-E, the sum of ad-
justed priorities (PA) from previous timeframes, the total number
of dependent tasks (DT), and the estimated execution duration
(ED). Each of the inputs is multiplied by its corresponding
weight, where the sum of the weights is equal to 1.

𝐶"#! = 𝐶$" ×𝑊%"# + ∑𝑃$ ×𝑊∑#" + |𝐷𝑇| × 𝑊|"(| − 𝐸𝐷 ×𝑊)" (5)

Grouped tasks are then sorted by the cost function’s output,
and the initial priority value of each task is increased by an ep-
silon value ε (i.e., small positive number). The epsilon value is
incremented after adding it to a task’s initial priority to differen-
tiate the adjusted priorities (PA) among the grouped tasks.

 𝑃# = 𝑃" + 𝜀 (6)	

Equation (7) is used for calculating ε to ensure PA is between
the Current Task Group PI (𝐶𝑇𝐺$*) and the Next Task Group PI
(𝑁𝑇𝐺$*). For example, assume there are two groups G1 and G2,
where G1 has 4 tasks and PI is equal to 1, and G2 has 7 tasks and
PI is equal to 1.1. For each task in G1, PA should be exclusively
between 1 and 1.1. By (7), ε is equal to 0.02. By (6), the tasks in
G1 have 1.02, 1.04, 1.06, and 1.08 as PA values, respectively.
Therefore, for n tasks per each group, the value of PA for each
task in the group will not coincide with the priority values in the
next group, making all the PA values unique among the tasks.

	 𝜀 =
-./)* 	1	2./)*

|2./|	3	4
	 (7)

E. Adaptation Type Selector
After computing task priorities, BOND selects for each task

the adaptation types that are viable when resources are unavail-
able. BOND supports multiple adaptation types that are ex-
plained in the following paragraphs.

A task is changed into a similar one by executing a task var-
iant with alternative parameter values so a task consumes fewer
resources. One example is using an alternative packing method
for customer orders (refer to Section III). Another example is
related to variants of a “verify order” task, which checks whether
the products packed in the box are the ones ordered by the cus-
tomer. One task variant performs the verification by scanning
the products while the second one weighs the box and compares
the result to the expected weight. The trade-off here is between
accuracy and speed whereby scanning is generally more accu-
rate whereas weighing the box is faster and has a satisfactory
accuracy when the products are not very light. The faster variant
is beneficial when many robots malfunction unexpectedly.

Resources are substituted with alternative ones so a task can
be executed when the resources it requires are not available [19].
For example, in an automated warehouse, a robot that needs re-
pairs is substituted by another type of robot to avoid interrupting
high-priority tasks. In a semi-automated warehouse, where hu-
mans collaborate with robots, a malfunctioning robot that was
supposed to perform a high-priority task can be substituted by a
human employee who is working on a low-priority task.

Alternative task executions are considered when resources
are not available by postponing the execution of low-priority

Fig. 4. Summarised overview of BOND’s concepts related to tasks and resources

Tasks Resources

Resource

+Has 1..*
1

ResourceTypeCategory

ResourceType
+Name: string
+ConsumptionType: ResourceConsumptionType
+BehaviourType: ResourceBehaviourType
+/TotalQuantity: double
+/AvailableQuantity: double

+Has 0..*
1

+Has 1..*
1

MeasurementUnit

«enumeration»
ResourceConsumptionType
Reusable
Depletable

«enumeration»
ResourceBehaviourType

Static
Dynamic

+Has

0..* 1

Task
+Name: string
+Type: TaskType

TaskCategory

+Has

+Parent
0..1

+Child
0..*

+Has
1

1..*

ParameterVariant
+FromValue: string
+ToValue: string
+ValueSet: List<string> 0..*

+Has

1

Parameter
+Name: string
+DataType: string

«enumeration»
TaskType

Abstract
Concrete

+Has

0..*0..1

+Has
0..*

0..1

+Has

0..1

0..*

+Has

0..* 0..1

TaskResourceAssignment
+AppliesToChildTasks: bool

1
1..*

Access Control
Role

0..*

1..*

+Has

1

0..*

TaskVariant

Is Executed
by User
Who Has

(a) (b)

Is Executed
With

tasks to another time until the required resources become avail-
able. For instance, the low-priority task of sorting returned prod-
ucts is delayed until more robots are available to enable high-
priority order preparation tasks to complete on time. Another ex-
ample involves queuing robot repair tasks to be processed by
order of their priority when a single robot repair bay is opera-
tional because the others are out-of-service due to machinery
malfunctioning or technicians being sick.

The block adaptation type is used when no other adaptation
type is applicable. An example is blocking optional log data
transmission of a robot to a server for conserving battery power.
Another example is blocking an “add decoration to box” task
that involves adding optional decorative items such as stickers
to the packaging. This task is blocked in situations where there
is a low stock of decorative items due to an unexpected delay in
the supply chain. Therefore, the addition of these optional items
is blocked for low-priority orders and kept for the orders of VIP
customers. This is an example where the resource is depletable.

The abovementioned adaptation types consider the com-
puted priorities for the tasks. For example, resources of a task
are not substituted with alternatives that are needed by higher
priority tasks. Another example is delaying a task to a time when
resources are available, and it is important enough to execute.

Selecting an adaptation type for a task depends on a cost,
which is calculated using a cost function that takes four inputs
representing sub-costs related to changing a task’s execution
schedule (CES), sacrificing functionality (SF), sacrificing qual-
ity (SQ), and financing a task’s execution (FTE). Each Input is
represented via a rating scale as shown in (8).

 𝐼𝑛𝑝𝑢𝑡 = {	𝑣	|	𝑣 ∈ ℝ ∧ 1 ≤ 𝑣 ≤ 5	} (8)

CES is related to the effect of changing when a task begins
execution. Even among low priority tasks, delaying one task can
have a lower CES than delaying another. SF means functionality
is not available during the execution of a task at a certain time.
A functionality represents a concrete task or the ability to exe-
cute it in a certain way. A functionality is sacrificed by perform-
ing a block adaptation on a concrete task or by changing a task
into a similar one if it has parameters that affect functionality.
SQ means quality is reduced during the execution of a task at a
certain time. For example, using a faster variant of an order ver-
ification task could affect accuracy. FTE is related to the finan-
cial cost of performing an adaptation (e.g., substituting a cheap
robot that is malfunctioning with an expensive robot incurs long-
term financial costs on an enterprise because robots are assets
that are depreciated and replaced over time). FTE is a monetary
value that is converted to a rating scale value. Each adaptation
type affects one or more of the abovementioned costs. The total
cost of an adaptation type (CAD) is computed as shown in (9).

										𝐶#(= 𝐶𝐸𝑆 +
1
𝑛R𝑆𝐹+

,

+-.

+
1
𝑛R𝑆𝑄+ +

1
𝑛R𝐹𝑇𝐸+

,

+-.

,

+-.

							(9)

The cost values are provided by the system administrators as
setup data and the end-users through a feedback loop. The sys-
tem administrators specify their perceived cost, for example, of
sacrificing a certain quality for a task. The end-users provide

their feedback after a task is done to indicate their thoughts about
sacrificing the quality that affected their ability to do their work.

V. EVALUATION AND DISCUSSION
BOND’s proactive planning has been implemented as a C#

program with 5000 lines of code and a SQL Server database,
including the priority calculator, priority adjuster, and adapta-
tion type selector components presented in Fig. 3. ML.NET
framework is used for forecasting task usage via a regression
algorithm. Task models are represented by extended CTT to ac-
commodate task variants and priorities. The task models are
stored in the database and are integrated into the implementation
of the software system by associating each task with a corre-
sponding method when a task model is defined. Method calls are
filtered to check whether to execute them directly because no
adaptation is required, or to execute an updated call after per-
forming an adaptation. If a task variant should be executed the
method call’s parameters would be changed. Task models are
defined during software development and are accessible at
runtime to enable the addition of priorities and variants.

The scalability of the proactive planning was evaluated using
a varying number of business tasks, which are commonly found
in enterprise systems, and generated task usage data. As shown
in Fig. 5, the fitting curve of the running time is polynomial with

Fig. 5. Running time scalability of proactive adaptation planning

Fig. 6. Simulation of order preparation in an automated warehouse

Fig. 7. Order completion during resource variability

R2 = 0.9988. This evaluation was done on a Windows 10 com-
puter with a Core i7 1.8 GHz CPU and 16 GB of RAM.

A simulation of an automated warehouse with a grid struc-
ture was also developed, as shown in Fig. 6, to demonstrate the
feasibility of the proposed approach. This simulation imple-
ments the “prepare order” task from the motivating example
(Section III), which considers that there are two variants of the
packing task with a trade-off between presentation and speed.
Orders were generated with random items and the stock items
were dispersed across the grid. The robots moved around the
grid and located the items of the orders. The simulation included
scenarios with full robot capacity and others with missing ro-
bots. The system adapts itself when robots are missing by using
the faster packing task variant to speed up order preparation. The
percentage of packing tasks that are adapted to use the faster
variant is reactively adjusted based on the number of missing
robots. The chart presented in Fig. 7 shows how adaptation im-
proved the order completion time when robots are unavailable.
More diverse scenarios with additional tasks, resources, and ad-
aptation types will be added in the future.

The motivating example presented in this paper considers
robots as resource types. However, BOND can work with other
types of systems and resources such as web applications and
computational resources, respectively. Other case studies are re-
quired to demonstrate how BOND works with other types of re-
sources (e.g., depletable). Using historical task usage data and
user feedback enables BOND to incorporate a user perspective
of priorities and adaptation type costs in the proactively prepared
adaptation plan. A limitation is that an RS has to run for a test
period to collect this data. To circumvent this limitation, BOND
uses the priorities and costs provided by the system administra-
tor until data are available to incorporate user’s perspective.

VI. CONCLUSION AND FUTURE WORK
This paper presented an overview of BOND, a resource-

driven adaptation approach that supports multicriteria task pri-
oritisation and multiple adaptation types. BOND’s reactive ad-
aptation part is under development. We are also developing
techniques to integrate BOND into RSs and to support system
administrators to define task variants and manage priorities us-
ing an extended task model. BOND will be evaluated with addi-
tional examples and metrics such as the efficiency of reactive
adaptation and the intrusiveness of integrating it into RSs.

REFERENCES
[1] J. P. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw, ‘Task-

based adaptation for ubiquitous computing’, IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C (Applications and Reviews), vol.
36, no. 3, pp. 328–340, 2006, doi: 10.1109/TSMCC.2006.871588.

[2] B. H. C. Cheng et al., ‘Software Engineering for Self-Adaptive Sys-
tems: A Research Roadmap’, in Software Engineering for Self-Adaptive
Systems, vol. 5525, B. H. C. Cheng, R. de Lemos, H. Giese, P. Inver-
ardi, and J. Magee, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, pp. 1–26. doi: 10.1007/978-3-642-02161-9_1.

[3] R. De Lemos et al., ‘Software engineering for self-adaptive systems: A
second research roadmap’, in Software Engineering for Self-Adaptive
Systems II, Springer, 2013, pp. 1–32.

[4] D. Weyns, ‘Software engineering of self-adaptive systems: an organ-
ised tour and future challenges’, Chapter in Handbook of Software En-
gineering, 2017, doi: 10.1007/978-3-030-00262-6_11.

[5] C. Krupitzer, M. Breitbach, F. M. Roth, S. VanSyckel, G. Schiele, and
C. Becker, ‘A survey on engineering approaches for self-adaptive sys-
tems (extended version)’, 2018.

[6] A. Christi, A. Groce, and A. Wellman, ‘Building Resource Adaptations
via Test-Based Software Minimization: Application, Challenges, and
Opportunities’, in 2019 IEEE International Symposium on Software Re-
liability Engineering Workshops (ISSREW), 2019, pp. 73–78.

[7] A. Bucchiarone et al., ‘On the Social Implications of Collective Adap-
tive Systems’, IEEE Technology and Society Magazine, vol. 39, no. 3,
pp. 36–46, 2020.

[8] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
‘Brownout: building more robust cloud applications’, in Proceedings
of the 36th International Conference on Software Engineering - ICSE
2014, Hyderabad, India, 2014, pp. 700–711. doi:
10.1145/2568225.2568227.

[9] S. Gotz, I. Gerostathopoulos, F. Krikava, A. Shahzada, and R. Spalazz-
ese, ‘Adaptive Exchange of Distributed Partial Models@run.time for
Highly Dynamic Systems’, in 2015 IEEE/ACM 10th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Sys-
tems, Florence, Italy, May 2015, pp. 64–70.

[10] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns, ‘A review
of priority assignment in real-time systems’, Journal of systems archi-
tecture, vol. 65, pp. 64–82, 2016, doi: 10.1016/j.sysarc.2016.04.002.

[11] S. Yan, S. Li, X. Liu, C. Zeng, X. Liao, and J. Wang, ‘Conf-Adaption:
Adaptive Adjustment of Software Configuration On UAV by Resource
Dependency Analysis’, in 2019 IEEE 8th Joint International Infor-
mation Technology and Artificial Intelligence Conference (ITAIC),
2019, pp. 155–161. doi: 10.1109/ITAIC.2019.8785785.

[12] M. Xu and R. Buyya, ‘Brownout approach for adaptive management of
resources and applications in cloud computing systems: A taxonomy
and future directions’, ACM Computing Surveys (CSUR), vol. 52, no.
1, pp. 1–27, 2019.

[13] M. Maggio, C. Klein, and K.-E. \AArzén, ‘Control strategies for pre-
dictable brownouts in cloud computing’, IFAC proceedings volumes,
vol. 47, no. 3, pp. 689–694, 2014.

[14] X. Dai and A. Burns, ‘Period adaptation of real-time control tasks with
fixed-priority scheduling in cyber-physical systems’, Journal of Sys-
tems Architecture, vol. 103, p. 101691, 2020.

[15] X. Dai, S. Zhao, Y. Jiang, X. Jiao, X. S. Hu, and W. Chang, ‘Fixed-
priority scheduling and controller co-design for time-sensitive net-
works’, in Proceedings of the 39th International Conference on Com-
puter-Aided Design, 2020, pp. 1–9. doi: 10.1145/3400302.3415715.

[16] P. Rigole, T. Clerckx, Y. Berbers, and K. Coninx, ‘Task-driven auto-
mated component deployment for ambient intelligence environments’,
Pervasive and Mobile Computing, vol. 3, no. 3, pp. 276–299, 2007.

[17] A. Christi, A. Groce, and R. Gopinath, ‘Resource adaptation via test-
based software minimization’, in 2017 IEEE 11th International Con-
ference on Self-Adaptive and Self-Organizing Systems (SASO), 2017,
pp. 61–70. doi: 10.1109/SASO.2017.15.

[18] A. Christi and A. Groce, ‘Target selection for test-based resource adap-
tation’, in 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS), 2018, pp. 458–469.

[19] A. Bennaceur, A. Zisman, C. McCormick, D. Barthaud, and B.
Nuseibeh, ‘Won’t Take No for an Answer: Resource-Driven Require-
ments Adaptation’, in 2019 IEEE/ACM 14th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), Montreal, QC, Canada, May 2019, pp. 77–88. doi:
10.1109/SEAMS.2019.00019.

[20] G. G. Pascual, M. Pinto, and L. Fuentes, ‘Run-time adaptation of mo-
bile applications using genetic algorithms’, in 2013 8th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2013, pp. 73–82.

[21] N. Ali and C. Solis, ‘Self-adaptation to mobile resources in service ori-
ented architecture’, in 2015 IEEE International Conference on Mobile
Services, 2015, pp. 407–414. doi: 10.1109/MobServ.2015.62.

[22] J. O. Kephart and D. M. Chess, ‘The vision of autonomic computing’,
Computer, vol. 36, no. 1, pp. 41–50, 2003, doi:
10.1109/MC.2003.1160055.

[23] G. Mori, F. Paternò, and C. Santoro, ‘CTTE: support for developing
and analyzing task models for interactive system design’, IEEE Trans-
actions on software engineering, vol. 28, no. 8, pp. 797–813, 2002.

