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Abstract: In the past two decades, metaheuristic optimisation algorithms (MOAs) have been in-
creasingly popular, particularly in logistic, science, and engineering problems. The fundamental
characteristics of such algorithms are that they are dependent on a parameter or a strategy. Some
online and offline strategies are employed in order to obtain optimal configurations of the algorithms.
Adaptive operator selection is one of them, and it determines whether or not to update a strategy
from the strategy pool during the search process. In the field of machine learning, Reinforcement
Learning (RL) refers to goal-oriented algorithms, which learn from the environment how to achieve a
goal. On MOAs, reinforcement learning has been utilised to control the operator selection process.
However, existing research fails to show that learned information may be transferred from one
problem-solving procedure to another. The primary goal of the proposed research is to determine the
impact of transfer learning on RL and MOAs. As a test problem, a set union knapsack problem with
30 separate benchmark problem instances is used. The results are statistically compared in depth.
The learning process, according to the findings, improved the convergence speed while significantly
reducing the CPU time.

Keywords: transfer learning; reinforcement learning; adaptive operator selection; artificial bee colony

1. Introduction

Adaptive operator selection has been playing a crucial role in heuristic optimisation,
especially in population-based metaheuristic approaches, including swarm intelligence
algorithms. Since the early 1990s, the concept of Adaptive Operator Selection (AOS) and
the methods developed for it have been widely known [1,2]. Most recently, AOS has been
used with artificial bee colony (ABC) algorithms for the first time [3]. The study has been
extended further with a dynamically built selection scheme with reinforcement learning
to solve binary and combinatorial optimization problems [4]. The problem of operator
selection becomes a sequencing problem in the sense that additional operators are added
one after the other to make it easier to move solutions to more fruitful regions of the
search space. Due to the randomness effect and the unknown nature of the search space,
previously devised schemes may not provide the best or even a better option to respond to
the current state of the problem. However, stochastic and dynamic programming-based
approaches may work better. The success of an optimisation algorithm using a sequence of
operators handled with stochastic processes can be seen as a Markovian Decision Process
due to its nature. As a typical stochastic process and using gained experience, Q learning
can help in selecting the best operator among several in a given search space under specific
conditions. Many complex and difficult real-world problems, especially combinatorial
ones, are thought to be easier to solve once the circumstances are effectively mapped
to the best operators using experiences. The machine learning literature is filled with
good examples and state of the art techniques for mapping problem states to the expected
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outcomes. However, since this has been done within the boundaries of a single problem
domain, significant changes in data and domain will necessitate the duplication of the
same process. Recent machine learning studies suggest that learning how to handle a
case can be transferred across domains, and a certain level of success can be achieved
using deep learning [5]. This article proposes a reinforcement learning-based transfer
learning approach to aid search algorithms with adaptive operator selection schemes while
transferring gained experience from one case/run/benchmark to another. Although it is
widely acknowledged that deep learning approaches facilitate the use of pre-trained tools in
solving new problems, shallow learning processes, particularly the use of building adaptive
operator selection schemes within a dynamic and extremely unknown environment, such
as metaheuristic search processes for problem solving, are less well understood. This
is the first attempt, to the best of the authors’ knowledge, to apply transfer learning in
building adaptive operator selection processes designed with reinforcement learning and
implemented in swarm intelligence algorithms, such as the artificial bee colony algorithm.

The rest of the paper is organised as follows: Section 2 introduces the approaches
on which the proposed method developed, while Section 3 details the proposed transfer
learning approach. Extensive experimental results are provided in Section 4, and the article
is concluded in Section 5.

2. Background and Related Work

This study brings a number of techniques together for devising an adaptive search
process embedded in a swarm intelligence algorithm and enhanced with reinforcement
learning. To keep the article self-contained, this section discusses briefly the necessary
background followed by a review relevant to the proposed work.

2.1. Artificial Bee Colony Algorithm

The outmost optimisation framework used in this study is a swarm intelligence
algorithm, which is the artificial bee colony algorithm (ABC). It is a population-based
metaheuristic and evolutionary technique developed inspired by the foraging behavior
of honey bees when seeking a quality food source [6]. There is a population of food po-
sitions, which refers to solution set in the ABC algorithm, and the artificial bees modify
their positions over time to reach high-quality food. In order to find the optimal solution,
the algorithm employs a group of agents known as honeybees. It is one of the efficient
nature-inspired optimisation algorithms for solving continuous problems. Other swarm
intelligence algorithms include ant colony optimisation (ACO) [7], which has been success-
fully used to solve discrete problems, and particle swarm optimisation (PSO) [8], which is
a population-based stochastic optimisation algorithm that has been successfully used to
solve continuous problems. There are three types of bees in the ABC algorithm, namely
employer, onlooker, and scout bees. Employer bees are assigned to each food source in the
first phase, and they use Equation (1) to try to increase the quality of the food source. The
second stage involves onlooker bees attempting to enhance the most promising solutions,
which are assigned probability values based on fitness function values using Equations (2)
and (3). In the final step, onlooker bees turn into scout bees, who replace the non-improved
food source with a new random viable solution.

vi = xi + rand(−1, 1)(xi − xn) (1)

p(xi) =
F(xi)

∑N
j=1 F(xj)

(2)

F(xi) =

{
1

1+ f (xi)
f (xi) ≥ 0

1 + | f (xi)| otherwise
(3)

where candidate, current, and neighbour solutions are represented by vi, xi, and xn, respectively.
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In this study, we will focus on using the ABC algorithm, which is widely used in
various industries to solve a variety of problems, including combinatorial and binary
problems. For the sake of brevity, further literature details have not been considered
because the major goal of the proposed research is to emphasise building adaptive operator
selection using one of the state-of-the-art machine learning techniques and investigate if
transfer learning can be achieved in this respect.

2.2. Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning technique for solving
sequential decision-making problems. In this technique, a learning agent interacts with
the environment to improve its performance through trial and error [9]. As with any other
learning techniques, it is all about mapping situations to behaviours in order to optimise
some rewards. However, unlike other machine learning techniques, the main challenge
in RL is that the learning agent has to discover by itself the best action to take in a given
situation. That is, in RL, the agent learns by itself without the intervention of a human.
Dynamic programming is often used in this technique to find the optimum strategy to
maximise reward in a given situation. The following are some key terms that describe the
fundamental parts of an RL problem: Environment (E) — the physical world in which the
agent acts, States (S) — the situations of the agent (what is the agent’s current situation in a
given state?), Actions (A)—the set of actions available to the agent, Reward (R : S× A 7→ R)
— the feedback from the environment (good or bad), Policy (Π) — a strategy to map the
agent’s state to actions (it is a strategy that an agent uses in pursuit of goals), and Value (V)
— the future reward that an agent will receive by taking an action in a particular state. The
RL techniques can be implemented using various approaches, including Q-learning [9]. In
this approach, the agent learns an optimal policy based on previous experience in the form
of sample sequences of states, actions, and rewards. Therefore, each learning step consists
of a state-transition tuple (si, ai, ri+1, si+1), where si ∈ S is the current state of the agent,
ai ∈ A denotes the chosen action in the current state, ri+1 ∈ R specifies the immediate
reward received after transitioning from the current state to the next state, and si+1 ∈ S
represents the next state.

There are different ways we can formulate any problem in RL mathematically; one of
them is Markov Decision Process (MDP). In many applications, it is assumed that the agent
is unaware of anything in the environment. However, in some other applications, it can
be assumed that not everything in the environment is unknown to the agent; for example,
reward calculation is considered to be part of the environment even though the agent has
some knowledge of how its reward is calculated as a function of its actions and states. An
MDP can be represented as a tuple (S, A, T, γ, R), where S, A, and R are defined above,
γ ∈ [0, 1] is called the discount factor, and T : S× A× S 7→ [0, 1] is called the probabilistic
transition relation such that for a given state s and an action a, ∑s′∈S T(s, a, s′) = 1. The
system being modelled is Markovian if the result of an action does not depend on the
previous actions and visited states (history) but only depends on the current state, i.e.,
P(st+1 | st, at, st−1, at−1, . . .) = P(st+1 | st, at) = T(st, at, st+1). This implies that the current
state s gives enough information to the agent to make an optimal decision. That is, if the
agent selects an action a, the probability distribution over the next states is the same as
the last time the agent tried this action in the same state. Once an MDP is defined, we
can define policies, optimality criteria, and value functions to compute optimal policies.
Solving a given MDP means computing an optimal policy. More detailed discussion on this
can be found elsewhere [10]. The RL techniques have been successfully used to train robotic
and/or software agents for a variety of purposes, including games, in a variety of situations
ranging from simple to complex problems [11]. In particular, Deep RL has recently been
developed and made available for dealing with and solving complex, dynamic, online, and
real-time problems. As part of the heuristic optimisation outlined below, RL approaches
can also be employed in operator selection. It would be easier to develop more conscious
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adaptive selection methods that take inputs into account while selecting operators and
awarding the outcomes of each operation.

2.3. Adaptive Operator Selection

Many NP-hard problems can be solved using evolutionary search techniques [12].
These are mostly stochastic optimisation algorithms that have already demonstrated their
effectiveness in a variety of application domains. This is largely due to the parameters that
the user can define based on the problem at hand. However, such algorithms are very
sensitive to the definition of these parameters. There are no standard principles for an
effective setting, so researchers from other domains rarely use those algorithms. One of
the features that search algorithms with multiple alternative operators require is operator
selection. In this paper, we focus on Adaptive Operator Selection (AOS) [1]. Since its
introduction in the 1990s, many AOS approaches have been proposed in the literature,
varying widely in various aspects such as the amount of knowledge to use from the
algorithm’s previous performance and whether or not it is a good idea to use previous
quality in the learning process. In practice, Credit Assignment (CA) and Operator Selection
(OS) are the two components that are used during the operator selection process [13,14]. A
definition based on fitness achievement over a solution is used in the CA component. OS,
on the other hand, uses CA’s captured knowledge to determine the quality of each operator
before estimating its likelihood. Finally, based on the probability assigned to each operator,
a selection strategy is used to choose an operator for evolving a parent. All the parents in
an episode are evolved using the same selection strategy. As the algorithm learns more
about the landscape, it moves the solutions in a specific search direction after a number
of episodes.

2.4. Transfer Learning

Transfer in reinforcement learning is a new field of study that focuses on developing
strategies for transferring knowledge from a set of source tasks to a target task. When the
tasks are similar, a learning algorithm can use the transferred knowledge to solve the target
task and enhance performance significantly [15]. So far, traditional machine learning and
deep learning algorithms have been intended to work in isolation. These algorithms have
been designed to solve specific problems. Once the feature-space distribution changes, the
models must be rebuilt from the scratch. Transfer learning techniques have been proposed
to overcome the isolated learning paradigm, allowing acquired trained knowledge learnt
for one problem to be used to address other related problems. The following three critical
questions must be addressed during the transfer learning process: What needs to be
transferred, when should it be transferred, and how should it be transferred? Depending
on the domain, problem at hand, and data availability, various transfer learning techniques
could be used [16]. This is crucial because one of the most difficult aspects of transfer
learning for an RL agent running in a target problem is figuring out which elements of the
target and source problems are the same and which parts are different. The majority of
transfer learning research has been focused on general classical RL problems; however, the
purpose of the proposed study will be on how to acquire transferable experience in operator
selection through reinforcement learning.

2.5. Related Work

The performance of evolutionary algorithms, similar to that of the other meta-heuristics,
is frequently linked to proper design decisions, such as crossover operator selection and
other factors. The selection of variation operators that are efficient to solve the problem
at hand is one of the parameters that has a significant impact on the performance of such
algorithms. The control of these operators can be handled at both the structural and be-
havioural levels when solving the problem. At the behavioural level, adaptive operator
selection refers to the process of deciding which of the available operators should be used
at any given time. The adaptive operator selection technique is widely used to enhance
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the search power in many evolutionary algorithms, including in Multi-objective Evolution-
ary Algorithm [14]. In [14], the authors have proposed a bandit-based AOS method for
selecting appropriate operators in an online manner. Their work proposes fitness-rate-rank,
which is a credit assignment that updates the attributes using ranking rather than raw
fitness progress.

The decomposition is well-known in traditional multi-objective optimisation, and the
technique is used by [17]. The authors of [18] proposed the so-called multi-objective evolu-
tionary algorithm with decomposition in 2007, which was the first time the decomposition
technique was used in multi-objective optimisation. Despite the fact that these research
studies have shown significant results, no state-of-the-art studies have taken into account
situational information such as problem state. For example, while selecting an operator
to develop new solutions, none of the above discussed approaches took into account the
problem state and/or the history of past acts. In a slightly different direction, a few research
studies in single-objective continuous optimisation have addressed the algorithm selection
problem in an automated method. In [19], the authors proposed an initial approach to
combine exploratory landscape analysis (ELA) and algorithm selection, concentrating on
the BBOB test suite [20].

The work presented by [21] selects operators using fitness landscape and performance
indicators without a structured learning process. The majority of AOS research in the
literature is based on traditional dynamic programming approaches. There has never been
a detailed investigation of a technique that uses reinforcement learning (RL) to consider
the problem state, i.e. input data, when selecting operators. In [22], the authors present a
Markov Decision Process model for selecting crossover operators during the evolutionary
search. A Q-learning method is used to solve the given model. On the benchmark instances
of Quadratic Assignment Problems, they have experimentally validated the efficacy of the
proposed strategy. However, the work lacks a detailed presentation, as well as analysis
and discussion. The work presented in [23] emphasises how AOS is developed with RL for
a variable neighbourhood search algorithm to solve vehicle-routing problems with time
window and open routes. However, not much detail is provided on how reinforcement
learning is implemented throughout the article.

In a more recent work [4], the authors proposed an adaptive operator selection ap-
proach based on reinforcement learning. In their proposed method, the problem states are
mapped to operators based on the success level per operation. Although these proposed
techniques advance the state-of-the art on AOS based on RL, these are generally centred
within the boundaries of one problem’s domain, and if major changes in data and domain
occur, the same process must be replicated. As a result, new approaches for transferring
learnt information from one problem-solving procedure to another are required. The pro-
posed research addressed this problem by presenting a technique to determine the effect of
transfer learning using RL and Metaheuristic optimisation algorithms, with the Adaptive
Operator Selection method being used to choose between different available operators.

3. Proposed Approach for Transfer Learning with RL

It is well known that the transferability of knowledge and gained experience on how
to solve problems optimally is quite limited. This is due to the uniqueness of the search
spaces and the characteristics of the problem domain and data. However, transfer learning
in the deep learning context has facilitated better performance, which can be investigated
to see whether any particular level can be achieved. However, the problem data and set
of parameters make each problem unique and distinct, making it difficult to apply gained
experience from one problem to another. The aim of this research is to investigate how to
achieve some degree of transferability. In this context, it is envisaged that the knowledge
and experience gained through prior searches be carried out on three levels: (i) transferring
experience across the runs of the same problem subject to different circumstances, but with
the same configuration and settings; (ii) different problems with the same size and context;
and (iii) different problems of various sizes and contexts.
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The proposed research investigates if experience could be transferred between runs of
the same problem.

In this case, the idea of transferring learning and experience is implemented using
reinforcement learning. This is achieved using a dynamic and online learning strategy to
facilitate utilisation of the gained experience in different circumstances. More specifically,
this turns to be the problem of dynamic operator sequencing, since an optimally selected
operator to produce new solutions will be added to the list of operators selected so far.
At the end of a problem-solving process, a sequence of operators will be produced via
using a set of criteria such as operator selection schemes. The framework used to solve the
problems whilst operator selection is learned through reinforcement learning is presented
in Figure 1, where the ABC framework is depicted on the left-hand side and the details
of AOS are reflected on the right-hand-side. ABC shows the interaction in between a
population of solution and the new solution generator, which is detailed with the selection
scheme built up with RL.

Figure 1. Reinforcement learning-based adaptive operator selection scheme embedded in ABC
algorithm. Input X is presented to the ’Operator Selection’ unit and merged with the output O
generated before and passed to ’Cluster Update’ unit to make operator a selected. Once done,
operator a generates a new O and evaluates the quality of solution with F(x, a). Meanwhile, X and O
are passed to the ’Reward Generation’ unit to produce r and forwarded to ’Cluster Update’ to adapt
with the new knowledge. This repeats throughout the complete search process.

As depicted in Figure 1, a swarm intelligence algorithm (ABC works here) takes
the role of the search framework, while operators are selected from a pool subject to a
preferred AOS scheme. A reinforcement learning algorithm (Q learning embedded with
a distance-based clustering algorithm preferred here) is placed in the search framework
to work alongside the search to learn how the operators can work best subject to given
circumstances. The RL algorithm continuously monitors the operator selection and the
search processes to gain experience and process it accordingly to support the online operator
selection scheme. The search algorithm selects an operator from the pool, applying the
rule of selection scheme (here, the best Q value calculated is the rule used). Once an
operator is selected, it helps to produce a new solution that is evaluated regarding whether
to take it on board for the next generation or not. Depending on the success attained by
the selected operator, a Q learning algorithm updates the measure for the corresponding
selected operator. This is repeated until a new generation is completely built. Note that
the ABC algorithm works generation-by-generation as a population-based algorithm. The
complete algorithm is outlined in Algorithm 1.
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Algorithm 1 General overview of RL-AOS

1: Initial Phase
2: if learning is not activated or first run then
3: Initial credit and C cluster values
4: end if
5: Operator Selection
6: Assign probabilities
7: Choose operator using Roulette-Wheel selection
8: Operator Evaluation
9: Execute operator and get reward

10: if positive reward and learning is activated then
11: Update cluster of operator
12: Update operator total reward
13: end if
14: At the end of iteration
15: if learning is activated then
16: Update credit values using Equation (5)
17: end if

We present below the above discussed concepts more formally. Let X be a population
of solutions that makes up a bee colony handled by the ABC implemented in this study,
where X = {xi|i = 1 . . . |X |}. Each solution xi is defined as a D dimensional binary set,
xi = {xi,j ∈ [0, 1]|j = 1 . . . D}, and its quality of solution is measured with F(xi). The ABC
is implemented uses a pool of actions A = {ak|k = 1 . . . |A|}, where each ak is a function
defined as ak(xi)

xi−→ yi, where yi ∈ X . Meanwhile, a set of clusters, C = {ca|a = 1 . . . |A|},
is defined to represent the set of actions, A, where each cluster center is the centroid
measure of the D dimensional dataset, ca = {ca,j|j = 1 . . . |D|}, and calculated using the
following equation:

ca,j =
∑t

i=0 xi,jba,i

∑t
i=0 ba,i

∀j ∈ D (4)

where t is the number of iterations done so far, ba,i ∈ [0, 1] is a binary value indicating if the
action is successful, (i.e., if the operator a helped produce a better fitness), where it take
value 1 if successful and 0 otherwise. The centroids are optimised online with Q learning
algorithm collecting the rewards, ra,i, based on the fitness values, F(xi) as detailed in [4].
All ca values are initialised with 0, while random values are allocated to Q(x, a). Earlier
iterations impose a random selection of operators, a ∈ A, whereas subsequent stages
enforce the selections through fine-tuned Q values throughout the experience-gaining
process. The Q(xi, a) values are updated immediately after an action is taken, (i.e., operator
a is chosen and applied to xi) using the following rule:

Q(xi, a) = Q(xi, a) + β(ra,i + γ(E(yi)−Q(xi, a)) (5)

where β is the learning coefficient, γ is the discounting factor, and E(yi) is the expected Q
value for the new problem’s state, i.e., a solution. The expected value is calculated with
d = |xi − ca| as the Euclidean distance between xi and ca as the current solution and the
centroid for operator a, respectively. The algorithm runs repeating this procedure until
a stopping criterion is satisfied. More opportunities to experience would be required to
build a wide range of experience across the search space, necessitating the adoption of
an exploration policy alongside the exploitation of learned cases. This study employs a
ε-greedy policy to accomplish this goal. It requires randomising a value and performing
a random selection if the random number is less than a ε threshold and Q-values-based
selection otherwise. More details can be found in [4,24].

The transfer learning can be adopted into a data modelM(D) = {mi(d)|i = 0 . . . |M|},
where each component of the model comprises mi(d) = αi(d)

⊕
βi(d). The model com-
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bines the terms α and β with the implementation of a union operator represented by⊕
, where α and β represent the experience gained previously and the experience to

be gained over upcoming attempts, respectively. The model can be implemented as
mi(d) = (1− δ)αi(d) + δβi(d), where δ is the learning coefficient that manages the contri-
bution of previous and next experiences. For example, it switches training ON if δ > 0, and
it switches OFF otherwise. This approach adopts transfer learning into problem solving, the
data model is considered as the cluster,M(D)←− C(D), which is trained with solving an
instance of the problem including the components as follows: mi(d)←− ca(d), α represents
the learned components, β is the change to be imposed from upcoming activities, and δ is
to be decided if the past experience would be used.

The algorithm is set up to run once to solve a specific problem instance, with online
learning switched ON to train the cluster centres and then switched OFF to repeat the
experiments with the same problem instance but with new random number sequences.
Since the exploration activities are pruned, this is expected to solve the problem with better
or slightly better solution qualities in a far shorter period. This is the stage at which the
proposed algorithm transfers previously gained experience, which is still the most common
method of transfer learning.

4. Experimental Results

This section introduces experimental results of the proposed approach to handle
transfer learning across different runs of the same problem instances. We demonstrate how
reinforcement learning-based experience transfer assists towards solving the problem in
high efficiency with respect to computational time. The experiments have been carried
out in a high-performance computing cluster machine with 8 core CPU 27.2 GB RAM and
CentOS 7.9 operating system specs.

4.1. The Problem and Datasets

This study has been conducted to demonstrate the gain/benefit of transfer learning
using an adaptive operator selection scheme built with an implementation of Q learning
algorithm. Both the selection scheme and the RL (i.e., Q learning) are embedded within
a standard ABC algorithm equipped with three recent state-of-the-art binary operators;
binABC [25], ibinABC [26], and disABC [27] to solve the set union knapsack problem (SUKP),
where Q learning is implemented and integrated into the ABC algorithm to allow the agent
(i.e., the ABC algorithm) to learn how to adaptively select one of these three operators.

The family of knapsack problems includes renown combinatorial optimisation problem
sets used to test the efficiency and performance of problem-solving algorithms. They are
known as an NP-Hard problems with respect to complexity and are very instrumental in
modelling and solving real-world industrial problems. SUKP is a special form of knapsack
problem, which holds NP-Hard complexity level [28]. This problem is chosen as the test-
bed in this study to demonstrate the success of proposed approach. It requires a set of
items to be optimally composed in subsets so as to gain the maximum benefit. Given a set
of n elements, U = {ui|i = 1, . . . , n} with a non-negative weight set, W = {wi|i = 1, . . . , n}
and a set of m items, S = {Uj|j = 1, . . . , m} with a profit set, P = {pj > 0|j = 1, . . . , m}, a
subset of A ⊆ S is sought to be found such that it maximises the profit subject to that the
sum of the weights of selected items is not to exceed the capacity constraint, C. The formal
structure of the problems is as follows:

max P(A) = ∑
j∈A

pj (6)

s.t. W(A) = ∑
i∈⋃j∈A Uj

wi ≤ C, A ⊆ S . (7)

The problem is represented in real numbers and needs to be represented in binary
form to enable binary operators in search algorithms such as binary ABC [3]. Follow-



Algorithms 2022, 15, 24 9 of 17

ing the details of the problem and the approach introduced by [29], a binary vector,
B = {bj|j = 1, .., m} ∈ {0, 1}, is defined to be used as the set of decision variables,
where bj = 1 if an item is selected, bj = 0, otherwise. The model of the problem can be
reformulated as follows:

max f (B) =
m

∑
j=1

bj pj (8)

s.t. W(AB) = ∑
i∈⋃j∈AB

Uj

wi ≤ C. (9)

The main goal is to find the best binary vector, B, which provides the subset of items
with the maximum profit.

The problem instances of SUKP chosen in this study are collected from recently pub-
lished literature. He et al. [30] have introduced 30 benchmarking problem instances of
SUKP as tabulated in Table 1 with all configuration details, where three different configu-
rations presented varying with comparative status of m and n; (i) m > n, (ii) m < n, and
(iii) m = n), while w ∈ {0.10, 0.15} and y ∈ {0.75, 0.85} represent the density of elements
and the rate between the capacities and the sum of weights of elements, respectively. As
seen, each set of problem instances includes 10 instances varying with m, n, w, and y values.
More details can be found in [30,31].

Table 1. The SUKP benchmark instances.

Set1 Set2 Set3

ID m n w y ID m n w y ID m n w y

1_1 100 85 0.10 0.75 2_1 100 100 0.10 0.75 3_1 85 100 0.10 0.75
1_2 100 85 0.15 0.85 2_2 100 100 0.15 0.85 3_2 85 100 0.15 0.85
1_3 200 185 0.10 0.75 2_3 200 200 0.10 0.75 3_3 185 200 0.10 0.75
1_4 200 185 0.15 0.85 2_4 200 200 0.15 0.85 3_4 185 200 0.15 0.85
1_5 300 285 0.10 0.75 2_5 300 300 0.10 0.75 3_5 285 300 0.10 0.75
1_6 300 285 0.15 0.85 2_6 300 300 0.15 0.85 3_6 285 300 0.15 0.85
1_7 400 385 0.10 0.75 2_7 400 400 0.10 0.75 3_7 385 400 0.10 0.75
1_8 400 385 0.15 0.85 2_8 400 400 0.15 0.85 3_8 385 400 0.15 0.85
1_9 500 485 0.10 0.75 2_9 500 500 0.10 0.75 3_9 485 500 0.10 0.75

1_10 500 485 0.15 0.85 2_10 500 500 0.15 0.85 3_10 485 500 0.15 0.85

4.2. Experimental Settings

The experimental study reported in this article is conducted to demonstrate that
transfer learning helps improve the efficiency of swarm intelligence algorithms in solving
combinatorial optimisation problems. For this purpose, three algorithms have been set
up: (i) RLABC taken from [4] is the baseline algorithm that solves the problems with ABC
embedded with a Q learning-based adaptive operators selection scheme, (ii) RLABC-T
extends RLABC with a static transfer learning that switches off the gain experience in
upcoming runs, and (iii) RLABC-TC keeps online learning while solving new problems
and executes new runs. This means δ = 0 for RLABC-T, while δ > 0 for RLABC-TC.

The parametric settings for all algorithms have been taken from previous works [3,4]
rolling over the fine-tuned set of parameters accordingly. The configuration applied to all
three algorithms includes the following settings: γ is 0.3, the window size W is 25 iterations,
reward is chosen as extreme (r̂i,t), ε is 0.1, and α is 0.5. The termination criteria is used as the
maximum number of iterations, which is determined as the problem size. For the algorithm
parameters, the population size is 20 and maximum trial number is 100.

4.3. Results and Discussions

Tables 2–4 show comparisons among three variants in terms of solution quality. The
column of best is determined as the maximum value of the best solutions of thirty different
runs. Mean and Std values are the average and standard deviation of them, respectively. R
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is the rank and S is the sign of Wilcoxon signed-rank test. The algorithms are ranked in
terms of mean values.

As can be seen from Table 2, RLABC provides the best place, (i.e., the first place) only
for two instances 1_1 and 1_4. The average rank of RLABC over the set of problem is
2.2, and it has the worst ranking among three approaches. RLABC-TC is the second-best
algorithm because the average of rank values is 2; it has left behind RLABC-T, which
shows better performance than the others, reaching the mean rank value of 1.8. When the
statistical results are examined, RLABC-T has produced a statistically meaningful result for
less than half of the instances, whereas the results of RLABC-TC are statistically meaningful
only for one instance.

Table 2. Comparative results in solution quality for Set1 benchmarks.

RLABC RLABC-T RLABC-TC

Best Mean Std R Best Mean Std R S Best Mean Std R S

1_1 13,251 13,071.4 53.5 1 13,283 13,070.5 61.80 2 - 13,167 13,054.9 38.1 3 -
1_2 12,274 12,143.2 73.1 2 12,238 12,090.8 80.25 3 + 12,272 12,153.9 62.5 1 -
1_3 13,402 13,271.7 100.2 2 13,405 13,283 67.74 1 - 13,405 13,262.8 88.2 3 -
1_4 14,215 13,680.6 251.4 1 13,777 13,451.8 201.02 3 + 14,215 13,674.8 232.0 2 -
1_5 11,065 10,717.5 141.1 2 10,900 10,661.5 110.45 3 - 11,073 10,777.1 166.0 1 -
1_6 12,245 11,672.6 269.3 3 12,245 11,734.5 285.05 1 - 12,245 11,722.8 272.0 2 -
1_7 11,289 10,742.4 252.1 3 11,244 10,812.7 250.80 1 - 11,294 10,755.3 216.8 2 -
1_8 10,168 10,027.1 145.2 3 10,175 10,123.9 84.43 1 + 10175 10,103.8 82.4 2 +
1_9 11,427 11,188.1 140.5 3 11,490 11,196.1 134.66 2 - 11,490 11,230.6 151.2 1 -
1_10 9734 9359.3 195.2 2 9817 9475.3 154.50 1 + 10,022 9355.3 208.8 3 -

Mean: 2.2 Mean: 1.8 Mean: 2

Table 3 presents comparative statistical performance of the three variants in terms
of solution quality on Set2 benchmark instances. Clearly, RLABC-T remains in the first
position among the variants similar to the case of Set1, where it achieves first place on the
half of benchmark instances. It is observed that both RLABC-T and RLABC-TC perform
better than RLABC with respect to Best values, while RLABC takes first position in only
two instances, 2_6 and 2_10.

Table 3. Comparative results in solution quality for Set2 benchmarks.

RLABC RLABC-T RLABC-TC

Best Mean Std R Best Mean Std R S Best Mean Std R S

2_1 14,044 13,949 85.05 1 14,044 13,943.2 86.3631 2 - 14,044 13,938.5 92.7598 3 -
2_2 13,508 13,442.1 88.2756 2 13,508 13,465.9 48.2438 1 - 13,508 13,414 99.4093 3 -
2_3 12,211 11,833.3 178.218 3 12,328 11,944.3 201.902 1 - 12,328 11,845.8 212.621 2 -
2_4 12,019 11,652 163.042 2 11,821 11,627.4 201.362 3 - 12,187 11,697.1 222.437 1 -
2_5 12,646 12,535 167.639 3 12,695 12,623.3 72.6071 1 + 12,655 12,595.2 114.05 2 -
2_6 11,410 10,679.6 176.845 3 11,054 10,759.6 144.579 1 + 11,251 10,725.8 137.088 2 +
2_7 11,193 10,855.3 132.626 3 11,310 10,924.2 170.308 1 - 11,249 10,889.6 156.932 2 -
2_8 10,355 9882.63 234.754 2 10,382 9871.07 233.87 3 - 10,382 9947.37 214.996 1 -
2_9 10,770 10,647.2 65.2152 3 10,885 10,688.7 60.1216 2 + 10,885 10,694.9 73.2702 1 +
2_10 10,194 9851.07 209.2 1 10,176 9845.03 186.539 2 - 10,176 9798.8 229.578 3 -

Mean: 2.3 Mean: 1.7 Mean: 2

Table 4 shows the comparative statistical performance of three variants on Set3 bench-
mark instances. The algorithms look more competitive on this set in comparison to the
previous two sets. In fact, the average rank calculated for each is 2, 1.9, and 2.1 for RLABC,
RLABC-T, and RLABC-TC, respectively. The comparative results suggest that the algo-
rithms produce slightly different qualities of solutions.
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Table 4. Comparative results in solution quality for Set3 benchmarks.

RLABC RLABC-T RLABC-TC

Best Mean Std R Best Mean Std R S Best Mean Std R S

3_1 12,045 11,632 191.489 3 12,020 11,697.3 148.956 1 - 12,020 11,651.9 152.747 2 -
3_2 12,369 12,205.2 149.614 1 12,369 12,101 263.167 3 - 12,369 12,196.8 201.196 2 -
3_3 13,609 13,352.2 130.039 2 13,609 13,399 99.6629 1 - 13,609 13,334.8 127.075 3 -
3_4 10,973 10,856.3 105.533 2 11,021 10,852.4 86.8795 3 - 11,298 10,859.1 140.543 1 -
3_5 11,538 11,240 169.691 3 11,538 11,308.8 210.61 1 - 11,538 11,287.8 194.904 2 -
3_6 11,377 11,077.2 189.324 1 11,377 11,017.5 178.618 2 - 11,377 10,997.4 202.552 3 +
3_7 10,181 9951.63 80.973 1 10,069 9932.27 67.0159 3 - 10,087 9946.9 76.4209 2 -
3_8 10,075 9403.8 177.593 3 10,077 9517.33 193.699 1 + 9749 9445.77 146.641 2 -
3_9 10,877 10,647.3 101.085 2 10,831 10,626.4 90.5375 3 - 10,987 10,668.8 122.98 1 -
3_10 9745 9426.57 136.45 2 10,220 9433.83 234.262 1 - 9649 9421.17 117.068 3 -

Mean: 2 Mean: 1.9 Mean: 2.1

Figure 2 shows comparative results of the algorithms with respect to CPU time,
while Table 5 tabulates the statistical analysis of the results, where both the table and the
figure demonstrate clear improvement by RLABC-T and RLABC-TC except for the cases
of 1_1 and 1_2 instances, which are smaller in size. The growing size of the instances
ascertains further that RLABC could not compete with the other variants. This suggests
that when the problem dimension increases, RLABC has shown worse performance in
terms of computational time. The results also indicate that RLABC-T and RLABC-TC
remain competitive, but RLABC-TC has done slightly better than RLABC-T. Almost for
all benchmarks except two instances, improvements on time performance are statistically
meaningful. A similar situation applies to Figures 3 and 4 and Tables 6 and 7, where the
results by the algorithms applied to Set2 and Set3 are plotted and tabulated accordingly.
These indicate that the comparisons with respect to the CPU time for all methods look
similar to the cases of Set1.

1_1 1_2 1_3 1_4 1_5 1_6 1_7 1_8 1_9 1_10
Problem

10
2

10
3

Ti
m
e

Method
RLABC
RLABC-T
RLABC-TC

Figure 2. Comparative results with respect to computational time by all three (RLABC, RLABC-T,
RLABC-TC) algorithms for Set1 benchmarks.
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2_1 2_2 2_3 2_4 2_5 2_6 2_7 2_8 2_9 2_10
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RLABC-T
RLABC-TC

Figure 3. Comparative results with respect to computational time by all three (RLABC, RLABC-T,
RLABC-TC) algorithms for Set2 benchmarks.
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Figure 4. Comparative results with respect to computational time by all three (RLABC, RLABC-T,
RLABC-TC) algorithms for Set3 benchmarks.

Table 5. The results of statistical analysis on computational for Set1 with respect to computational time.

RLABC RLABC-T RLABC-TC

Instance No Rank Rank Sign Rank Sign

1_1 2 3 + 1 -
1_2 2 1 + 3 -
1_3 3 2 + 1 +
1_4 3 1 + 2 +
1_5 3 1 + 2 +
1_6 3 1 + 2 +
1_7 3 2 + 1 +
1_8 3 2 + 1 +
1_9 3 2 + 1 +

1_10 3 2 + 1 +

Mean: 2.8 1.7 1.5
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Table 6. The results of statistical analysis for Set2 with respect to computational time.

RLABC RLABC-T RLABC-TC

Rank Rank Sign Rank Sign

2_1 2 3 + 1 +
2_2 1 3 - 2 -
2_3 3 2 + 1 +
2_4 3 2 + 1 +
2_5 3 1 + 2 +
2_6 3 1 + 2 +
2_7 3 2 + 1 +
2_8 3 2 + 1 +
2_9 3 2 + 1 +

2_10 3 2 + 1 +

Mean: 2.7 2 1.3

Table 7. The results of statistical analysis for Set3 with respect to computational time.

RLABC RLABC-T RLABC-TC

Rank Rank Sign Rank Sign

3_1 1 3 + 2 -
3_2 3 1 + 2 -
3_3 3 2 + 1 +
3_4 1 3 + 2 -
3_5 3 1 + 2 +
3_6 3 1 + 2 +
3_7 3 2 + 1 +
3_8 3 2 + 1 +
3_9 3 2 + 1 +

3_10 3 2 + 1 +

Mean: 2.6 1.9 1.5

Figure 5 presents the convergence graphs of methods through the search process;
Figure 5a shows the algorithms’ behaviour on a 400-dimensional problem, 2_7, and
Figure 5b plots the performances on a 500-dimensional problem, 2_9. As can be seen
in both figures, RLABC-T converges quicker than the other two but remains in local optima
at around iteration 200. Meanwhile, RLABC-TC escapes that local optima in iterations such
as 200, 300, and 350 in Figure 5a and in iterations around 80 and 250 in Figure 5b. On the
other hand, RLABC gradually converges but stops after iteration 300 in both Figure 5a,b.
This suggests that it is able to escape local optima at that points but cannot converge as
RLABC-TC does. Both figures clarify that RLABC is outperformed by the other algorithms,
while RLABC-TC converges better among all.

(a) (b)
Figure 5. Convergence level attained by each operator while solving (a) 2_7 problem instance and
(b) 2_9 problem instance .
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Figure 6 reflects the credit values gained by the three operators through iterations. As
shown in the figure, all methods has slightly similar characteristics. ibinABC has obtained
more credit from the start to the 200th iteration. The difference of methods is started from
there. In the RLABC, ibinABC always has the most credited operator, while RLABC and
RLABC have changed to DisABC and binABC.

(a) RLABC (b) RLABC-T (c) RLABC-TC
Figure 6. The change of credit levels gained by each operator while solving some benchmark instances
through iterations; (a) credits gained with the RLABC algorithm, (b) credits gained with the RLABC-T
algorithm, and (c) credits gained with the RLABC-TC algorithm.

In overall comparison, RLABC is a powerful algorithm that shows good performance
than most of the state-of-art methods that are applied to the same problem, as in [4].
However, it does not allow transfer learning in problem solving. RLABC-T and RLABC-TC
have improved the results not only in terms of solution quality but also the algorithm’s
CPU time, demonstrating that the solution quality of the score is slightly better, while both
RLABC-T and RLABC-TC significantly solve the problems much faster than RLABC. This
experimentally approves the contribution of transfer learning in dynamically building an
adaptive operator selection scheme. It is important to note that RLABC-T stops learning
from new problem-solving runs, while RLABC-TC keeps updating the relevant centeroids
of the corresponding clusters with upcoming new cases learned. The past experience
jointly with undergoing learning remains beneficial in solving the problems faster without
compromising the solution quality. The scope of this study has been kept to solve SUKP
as an abstract combinatorial optimisation problem, which can be implemented into many
real-world problems such as different variants of scheduling and timetabling problems. It is
obvious that once a real-world problem can be solved with this approach as demonstrated,
profit–loss analysis can be conducted to reveal the economical benefits.

The outperforming algorithm among three is RLABC-TC, which transfers previously
gained experience into new runs and keeps learning active. It has been compared with some
recently published very competitive state-of-art works—labelled as GA [28], BABC [32],
binDE [33], and GPSO [31]—and the comparative results are plotted in Figure 7 on which
all benchmark instances of the three sets have been considered, as shown on the horizontal
axis of the graph, while the quality of the solution is indicated on the vertical axis. As a
maximisation problem, the highest mean value is always delivered by RLABC-TC, which
demonstrates the strength of the proposed approach.
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Figure 7. Comparative results by the proposed approach, RLABC-TC, and the state-of-art methods,
GA [28], BABC [32], binDE [33], and GPSO [31], on benchmark instances in Set1, Set2, and Set3.

5. Conclusions and Future Work

This article described how transfer learning was used in a reinforcement learning-
based adaptive operator selection scheme incorporated in an ABC algorithm to tackle SUKP
as a combinatorial optimisation problem. The ABC algorithm uses a pool of operators
from which the adaptive operator selection scheme identifies the best-fitting operator for
the current state of the problem and the search conditions. This helps search through
the problem space in an efficient way. The operator selection scheme is developed and
fine-tuned with the Q learning algorithm embedded and empowered with the “Hard-C-
Means” clustering algorithm. The knowledge and experience gained through this process
is transferred into the next runs to be utilised for faster approximation and better-quality
solutions. The experimental results demonstrated that the transferred experience across
runs helped achieve slightly better solution quality but significantly faster convergence.
Both scenarios of keeping learning ON and OFF are tested, and it is observed that each has
its own set of advantages and disadvantages. It is clearly observed that learning through a
single run helps in solving problem instances in subsequent runs in a much shorter time.
This is because the gained experience is used to select more complementary operators one
after another, cutting the computational time, while the quality of the solution improves
slightly or at least remains the same.

This study has considered the first level of experience and knowledge transfer in
solving combinatorial optimisation problems, which implies training the agents in one run
and utilising its gained experiences in the next runs. The next two levels, transfer across
problem instances and problem types, remain as the future study, which is expected to
achieve a significant breakthrough in building generic problem solvers. The proposed
transfer learning method can be used to solve a wide range of real-world problems, which
are applied to tackling in real-world applications, including but not limited to image
recognition, speech recognition, and timetabling problems.
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