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a b s t r a c t 

Predictions of river flow dynamics provide vital information for many aspects of water management in- 

cluding water resource planning, climate adaptation, and flood and drought assessments. Many of the 

subjective choices that modellers make including model and criteria selection can have a significant im- 

pact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with 

understanding and minimising the uncertainty surrounding streamflow predictions before communicat- 

ing the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff mod- 

els has been widely investigated, and model structural uncertainty and forcing data have been receiving 

increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing 

data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic 

rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of 

variance model was used to decompose the total uncertainty in streamflow simulations into contributions 

from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The 

analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution 

to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertain- 

ties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining 

parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year 

when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

The traditional understanding of water management is chal-

enged by evidence of increasing nonstationarity in environmen-

al systems ( Milly et al., 2008 ). Modelling hydrological changes

nd their uncertainties is important for future water security

 Wheater and Gober, 2013 ). Decision makers are increasingly in-

erested in the uncertainty surrounding model predictions ( Loucks

t al., 2005 ), and so modellers are tasked with quantifying and

ommunicating this uncertainty to inform water resources man-

gement and policy development ( Willems and de Lange, 2007 ).

owever, details of the sources of uncertainty are typically not re-

uired by such end-users ( Bruen et al., 2010 ). The onus is on mod-

llers to understand the sources of uncertainty and therefore focus
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ffort on reducing it, before communicating the overall uncertainty

o end-users of streamflow predictions. 

The uncertainties surrounding model outputs can have an

leatoric (e.g. measurement errors in forcing data) and/or epis-

emic character (e.g. omitted processes in model structures) and

oth are present in environmental modelling. In a model-based

tudy, uncertainties can arise in (i) model context, (ii) model

tructure, (iii) forcing data and (iv) identification of parame-

er values ( Walker et al., 2003 ). If the context of a study (in-

luding assumptions and boundary conditions) is defensible or

ustifiable, three dominant sources of uncertainty remain. The

ombination of these uncertainties in the modelling process

roduces its prediction error or predictive uncertainty ( Todini,

009 ). Understanding the three main sources of uncertainty

nd their interplay is necessary for an overall appreciation of

he model prediction reliability. However, there are only a few

tudies that address all these facets (e.g. Butts et al., 2004 ).
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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Fig. 1. Flow chart of methodology for variance decomposition. 
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Most studies have focused on one or two aspects of these

uncertainty sources, for instance, uncertainty due to parameter

estimation strategy has been widely studied in recent decades

( Wheater et al., 1986; Wagener and Wheater, 2006; van

Werkhoven et al., 2008; Sun et al., 2012; O’Loughlin et al., 2013 ).

There is a growing body of literature investigating model struc-

ture uncertainty ( Wagener et al., 2001; Clark et al., 2008; Breuer

et al., 2009; Gupta et al., 2012 ), and more recent studies have in-

vestigated uncertainties in modelled streamflow due to both model

structure parameter estimation strategy ( Mendoza et al., 2015;

Mockler et al., 2016 ), and model structure and forcing data ( Renard

et al., 2010 ). 

Monte Carlo methods are frequently used to sample possible

variations in forcing data and parameters using assumed proba-

bility distribution functions (e.g. GLUE methodology from Beven

(2006) ). Uncertainty assessments of forcing data has received rel-

atively less attention than the effect of different model struc-

tures and parameters, and is mostly focused on precipitation as

the dominant driving data ( Kavetski et al., 2006; Chun et al.,

20 09; Younger, 20 09; Sapriza-Azuri et al., 2013; Sapriza-Azuri et

al., 2015 ), regardless of how estimated ( Zappa et al., 2010 ), al-

though there are some attempts to understand potential evapo-

transpiration (e.g. Chun et al., 2012 ). For this study, we have lim-

ited the investigation of forcing data to precipitation. 

The objective of this study is to present an assessment of the

relative importance of the sources of uncertainty in model pre-

dictions under a variety of plausible rainfall scenarios that may

be used in studies, for example, of non-stationarity in hydrology.

To do this, we combine stochastic rainfall ensembles (i.e. a collec-

tion of 100 rainfall time series simulations from specific weather

states) and multiple parameter sets for three conceptual rainfall-

runoff models ( Fig. 1 ). In addition, we investigate the uncertainty

interplay between the precipitation forcing and identification of

hydrological model parameters by an analysis of variance model.
n summary, this framework is used to decompose uncertainty in

imulated streamflow into three components: 

(i) uncertainty in simulated flow due to uncertainty about the

forcing data, here limited to the precipitation data (U-forcing), 

ii) uncertainties due to the method of determining model param-

eters (U-parameters), and 

ii) uncertainties due to the interactions between the above sources

i.e. forcing data and model parameters (U-interactions). 

The proposed uncertainty assessment approach is applied to

onthly average simulations of 31 catchments in Ireland. Ireland is

sed in this study because of the availability of quality controlled

limatological and hydrological data over an extended area. More-

ver, the heterogeneity in soils, geology and topography in Ireland

rovides a diverse range of exemplars of partitioning of net pre-

ipitation between surface and groundwater flow paths contribut-

ng to streamflow. To quantify the uncertainty of the precipita-

ion forcing, we use a Generalised Linear Model (GLM) framework

 Chandler and Wheater, 2002 ) which has been applied in Australia,

orth and South America, Europe and Africa ( Yang et al., 2005;

rost et al., 2011; Chun et al., 2013; Kigobe et al., 2014 ). Moreover,

he adopted spatial GLM approach was tested in Ireland ( Yang et

l., 2005 ). It is extended here to include synoptic of the predomi-

ant atmospheric circulation pattern using Lamb weather type in-

ormation ( Jones et al., 2013 ) for generating spatial precipitation

ime series for all 31 Irish catchments. 

To see how the choice of hydrological model may influence

he uncertainty in each model’s parameters, three conceptual rain-

all models are used. Conceptual catchment models can be use-

ul for investigating any possible changes in hydrological responses

 Wheater et al., 1993 ) and they can be a learning tool for study-

ng process dynamics ( Dunn et al., 2008 ). Because of their simplic-

ty, such models are computationally inexpensive to use for explor-

ng uncertainties (e.g. Chun et al., 2009 ). The three rainfall-runoff

odels selected were (i) the Nedbør–Afstrømnings-Model (NAM),

ii) the Soil Moisture Accounting and Routing with Groundwater

odel (SMARG) and (iii) the Soil Moisture Accounting and Rout-

ng for Transport (SMART). The first two models were selected for

his study as they have been widely applied in Irish catchments

 Goswami et al., 2005; RPS, 2008; Bastola et al., 2011; Mockler and

ruen, 2013; O’Brien et al., 2013 ). The SMART model ( Mockler et

l., 2016; Mockler et al., 2014 ) was also included in the model com-

arison as it was recently developed for Irish catchments. 

The structure of hydrological models, originally developed for

ood forecasting and water resources analysis without climate

hange, have been identified as contributing significantly to the

verall uncertainty envelope of future climate change impact sce-

arios in Ireland ( Bastola et al., 2011 ). This study aimed to decom-

ose the uncertainty in hydrological simulations for Irish catch-

ents, in order to; 

(i) identify the relative importance of uncertainty in streamflow

due to U-forcing, U-parameters and U-interactions and, 

ii) compare this uncertainty for three different hydrological mod-

els and two performance criteria. 

Following this introduction, Section 2 details the data, models

nd methods used to generate the model ensembles and variance

ecomposition. Results and discussion are presented in Section 3 ,

ollowed by conclusions. 

. Data, models and methods 

.1. Irish catchment data 

Ireland has an area of approximately 70,0 0 0 km 

2 with gently

ndulating lowlands located in the centre with elevations generally
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Table 1 

Catchment characteristics including AAR (Annual Average Rainfall) and mean discharge (Q). 

ID Catchment Area (km 

2 ) AAR (mm yr −1 ) No. rain gauges Mean Q (m 

3 s −1 ) % Missing Q data 

1 Anner 437 913 3 6 .8 3 .6 

2 Aughrim 203 1423 3 5 .7 31 .2 

3 Bandon 424 1576 2 14 .9 6 .7 

4 Barrow 2419 865 11 33 .2 0 .8 

5 Blackwater 2334 1255 12 59 .7 4 .6 

6 Bonet 264 1670 2 10 .8 20 .4 

7 Boyne 2460 903 13 37 .8 0 .6 

8 Bride 334 1305 5 9 .5 1 .6 

9 Camlin 253 884 4 3 .9 8 .9 

10 Clare 700 1146 3 16 11 .8 

11 Clodiagh 254 904 2 3 .9 12 .5 

12 Dee 334 918 3 4 .3 2 .9 

13 Deel Moy 151 1922 4 6 .7 12 .9 

14 Deel Munster 439 1191 2 10 .7 26 

15 Erne 1492 1008 3 30 .2 20 .6 

16 Feale 647 1532 3 22 14 

17 Fergus 511 1135 2 10 .4 2 .3 

18 Flesk 329 1897 2 14 .4 6 .9 

19 Graney 280 1384 2 7 .7 4 .1 

20 Little Brosna 479 962 3 8 .3 23 .6 

21 Maigue 763 1018 4 13 10 .5 

22 Moy 1975 1313 9 58 .8 8 .4 

23 Mulkear 648 1244 3 15 .5 8 .7 

24 Nenagh 293 1041 2 6 .4 28 .5 

25 Nore 2418 962 18 39 .6 0 .8 

26 Rinn 281 1027 2 5 .7 32 .6 

27 Robe 238 1220 4 6 .2 5 .5 

28 Ryewater 210 820 7 2 .4 6 .8 

29 Shournagh 208 1213 4 5 .1 28 .6 

30 Suck 1207 1061 8 25 .2 18 .2 

31 Suir 1583 1113 3 34 2 .1 

Maximum 2460 1922 18 59 .7 32 .6 

Mean 437 1135 3 10 .7 8 .7 

Minimum 151 820 2 2 .4 0 .6 
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ess than 150 m above sea level. Annual rainfall varies from in ex-

ess of 30 0 0 mm in the western mountains to less than 10 0 0 mm

long the east coast. Mean annual temperatures range between

 °C and 10 °C. 

The 31 study catchments ( Fig. 2 , Table 1 ) were selected on the

asis of having good quality meteorological and hydrometric data

vailable for the study period, which is 15 years beginning from 1

anuary 1990. The chosen catchments cover over 35% of the area of

he country and represent a wide variety of meteorological and ge-

logical conditions, with areas ranging from 151 km 

2 to 2460 km 

2 . 

Meteorological data consisted of daily rainfall and potential

vapotranspiration values from Met Éireann for the study period.

he catchment-area averaged rainfall was calculated using the

hiessen method ( Thiessen, 1911 ), which has been show to pro-

ide comparable performance compared to more computationally

emanding methods ( Dirks et al., 1998 ). Each catchment has data

rom at least two precipitation stations and the largest (Boyne)

ontains 13 stations. Annual average rainfall (AAR) ranges from

20 mm in the Ryewater to 1897 mm in the Flesk (average of

189 mm). Fig. 3 shows the range of monthly rainfall amounts

cross the catchments. Potential evapotranspiration (PE) was cal-

ulated by Met Éireann at 14 synoptic weather stations according

o the FAO Penman–Monteith method ( Allen et al., 1998 ). PE data

rom the nearest station was selected for each catchment and as-

umed spatially uniform. Actual evapotranspiration is calculated by

he hydrological models as a function of PE and soil moisture stor-

ge. 

Hydrometric data for each catchment consisted of daily mean

ows supplied by the Office of Public Works (OPW) and the Envi-

onmental Protection Agency (EPA). Periods within the 16 years of

he study with missing flow data were not included in the anal-

sis. Of the 31 catchments, four have missing flow data for over
 r  
5% of the study period, with the majority having less than 10%

issing values ( Table 1 ). These gaps have no significant flow rate

r seasonal trends and are not suspected of introducing any bias. 

.2. Rainfall models 

Regional and local precipitation patterns are linked to atmo-

pheric circulation patterns ( Sapriza-Azuri et al., 2013; Sapriza-

zuri et al., 2015; Hay et al., 1991; Bardossy and Plate, 1992;

orte-Real et al., 1999; Fowler et al., 20 0 0; Bellone et al., 20 0 0;

arry and Chorley, 2003; Fowler et al., 2005; Yang et al., 2010 ).

any advanced stochastic rainfall modelling approaches provide

utputs which can capture the different statistical signatures of

ach weather type. For example, using Lamb weather types ( Jones

t al., 2013; Jenkinson and Collinson, 1977; Jones et al., 1993;

alnay et al., 1996 ), daily precipitation ensembles have been gen-

rated for Yorkshire, the United Kingdom ( Fowler et al., 20 0 0 ) and

he Upper Guadiana Basin, Spain ( Sapriza-Azuri et al., 2013 ). 

In this study, 31 spatially dependent time series are generated

or the 31 catchments using the spatial GLM framework ( Chandler

nd Wheater, 2002; Yang et al., 2005 ) which was used in Ireland

 Chandler and Wheater, 2002 ). In a new attempt to extend this

ramework, Lamb weather type information are used to condition

he spatial GLMs, which include information of the predominant

ynoptic atmospheric circulation patterns over Ireland ( Fowler et

l., 2005; Yang et al., 2010 ). The GLM structures can be defined in

erms of internal structures and external interactions. The internal

LM structures describe temporal and site effects. Fourier series

sines and cosines) model the timing (phase) and magnitude of

easonal effects. Previous day precipitation occurrence states and

mounts are the internal variables to account for temporal autocor-

elations. Legendre polynomials of latitude and longitude are used
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Fig. 2. Locations of study catchments (Source of elevation map: EPA). 
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for the site effects. When Legendre polynomials are used, all the

lower order terms must have been included before higher order

terms are included in the precipitation model. For each time step,

the precipitation occurrence probability (p i ) is determined by: 

ln 

(
p i 

1 − p i 

)
= x T i β (1)

where x i 
T is the i th day transposed predictor vector which

consists of spatiotemporal structures and external driving climate
ariables and β is the logistic regression coefficient vector. In the

mounts model, the mean rainfall value of the ith wet day (μi ) are

odelled by the gamma distribution. Using a log link function and

 constant shape factor, the mean rainfall value (μi ) is conditioned

y the ith day environmental conditions ( ξ) and is expressed

s: 

n ( μi ) = ξ T γ (2)
i 
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Fig. 3. Monthly rainfall distribution of 31 catchments for 16 year study period. 
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Table 2 

Possible external climate variables. 

Ten teleconnection indices 

North Atlantic Oscillation (NAO) 

East Atlantic Pattern (EA) 

West Pacific Pattern (WP) 

EastPacific/ North Pacific Pattern (EP/NP) 

Pacific/ North American Pattern (PNA) 

East Atlantic/West Russia Pattern (EA/WR) 

Scandinavia Pattern (SCA) 

Tropical/ Northern Hemisphere Pattern (TNH) 

Polar/ Eurasia Pattern (POL) 

Pacific Transition Pattern (PT) 

Lamb indices for weather types 

Directional 

1 –> N (directional) 

2 –> NE (directional) 

3 –> E (directional) 

4 –> SE (directional) 

5 –> S (directional) 

6 –> SW (directional) 

7 –> W (directional) 

8 –> NW (directional) 

Vortical 

9 –> C (Cyclonic) 

10 –> A (AntyCyclonic) 

11 –> HYC (Hybrid Cyclonic) 

12 –> HYA (Hybrid Anticyclonic) 

13 –> UC (unclassified Cyclonic) 

14 –> UC (unclassified Antyciclonic) 

a  

c  

v  

c  

w

 

b  

O  

c  

w  
here ξi 
T is the i th day transposed predictor vector which consists

f spatiotemporal structures and external driving climate variables

nd γ is the gamma regression coefficient vector. 

Spatial dependence of occurrences is modelled by logistic re-

ressions conditioned by the mean of site probabilities and the

eather states (wet or dry) of other sites. For the amounts model,

 correlation ρ(i,j) function based on distance (d ij ) between i and j

s expressed as: 

(i, j) = α + (1 − α) exp (−φd k i j ) (3)

here α, φ and k are the parameters of a k-powered decay func-

ion. 

Various external climate variables were further added to the

recipitation model after the internal structure was defined. Ten

ong non-blend precipitation time series for longer than 40 years

rom the European Climate Assessment & Dataset ( ECA&D, 2014 )

ere used to test the potential of climate predictors including

en northern hemisphere teleconnection indices ( Barnston and

ivezey, 1987 ) and the derived Lamb Weather Types based on

ones, Harpham ( Jones et al., 2013 ). These data were used instead

f the 15-year study catchment rainfall time series in order to as-

ess the effects of climate cycles for the precipitation model struc-

ure formulation. The indices are listed in Table 2. 

For conditioning precipitation simulation using weather types,

he Lamb indices derived from the National Centers for Environ-

ental Prediction (NCEP) data were used ( Jones et al., 1993 ). These

eather type schemes ( Jones et al., 2013 ) are based on reanaly-

is products and allow future possible extensions using other grid-

ed climate products. Here we aggregate the daily Lamb indices to

onthly occurrences for eight directional and six vortical weather

ypes ( Table 2 ). The 14 monthly weather type time series are

ighly correlated because they are compositional data (i.e. when

ne weather type increases, other types must decrease). Therefore,

efore applying them to the precipitation model, a factor and clus-

er analysis was used to reduce the 14 weather type time series

o a set of representable weather types (see Appendix B ). The di-

ectional and vortical weather types were separated into different

actors. These account for 35 and 65% total variance, respectively.

he chosen four weather types for further precipitation modelling
re the northerly (L_N), westerly (L_W), anticyclone (L_A) and cy-

lone (L_C) weather states. They explained around 60% of total

ariance of all the weather types. Apart from including the anticy-

lone types, the selected weather types are similar to the realistic

eather groups used in Fowler et al. (20 0 0) . 

For selecting external climate variables, each of the possi-

le variables is included in the precipitation model individually.

nly individual variables which proved to be statistically signifi-

ant (p-value < 0.05) were then used as initial models for step-

ise regressions in which the minimum p-value for a variable
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to be added and removed is 0.05. Generally, the possible cli-

mate variables are not strongly correlated because the telecon-

nection indices are the results of Empirical Orthogonal Functions

(EOFs) and the four weather types are selected from the factor

analysis. The final models are not very different from the initial

models although the final identified precipitation model may still

be just a local optimum model having reasonable variables in-

stead of the ‘best’ predictors for interpretation (See Draper and

Smith, (1998) and Chun, (2011) for more discussion). The precip-

itation model structure identified from the long non-blend pre-

cipitation time series was then calibrated using the 31 station

time series for generating catchment precipitation ensembles. Fur-

ther details on the GLM rainfall simulation framework and the

variable selection methods are provided in Appendix A and B ,

respectively. 

2.3. Conceptual rainfall-runoff models 

Conceptual Rainfall-Runoff (CRR) models typically consist of a

set of equations describing a simplified representation of hydrolog-

ical processes at catchment scale. Lumped models treat the catch-

ment as a uniform unit ( Wheater, 2002 ) with all variables treated

as averages over the catchment. Three such models with different

structures are investigated in this study. Each model receives forc-

ings of catchment average rainfall and potential evapotranspiration

values at daily time-steps. The models calculate actual evapotran-

spiration, change in volume of stored water in their various com-

ponents and total runoff, also at daily intervals. Further details on

the model structures, including schematics, and analysis of param-

eter sensitivities can be found in Mockler et al. (2016) . 

2.3.1. NAM model 

The ‘Nedbør-Afstrømnings-Model’ (NAM) ( Nielsen and Hansen,

1973 ) is widely used and has been previously applied in Irish

catchments for investigating the contributions of groundwater and

surface water to streamflow ( RPS, 2008; O’Brien et al., 2013 ). The

NAM structure used in this study has two storage reservoirs for

soil moisture accounting and reservoirs to represent four hydro-

logical pathways. The model parameters include eight parameters

controlling the moisture content in storages representing the sur-

face, soil and groundwater storages, and three parameters relating

to the routing components. 

2.3.2. SMARG model 

The Soil Moisture Accounting and Routing with Groundwater

component (SMARG) model was developed in NUI Galway ( Khan,

1986; Kachroo, 1992; Tan and O’Connor, 1996 ). It has a soil mois-

ture accounting component which represents the catchment as a

vertical stack of individual soil layers, each of which can contain

an amount of water up to a predetermined limit. This component

keeps account of the rainfall, evaporation, runoff, and soil stor-

age processes using six parameters. The routing component uses

three parameters to simulate the attenuation effects of the catch-

ment by separately routing the surface and groundwater gener-

ated by the soil moisture accounting component through linear

reservoirs. 

2.3.3. SMART model 

The SMART model ( Mockler et al., 2016; Mockler et al., 2014 )

was developed as a hydrological model especially for water quality

simulations. The model emphasises the identification of individual

hydrological flow path contributions. The proportions of stream-

flow attributed to surface or sub-surface flow are important when

coupling flow simulations with nutrient attenuation equations, as

the mobilisation and attenuation of nutrients and sediment varies

significantly depending on runoff flow path ( Medici et al., 2012;
utter et al., 2014 ). SMART simulates hydrological flows using con-

eptual soil moisture accounting equations based on a number of

oil moisture layers, following the style of SMARG and its prede-

essors. The depths of these soil moisture layers vary depending

n catchment characteristics, and represent the average conditions

ver each catchment. The numerical processes of the four concep-

ual flow paths use 10 parameters in total, four of which relate to

ow routing. 

.4. Hydrological model evaluation and parameter selection 

For each model, 50,0 0 0 parameter sets were generated from

obol’ sequences of standard ranges of values outlined in Mockler

t al. (2016) that encompass high performing combinations for

rish catchments. Data for each of the 31 catchments were simu-

ated using the same 50,0 0 0 parameter sets for each of the NAM,

MARG and SMART models and evaluated against streamflow us-

ng two criteria. Two groups of 100 behavioural parameter sets for

ach catchment, one for each of the performance criteria, were

hen selected from the original 50,0 0 0 sets, resulting in an en-

emble of catchment outflows for each model and criterion at

 daily time-step for the 15 year study period (with one year

arm-up). Precipitation uncertainty is included in the subsequent

tep of the methodology for variance decomposition, described in

ection 2.5 below, by using simulated rainfall time series from the

LM. Firstly, for each hydrological model evaluation, each simu-

ated output was compared with the corresponding measured out-

ut from the catchment and values for two criteria were calcu-

ated. The Nash Sutcliffe efficiency (NSE) ( Nash and Sutcliffe, 1970 )

s a widely-used goodness of fit measure based on the error vari-

nce, and is defined as: 

SE = 1 −
∑ n 

t=1 ( Q o,t − Q m,t ) 
2 

∑ n 
t=1 ( Q o,t − Q o ) 

2 

here Q o,t is the observed flow for time-step t, Q m,t is the mod-

lled flow at time-step t, Q o is the mean observed flow and n is the

ength of the time series. The second criterion was the Nash Sut-

liffe efficiency with log values (lnNSE) ( Krause et al., 2005 ). The

riginal NSE criterion evaluates the correlation of the time series

ith an emphasis on peak flows, whereas the lnNSE gives more

eight to low flows. 

From the 50,0 0 0 simulations, the 10 0 results with the best val-

es of each performance criterion were selected as representa-

ive high-performing parameter sets for each the three hydrolog-

cal models. These are called the behavioural parameter sets. The

nalysis of variance was repeated for each group of behavioural

arameter sets identified. For each model, these groups provide

anges of parameter values for assessing uncertainty and interac-

ions. This Monte Carlo approach was subjectively chosen over a

raditional optimisation routine as the top 100 parameter sets from

ptimisation, as expected, produced a much tighter clustering of

arameters and simulated outflows, and so resulted in much lower

arameter uncertainty estimates in the variance decomposition re-

ults. 

.5. Variance decomposition 

This study used stochastic rainfall ensembles and multiple hy-

rological models to identify the relative importance of different

ources of uncertainty on streamflow predictions ( Fig. 1 ). For the

nalysis of variance, all possible combinations of each of 100 pre-

ipitation simulation runs (see Section 2.2 for details) and 100 be-

avioural hydrological parameter sets (see Section 2.4 for details)

ere used to generate 10,0 0 0 simulations from which the sensitiv-

ty indices were computed. The analysis of variance was repeated

n behavioural parameter sets for two evaluation criteria. 
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Table 3 

Final precipitation model structure. 

a) Occurrence model 

1 Constant 

2 Teleconnection: East Atlantic Pattern (EA) 

3 Weather type: Cyclone 

4 Weather type: Anticyclone 

5 First order of Legendre polynomial representation for Easting 

6 The first, second and third order of Legendre polynomial 

representation for Northing 

7 Daily seasonal effect, cosine component 

8 Daily seasonal effect, sine component 

9 Previous day precipitation occurrence indicator for daily temporal 

effects (I(Precipitation[ t -1] > 0)) 

10 Precipitation occurrence threshold (0.5 mm) 

11 Parameter in the logistic model based on conditional independence 

given weather state and the mean of the site occurrence probability 

b) Amounts model 

1 Constant 

2 Teleconnection: East Atlantic Pattern (EA) 

3 Teleconnection: Scandinavia Pattern (SCA) 

4 Weather type: Anticyclone 

5 First and second order of Legendre polynomial representation for 

Easting 

6 First, second and third order of Legendre polynomial representation for 

Northing 

7 Daily seasonal effect, cosine component 

8 Daily seasonal effect, sine component 

9 Previous day precipitation accounts with a logarithm transformation 

(Ln(1 + Y[ t -1])) 

10 Dispersion parameter 

11 Three parameters in the correlation function for precipitation amount 

residuals ( Eq. 3 ) 
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Fig. 4. Rainfall model output performance: amount (black dots), and fitted spatial 

correlation model (black line). 
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The variance in the flow simulation ensembles of 10,0 0 0 sim-

lations for each model (100 rainfall forcings and 100 hydrologi-

al model parameter sets) is decomposed into the various uncer-

ainty contributions, i.e. due to U-forcing (precipitation data), U-

arameters and U-interactions. The uncertainty in U-forcing and

-parameters is represented by their ensemble variance. Based on

he law of total variance (e.g. Chun, 2011; Von Storch and Zwiers,

999 ), a sensitivity index (SI) ( Saltelli et al., 2004 ) representing the

mportance of the driving variable i (X i ) to the output (Y) can be

efined by: 

 I i = 

V ar(E(Y | X i )) 

V ar(Y ) 

here Var(.) and E(.) are variance and expectation functions re-

pectively. In the sensitivity literature, Var(E(Y|X i )) is usually re-

erred to as the main effect of X i . Similar approaches or in-

ices have been used to decompose sources of uncertainty in

ther hydrological studies (e.g. Chun et al., 2010; Bosshard et al.,

013 ). Here, the uncertainty in the simulated flow is decomposed

etween U-forcing (SI p ), U- parameters (SI φ) and U-interactions

SI p φ), and they can be expressed as: 

 I p + S I φ + S I pφ = 1 

Theoretically, the hydrological model uncertainty (SI m 

) could

lso be considered in the variance decomposition. However, this

ould only relate to the differences between the three model

tructures presented here, rather than a full assessment of model

ncertainty which would include missing or misrepresented pro-

esses in the model structures. In this study, the effect of model

hoice is limited to a qualitative comparison of the SI results from

he U-forcing, U-parameters and U-interactions for each model. 

. Results and discussion 

.1. Rainfall model performance 

Table 3 summarises the final precipitation model structure. For

he occurrence model, only a first order Legendre polynomial is

eeded to represent spatial variation in the meridional (East_West)

irection. However, a combination of first, second and third orders

egendre polynomials are needed to capture spatial variation in

he zonal (North_South) direction. Hence, the spatial variation of

ccurrence should be higher for the zonal than the meridional di-

ection. For the precipitation amount model, both zonal and merid-

onal site effects can be satisfactorily represented by a combination

f first and second order Legendre polynomials. Fig. 4 shows the

recipitation amount (black dots), and the fitted spatial correlation

odel ( Eq. 1 ) appears to fit the residuals well. 

The East Atlantic (EA) pattern is significant for both precipita-

ion occurrences and amounts, whereas the Scandinavia pattern is

nly significant for the amounts model. The significant teleconnec-

ion identified for catchments representing the entire country is

ifferent from that in Chandler and Wheater (2002) , who iden-

ified the North Atlantic Oscillation (NAO) as the driving climate

ariable for catchments in the West of Ireland, which are strongly

nfluenced by weather from the prevailing South-Westerly direc-

ion. For the 31 modelled catchments, although the NAO is gen-

rally significant for the precipitation series between 53 and 55 °
orth latitude (including Birr and Sligo as investigated in Chandler

nd Wheater (2002) ), the southern precipitation time series are

ot significantly related to the NAO. The East Atlantic (EA) and

candinavia patterns are better related to all 31 modelled precip-

tation series. For the weather types, the cyclone and anticyclone

tates are significant for the precipitation occurrences, and the an-

icyclone state is the only significant weather type for the precipi-

ation amounts. 
The effects of the climate variables on the precipitation ensem-

les are shown in Fig. 5 . The colour bands show the quantiles of

00 precipitation time series and the black lines are the observed

istorical precipitation mean for all 31 catchments. If the simu-

ation ensemble encloses the observed statistics (black lines), the

imulation is considered to be adequate. The precipitation model

s calibrated using the data between 1996 and 2005. The data

etween 1990 and 1995 (the validation period) are not used for

recipitation model parameter estimation. The quality of simula-

ions is evaluated qualitatively by whether 95% of the ensemble



306 E.M. Mockler et al. / Advances in Water Resources 97 (2016) 299–313 

1990 1995 2000 2005

2
3

4
5

a)

a)

Spring (Mar,Apr,May)

Year

Q
ua

nt
ile

s

1990 1995 2000 2005

2
3

4
5

Summer (Jun,Jul,Aug)

Year

Q
ua

nt
ile

s

1990 1995 2000 2005

2
4

6
8

Autumn (Sep,Oct,Nov)

Year

Q
ua

nt
ile

s

1990 1995 2000 2005

2
4

6
8

Winter (Dec,Jan,Feb)

Year
Q

ua
nt

ile
s

1990 1995 2000 2005

2
3

4
5

Spring (Mar,Apr,May)

Year

Q
ua

nt
ile

s

1990 1995 2000 2005

1
2

3
4

5
Summer (Jun,Jul,Aug)

Year

Q
ua

nt
ile

s

1990 1995 2000 2005

2
4

6

Autumn (Sep,Oct,Nov)

Year

Q
ua

nt
ile

s

1990 1995 2000 2005

2
4

6

Winter (Dec,Jan,Feb)

Year

Q
ua

nt
ile

s

Fig. 5. Effects of climate variables on precipitation ensembles without external climate variables (5a) and with external climate variables (5b). Colour bands show quantiles 

of 100 precipitation time series and black lines are the observed historical precipitation mean for all 31 catchments. 
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runs enclose the observed precipitation ( Fig. 5 ). In Fig. 5 a, when

the teleconnection information is not included, the simulations

fail this test for the 1995 summer and the 1991 winter. When the

teleconnection information is included, the observed precipitation

is better captured ( Fig. 5 b). Nevertheless, both Figs. 5 a and 5 b do

enclose the observations fairly well. Generally, the daily mean,

standard deviation, maximum and first, second and third order

of autocorrelations of the simulated daily precipitation ensem-

ble match the observations. Although the simulated November

standard deviation and the May and December autocorrelations

may be slightly low, the overall daily precipitation simulation

are fairly consistent with the observed precipitation statistical

properties. 
p  
For the overall spatial patterns, Fig. 6 provides a comparison be-

ween historical annual sums and the average of simulated annual

ums. Although the Boyne, Clodiagh and Nenagh simulations are

lightly dryer and the Anner is slightly wetter than the observed,

he observed and simulated spatial precipitation patterns are fairly

oherent. 

.2. Hydrological model performance 

In order to ultimately produce streamflow predictions, several

ubjective choices are made by hydrological modellers. A set of

hese choices, two models and two evaluation criteria, are com-

ared in this study. Several other subjective choices, such as the
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Fig. 6. Rainfall model output performance: spatial pattern of historical annual average rainfall and the average of simulated annual average rainfall. 

Fig. 7 . NSE and lnNSE evaluation results from 200 simulations of the NAM (blue), SMARG (yellow) and SMART (red) models using observed rainfall forcings for 31 catch- 

ments. 
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umber of parameter sets, were not included in this comparison

nd therefore the uncertainties due to these are not unexplored in

he results. 

Behavioural (i.e. the top 100 best performing) parameter sets

or each of the three hydrological models were selected by rank-

ng the fit of each of the 50,0 0 0 Monte Carlo simulations to the

bserved flow data, evaluated using (i) NSE and (ii) lnNSE crite-

ia. The NSE and lnNSE results had no significant correlations be-

ween each other, indicating that the criteria evaluate different as-

ects of the hydrograph ( Krause et al., 2005 ). Flow simulations
roduced by each of these best performing 100 parameter sets for

oth criteria were further examined for use in the uncertainty as-

essment. For the NSE set, the median NSE values for the NAM,

MARG and SMART models were 0.82, 0.85 and 0.84 respectively

nd for the lnNSE set, the median lnNSE values were 0.79, 0.83 and

.88 respectively, with results varying between catchments in both

ases. 

The trade-offs between the two objective functions were exam-

ned by comparing criteria results for both behavioural sets, which

howed that each model had some parameter sets that produced
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Fig. 8. Results of 10,0 0 0 ensemble simulations using NSE and lnNSE parameter sets for 3 models for one catchment (Mulkear). Upper Panel of (a-f): Colour bands show 

the 1st, 25th, 50th, 75th and 99th percentiles and observed average monthly streamflow values are in black. Lower Panel of (a-f): Uncertainty decomposition of simulations 

using (i) NSE and (ii) lnNSE parameter sets for the Mulkear catchment showing uncertainty due to U-forcing (grey), U-interactions (purple) and U-parameters (pink). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

s  

t  

i  

c  

i  

w

3

e

 

high values for both NSE and lnNSE ( Fig. 7 ). For these 200 simula-

tions, (100 best for NSE plus 100 best for LnNSE) the SMART model

generally produced the tightest clustering of results for the study

catchments. This was partly because some parameters sets of the

NAM and SMARG models that produced high NSE values also pro-

duced very low lnNSE values (e.g. the SMARG results for Ryewater

catchment, Fig. 7 ). 

The issue of over-parameterisation of conceptual hydrological

models has been widely discussed (e.g. Beven, 2006; Kirchner,

2006 ), and this study includes these uncertainties within a broader

investigation. Limitations in this method of assessing the hydro-

logical models include the omission of uncertainties due to ob-

g  
ervation errors in the precipitation and streamflow, and the es-

imation of the average rainfall for each catchment. In this study,

t is assumed that these sources of uncertainty are relatively small

ompared to the U-forcing, U-parameters and U-interactions exam-

ned here. However, these assumptions could be tested in future

ork. 

.3. Uncertainty decomposition of rainfall and hydrological model 

nsembles 

Simulations were generated for each catchment using two

roups of 100 behavioural parameter sets with 100 simulated
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Fig. 9. Changes in fraction of U-parameter with average discharge for each catch- 

ment, illustrating decreasing U-parameter values for wetter catchments. 
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ainfall time series. Fig. 8 (upper panels) shows an example

f monthly time series produced for each model. The seasonal

atterns of the observations are mostly captured by the 95%

onfidence bounds of the 10,0 0 0 simulated streamflow ensembles.

ll models and parameter groups underestimated some peak

inter flows in the Mulkear catchment, particularly in 1995,

hich may be influenced by errors in measured precipitation or

ows. 

In our specific setup, the decomposition of the time-series of

odelled streamflow shows that the majority of the uncertainty in

ow simulations was attributed to uncertainties due to U-forcing,

ollowed by U-parameters and U-interactions for both NSE and

nNSE. The average U-Forcing sensitivity for NSE was 91% (NAM),

9% (SMARG) and 94% (SMART), and for lnNSE was 88% (NAM),

0% (SMARG) and 92% (SMART) (e.g. Fig. 8 lower panels). This was

o be expected given the dominance of stochastic variance in the

ainfall time series in this region, and the allowed variability in the

imulated rainfall time-series. 

The following sections detail the relative importance of the

ources of uncertainty and how these (i) differ between catch-

ents, (ii) between models and (iii) over time by assessing

onthly changes. 

.3.1. Changes in uncertainty decomposition across a hydroclimatic 

radient 

Similar to other studies (e.g. Mendoza et al., 2015 ), these re-

ults show that uncertainty decomposition is basin dependant. For

hese 31 study catchments, the uncertainties due to U-forcing in-

rease for all models as catchment annual average rainfall (AAR)

ncreases (R 

2 = 0.62 for NSE and 0.73 for lnNSE). The sensitiv-

ty to U-parameters and U-interactions have the inverse relation-

hip. Fig. 9 shows a similar relationship with U-Parameters sensi-

ivity decreasing with increasing river discharge per unit area for

ach catchment. This is likely due to the greater contribution from

he more linear quick-flow components of the hydrological mod-

ls in these wetter catchments. Evapotranspiration is considered

he most difficult aspect of the water balance to measure spatially,

ue to the complex interactions between climate, vegetation and

oil conditions ( Mills, 20 0 0 ), and hence the inclusion of the evap-

transpiration forcing data in the decomposition is recommended

or future studies. 

.3.2. Comparison of uncertainty due to parameters for 3 models 

In contrast to Mendoza et al. (2015) who showed that U-

arameters can contribute a similar or larger proportion of uncer-

ainties compared to choice of conceptual model, results from this

tudy show that there is a greater variation in U-Parameters caused

y the model selection than by the choice of criteria for comparing

ith measured discharges. Model performance was not a strong

redictor of the degree of U-parameter. For example, results for

he Mulkear Catchment show NSE values are higher for the SMARG

odel than NAM ( Fig. 7 ), but SMARG also has higher U-parameters

 Fig. 8 ). This is a warning against depending only on good values

f fitting criterion for confidence in models. The number of hydro-

ogical model parameters of the NAM (11), SMARG (9) and SMART

10) models did not indicate relative U-parameters. Although no

ingle model was superior for all catchments, the SMART model

erformed best on average with lower U-parameter uncertainties,

hich is attributed to the tailored equations used to simulate the

ominant processes in Irish catchments. 

.3.3. Monthly changes in uncertainty decomposition 

To investigate the seasonality of parameter uncertainty, median

onthly values were calculated from the best NSE and lnNSE pa-

ameter sets selected for each model ( Fig. 10 ). When the NSE crite-

ia is used to identify the behavioural parameter sets, simulations
how a stronger seasonality compared to when the lnNSE is used,

articularly with the SMARG and SMART models. This seasonal

ariation is seen in many catchment and models, where stream-

ow uncertainty from U-parameters and U-interactions increases

uring drier periods in the summer months from June to August

e.g. Fig. 8 lower panels). Uncertainty is reduced during higher

ainfall in winter months as the conceptual moisture stores are

aturated and the linear quick flow components dominate runoff

eneration. 

A study by Bastola et al. (2011) , which included the NAM model,

oncluded that hydrological model structures and parameterisation

ontribute significantly to the overall uncertainty envelope of cli-

ate change impact scenarios. This, and many other streamflow

ssessment studies, used hydrological models that were originally

eveloped for high and flood flow regimes (e.g. NAM and SMARG),

nd used the NSE for evaluation. When predictions of low flows

re of interest, the NSE performance criterion is shown to increase

he uncertainties due to hydrological parameters ( Fig. 10 ). Effects

f this were reported in Steele-Dunne et al. (2008) , where NSE was

sed to select 100 behavioural parameter to assess climate change

mpacts on hydrology in Irish catchments using the HBV-Light hy-

rological model. Validation and forecasting ensembles produced

uch greater parameter uncertainty for drier months compared to

he wetter winter period, with authors reporting that the “impact
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Fig. 10. Comparison of median uncertainties due to parameters for 3 models and 2 criteria for the 31 catchments. 
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of parameter uncertainty was very different in winter and sum-

mer”. 

Previous predictions from climate change impact studies for Ire-

land show a decrease in streamflow during the summer months,

particularly in the east and south east (e.g. Bastola et al., 2011;

Steele-Dunne et al., 2008; Charlton et al., 2006 ). Results presented

here suggest that the performance criteria for parameter identifica-

tion can be selected to reduce uncertainties in the flow regime of

interest, relating to the focus of a particular study. Although results

obtained from the NSE may be relatively certain for high flows,

for studies that aim to inform water resources management with

a focus on summer flows, such results should be checked using

an alternative model fitting criterion to using only NSE. This could

include multi-objective optimisation to identify pareto-optimal so-

lutions. 

4. Conclusions 

The sources of uncertainty for streamflow simulations vary

depending on the flow regime, catchment conditions, choice of

model and data employed, along with specific implementation de-

cisions. In this study, rainfall ensembles were input into hydro-

logical model ensembles in order to identify dominant sources of
ncertainty in streamflow simulations. Development of the GLM

ramework showed that the precipitation model is mainly driven

y weather types. Teleconnection and weather type indices were

hown as important for the inter-annual variability. 

We assessed the importance of uncertainty sources between

ifferent models and performance assessment criteria in order

o characterise and compare the impacts of alternative subjective

hoices of these quantities. The actual amounts of uncertainty are

ase specific as they depend on these subjective methodological

hoices. Uncertainties in streamflow simulations due to rainfall

orcings are dominant across all models and catchments in this

tudy, and this is attributed to objective choices in this method-

logy which resulted in a greater constraint on the identification

f parameters, relative to the forcings. 

The relative importance of sources of uncertainty depended

n the choice of model and the objective function used to se-

ect the behavioural parameter sets, with greater proportions of

-parameters in simulations optimised with the NSE criterion.

herefore, uncertainties due to model structure and identifica-

ion of parameters can be reduced for the season or flow regime

f interest through the selection of hydrological model and per-

ormance criteria. For all three models in this study, the use of

nNSE resulted in lower and more evenly distributed parameter
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ncertainties compared to NSE. We recommend that NSE is not

sed for climate change studies where intra-annual, low or mid-

ow predictions are being investigated. 

This analysis framework can be further extended to other un-

ertainty sources including uncertainty from evapotranspiration,

nd additional selection criteria (e.g. PBIAS, RMSE), and can be

sed for climate change assessment and regional water quality

odelling. 
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ppendix A. Short introduction to the Generalised Linear 

odel (GLM) rainfall simulation framework 

The spatial Generalised Linear Model (GLM) method was orig-

nally developed in Ireland for generating rainfall sequences con-

itioned by climate scenarios, based on a flexible but formal sta-

istical framework Chandler and Wheater ( Chandler and Wheater,

002 ). Developed from Coe and Stern ( Coe and Stern, 1982 ), the

ethod is a two-stage rainfall sequence generator composed of an

ccurrences model and a gamma distributed amounts model. For

he first stage, the occurrences model generates zero/non-zero se-

ies based on the wet day probability (p i ) which is conditioned by

 logistic regression. For each time step, the precipitation occur-

ence probability (p i ) is determined by: 

n 

(
p i 

1 − p i 

)
= x T i β

here x i 
T is the i th day transposed predictor vector which con-

ists of spatiotemporal structures and external driving climate vari-

bles ( Table 3 ) and β is the logistic regression coefficient vector.

he variables of x for the Occurrence model are variable 1 to 9

n Table 3 a. Variable 10 is a fix parameter to decide rainfall day.

or the spatial occurrence model, the 11th variable is used to con-

ition inter-site occurrence probability. Detail of the methods and

lgorithm can be found in Chandler (2015) . Overall, the binary de-

endence structures here are in terms of latent Gaussian variables:

pecifically, a standard normal random variable Z si is related with

ite s on day i, and Y si is set to 1 if Z si > −�−1 (p si ) where �( •) is

he standard normal distribution function and p si = P(Y si =Occur-

ence). 

In the amounts model, the mean rainfall value of the ith wet

ay (μi ) are modelled by the gamma distribution. Using a log link

unction and a constant shape factor, the mean rainfall value (μi )

s conditioned by the ith day environmental conditions ( ξ) and is

xpressed as: 

n ( μi ) = ξ T 
i γ

here ξi 
T is the i th day transposed predictor vector which con-

ists of spatiotemporal structures and external driving climate vari-

bles ( Table 3 ) and γ is the gamma regression coefficient vector.

he variables of ξ for the amounts model are variable 1 to 9 in

able 3 b. Variable 10 is a fixed parameter for the dispersion of the

amma distribution. For the spatial amounts model, the 11th vari-

ble is used to condition inter-site precipitation amounts. As with
he Occurrence model, detail of the methods and algorithm can be

ound in Chandler (2015) . Overall, inter-site dependence is spec-

fied via correlations between Anscombe residuals which are ap-

roximately normally disturbed (see Yang et al., 2005 ). By doing

his, the multivariate normal distribution can be used to be the

nly correlation-based dependence structure here. 

Generally, the GLM internal structures for the precipitation time

eries are related to temporal or spatial autocorrelation functions

hich can be represented by orthogonal bases such as Legendre

olynomials (e.g. Yang et al., 2005 ). For external variables, weather

tates and teleconnection indices are used to be driving informa-

ion which cannot be derived from the precipitation time series

hemselves. Using the Newton-Raphson method, the coefficient

ectors ( β and γ) are estimated by a maximum likelihood frame-

ork, and the predictor significances can be determined by formal

tatistic tests based on likelihood ratios and deviance ( Chandler,

015 ). Similar to many spatial analysis techniques such as krig-

ng ( Cressie, 2015 ), the residuals from the GLMs are used for spa-

ial modelling. By using the GLM residuals, autocorrelation effects

nd nonstationary external driving variables of precipitation are

djusted before the spatial relationships are modelled. As an alter-

ative to the common variogram technique (Cressie, 2015), a cor-

elation ρ(i,j) function is used to model the spatial relationships

mong the GLM residuals from 31 catchments and it is expressed

s: 

(i, j) = α + (1 − α) exp (−φd k i j ) 

here α, φ and k are the k-powered decay function parameters,

nd d ij is the distances between catchments. In general, Chandler

nd Wheater (2002) considered that the GLM method is a gener-

lised Markov Chain rainfall model. More detail discussion of al-

orithm can be found in Chun (2011) . For formulating GLMs us-

ng the above discussed approach, a multisite weather generators

hich can be executed in R is available from http://www.ucl.ac.

k/ ∼ucakarc/work/glimclim.html . This study result in this paper

an be reproduced readily using this R package ( Chandler, 2015 ). 

When using the GLM approach, we needed to decide a model

tructure. In the R package, the rainfall model structures are spec-

fied by model definitions ( Wheater and Gober, 2013 ). Similar to

ang et al. (2005) , we have identified our rainfall model structure

sing 7 long precipitation records in Ireland. The reason for using

ong records to identify our model structure is because we wanted

o develop a model which can include more robust climate pre-

ictors that can be used in climate change studies in the future. In

ther words, the GLM structure selection is similar to deciding the

umber of reservoirs for a hydrological conceptual model. After

he model structure was decided, we identified the GLM model pa-

ameters for 31 stations between 1996 and 2005. Then, we validate

ur calibrated model using data from 1990 to 1995. One of main

imitations of the two parameter estimation method used in this

tudy is that the occurrence rate and rain amounts are assumed

o be independent from each other. However, occurrence rate can

e correlated rain amounts. Therefore, this is noted as a limitation

f this study and it further investigations using this uncertainty

ecomposition framework should implement other joint estima-

ion rainfall model schemes for testing different rainfall simulation

pproaches. 

ppendix B. Variable selections 

Regarding our variable selection, we admit that it can be

ubjective for our final selected weather types. We first use cluster

nalysis to be our exploratory tool to see the relationship between

eather types. Like any clustering analysis methods, we need

o subjectively pick our threshold (the red line in the figure) or

http://www.ucl.ac.uk/~ucakarc/work/glimclim.html
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number of clusters. Based on the below cluster analysis results,

we decided that we will pick three to five clusters. 
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Then, for our variables selection, we use factor analysis to have

our dimension reduction to three, four and five factors. We use the

highest loading weather types to be the represented variables for

the identified three to five factors. First, we tried five represented

variables (L_N, L_W, L_A, L_C and L_E) for the five factors in our

GLMs. However, our fifth weather type (L_E) become insignificant

variable in our GLM model. The insignificant results for easterly

(L_E) may be its high collinearity to westerly (L_W). Therefore, we

use four represented variables of five factors. For three variables,

we can still get all significant results in our GLM models. However,

using three variables instead of four variables, we will have more

information loss. Therefore, we use four representative variables.

Since four represented weather types (L_N, L_W, L_A and L_C) only

have between 0.54 and 0.87 loadings for each factors, our final ex-

plained variance by the four representative weather types is only

around 60%. In any case, the used variable selection is subjective.

Some other variable selection approach should be developed by

further considering how to minimise the loss of information in the

predictors. 
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