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Abstract: Water level monitoring is important for understanding the global hydrological cycle.
Remotely-sensed indices that capture localized instantaneous responses have been extensively
explored for water level reconstruction during the past two decades. However, the potential usage of
the Palmer’s Drought Severity Index (PDSI) and El Niño Southern Oscillation (ENSO) indices for
water level reconstruction and prediction has not been explored. This paper examines the relationship
between observed water level and PDSI based on a soil-moisture water balance model and three
ENSO indices for the lower Mekong River estuary on a monthly temporal scale. We found that the
time-lagged information between the standardized water level and the ENSO indices that enabled us
to reconstruct the water level using the ENSO indices. The influence of strong ENSO events on the
water level can help capture the hydrological extremes during the period. As a result, PDSI-based
water level reconstruction can be further improved with the assistance of ENSO information (called
ENSO-assisted PDSI) during ENSO events. The water level reconstructed from the PDSI and ENSO
indices (and that of remote sensing) compared to observed water level shows a correlation coefficient
of around 0.95 (and <0.90), with an RMS error ranging from 0.23 to 0.42 m (and 0.40 to 0.79 m)
and an NSE around 0.90 (and <0.81), respectively. An external assessment also displayed similar
results. This indicates that the usage of ENSO information could lead to a potential improvement in
water level reconstruction and prediction for river basins affected by the ENSO phenomenon and
hydrological extremes.
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1. Introduction

Water resources, including fresh water supply, hydrological extremes and agricultural irrigation,
is critical for human sustainability in the near future [1,2]. With the increasing demand for water
resources, it is more and more important to monitor the water volume in rivers, lakes, reservoirs and
wetlands [3]. Traditionally, the water level (or stage) is one of the basic hydraulic variables measured
along river reaches and estuary mouths. It is a useful information for understanding local water
variability. It is also essential for monitoring hydrological extremes (including floods and droughts)
that cause agricultural and economic losses [4]. Therefore, continuous, accurate, and timely water level
monitoring for an early alert regarding hydrological extremes is essential [5].
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Due to insufficient funds for ground-based station maintenance [6,7], and globally unevenly
distributed and sparsely-gauged stations, an alternative that can provide continuous direct or indirect
measurements has to be sought. Owing to the ability to record localized instantaneous land surface or
surface water responses with synoptic spatial coverage, both passive and active remote sensing have
been recently investigated for water level reconstruction since the 1990s (e.g., [8–10]), particularly in
sparsely-gauged or ungauged remote regions [5,11]. Yet, in addition to the low temporal resolution
for some remote sensing satellites when compared to in-situ data [12,13], the presence of a number of
uncertainty sources hinders accurate predictions [3]. Besides, to the best of our up-to-date knowledge,
no studies investigate the potential usage of the PDSI and ENSO indices for water level reconstruction
and prediction.

In essence, the available causal information can better reconstruct and predict the observed water
level, when compared to the localized instantaneous responses from remote sensing. The instantaneous
responses only represent the localized information (e.g., precipitation, soil moisture and land surface
temperature) within a hydrological cycle, which may contain some noises that may cause the causal
information to be unclear. This can be one of the reasons for the relatively less accurate water level
estimations based on remote sensing data. Hence, indices that are able to capture the relative amount
of water entering (i.e., precipitation), leaving (i.e., evaporation or evapotranspiration), and retaining
(i.e., water storage) in the river system, can potentially be better predictors of water level variation
than remote sensing methods. Hydrological drought indices (e.g., Palmer’s Drought Severity Index
(PDSI) based on a soil-moisture water balance model) [14] can capture the relative dryness of a river
system that can relate to the river discharge or water level variation, to some extent. Meanwhile, El
Niño Southern Oscillation (ENSO) is one of the most significant events that can affect the precipitation,
evaporation or evapotranspiration, and eventually the water level or discharge [15–19]. The ability to
capture the water entering, leaving and retaining as a result of an ENSO event and PDSI makes them
excellent predictors of water level reconstruction. PDSI captures the drought pattern (e.g., [20–22])
and the ENSO event governs the precipitation pattern (e.g., [23–27]), respectively.

Several studies have been conducted to analyze the relationship between ENSO events and
the hydrological conditions in the Mekong River Basin for the past, present, and future. The main
findings are that the ENSO events have a significant influence on precipitation [15], discharge [16,17],
evaporation [18], water levels [19] and snow accumulation and melting [28] in the Mekong River
Basin. As a result, the Mekong River Basin is vulnerable to droughts (e.g., 1992, 1993, 1998, 1999 and
2003–2005) and floods (e.g., 2000–2002 and 2011) [29], in which drought indices (e.g., PDSI and the
Standardized Precipitation Index (SPI)) were usually employed to assess and project hydrological
conditions for the past [30], the present [31], and the future [32].

Though the above relationship between ENSO events (or PDSI) and hydrological conditions in
the Mekong basin has been scientifically investigated, a practical usage of this relationship yielding
accurate and timely water level projections is sought for pre-disaster alerts. This study aims to
investigate the methodology for reconstructing water levels based on the hydrological drought index
(i.e., PDSI) and ENSO indices and their combination in the lower Mekong River Basin, where it is
mainly controlled by the alternating wet and dry seasons in the front of the South China Sea, making it
an ideal experimental region for this study. The constructed relationship is then applied to predict the
water level at another in-situ station in the Mekong River mouth, serving as an external validation for
our developed methodology, in terms of the Pearson correlation coefficient (PCC), root-mean-square
error (RMSE), and the Nash–Sutcliffe model efficiency coefficient (NSE). The commonly available
remotely-sensed data (i.e., Normalized Difference Vegetation Index (NDVI) [33] and Land Surface
Temperature (LST) [34]) are included as baseline predictors for a comparative analysis with the PDSI
and ENSO indices employed in this study.
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2. Mekong River Basin and Data Description

2.1. The Geographic Setting of the Mekong River Basin

The Mekong River Basin, one of the largest river basins of the world, represents the largest basin
in Southeast Asia, draining an area of 795,000 km2 with a total length of 4800 km. It is inhabited
by 65 million people [35]. The three-rivers region (TRR), located on the southeastern Qinghai–Tibet
Plateau, is its headwater source, with water flowing through parts of southern China, Burma, Laos,
Thailand, Cambodia and Vietnam before discharging into the South China Sea. The Mekong River is
divided into the Tonle Sap river, the Bassac river and the lower Mekong at Phnom Penh, Cambodia.
Before reaching the ocean, the main river is subdivided into several branches. The lower Mekong
River Basin is relatively flat (Figure 1).
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corresponds to the rainy season occurring between May and October each year, with a peak in 
September [35]. Therefore, the water level of Mekong basin begins rising and changing abruptly in 
May in the eastern and northern highland of the Mekong basin. The highest water level is attained in 
August or September upstream and as late as in October downstream. The rainy seasons contribute 
more than 85% of the annual rainfall [36]. Meanwhile, November to March of each year corresponds 
to dry seasons affected by the northeast monsoon from the mainland, which have less rainfall [35]. 
The water level of the Mekong basin is the lowest in April. Note that the water within the Mekong 
River mainly comes from the rainfall in its downstream watershed. The water volume changes 
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monsoon and ENSO exists [37,38]. For instance, ENSO can weaken the East Asian summer monsoon 
over northern China and Japan [39–41]. The South Asian summer monsoon is positively correlated 
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Figure 1. Map of the lower Mekong River Basin (a) with all stations in red triangles (that have discharge
and water level measurements) and (b) selected stations (with water level measurements) situated near
the river mouth in this study due to longer data time series.

The hydrological regime of the Mekong River Basin is mainly controlled by the monsoon winds
blowing northeast or southwest depending on the season. The southwest monsoon from the ocean
corresponds to the rainy season occurring between May and October each year, with a peak in
September [35]. Therefore, the water level of Mekong basin begins rising and changing abruptly in
May in the eastern and northern highland of the Mekong basin. The highest water level is attained in
August or September upstream and as late as in October downstream. The rainy seasons contribute
more than 85% of the annual rainfall [36]. Meanwhile, November to March of each year corresponds
to dry seasons affected by the northeast monsoon from the mainland, which have less rainfall [35].
The water level of the Mekong basin is the lowest in April. Note that the water within the Mekong River
mainly comes from the rainfall in its downstream watershed. The water volume changes depending
on the rainfall caused by the monsoons.

In essence, various studies have demonstrated that significant interaction between the Asian
monsoon and ENSO exists [37,38]. For instance, ENSO can weaken the East Asian summer monsoon
over northern China and Japan [39–41]. The South Asian summer monsoon is positively correlated
with the tropical Pacific trade winds, which can affect ENSO events [42]. A close relationship between
the monsoon and discharge in the lower Mekong basin indicates the presence of a teleconnection
between the Mekong River discharge and ENSO [43]. Therefore, the reconstruction of water levels
based on the ENSO information is possible in the lower Mekong River Basin, as shown in Section 4.
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2.2. Ground-Based, In-Situ Data and Remote Sensing Observations

Ground-based, in-situ data, at both the Vam Kenh and Dinh An stations, were chosen to correlate
with the modeled indices and to conduct validation, respectively, in this study (Figure 1b) due to
their geographic location near the estuary mouth and longer data time span, when compared to
other stations (Figure 1a). These data are available on request at Mekong River Commission (MRC)
(http://www.mrcmekong.org). Apparently, both station time series, with data spanning between
1 January 1992 and 31 December 2006, exhibit a strong similarity and share the same periodicities of
342 days, 176.6 days, and 1369 days, except with different amplitudes (Figure 2). A yearly peak usually
occurs in September corresponding to severe flooding for the aforementioned southwest monsoon, and
the lowest water level occurs in April, which is consistent with the general description in Section 2.1.
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Remote sensing products for the land surface derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) (National Aeronautics and Space Administration (NASA), Washington
DC, USA) [44] were used, which are available from the Land Processes Distributed Active Archive
Center (LP DAAC) managed by the NASA Earth Science Data and Information System (ESDIS)
project (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table). For the above
data products, Normalized Difference Vegetation Index (NDVI) data from the MOD13C2 product
and the land surface temperature (LST) data from the MOD11C3 product were chosen, serving as a
baseline for comparison with the PDSI and ENSO indices. To be comparable with the time span of
ground-based observations, remote sensing data were utilized up to the end of the year 2006.

2.3. Palmer Drought Severity Index (PDSI)

The Palmer Drought Severity Index (PDSI) [14], widely used in the United States [45], is a
standardized index based on a soil-moisture water balance model that quantifies meteorological
drought utilizing all available temperature and precipitation data to estimate relative dryness. It ranges
between −10 (dry) and +10 (wet). The index has proven that it is strong at capturing long-term drought,
while weak in recognizing short-term drought. The PDSI modeled data at 2.5◦ × 2.5◦ spatial resolution
are readily available at http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html [22].

2.4. El Niño–Southern Oscillation (ENSO) Indices

The El Niño–Southern Oscillation (ENSO) is an irregularly periodic climatic event that is
caused by the interaction between the atmosphere and ocean over the tropical eastern Pacific Ocean.

http://www.mrcmekong.org
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html
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It can manifest from sea-level atmospheric pressure differences and sea surface temperature (SST)
anomalies [24]. El Niño and La Niña represents the warming and cooling phases of the ENSO
events, respectively. Such events can lead to floods and droughts that occur every few years and last
several months.

Several studies have been conducted to classify different types of ENSO events based on spatial
location, occurrence period, and during which season it occurred within a year. For instance, for
spatial locations, ENSO events could be divided into two types: one with a center in the central Pacific
and the other in the eastern Pacific [46–49]. According to the occurrence period, two types have a
dominant period of about two years (central Pacific) and ranging from two to four years (eastern
Pacific), respectively [48]. On the basis of the occurrence season, Xu and Chan [50] classified it into
spring-occurring and summer-occurring ENSO events. Combining these two classifications, the ENSO
events that are located in the central Pacific are likely to occur in the summer and mainly have a
two-year period (namely the central Pacific type), whereas these events situated in the eastern Pacific
may start in spring and their dominant period varies from two to four years (namely the eastern
Pacific type).

Numerous SST-based ENSO indices have been derived using different areas of the equatorial
Pacific Ocean (e.g., Niño 3 (eastern tropical Pacific) region, Niño 4 (central tropical Pacific) region
and Niño 3.4 (eastern-to-central Pacific)). Taking into consideration indices for the ENSO events
(i.e., the central Pacific type and the eastern Pacific type) in the ocean, in the atmosphere, and coupled
atmosphere–ocean systems, the index SST anomaly in Niño 3.4, the Southern Oscillation Index (SOI),
and Multivariate ENSO Index (MEI) were used in this study. All ENSO indices were available from
https://www.esrl.noaa.gov/psd/data/climateindices/list/.

Figure 3 displays the ENSO events using SOI, SST anomalies in the eastern tropical Pacific Ocean
area (5◦ N–5◦ S, 120◦ W–170◦ W, called Niño 3.4 region), and MEI. The ENSO event starts when both
the El Niño and La Niña event occurs in a pair with various intensities and irregular periods and
durations. In addition, the SST anomaly in the Niño 3.4 region and MEI have a high correlation with
each other, while being negatively correlated with SOI.
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Based on the guidelines from the Climate Prediction Center of the National Oceanic and
Atmospheric Administration (NOAA) National Centers for Environmental Prediction, the SST anomaly
index for the Niño 3.4 region should meet two criteria for the identification of an El Niño (or La Niña)
event: (i) the five-month running means of absolute SST anomaly values are larger than or equal
to 0.5 ◦C and (ii) it persists for at least six months. From the intensity guidance (Table 1) and time
series of SST anomalies between 1991 and 2012 (Figure 3b), two obvious El Niño events (1991–1992,
1997–1998) and one obvious La Niña event (1998–2001) can be observed, which have a longer duration
and stronger intensity within our water level study periods. Based on SST anomaly values and the
criteria of ENSO events, the El Niño in 1991–1992 and in 1997–1998 ranged from June 1991 to June
1992, and from May 1997 to May 1998, respectively, whereas La Niña in 1998–2001 spanned from July
1998 to January 2001. These three events are expected to have had a strong influence on the Mekong
water levels.

Table 1. Intensity indicators of El Niño and La Niña [51].

Index Very Weak Weak Medium Strong Very Strong

SST <0.78 0.78–1.06 1.06–1.62 1.62–1.90 >1.90

3. Methodology and Assessment Scheme

3.1. Correlative Analysis and Water Level Standardization Results

The NDVI and LST time series are consistent with the observed water level series (i.e., Vam Kenh
station). Therefore, linear regression (i.e., a model fitting with an offset plus a slope) was directly
applied to establish a correlative relationship between the observed water level and those remote
sensing data (i.e., NDVI and LST) within the overlapping period for both the time series (i.e., from
January 2000 to December 2006). Owing to less obvious and direct connections between the monthly
PDSI and ENSO index time series and the observed water level time series, observed water levels were
standardized to be consistent with the PDSI and ENSO indices before establishing their correlative
relationship. This can be achieved by subtracting the monthly averaged water level from the monthly
median values (called water level anomaly) for the entire 15-year data time span divided by standard
deviation of the corresponding month (Figure 4a).
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To increase the ability to capture ENSO events and remove noise from the PDSI index, two extra
preprocessing procedures were conducted to create an ENSO-assisted PDSI. First, we observed that
the PDSI upstream had a stronger sensitivity in dryness conditions than that downstream. Therefore, a
representative PDSI data time series point upstream in the Mekong River during ENSO events had
to be selected owing to the lesser influence of ENSO events upstream than downstream. The PDSI
gridded value very close to Vam Kenh station was not used to avoid potential contamination from the
ocean. Second, smoothing and re-scaling processes had to be applied to PDSI data before a correlative
analysis could be made. This can be achieved by a five-month moving averaging process with PDSI
value re-scaling that matches the water level in a standardized form.

It can be revealed that the PDSI is strongly correlated to the standardized water level anomalies
(Figure 4b). A time lag between negative SST and water level anomalies is observed (Figure 4c),
because it takes several months for the water level in the Mekong delta to start its response to an
ENSO event. Based on a detailed analysis of SST and water level anomalies, we observed that there
is a six-month lag before year 1998 and a nine-month lag after January 1998. These lags suggest that
there is a teleconnection between the ENSO indices and the water level in the Mekong delta. Many
researchers have studied the teleconnections between ENSO events and hydrological variables, such
as river discharge [52], precipitation [53], and water storage [49]. In fact, time lag analysis (e.g., [54]) is
widely used to improve hydrological modeling.

In this study, the time-lagged El Niño information was utilized to improve our water level
reconstruction during the El Niño events. In our study periods (January 1992 to December 2006), two
obvious El Niño events (i.e., 1991–1992 El Niño and 1997–1998 El Niño) cause the six-month lag and
nine-month lag, respectively. From Table 1, it can be seen that the intensity of the 1991–1992 El Niño
beyond the medium level (i.e., SST > 1.06) lasted for six months, and that in 1997–1998 lasted for nine
months. This result is consistent with the two observed temporal lags from the analysis of SST and
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water level anomalies. As a result, when the SST is larger than 1.06, ENSO can affect the Mekong River
downstream water level. In addition, the duration of the medium or stronger intensity of ENSO events
corresponds perfectly with the time lag of water levels affected by ENSO. As a result, the whole time
series can be divided into two sections (January 1992–December 1998 and January 1998–December
2006) based on the two obvious El Niño events. The six-month and nine-month shifts of the SST
anomaly time series were applied to the first and the second section, respectively. Owing to the high
correlation of other ENSO indices with SST, the same procedure was adopted for the SOI and MEI.

Applying the above-mentioned PDSI data preprocessing procedures to these time-shifted ENSO
indices, all ENSO indices showed high agreement with the water level anomaly at the Vam Kenh
station (Figure 5). Compared to PDSI, the ENSO indices performed better. For different ENSO indices,
the SST anomaly performed the best. As a result, the correlative relationship between the water level
and PDSI and ENSO indices was established, which allows the conversion of the PDSI or ENSO indices
back into the water level anomalies time series. In other words, the estimated anomalies were then
added back to the seasonal monthly median values to reconstruct the water level.
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3.2. Result Assessment Schemes

To conduct a comparison between observed water levels and estimates derived from the indices,
the Pearson correlation coefficient (PCC), root mean square error (RMSE), and Nash–Sutcliffe model
efficiency (NSE) coefficient were chosen to assess the performance of each index. PCC is a number that
quantifies the linear relationship between two variables, which is defined as
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and RMSE is an accuracy estimate, which is given by
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The NSE was developed by Nash and Sutcliffe [55] and is used to evaluate hydrological models.
It is calculated as

NSE = 1 −
ΣN
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o
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where Xo represents the observation, Xo is the mean of Xo, and Xm is the estimation. The value of the
NSE ranges from −∞ to one. An NSE value higher than zero indicates that the estimation matches
well with the observation. The NSE value is negative when the accuracy of the estimation is lower
than the accuracy of the observation. Overall, the closer the NSE value is to one, the more reliable
the estimation.

4. Results and Discussion

Both an internal and an external assessment were computed to examine whether these indices
(including remote sensing indices, PDSI and three kinds of ENSO indices) are suitable for water
level reconstruction. To assess the internal correlation, the correlation between the observed Vam
Kenh monthly water level and the remote sensing indices (NDVI and LST) were obtained during the
corresponding data curve fitting. The corresponding curves were then used to predict the water level.
It was found that both the NDVI- and LST-reconstructed water levels match well with the observed
water level (Figure 6). However, the peak water levels between the NDVI-reconstructed water level
and observed water level show relatively large differences in the years 2000, 2003 and 2004, with the
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biggest difference occurring in the year 2000. These differences can be attributed to the La Niña event
in 1998–2001, which lead to the water level rising significantly in the lower Mekong basin after the
event that lagged for several months. The magnitude of the impact of the 1998–2001 La Niña event
eventually diminishes over time, with the biggest difference in the year 2000; these differences were
reduced in 2003 and 2004. This implies that the NDVI index cannot or can only weakly capture the
influence of an ENSO event on water levels in the lower Mekong basin.
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On the contrary, the peaks of water level reconstruction derived from LST have smaller disparities
with the observed water stage than that of NDVI in the time periods (from January 2000 to December
2004) influenced by the 1998–2001 La Niña, indicating a stronger ability of LST to capture ENSO’s
influence on the water level when compared to NDVI. Overall, the remote sensing indices can



Water 2018, 10, 58 11 of 18

reconstruct the water stages of the lower Mekong basin, but shortcomings exist, particularly in
the time period of ENSO events. The vegetation index (NDVI) and temperature (LST) record the
localized instantaneous responses, which are the consequences of regional precipitation and water
storage exchange within a hydrological cycle, but not the cause. This is the reason why the water level
reconstructions of remote sensing indices are not well represented.

Figure 7a displays the reconstructed water stage based on the PDSI index; the observed water
level matches almost perfectly in the study time span except for two periods: from January 1992 to
December 1993 and from January 1998 to December 1999. These two periods are squarely close to
1991–1992 El Niño ranging from June 1991 to June 1992 and the 1997–1998 El Niño ranging from May
1997 to May 1998, respectively. Doubtlessly, the differences in the two periods are caused by the two
El Niño events separately. The Mekong River Basin lies within the tropical and subtropical latitudes.
The ENSO influence on the subtropical region (i.e., upstream) is relatively reduced when compared to
the tropical region (i.e., downstream). As a result, the dryness conditions of the PDSI data time series
in the upstream of the Mekong River Basin should be more sensitive than that of the downstream for
the two above-mentioned mismatched periods. Hence, the PDSI data time series for the upstream
Mekong River Basin for the two above-mentioned mismatched periods were chosen to replace the
corresponding downstream PDSI.
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After replacement, the combined upstream and downstream PDSI (hereafter called ENSO-assisted
PDSI) reconstructed water level is almost perfectly in agreement with the observed water level
(Figure 7c). There are still slight differences: the peak of the ENSO-assisted PDSI reconstructed
water level is a little bit lower than the observed water level peak as a whole. The differences may
be attributed to the fact that the PDSI can only consider the moisture within 1-meter subsurface
thickness [22], while ignoring the potential presence of water deeper than 1-meter. Overall,
ENSO-assisted PDSI can reconstruct water stages very well to monitor droughts and floods, in spite of
slight defects.

As ENSO events play an important role in the water level reconstruction of the above
remote-sensing indices and PDSI, the water stages using the ENSO indices were reconstructed directly.
Figure 8 shows that all ENSO indices performed well, but there are peak overestimations in the years
1999 and 2000. The ENSO-reconstructed results performed better during or after the 1991–1992 El
Niño event than the results of or after the 1997–1998 El Niño event. This may be caused by the strong
intensity of El Niño in 1997–1998, which had a considerable effect on the reconstruction of the water
level. Besides the obvious overestimations in the years 1999 and 2000, other smaller peak disparities
display a random pattern. In other words, the ENSO indices both overestimated or underestimated
the water level in a random manner. This result may be due to the uneven distribution of rainfall
affected by ENSO events. In addition, considering three types of ENSO indices, their degrees of peak
overestimation in the years 1999 and 2000 are different. Compared to the SOI (for the atmosphere only),
the water level overestimations are much larger when based on SST anomalies (for the ocean only)
and MEI (for the coupled atmosphere–ocean). This indicates that the ocean is one of the significant
factors causing the overestimation. Perhaps SST and MEI indices take into account some rainfall in the
ocean region, which is outside our study region. Therefore, if we can find a way to remove the rainfall
beyond our study region, the overestimations should be further mitigated.

Water 2018, 10, 58 12 of 17 

 

After replacement, the combined upstream and downstream PDSI (hereafter called ENSO-
assisted PDSI) reconstructed water level is almost perfectly in agreement with the observed water 
level (Figure 7c). There are still slight differences: the peak of the ENSO-assisted PDSI reconstructed 
water level is a little bit lower than the observed water level peak as a whole. The differences may be 
attributed to the fact that the PDSI can only consider the moisture within 1-meter subsurface 
thickness [22], while ignoring the potential presence of water deeper than 1-meter. Overall, ENSO-
assisted PDSI can reconstruct water stages very well to monitor droughts and floods, in spite of slight 
defects. 

As ENSO events play an important role in the water level reconstruction of the above remote-
sensing indices and PDSI, the water stages using the ENSO indices were reconstructed directly. 
Figure 8 shows that all ENSO indices performed well, but there are peak overestimations in the years 
1999 and 2000. The ENSO-reconstructed results performed better during or after the 1991–1992 El 
Niño event than the results of or after the 1997–1998 El Niño event. This may be caused by the strong 
intensity of El Niño in 1997–1998, which had a considerable effect on the reconstruction of the water 
level. Besides the obvious overestimations in the years 1999 and 2000, other smaller peak disparities 
display a random pattern. In other words, the ENSO indices both overestimated or underestimated 
the water level in a random manner. This result may be due to the uneven distribution of rainfall 
affected by ENSO events. In addition, considering three types of ENSO indices, their degrees of peak 
overestimation in the years 1999 and 2000 are different. Compared to the SOI (for the atmosphere 
only), the water level overestimations are much larger when based on SST anomalies (for the ocean 
only) and MEI (for the coupled atmosphere–ocean). This indicates that the ocean is one of the 
significant factors causing the overestimation. Perhaps SST and MEI indices take into account some 
rainfall in the ocean region, which is outside our study region. Therefore, if we can find a way to 
remove the rainfall beyond our study region, the overestimations should be further mitigated. 

 
Figure 8. Cont.



Water 2018, 10, 58 13 of 18
Water 2018, 10, 58 13 of 17 

 

 

 
Figure 8. The water level reconstruction at the Vam Kenh station based on ENSO indices including 
negative SST anomalies in Niño 3.4 (a), SOI (b) and MEI (c). 

The observed water stage for all the above results comes from the Vam Kenh station in the 
Mekong delta. The same procedure was applied to the Dinh An station independently, so as to 
demonstrate the applicability of our method in this study. To internally evaluate the reconstruction 
of various indices at two stations, the above-mentioned three assessment metrics, namely PCC, RMSE, 
and NSE in Section 3, were chosen as the performance criteria. In general, the reconstructed water 
level from the ENSO-assisted PDSI and ENSO indices performed better than the remote sensing 
indices (i.e., NDVI and LST), no matter whether in terms of the PCC, RMSE, and NSE (Table 2). This 
indicates that the causal information, based on the PDSI and ENSO, improves water level 
reconstruction. For the same index, the result for Vam Kenh is better than that for Dinh An, to which 
the topography and the proximity to the ocean may be attributed.  
  

Figure 8. The water level reconstruction at the Vam Kenh station based on ENSO indices including
negative SST anomalies in Niño 3.4 (a), SOI (b) and MEI (c).

The observed water stage for all the above results comes from the Vam Kenh station in the Mekong
delta. The same procedure was applied to the Dinh An station independently, so as to demonstrate
the applicability of our method in this study. To internally evaluate the reconstruction of various
indices at two stations, the above-mentioned three assessment metrics, namely PCC, RMSE, and NSE
in Section 3, were chosen as the performance criteria. In general, the reconstructed water level from the
ENSO-assisted PDSI and ENSO indices performed better than the remote sensing indices (i.e., NDVI
and LST), no matter whether in terms of the PCC, RMSE, and NSE (Table 2). This indicates that the
causal information, based on the PDSI and ENSO, improves water level reconstruction. For the same
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index, the result for Vam Kenh is better than that for Dinh An, to which the topography and the
proximity to the ocean may be attributed.

Table 2. Internal and external assessment of observed water levels and reconstructed water levels
derived from various indices at the Vam Kenh, Dinh An and Dinh An station predicted by Vam Kenh.
The third part means we used Vam Kenh data and various indices to reconstruct the water level for
Dinh An station. PDSI (before) represents using the PDSI only to reconstruct water levels, while the
PDSI (after) stands for ENSO-assisted PDSI.

Station Index PCC RMSE (m) NSE

Vam Kenh

Remote sensing
indices

NDVI 0.838 0.467 0.703
LST 0.881 0.405 0.776

Drought index PDSI (before) 0.957 0.253 0.909
PDSI (after) 0.962 0.228 0.926

ENSO indices
SST 0.958 0.249 0.912
SOI 0.947 0.280 0.888
MEI 0.958 0.256 0.907

Dinh An

Remote sensing
indices

NDVI 0.835 0.762 0.697
LST 0.900 0.602 0.811

Drought index PDSI (before) 0.951 0.403 0.898
PDSI (after) 0.958 0.370 0.914

ENSO indices
SST 0.960 0.375 0.912
SOI 0.948 0.423 0.887
MEI 0.958 0.395 0.902

Dinh An
predicted by
Vam Kenh

Remote sensing
indices

NDVI 0.835 0.787 0.677
LST 0.900 0.645 0.783

Drought index PDSI (before) 0.941 0.438 0.879
PDSI (after) 0.952 0.402 0.898

ENSO indices
SST 0.961 0.355 0.921
SOI 0.947 0.409 0.895
MEI 0.961 0.353 0.922

Among the three ENSO indices, the SST for ocean only performed best, the MEI for both ocean and
atmosphere was second, and the SOI for the atmosphere only had the worst result. This implies that
different ENSO indices may show different performances when projecting the hydrological conditions
of a given basin, and the oceanic ENSO index based on SST is relatively effective in the Mekong basin.

In order to externally assess the suitability of our method, we based it on the constructed
relationship between the water level from the Vam Kenh station and indices, and a scale factor
simply obtained from the ratio of water discharge from two separated estuaries to predict the water
level at the Dinh An station (hereafter called “Dinh An water level prediction” to distinguish it from
“Dinh An water level reconstruction”). The result of the Dinh An water level prediction for the PDSI
and ENSO-assisted water level prediction was slightly less accurate than the Dinh An water level
reconstruction, while the prediction based on ENSO indices outperformed that of the reconstruction.
However, the performance of the Dinh An water level prediction is still well represented (Table 2).
Overall, our approach can not only reconstruct the water level at the gauged stations, but also predict
the water level of an ungauged station based on information from another gauged station.

5. Conclusions

Contrary to the traditional usage of localized instantaneous measurement from remote sensing,
we explore the feasibility of reconstructing the water level in the lower Mekong delta using PDSI, and
three ENSO indices on a monthly temporal scale, for the reason that the causal information can serve
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as a precursor of localized instantaneous measurement. We found that the time lag (i.e., six months for
1991–1992 and nine months for 1997–1998) between standardized water levels and the PDSI and ENSO
indices during the El Niño event is an important component for a better water level reconstruction,
due to its ability to capture hydrological extremes.

Compared to remote sensing indices (i.e., NDVI and LST), PDSI- and ENSO-reconstructed water
levels perform better. The combination of upstream and downstream PDSI (i.e., ENSO-assisted) and
ENSO information obtained the best-reconstructed water level, which is fairly satisfactory with a
correlation coefficient around 0.95, with an RMSE value ranging from 0.23 to 0.42 m and an NSE around
0.90. This compares to the reconstructions based on remote sensing with a correlation coefficient less
than 0.90, with an RMSE value ranging from 0.40 to 0.79 m and an NSE less than 0.81, respectively.
This result indicates that the potential usage of ENSO information could lead to an improvement in
drought-index-based water level reconstruction and prediction. It is anticipated to be applicable to
large basins affected by the ENSO phenomenon and hydrological extremes.

Notice that different ENSO indices may show different performance when projecting the
hydrological conditions depending on the river basins, as El Niño poses a different magnitude of
effect for different river basins. A holistic assessment for different river basins is yet necessary to
further validate these results in the near future. Further improvement may lie in better temporal
resolution of the PDSI and ENSO indices with good accuracy. To further extend our proposed method,
an attempt can be made to use the environmental indices derived from climate model outputs for
future water level projections. This can potentially help investigate whether the overestimation of
potential evapotranspiration (PET) [56,57] has a substantial influence on water level reconstruction.
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