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This recent paper [1] claims to study the “thermofluidic transport of non-Newtonian 

Casson fluid from a wavy surface”.  In fact, the model studied is neither due to Casson 
[2,3] nor is it non-Newtonian: it is simply a Newtonian fluid with a rescaled viscosity.     

 

The Casson model [2] is a simple model for a yield stress fluid and is classically 

defined (see e.g the standard “DPL” textbook (p243) of Bird et al [3]) in a shear flow 

as:  

 √𝜏𝑥𝑦 = √𝜏0 + √𝜇0√𝑑𝑢 𝑑𝑦⁄      for    𝜏𝑥𝑦 >  𝜏0  
 𝑑𝑢 𝑑𝑦⁄ = 0     for    𝜏𝑥𝑦 <  𝜏0 

 

(1) 

where 𝜏𝑥𝑦 is the shear stress, 𝜏0 is the yield stress, 𝜇0 is a viscosity and 𝑑𝑢 𝑑𝑦⁄ ≥ 0, is 

the shear rate.  The model states that above the yield stress there is deformation and 

below it there is no deformation (and the stress is indeterminate).  The similarity with 

the very familiar Bingham model for viscoplastic (yield stress) fluids is clear. 

 

In marked contrast, Kumar and Mondal [1] define their “Casson” fluid (their Eqn 2) as: 

 𝜏𝑖𝑗 = 2(𝜇𝐵 + 𝜏𝑦 √2𝜋⁄  )𝑑𝑖𝑗 ,   for    𝛿 >  𝛿𝐶 , 𝜏𝑖𝑗 = 2(𝜇𝐵 + 𝜏𝑦 √2𝜋𝑐⁄ )𝑑𝑖𝑗 ,   for    𝛿 <  𝛿𝐶 

 

(2) 

where 𝑑𝑖𝑗   and 𝜏𝑖𝑗 signify the “component of the rate of deformation tensor” and the 
“shear stress tensor”, respectively, 𝜏𝑦 is the yield “strength”, 𝛿 = 𝑑𝑖𝑗𝑑𝑖𝑗 represents the 

“component of deformation product”, 𝛿𝐶  “symbolizes a critical value of this material”  and 𝜇𝐵 is the plastic viscosity.  The symbols 𝜋 and 𝜋𝑐 are nowhere defined in the 

manuscript (neither is the rate of deformation tensor but at least this is a well known 

quantity). From the references in [1], where the same model is also used we may 

deduce that 𝜋 = 𝑑𝑖𝑗𝑑𝑖𝑗, with 𝜋𝑐 the critical value of 𝜋 that is needed to make Eqn 2 

continuous, i.e.  𝛿 = 𝜋. 
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The above model is evidently a bi-viscous Bingham fluid. This is one of many forms of 

regularization which are routinely applied to the standard Bingham fluid model; see 

[4]. The Bingham fluid is recovered by taking 𝛿𝐶 → 0. Eqn 2 is not a Casson fluid. 

 

A far bigger concern than the name of this model is that when this “Casson fluid” finds 
its way into the governing equations, namely Eqns 4 & 5 from Kumar and Mondal [1], 

the stress associated with this fluid is treated as if the fluid simply has a constant 

viscosity, e.g. we have: 

 … . =  − 𝜕𝑝𝜕𝑥 − 𝜇 [1 + 1𝛾] ∇2𝑢 …. 
 

(3) 

in the 𝑥-momentum equation, where 𝛾 = 𝜇𝐵√2𝛿𝐶/𝜏𝑦 . The second term on the right 

hand side of Eqn 3 represents the divergence of the stress  (viz 𝛁. 𝝉) which only 

simplifies to the above expression for the case of a fluid of constant viscosity, i.e. you 

cannot take the viscosity outside of the divergence operator. In other words the above 

expression is only valid for the low shear range 𝛿 <  𝛿𝐶. We conclude that the 

Equations presented in Kumar and Mondal [1] simply represent a Newtonian fluid with 

a rescaled viscosity. The results represent neither a true Casson fluid nor any real 

non-Newtonian effects.  

 

Our concern is not only with this paper [1]. Approximately 100 others in various 

scientific journals also mistakenly use the same “Casson fluid” model, citing each other 
in a spiralling frenzy (this is the only example in Physics of Fluids of which we are 

aware). In our view there are three issues here. First, misnaming detracts from the 

many papers that study the Casson fluid model, which is a legitimate constitutive 

model of wide application. Second, we learn the product rule of differentiation in our 

first calculus classes. The above mathematical error is obvious and should not have 

been repeated unquestioned in this and other similar papers. Thirdly, the assertion 

that the model is non-Newtonian suggests a departure from linearity; a degree of 

novelty and difficulty in dealing with the constitutive law and any subsequent analysis. 

This novelty is simply not present in these “rogue Casson” papers, which mostly repeat 
analysis that has been already performed for Newtonian fluids.  

 

We have chosen not to cite the other similarly erroneous rogue Casson papers, as to 

do so would perpetuate the above issues. The origin of the above mistakes appears 

to be [5], or similar papers from these same authors in the same time period. They 

erroneously cite [6] as reference for the Casson model. However, in [6] Eqn (2) is 

properly and clearly identified as a bi-viscous (Bingham) model and is only compared 

with results from a Casson fluid. Also in [5] we find the above-mentioned missuse of 

the product rule where only the low shear branch of Eqn (2) is used, i.e. the shear 

stresses are treated as in Eqn (3) leading to a Newtonian fluid. Slightly worrying is that 

the subject of [5] is boundary layer flow, where usually the high shear regions are 

found near the wall and low shear away from the wall. Thus, the low shear branch of 

Eqn (2) is physically incorrect to use at all in this context.  
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Lastly, moving away from the rogue Casson papers, let us comment that a number of 

authors have correctly used and analysed the bi-viscous Bingham. The first use for 

unsteady shear flows that we know of was [7], as a numerical simplification for 1D 

flows. The model is still used as a simple regularization in many CFD codes. In [8] the 

authors use the model analytically to solve different Stokes problems.  The same 

approach has also been frequently used to approximate thin-film and lubrication flows 

with Bingham fluids. In analytical studies the bi-viscous Bingham model is typically 

used to derive an analytical solution, from which the Bingham limit of the solution is 

resolved. This is however a singular perturbation method that does not always work. 

In fact the bi-viscous approach is rarely necessary: boundary layer flows [9], Stokes-

type problems [10] and start-up/stopping flows [11] can all be dealt with using the exact 

Bingham model, as can many others. In the same vein, many of these problems could 

be dealt with using the true Casson fluid model. 
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