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Abstract
We design and analyze deterministic and randomized clock auctions for single-parameter domains with
downward-closed feasibility constraints, aiming to maximize the social welfare. Clock auctions have
been shown to satisfy a list of compelling incentive properties making them a very practical solution
for real-world applications, partly because they require very little reasoning from the participating
bidders. However, the first results regarding the worst-case performance of deterministic clock
auctions from a welfare maximization perspective indicated that they face obstacles even for a
seemingly very simple family of instances, leading to a logarithmic inapproximability result; this
inapproximability result is information-theoretic and holds even if the auction has unbounded
computational power. In this paper we propose a deterministic clock auction that achieves a
logarithmic approximation for any downward-closed set system, using black box access to a solver
for the underlying optimization problem. This proves that our clock auction is optimal and that
the aforementioned family of instances exactly captures the information limitations of deterministic
clock auctions. We then move beyond deterministic auctions and design randomized clock auctions
that achieve improved approximation guarantees for a generalization of this family of instances,
suggesting that the earlier indications regarding the performance of clock auctions may have been
overly pessimistic.
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1 Introduction

In this paper, we revisit the well-studied family of single-parameter mechanism design
problems where a service provider needs to decide which subset of n customers to serve.
Each customer i has a value vi for receiving the service but, due to scarcity, it is infeasible
to serve all the customers. Depending on the type of service, these limitations are captured
by a set F which contains all the subsets of customers that can be simultaneously served.
For example, if the service provider is an airline company and the customers wish to board
one of its flights, the scarcity is due to the limited number of seats in the plane, and F
contains any subset of customers that can fit in the plane. Another well-studied example
arises in combinatorial auctions with single-minded bidders, where there is a set M of m

heterogeneous and indivisible items and each customer i needs a specific bundle Bi ⊆M of
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these items. In this case, two customers i and j can be served simultaneously only if the
bundles of items that they each need are disjoint, i.e., Bi ∩Bj = ∅.

Our goal throughout the paper is to identify and serve a feasible subset A ∈ F of
customers, aiming to maximize the social welfare, i.e., the total value of the served customers,∑

i∈A vi. Depending on the structure of the feasibility constraint F , this setting captures
many classic optimization problems, like the knapsack problem or the maximum weight
independent set problem. However, in addition to the computational obstacles that arise in
solving these classic problems, the service provider is also facing an information limitation:
the value vi of each customer i is private and unknown to the provider. The standard solution
to this problem is to design an auction aiming to elicit the values of the customers and
identify a subset with high social welfare.

Most of the proposed auctions for solving instances of these single-parameter mechanism
design problems take the form of sealed-bid auctions: each bidder is asked to truthfully report
their private value to the auctioneer, who then uses this information to determine the set of
winners, who are served, along with the price that each of them should pay for the service.
These auctions need to carefully determine the outcome so that they not only optimize the
social welfare, but also incentivize true reports from the bidders. However, the classic VCG
sealed-bid auction [47, 20, 34] cannot be used when the underlying problem is computationally
intractable, and sealed-bid auctions, in general, can often be rather impractical. For example,
they require that the bidders reveal all their private information, suffering a privacy cost,
while there is very limited transparency or oversight regarding how the auctioneer actually
uses this information to derive the final outcome. Also, even if, in theory, the bidders cannot
benefit by misreporting their values, in practice bidders have been observed to misreport
anyway, possibly because they cannot easily verify these incentive guarantees [38].

To address these shortcomings, Milgrom and Segal [43, 44] recently proposed the class of
(deferred-acceptance) clock auctions as a very practical alternative to sealed-bid auctions.
Rather than asking the bidders to trust the auctioneer with all their private information,
clock auctions run over a sequence of rounds and offer a (personalized) price to each bidder
that weakly increases over time. In each round, the bidder can either accept the latest price
offered to her and remain in the auction, or reject it and permanently drop out of the auction.
The bidders that remain active when the auction terminates are served, at the cost of the
most recent price that they accepted. Every clock auction is guaranteed to satisfy a unique
combination of very appealing properties, like obvious strategyproofness, unconditional winner
privacy, and credibility. We defer a detailed discussion regarding the important benefits of
clock auctions to Section 1.3.

The multiple benefits of clock auctions over sealed-bid ones provided renewed motivation
for computer scientists to revisit classic single-parameter mechanism design problems and
evaluate the performance of clock auctions from a worst-case approximation standpoint. Note
that these benefits come at the cost of additional information limitations: unlike sealed-bid
auctions, clock auctions can learn about the values of the bidders only by offering them
a carefully chosen sequence of prices, and each time a price is increased there is a risk
that the corresponding bidder will drop out. In fact, initial results on the performance of
clock auctions by Dütting et al. [24] showed that no deterministic clock auction, even with
unbounded computational power, can achieve a O(log1−ϵ n) approximation for any constant
ϵ > 0 for a seemingly very simple family of instances where F contains only two disjoint
maximal sets. This suggested that things could be even worse for more complicated feasibility
constraints, like combinatorial auctions with single-minded bidders, for which no known
deterministic clock auction came close to this logarithmic approximation guarantee.
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1.1 Our Results
Our main result in this paper is a deterministic clock auction that guarantees an approximation
of 4 log n not only for combinatorial auctions with single-minded bidders but for the much
wider family of instances induced by downward-closed feasibility constraints (that is, if F ∈ F
then any subset of F is also in F). This shows that the lower bound construction of Dütting
et al. [24] exactly captures the information limitations of deterministic clock auctions, and it
paints a much more optimistic picture regarding the performance of clock auctions. Motivated
by this positive result, we then move on to also consider the performance of randomized clock
auctions and prove that combining our deterministic auction with one based on randomized
sampling achieves better than logarithmic approximation for an interesting family of instances
that generalizes the ones used by Dütting et al. [24] to prove the logarithmic lower bound.

Our deterministic water filling clock auction (WFCA) uses black-box access to an al-
gorithm that returns a feasible subset of active bidders (approximately) maximizing the
revenue, given their current clock prices. In each round, the WFCA uses this black box to
decide which subset of the active bidders’ prices it should raise, until the remaining active
bidders are all feasible. This auction is inspired by the combinatorial auctions proposed in
the elegant work of Babaioff et al. [10], which were shown to achieve a O(log v) approxima-
tion for single-minded bidders and O(log2 v) for single-value multi-minded bidders1, where
v = maxi,j{vi/vj} is the ratio between the highest and the lowest bidder value. On the
negative, they also provide a construction (see Proposition C.1) showing that even for the case
of single-minded bidders, the approximation factor of their auction is Ω(n) and Ω(m), where
m is the number of items. The WFCA outperforms these results by simultaneously achieving
an approximation of O(log n) and O(log v) for any downward-closed feasibility constraint
(Theorem 3 and Theorem 7, respectively), as well as O(log m) for all combinatorial auctions
with m items and single-value multi-minded bidders (Corollary 4). Since no deterministic
clock auction can achieve a bound of O(log1−ϵ n), O(log1−ϵ v), or O(log1−ϵ m) for a constant
ϵ > 0 [24], our auction is essentially optimal with respect to all of these parameters.

In light of this positive result, which resolves the information limitations of deterministic
clock auctions from a welfare maximization standpoint, a fundamental open question is
whether better approximation guarantees can be achieved using randomization. Note that,
unlike the case for deterministic clock auctions, the best known inapproximability results for
randomized clock auctions are small constants (e.g., see Section 4.3). In this paper, we make a
first step in that direction with a positive result that combines the deterministic WFCA with
a clock auction based on randomized sampling to achieve a O(

√
log n) approximation for a

family of instances that contains the ones used for the logarithmic lower bound construction
in [24]. Specifically, the approximation guarantee holds for any set system whose maximal
feasible sets are disjoint, while the worst-case instances for deterministic clock auctions
comprise just two disjoint feasible sets, one of which is a singleton. In fact, this class of
instances is also known to pose important obstacles in both prophet inequality and secretary
problems [45]. Thus, our positive result provides an important separation between randomized
and deterministic clock auctions, along with a natural approach for leveraging randomness
in clock auctions. We conclude by generalizing this result to show that our randomized
auction achieves a O(min{log n,

√
log k}) approximation for any downward-closed feasibility

constraint F , where k is the number of maximal feasible sets in F .

1 In a combinatorial auction with single-value multi-minded bidders, each bidder i is interested in multiple
different bundles of items, rather than just one, and she has the same value vi for receiving any one of
them.
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1.2 Related Work

After Milgrom and Segal [44] introduced the class of (deferred-acceptance) clock auctions and
noted their many desirable practical properties, subsequent work studied their performance
in a variety of settings. Most relevant to our paper is the work of Dütting et al. [24] who
initiated the analysis of clock auctions using worst-case analysis and aiming to approximate
the optimal social welfare. In that work, the authors provided a computationally efficient
clock auction achieving a O(log m)-approximation for a knapsack auction setting (where m

is the number of items) as well as a O(
√

m log m)-approximate auction for a combinatorial
auction setting with single-minded bidders.

Clock auctions are contained in the more general class of obviously strategyproof (OSP)
mechanisms proposed by Li [41] (discussed in greater detail in Section 1.3). This more general
class of mechanisms has also been studied in the context of combinatorial auctions with
single-minded bidders. Even for this more general class of auctions the family of instances
with feasibility constraints consisting of disjoint maximal sets proves a challenging obstacle.
Ferraioli et al. [30] demonstrated that no deterministic OSP mechanism can achieve a
O(log0.5−ϵ n)-approximation for constant ϵ > 0 in such an instance. Moreover, De Keijzer et
al. [21] demonstrate that no OSP mechanism can obtain better than a 2-approximation to
the welfare in such an instance even when bidders can have only two possible values.

While we focus on “forward auctions” where the auctioneer is selling a service to a set of
bidders with independent values, deferred acceptance clock auctions have recently also been
studied in other auction contexts. For example, their performance has been examined in
procurement auction settings [27, 39, 37, 15, 13], double auction settings [25, 42], multilateral
settings [16], as well as single-item auction settings where bidders have interdependent values
[32]. Clock auctions have also been generalized to apply beyond single-parameter binary
allocation problems to accommodate multiple levels of service while retaining the same
desirable properties [31].

In this work we also study randomized clock auctions and examine how randomization can
be used to overcome the challenging logarithmic lower bound. De Keijzer et al. [21] considered
the design of universally OSP randomized mechanisms in the context of combinatorial auctions
with single-minded bidders and describe a mechanism which achieves a min

{
|D|, V|D|

V1
+ 1
}

-
approximation where D is the known domain of possible values of all bidders and V|D| and V1
are the largest and smallest values in this domain, respectively. The way in which we utilize
randomization differs from [21] and instead takes a “random sampling” approach which
has seen application in many problems in mechanism design, such as revenue maximization
(see, e.g., [33, 2, 29, 12]), combinatorial auction settings (see, e.g., [23, 22, 6, 5, 26]), and
budget-feasible mechanisms (see, e.g., [3, 4, 40, 11, 14]).

As discussed above, the feasibility constraint of disjoint maximal sets poses a major
obstacle in obtaining good deterministic guarantees for both clock auctions [24] and OSP
mechanisms more broadly [30]. Notably, this class of instances also proves quite challenging
in online mechanism design settings involving secretary problems and prophet inequalities
where an auction designer faces a sequence of bidders arriving one at a time and must make
an irrevocable decision in each round to either serve or permanently reject the current bidder.
An instance with disjoint maximal sets is used to provide a Ω(log n/ log log n) lower bound
for these settings and this lower bound persists even when the bidders have values drawn
from known i.i.d. distributions over the set {0, 1} and the mechanism designer can choose
the order in which to approach the bidders [8, 18, 45].
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1.3 Clock Auction Properties

In this section, we provide a more detailed discussion regarding the multiple benefits of
clock auctions over sealed-bid ones. In a sealed-bid auction, the bidders are asked to report
their values directly to the auctioneer in the form of bids. These bids are then used by the
auctioneer to select the subset of bidders receiving the service and to determine the prices
charged to the bidders. There are many strategyproof sealed-bid mechanisms proposed in the
literature for a variety of single-parameter settings. For example, the well-known second-price
auction for allocating a single good is known to be optimal and strategyproof. On the other
hand, it has been well-established empirically (see, e.g., [38]) that, although the second-price
auction is strategyproof, bidders are far less likely to accurately report their values to the
auction than they are to follow the dominant strategy implied by this value in the equivalent
ascending clock (Japanese) auction.

The notion of obvious strategyproofness was proposed by Li [41] in an attempt to provide
theoretical reasoning for this empirical reality. Obvious strategyproofness (OSP) is a strict
strengthening of strategyproofness and whether or not a mechanism is OSP is dependent
on its implementation. For example, while the allocation and payments of the second-price
auction and Japanese auctions are identical, the Japanese auction is OSP and the second-price
auction is not. An auction M is OSP if every bidder has an obviously dominant strategy.
Such a strategy exists if in the extensive-form game tree of M whenever a bidder is asked
to take an action the best-case utility from deviating from her obviously dominant strategy
over all possible beliefs about the other bidders is weakly less than her worst-case utility
from following the strategy over all possible beliefs about the other bidders. Li [41] provides
theoretical and empirical justification demonstrating that bidders can identify their obviously
dominant strategy in OSP mechanisms. Further, he demonstrates that clock auctions admit
an obviously dominant strategy for all bidders where they remain in the auction while the
clock price is less than or equal to their value and exit when the clock price first exceeds their
value. Notably, Li shows that the family of OSP mechanisms in single-parameter auction
settings are essentially equivalent to the family of clock auctions where each agent faces
either an ascending or descending price. As OSP is such a strong incentive property, it also
guarantees weak group-strategyproofness, i.e., no coalition of bidders can simultaneously
deviate from their dominant truthful strategy and all benefit. This strong guarantee is not
satisfied by many standard sealed-bid auctions.

Clock auctions also offer an appealing level of transparency to the bidders. In a sealed-bid
auction, the bidders implicitly trust that the auctioneer is following the stated rules of the
auction. The bidders must then believe that the auctioneer will not charge them more
than they should be charged despite the fact that they have reported their true values to
the auctioneer. As this trust is, in practice, unlikely, some real-world applications have
begun using the first-price sealed-bid auction (where bidders can easily verify they are being
charged the correct amount) rather than the second-price sealed bid auction (where a bidder
cannot verify that she has not been overcharged). Aiming to address the potential strategic
considerations of the revenue maximizing auctioneer, Akbarpour and Li [1] defined the notion
of a credible auction, wherein it is optimal for the auctioneer to follow the prescribed auction
protocol, and demonstrated that in the case of selling a single item that the ascending
price clock auction (i.e., the Japanese auction) is the unique auction form that guarantees
strategyproofness and credibility. In more complicated settings, the truthfulness of, e.g.,
the VCG auction requires that the auctioneer does not make any computational errors, so
even if a bidder trusts that the auctioneer is not strategic they still need to believe that the
auctioneer will accurately compute the winning set and prices. This makes clock auctions

ITCS 2022
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even more appealing for such settings since the computation of the clock prices does not
affect the obvious strategyproofness of clock auctions in any way.

Since clock auctions terminate when the remaining active bidders form a feasible set and
clocks stop increasing, any winning bidder never reveals their true value for the service to
the auctioneer (or any other participants). This is in contrast to sealed-bid auctions where
all bidders report their value to the auctioneer. This unconditional winner privacy (UWP)
[44] (based on the notion of unconditional privacy in computer science defined by Brandt
and Sandholm [17]) states that an auction should require the winning bidders to reveal the
minimum amount of information about their value possible to prove that they should be
winning. Milgrom and Segal [44] demonstrate that clock auctions are the unique family of
auctions which guarantee UWP which makes clock auctions appealing in high-stakes settings
where winning bidders could be concerned about revealing their true values to the auctioneer.

Finally, in many practical applications it is unappealing or infeasible to use highly
complicated mechanisms since, for example, the participants may not fully understand the
functionality of the mechanism or the optimal mechanism may not be readily implementable.
To this end, there is a growing line of recent work in algorithmic mechanism design regarding
the study of “simple” mechanisms (see, e.g., [35, 9, 46]). In this work, the algorithmic
underpinnings of the mechanisms are generally made quite straightforward to allow bidders
to understand their functionality. In contrast, clock auctions offer similarly simple interactions
to the bidders, the ascending clock prices, while maintaining deep algorithmic richness, the
computation of the price trajectories. As clock auctions retain obvious strategyproofness
regardless of how the prices are computed “behind the scenes”, bidders face a simple interface
even if the auctioneer uses complex techniques to calculate the prices.

We note that randomized clock auctions are merely distributions over deterministic clock
auctions which all have each of the aforementioned properties ex-post. Thus, randomized
clock auctions are universally OSP, so the bidders do not have to reason about the possible
randomization within the auction as they would have to do if the guarantee was only in
expectation.

2 Preliminaries

We consider a single-parameter setting where an auctioneer faces a set N of n bidders each
competing to receive some service. Each bidder i ∈ N has a private value vi which indicates
her willingness to pay for being served. The service is limited and there is a publicly known
feasibility constraint F ⊆ 2N which comprises the subsets of bidders which can be feasibly
served simultaneously. We assume that F is downward-closed, i.e., if F ∈ F then all subsets
of F are in F . The auctioneer aims to serve a subset of bidders F ∈ F of high social welfare
v(F ) =

∑
i∈F vi. Although F is public, the values of the bidders are private so the auctioneer

must elicit these values from the bidders. The bidders, however, are self-interested and may
seek to misrepresent their value in order to reach a more preferable outcome for themselves
(e.g., being served). To prevent such manipulations the auctioneer may charge payments to
the bidders.

We aim to design clock auctions for this problem. A deterministic clock auction is a
multi-round auction in which each bidder faces a personal “clock” corresponding to the price
that she would be required to pay if the auction terminated. At the beginning of the auction,
the clocks are initialized at some arbitrarily small price, and each of these prices then weakly
increases over time, giving rise to an ascending auction. At the outset of the auction the
set of active bidders A contains all the bidders, i.e., A = N , and the clock price pi,0 of each
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bidder i is set to 0. In each round t, the clock auction broadcasts a price pi,t ≥ pi,t−1 to
each bidder i ∈ A at which point every bidder chooses to remain in the auction at her new
price or permanently exit the auction and pay 0 (in which case i is removed from A). The
auction can terminate when it is feasible to serve the remaining active bidders, i.e., A ∈ F ,
at which point these bidders are served and charged their most recent clock price. The clock
price trajectory for each bidder is computed using only public information, i.e., the feasibility
constraint, the history of prices, and the points at which bidders exited the auction.

Any clock auction is guaranteed to satisfy numerous desirable properties that make
them a particularly appealing practical solution (see Section 1.3 for more details). We also
study randomized clock auctions which are probability distributions over deterministic clock
auctions. Notably, this means that randomized clock auctions satisfy these properties ex-post
(rather than in expectation).

We measure the performance of a randomized clock auctionM as the worst-case ratio of its
expected social welfare over the social welfare of the optimal set OPT = argmaxF ∈F

∑
i∈F vi.

For some instance I and realization of the random decisions within an auction M, let M(I)
denote the set of bidders served by M on I and OPT(I) denote the optimal set of bidders
in I. We say that M obtains an α-approximation for a class of instances I if

α ≥ supI∈I
v(OPT(I))
E [v(M(I))] ,

where the expectation is taken over the randomization of the auction, if it uses any.
The revenue achieved by an auction is equal to

∑
i∈N pi. Let P = {p = x · ϵ : x ∈ N}

denote the set of possible prices that the auction will consider. Central to our analysis is the
quantity r∗ = maxp∈P,F ∈F {p · |i ∈ F : vi ≥ p|}, the maximum possible revenue an auction
could obtain by offering one of the prices in P to all bidders. The uniform price p∗ yielding
revenue r∗ is an important threshold for the clock prices of the bidders in our auctions.

3 The Deterministic Water-Filling Clock Auction

Our deterministic water-filling clock auction (WFCA) proceeds as follows: all bidders are
initialized to a price of 0. At each round of the auction we find the feasible subset of active
bidders with the highest revenue (i.e., the highest total sum of clock prices) and let the
bidders in that set be “conditional winners” in the round. Among the bidders which are not
conditional winners (the “conditional losers”), we select the bidder(s) with the lowest price
and increase the corresponding price(s) by some small constant ϵ. We continue this process
until the set of bidders that remain active is feasible.

Mechanism 1 The deterministic water-filling clock auction (WFCA)

1 let t← 0, A← N , and pi ← 0 for all i ∈ N

2 while A /∈ F do
3 t← t + 1
4 let W ← arg maxS∈F :S⊆A

{∑
i∈S pi

}
be the latest set of conditional winners

5 let ℓ← mini∈A\W {pi} be the lowest price among conditional losers
6 foreach bidder i with pi = ℓ do
7 update pi ← pi + ϵ

8 if i rejects updated price then
9 let A← A \ {i}

10 return A

ITCS 2022
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3.1 Welfare Approximation for General Downward-Closed Constraints
We now proceed to analyze the performance of the WFCA and prove its optimality with
respect to social welfare approximation among deterministic clock auctions. To clearly refer
to the values of different variables in this auction depending on the round t, we use pi,t to
denote the value of the price offered to agent i at the beginning of round t, i.e., before the
update, and ℓt to denote the minimum such price among the conditional losers of this round.
We use At to denote the active bidders and Wt to denote the conditional winners of round t.

Recall that r∗ = maxp∈P,S∈F {p · |i ∈ S : vi ≥ p|} is the maximum revenue achievable
by offering a uniform price to all bidders and we let p∗ denote the price which yields
r∗. Let N∗ = {i ∈ N |vi ≥ p∗} denote the set of bidders with value above p∗ and S∗ =
argmaxS∈F ;S⊆N∗{|S|} denote the largest feasible subset of bidders with value above p∗. Our
main result for this section shows that the welfare obtained by the WFCA is always at least
half of r∗ = p∗ · |S∗|.

Note that, if we were given the welfare maximizing feasible set, it is rather well-known that
there exists a fixed price such that, if this price is offered to everyone in this set, the resulting
revenue will be a logarithmic approximation of the total welfare of that set. However, in our
setting we do not know which set is the optimal one, and there could be multiple feasible
sets that overlap in highly non-trivial ways. The main result of this paper shows that the
WFCA nevertheless always extracts at least half of the optimal uniform-price revenue, which
then implies a logarithmic approximation of the optimal social welfare.

▶ Theorem 1. The WFCA obtains welfare at least r∗/2 in any downward-closed set system.

Proof. This theorem is clearly satisfied if S∗ is the final winning set of the WFCA, since
v(S∗) ≥ r∗, so we henceforth assume that S∗ is not the winning set and let t̃ be the first
round at which some subset of the bidders in S∗ rejects the prices offered to them. Since
vi ≥ p∗ for all i ∈ S∗, it must be that the lowest price among conditional losers in this
round is ℓt̃ ≥ p∗ and only bidders i ∈Wt̃ could still be facing prices less than p∗. To prove
Theorem 1, we consider two possible cases, depending on the size of the overlap between Wt̃

and S∗.

Case 1. |Wt̃ ∩ S∗| ≤ |S∗|/2:
This case is the easier one of the two. Note that, by definition of t̃, at the beginning of round
t̃ all the bids in S∗ are still active and every bid in S∗ \Wt̃ has accepted a price of at least
p∗; the latter is true because at the beginning of round t̃ all bidders in this set are among
the conditional losers, and the minimum price among them is at least p∗. From this we can
deduce that

∑
i∈Wt̃

pi,t̃, i.e., the revenue of the set Wt̃ at the beginning of round t̃ is at least
p∗ · |S∗ \Wt̃|, otherwise the set S∗ \Wt̃ would provide higher revenue and Wt̃ would not be
the conditional winner; a contradiction.

We therefore know that the revenue of Wt̃ at the beginning of round t̃ is at least
p∗ · |S∗ \Wt̃| and we also know that |Wt̃ ∩ S∗| ≤ |S∗|/2 (since we are considering Case
1), i.e., |S∗ \Wt̃| ≥ |S∗|/2. This implies that the revenue at the beginning of t̃ is at least
p∗ · |S∗|/2 = r∗/2. To conclude the proof for this case, we observe that the set of conditional
winners of the WFCA satisfy revenue monotonicity over t, i.e., the revenue of Wt at the
beginning of round t is at least as high as the revenue of Wt−1 at the beginning of round
t − 1. This is true because the prices of the bidders in Wt−1 are the same in t − 1 and t

(because Wt−1 were the winners in round t− 1 and their prices were not updated) and Wt

were the conditional winners in t so their revenue in t is at least as high as that of Wt−1.
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Therefore, the revenue at the end of the auction, extracted from the eventual winners is at
least r∗/2 and the social welfare obtained by the mechanism in Case 1 is at least that much
as well (since each agent’s value is at least as high as the price they accepted).

Case 2. |Wt̃ ∩ S∗| > |S∗|/2:
For this case, we show that for every t ≥ t̃ there exists a feasible set that satisfies a carefully
chosen invariant. For each round t of the auction, let Lt = {i ∈ S∗ : pi,t < p∗} be the subset
of S∗ whose prices all remain less than p∗, and given some set of active bidders F ⊆ At let
Rev(F, t) =

∑
i∈F : pi,t≥p∗ pi,t denote the sum of the clock prices over the bidders in F whose

price is at least p∗ at round t. Our invariant shows that as long as we are in Case 2, i.e.,
|Wt̃ ∩S∗| > |S∗|/2, for every round t ≥ t̃ there exists some feasible subset F of active bidders
such that the sum of p∗ · |F ∩ Lt| (which is a lower bound for the total value among the
bidders in F ∩ Lt) and Rev(F, t) (which is a lower bound for the total value of the bidders
in F that have price at least p∗) is at least r∗/2. Note that this invariant intentionally
disregards the potential contributions from any bidders in F \ Lt whose price remains less
than p∗, which significantly simplifies the proof below.

▶ Lemma 2. If |Wt̃∩S∗| > |S∗|/2, then in every round t ≥ t̃ of the WFCA there is a feasible
set of active bidders F ⊆ At such that

p∗ · |F ∩ Lt|+ Rev(F, t) ≥ r∗/2. (1)

Proof. Our proof for this lemma is constructive: for each round t we define a feasible set
Ft ⊆ At and prove it satisfies Inequality (1). Specifically, for any round t where the lowest
price among the conditional losers is ℓt ≥ p∗, we let Ft be the set of conditional winners
of that round, i.e., Ft = Wt. On the other hand, for any round t where ℓt < p∗, we show
that the same set that satisfied the inequality in round t− 1 also satisfies it in round t, i.e.,
Ft = Ft−1. A crucial implication of the way we choose these sets is that, as we show later
on, every active bidder i with pi,t < p∗ must belong to Ft−1 ∩ Ft (see property (3)), which
allows our inductive argument to go through.

Formally, let T ∗ = {t ≥ t̃ : ℓt ≥ p∗} be the subset of rounds t ≥ t̃ where ℓt ≥ p∗. Also,
for each t ≥ t̃ let f(t) = max{t′ ≤ t : t′ ∈ T ∗} be the most recent round that was in T ∗

(so f(t) = t for t ∈ T ∗) and let Ft = Wf(t) be the winning set in round f(t). To prove this
lemma, we show that in each round t ≥ t̃, the set Ft satisfies Inequality (1). This means
that during rounds when t /∈ T ∗, the same set Ft−1 that satisfied the invariant in t− 1 still
satisfies the invariant in t, even if it is not the set of conditional winners in t. However, when
t ∈ T ∗, it could be that the price update at the end of round t− 1 raised some prices to p∗

or above, potentially affecting the left hand side of (1) for set Ft−1. In this case we prove
that choosing Ft to be equal to the set of conditional winners, Wt, ensures that the invariant
remains true even if some of the price updates at the end of round t− 1 reached or exceeded
p∗.

First, for the round t = t̃, we have f(t̃) = t̃, since t̃ ∈ T ∗, and thus Ft̃ = Wt̃. To verify
that Inequality (1) is satisfied by the set Wt̃ note that, by definition of t̃, all the bidders in
Wt̃ ∩ S∗ remain active up to this round, and there are at least |S∗|/2 of them. Let q1 be
the number of these bidders that still have a price less than p∗ at round t̃ and q2 be the
number of remaining bidders who have price at least p∗, so that q1 + q2 ≥ |S∗|/2. Each of
the q1 bidders belongs to the set Wt̃ ∩Lt̃ so p∗ · |Wt̃ ∩Lt̃| = q1p∗. Also, each of the remaining
q2 bidders contributes at least p∗ to the revenue Rev(Wt̃, t̃), so the left hand side of the
inequality is at least (q1 + q2)p∗ ≥ p∗ · |S∗|/2 = r∗/2.
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For the inductive step, we now show that for every round t > t̃, if Inequality (1) holds for
set Ft−1 at round t − 1 then it also holds for set Ft at round t. Specifically, it suffices to
show that for any round t > t̃ we have

p∗ · |Ft ∩ Lt|+ Rev(Ft, t) ≥ p∗ · |Ft−1 ∩ Lt−1|+ Rev(Ft−1, t− 1). (2)

If Inequality (1) holds for Ft−1 at round t− 1, then the right hand side of Inequality (2) is
at least r∗/2 and this inequality would imply that the left hand side is at least r∗/2 as well.
As a result Ft would satisfy the invariant in round t, which would conclude the proof of the
lemma.
⋄ We first prove that Inequality (2) holds for all t > t̃ such that t /∈ T ∗. Note that for all

t /∈ T ∗ we have f(t) = f(t− 1), i.e., the most recent round in T ∗ for t and t− 1 is the same.
Therefore Ft = Ft−1 and Inequality (2) reduces to

p∗ · |Ft ∩ Lt|+ Rev(Ft, t) ≥ p∗ · |Ft ∩ Lt−1|+ Rev(Ft, t− 1).

It is not too hard to see that this actually holds with equality, since neither of the summands
on the right hand side were affected by the price updates that took place in round t− 1. If
t− 1 ∈ T ∗, then Ft = Wt−1 and no prices within Ft were updated and neither were Lt−1 or
Rev(Ft, t− 1). On the other hand, if t− 1 /∈ T ∗, then ℓt−1 < p∗, so no price was raised to p∗

during round t− 1, implying, once again, that neither Lt−1 nor Rev(Ft, t− 1) were affected
by these price updates.
⋄ We now prove that Inequality (2) also holds for all t ∈ T ∗. In order to do so we first

make the crucial observation that for any bidder i with price pi,t < p∗ at round t > t̃ it must
be that i ∈ Ft−1 ∩ Ft. To verify this, note that if i /∈ Ft, i.e., i /∈ Wf(t), then pi,f(t) ≥ p∗

because f(t) ∈ T ∗ and the lowest price among the losers in round f(t) is ℓf(t) ≥ p∗. But,
since bidder i’s price weakly increases over time, this would imply that pi,t ≥ p∗, leading to
a contradiction. The same argument also shows that i ∈ Ft−1, which implies the following
important property of the WFCA.

Any bidder i with pi,t < p∗ at some round t > t̃ satisfies i ∈ Ft−1 ∩ Ft. (3)

Now, the fact that Ft = Wt was the set of conditional winners for round t means that
the sum of its bidders’ prices at that round was at least as high as that of any other feasible
subset of active bidders. Specifically, this means that

∑
i∈Ft

pi,t ≥
∑

i∈Ft−1
pi,t. As we

showed above in (3), for every bidder i with pi,t < p∗ we know that i ∈ Ft−1 ∩ Ft so the
prices of these bidders contribute to the revenue of both Ft−1 and Ft equally in round t. We
can therefore deduce that the revenue of Ft at round t is at least as high as that of Ft−1 at
round t, even if we restrict our attention to bids with price at least p∗. Thus, we have shown
that Rev(Ft, t) ≥ Rev(Ft−1, t).

If round t − 1 was also in T ∗, this would essentially conclude the proof, because Ft−1
would be Wt−1, the set of conditional winners in t−1, implying that its bidders’ prices did not
change from t−1 to t. As a result, we would get Rev(Ft−1, t−1) = Rev(Ft−1, t) ≤ Rev(Ft, t).
Also, we would get Ft−1 ∩Lt−1 = Ft−1 ∩Lt and this would also be equal to Ft ∩Lt, because
Lt ⊆ Ft from (3). These observations directly imply that Inequality (2) would be satisfied.

If, on the other hand, round t− 1 was not in T ∗, the prices in Ft−1 could differ between
t− 1 and t. However, since t− 1 /∈ T ∗, we know that ℓt−1 < p∗, so no price above p∗ would
be affected. What could affect the argument above is that the price of some bidders in Lt−1
could be updated from p∗ − ϵ to p∗, so they would not be in Lt. The argument still goes
through, however, because all these bidders would accept the updated prices (because we
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know that every bidder i ∈ Lt−1 has value vi ≥ p∗) and they would each contribute a price of
p∗ toward Rev(Ft−1, t), while they were not contributing anything toward Rev(Ft−1, t− 1)
(since their price was below p∗). As a result, using the facts that Lt ⊆ Ft, from (3), and the
fact that Rev(Ft, t) ≥ Rev(Ft−1, t), we get

Rev(Ft−1, t)− Rev(Ft−1, t− 1) ≥ p∗ · (|Ft−1 ∩ Lt−1| − |Ft−1 ∩ Lt|)⇒
Rev(Ft, t)− Rev(Ft−1, t− 1) ≥ p∗ · (|Ft−1 ∩ Lt−1| − |Ft ∩ Lt|)⇒

p∗ · |Ft ∩ Lt|+ Rev(Ft, t) ≥ p∗ · |Ft−1 ∩ Lt−1|+ Rev(Ft−1, t− 1). ◀

Using Lemma 2 we can now also conclude the proof of Theorem 1 for Case 2, by observing
that the set Aτ of bidders accepted when the auction terminates, at some round τ ≥ t̃, will
also satisfy Inequality (1), implying that p∗ · |Aτ ∩ Lτ |+ Rev(Aτ , τ) ≥ r∗/2. This, however,
directly implies that the social welfare of the WFCA in this case would be at least as high as
the left hand side since each bidder in Aτ ∩Lτ has value at least p∗, by definition of Lτ , and
the social welfare of the remaining bidders (even if we restrict our attention to the ones that
have price at least p∗) is at least Rev(Aτ , τ) since their total value is at least as high as the
sum of the prices that they have accepted. We therefore conclude that the social welfare is
at least r∗/2 in this case as well. ◀

Leveraging the result of Theorem 1 we can now use standard techniques to demonstrate
that the WFCA obtains asymptotically optimal bounds with respect to several parameters
of interest. We first consider the parameter n, i.e., the number of bidders, and argue that r∗

is a O(log n) approximation of the welfare in OPT. We note that, as we have discretized
the set of prices P that the WFCA considers, that p∗ is a multiple of ϵ and we may lose an
additive nϵ against the optimal revenue. However, as ϵ goes to zero, the following theorems
and corollaries can disregard this loss. For example, if we let ϵ = 1/n2 we ensure that the
revenue lost by choosing p∗ to be a multiple of ϵ is no more than 1/n.

▶ Theorem 3. The WFCA obtains a 4 log n-approximation to the optimal social welfare in
any downward-closed set system.

Proof. Fix a feasible set S of bidders and index them in non-increasing order of their value
using indices from 1 to |S|. Then, there exists an index i ∈ {1, . . . , |S|} for which we have
i · vi ≥ v(S)/(2 log |S|). To verify this fact, assume that for all indices i we have vi <

v(S)/(2i log |S|). Summing over all i we then obtain that v(S) < v(S) ·
∑|S|

i=1
1
i /(2 log |S|) ≤

v(S), a contradiction. As a result, if we were to offer a uniform price of p = vi to all bidders in
S, then i of them would accept this price, leading to a revenue of i ·p = i ·vi ≥ v(S)/(2 log |S|).

Since |OPT| ≤ n, we therefore conclude that there exists a uniform price p, which
when offered to all bidders in OPT would yield revenue which is a 2 log n-approximation to
the welfare in OPT. By Theorem 1 we know that the WFCA obtains welfare which is a
2-approximation to r∗ which is the best possible revenue attainable by offering a uniform
price to all bidders. But then, the WFCA must obtain welfare which is a 2-approximation
to the revenue obtained from bidders in OPT when offering them price p, so the welfare
obtained by the WFCA is a 4 log n-approximation to the optimal welfare. ◀

In fact, the proof of Theorem 3 actually shows that we obtain a 4 log o-approximation where
o = |OPT| is the size of the optimal set. We may then also obtain another approximation
guarantee for the special class of downward-closed feasibility constraints corresponding to
combinatorial auctions with single-minded or multi-minded bidders, which have received
a lot of attention in the past. In these auctions, each bidder is served by receiving some
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(non-empty) subset of a set M of items and the feasibility constraints are implied by the
fact that each item can be allocated to at most one bidder. Therefore, the number of items
m = |M | is an upper bound to the size of the optimal set as well (since every bidder needs
to obtain at least one item to receive positive value), i.e., o ≤ m. We then directly obtain
the following logarithmic approximation with respect to m as a corollary of the proof of
Theorem 3, matching the known lower bound from [24] for deterministic clock auctions.

▶ Corollary 4. The WFCA obtains a O(log m)-approximation to the optimal social welfare
in any combinatorial auction setting with single-value multi-minded bidders where m is the
number of items.

Using Black-Box Access to Approximation Algorithms
In order to focus on the information limitations of clock auctions, we have so far assumed
that the auction is equipped with a black box that can identify the revenue maximizing
feasible set in every round. However, computing this set can be computationally intractable
in some cases, depending on the feasibility constraint F , so it is important to note that the
WFCA can be adjusted to also work with black-box access to approximation algorithms. In
each round t, when the WFCA needs to determine the set of conditional winners Wt given
the latest prices, it could invoke that black box. Then, the only required adjustment would
be to ensure revenue monotonicity over t: the auction would just need to check that the
revenue of the returned set Wt is at least as high as that of Wt−1 and, if not, set Wt ←Wt−1
instead. In doing so the proof of Theorem 1 can be easily adapted to show that the WFCA
obtains welfare at least r∗/(2α) where α > 1 is the approximation factor of the algorithm
used as a black box. We can then conclude the following theorem.

▶ Theorem 5. The WFCA obtains welfare at least r∗/(2α) in any downward-closed set
system where α > 1 is the approximation ratio of the black box algorithm used in each round
to select the set with the highest sum of clock prices.

As a consequence of Theorem 5, and using the same argument as above, we conclude that
the WFCA achieves a O(α log o)-approximation to the social welfare in any downward-closed
setting.

▶ Corollary 6. The WFCA obtains a 4α log o-approximation to the optimal social welfare for
any downward-closed feasibility constraint F where α > 1 is the approximation ratio of the
black box algorithm used in each round to select the set with the highest sum of clock prices.

3.2 Comparison to Ascending Wrapper Auction of Babaioff et al. [10]
The WFCA is inspired by the iterative ascending wrapper auction proposed by Babaioff et
al. [10]. They prove that their auction achieves a 2 log v + 1 approximation of the optimal
social welfare for the special case of combinatorial auctions with single-minded bidders, where
v = maxi vi is the highest value among all bidders when the smallest value is normalized to
1 (or, equivalently, v is the ratio between the largest and smallest bidder value).

Both the WFCA auction and the “wrapper” auction use black-box access to an algorithm
to determine the set of conditional winners and then raise the prices of (some) conditional
losers. The main difference between the two is that the wrapper auction raises the prices of
all the conditional losers, whereas the WFCA only raises the prices of the conditional losers
with the lowest price. Another difference is that the wrapper auction doubles the prices of
the losers, whereas the WFCA raises them by a fixed constant, but this is not an important
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difference (in fact, our bounds would be affected by no more than a factor 2 if we were to
apply this change to the WFCA as well).

The biggest difference between the two auctions comes in the analysis. The analysis of
the wrapper auction heavily depends on the fact that this auction completes within at most
2 log v+1 rounds. However, this fact holds only if every loser’s price is increased and it applies
only to the special case of feasibility constraints induced by combinatorial auctions with
single-minded bidders (where the constraints are “pairwise”: two bidders are either always
compatible with each other or always incompatible, depending on whether their bundles
overlap). Therefore, this analysis cannot be extended to general downward-closed feasibility
constraints. For example, even for the case of single-parameter combinatorial auctions with
double-minded bidders, which is also considered in their paper, the analysis does not follow
(see Proposition 3.5 in [10]). More importantly, even for the case of combinatorial auctions
with single-minded bidders the approximation factor of the wrapper auction with respect to
parameters n and m is Ω(n) and Ω(m) (see Proposition C.1 in [10]). For a more complete
comparison of the performance of the WFCA and the wrapper auction, our next result
shows that, even if we parameterize our bounds with respect to v, the WFCA matches the
asymptotic approximation guarantee of the wrapper auction. We defer the proof of this
theorem to Appendix A.

▶ Theorem 7. The WFCA obtains a 4(log v + 1)-approximation to the optimal social welfare
in any downward-closed set system.

Finally, note that Babaioff et al. [10] also provide an auction that achieves a O(log2 v)
approximation for the case of single-value multi-minded bidders. Since this class of instances
is downward-closed, all our positive results apply to it as well, so the WFCA guarantees a
O(log n), O(log v), and O(log m) approximation for the single-value multi-minded case.

4 Randomized Clock Auction for Disjoint Maximal Sets

The logarithmic lower bound for deterministic clock auctions is shown using a simple class
of instances involving just two disjoint maximal feasible sets. It is easy to observe that the
use of randomization can readily overcome the logarithmic barrier for this class of instances:
we could just choose one of the two maximal feasible sets uniformly at random and let its
bidders be the winners, which would yield a 2-approximation because the set of winners is
optimal with probability at least 1/2. Choosing a maximal feasible set uniformly at random,
however, would not yield a good approximation when the number of these sets is large.

Another natural way to use randomization in clock auctions would be to partition the
bidders into two groups uniformly at random and then “sample” the values from one group
by raising the clocks of its bidders until every one of them drops out. This way, we observe
the values of the bidders in the “sample group” and we can use them as a guide in order
to estimate the value of each feasible set. This approach of using some random subset of
the bidders to gather information about the instance and then use this information on the
non-sampled bidders has been used widely in mechanism design (see, e.g., [23, 14]) and is
the main idea behind the Sampling Auction, presented below as Mechanism 2.

The Sampling Auction is a randomized clock auction that uses the sampled bidder values
to compute a threshold q̂ and then chooses a maximal feasible set of bidders R uniformly at
random among the ones whose sampled value is at least q̂. The winners of this auction are
the non-sampled bidders of R, who are all served for a price of zero.

ITCS 2022



109:14 Optimal Deterministic Clock Auctions and Beyond

Mechanism 2 The Sampling Auction: A randomized clock auction

Input : The set S of all maximal sets in F
1 let T ← ∅
2 for each bidder i ∈ N do
3 with probability 1/2 increase the clock of i until she rejects and let T ← T ∪ {i}
4 let Ssample ← S ∩ T for all S ∈ S
5 let q̂ ← maxS∈S {v(Ssample)}

4
6 let R be the collection of all sets S ∈ S with v(Ssample) ≥ q̂

7 let R be a set chosen uniformly at random from R
8 return R \ T

Unfortunately, it is not too hard to see that the Sampling Auction can perform very
poorly even in simple instances. Take, for example, an instance where all bidders except one
have a small value (e.g., 1) and the remaining bidder has a very high value (e.g., n3). If the
high value bidder is in the sample, this means that she already dropped out and we lost
her value. If, on the other hand, she is not in the sample, then the sampled values do not
provide any useful guidance toward choosing the optimal feasible set, which would need to
include the high-value bidder.

4.1 The Hedging Auction
In this section we present the Hedging Auction, a randomized clock auction which “hedges”
between the WFCA and the Sampling Auction by flipping a fair coin to decide which one
of these two clock auctions to run. We later show that this auction achieves a O(

√
log n)

approximation guarantee for the class of instances with disjoint maximal feasible sets and
thus overcomes the logarithmic barrier for a class of instances that generalizes the lower
bound construction2. Beyond this class of instances, we show that this auction achieves a
O(min{log n,

√
log k}) approximation guarantee for any downward-closed feasibility constraint

F , where k is the number of maximal feasible sets in F (note that for disjoint maximal
feasible sets we have k ≤ n).

The success of the Hedging Auction is due to the “complemenarity” of the WFCA and
the Sampling Auction. As we already showed in the previous section, the social welfare
guaranteed by the WFCA is at least half of the optimal uniform-price revenue. Therefore,
the auction performs well whenever this revenue is a good approximation of the optimal
social welfare. Our analysis shows that whenever this is not the case, i.e., when there is no
uniform price whose revenue is a good approximation of the optimal social welfare, then the
Random Sampling auction performs better. Roughly speaking, if the optimal uniform-price
revenue is a bad approximation of the optimal social welfare, this means that the welfare is
not concentrated within a small number of bidders. But, if most of the welfare is distributed
among multiple bidders, then the sampling phase of the Sampling Auction is very likely to
provide useful guidance, leading to a set of winners with high welfare.

Mechanism 3 The Hedging Auction

Input : The feasibility constraint F , and set S of all maximal sets in F
1 With probability 1/2: Run the WFCA (Mechanism 1) on F
2 With the remaining 1/2 probability: Run the Sampling Auction (Mechanism 2) on F

2 Also, note that this improved bound matches the Ω(
√

log n) lower bound recently shown by Ferraioli et
al. [30] for arbitrary deterministic OSP mechanisms (even beyond clock auctions) in this setting.
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4.2 Analysis of the Hedging Auction
In order to analyze the performance of the Hedging Auction, we begin by stating a useful
lemma regarding the sum of the values of bidders in the two disjoint subsets created by
partitioning a set uniformly at random when we have upper bounds on the values of the
bidders. Similar arguments regarding the concentration of the values of two subsets created
by a random partition have been used in the context of general combinatorial auctions, see,
e.g., [23], and budget-feasible procurement auctions, see, e.g., [14], but these results required
weaker concentration guarantees and, thus, could use weaker bounds on the values of the
bidders. We defer the proof of this lemma to Appendix A.

▶ Lemma 8. Consider a set S indexed in non-increasing order by bidder value with vi ≤ αv(S)
i

for some 0 < α < 1. When bidders are partitioned into two sets S1 and S2 uniformly at
random we have that

∑
i∈S1

vi ≥ v(S)
4 and

∑
i∈S2

vi ≥ v(S)
4 with probability at least 1−2·e

−1
14α2 .

From the proof of Lemma 8 we also obtain the following corollary.

▶ Corollary 9. Consider a set S indexed in non-increasing order by bidder value with
vi ≤ αv(S)

i . If we remove each bidder from the set independently with probability 1/2 then
the remaining value in the set will be less than v(S)

4 with probability at most e
−1

14α2 .

With these in hand, we are ready to show that the Hedging Auction achieves an O(
√

log n)-
approximation to the social welfare for any disjoint maximal feasible sets.

▶ Theorem 10. The Hedging Auction obtains a O(
√

log n)-approximation to the optimal
social welfare in any instance where the feasibility constraint comprises disjoint maximal sets.

Proof. If the optimal revenue obtainable in hindsight from a set is a 64
√

log n-approximation
to the social welfare, then because the water-filling auction obtains a 2-approximation to the
optimal revenue, we obtain the desired bound. So suppose not. This enforces constraints on
the values of bidders in any set S with v(S) ≥ v(OPT)/16. More precisely, if we index the
bidders in S in non-increasing order of value, then it must be that vi ≤ 1

64
√

log n
· v(OPT)

i ≤
1

4
√

log n
· v(S)

i . Consider that these constraints on bidder values must, in particular, apply to

the optimal set. Then by Lemma 8 we have that with probability at least 1−2 ·elog n = 1− 2
n

the optimal set must have sample value at least v(OPT)
4 and unsampled value at least v(OPT)

4 .
Assume that this event happens. Since, by definition, no set can have sample value more
than v(OPT), if we set the threshold q̂ at 1/4 times the largest sample welfare, then the
optimal set will pass the first phase of the sampling auction and retain a constant fraction of
its welfare. Moreover, we know that q̂ ≥ v(OPT)

16 . Therefore any set S′ which could possibly
exceed q̂ must have total welfare at least v(OPT)

16 . But then by Corollary 9, when we sample
each bidder in S′ independently with probability 1/2, the remaining unsampled value in S′

will be less than v(S′)/4 with probability at most e
−16 log n

14 ≤ 1
2n .

Since there are at most n maximal sets in our set system and since we have that any
set capable of passing the threshold phase with threshold q̂ retains less than a quarter of
its welfare with probability no more than 1/(2n), by a union bound, we know that with
probability at least 1/2, all sets capable of passing the threshold retain at least 1/4 of their
welfare. Thus, with probability at least 1/2, when the optimal revenue in hindsight is not
a 64
√

log n-approximation (and therefore the water-filling auction possibly fails to give a
O(
√

log n)-approximation), selecting a set uniformly at random from among those with
sample welfare above q̂ yields a constant approximation. Finally, we may conclude that the
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Hedging Auction which runs either the water-filling auction or the sampling auction each
with probability 1/2 must yield a O(

√
log n)-approximation as desired. ◀

In fact, using the same approach we can prove the following theorem which generalizes
the bound of Theorem 10 to general downward-closed feasibility constraints, parameterized
by the number of (not necessarily disjoint) maximal feasible sets, k. This, for example, shows
that the Hedging Auction achieves an approximation factor better than O(log n) for any
feasibility constraint for which k = no(log n) (rather than just k ≤ n, as in the case of disjoint
maximal sets). Moreover, when k = poly(n) the auction runs in polynomial time since we
may directly compute the revenue of each maximal feasible set in the WFCA and the sample
welfare of each maximal feasible set in the Sampling Auction.

▶ Theorem 11. The Hedging Auction obtains a O(min{log n,
√

log k})-approximation to the
optimal social welfare for any downward-closed feasibility constraint F , where k is the number
of maximal feasible sets in F .

Proof. First observe that the Hedging Auction runs the WFCA with probability 1/2 and,
thus, always obtains no worse than a O(log n) approximation. The remainder of the proof
follows essentially the exact same structure as the proof of Theorem 10. If the optimal
revenue in hindsight from any set is a 64

√
log k-approximation to the social welfare, then

because the water-filling auction obtains a 2-approximation to this revenue, we obtain the
desired bound. If not, then, as above, we obtain bounds in terms of k on the values of the
bidders in any set S with v(S) ≥ v(OPT)/16. Following the same logic as above, we have
that when bidders in S are indexed in non-increasing order of value, then vi ≤ 1

4
√

log k
· v(S)

i .

We then similarly have that the optimal set must have sample value v(OPT)
4 and unsampled

value at least v(OPT)
4 with probability at least 1− 2

k by Lemma 8. If this event happens then
since no set can have sample value more than v(OPT), we know OPT will pass the sampling
threshold q̂ and that q̂ ≥ v(OPT)

16 . Moreover, any set S′ which could possibly have sample
value above q̂ must have welfare at least v(OPT)

16 which means that S′ will have remaining
unsampled value less than v(S′)/4 with probability at most 1

2k by Corollary 9. Finally, since
there are only k maximal sets in our set system, by a union bound, we know that with
probability at least 1/2 all sets capable of passing the threshold retains at least 1/4 of their
welfare. Thus, with probability at least 1/2, when the optimal revenue in hindsight is not
a 64
√

log k-approximation (and therefore the water-filling auction possibly fails to give a
O(
√

log k)-approximation), selecting a maximal set uniformly at random from among those
with sample welfare above q̂ yields a constant approximation. Finally, we may conclude that
the Hedging Auction which runs either the water-filling auction or the sampling auction each
with probability 1/2 must yield a O(

√
log k)-approximation as desired. ◀

4.3 Approximation Lower Bounds for Randomized Clock Auctions
In this section, we present information theoretic lower bounds on the performance of any
randomized clock auction for two instances where the feasibility constraint corresponds to
disjoint maximal sets. Given that the existing lower bounds for deterministic clock auctions
which consists of two disjoint maximal sets can easily be overcome by randomly selecting one
of the two maximal sets (thereby obtaining a 2-approximation without any need to increase
clock prices of the bidders), one may hope that a randomized clock auction may be able to
obtain, e.g., a 1 + o(1)-approximation on such instances. Our first lower bound demonstrates
that this is not the case and that no randomized clock auction can achieve better than a
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11/10-approximation to the social welfare even when the set system comprises only two
maximal sets, one with a single bidder and the other with two bidders. As a consequence,
this lower bound demonstrates that a randomized clock auction cannot achieve arbitrarily
good approximation guarantees even when the feasibility constraint can be represented
by matchings in a bipartite graph where the bidders are the edges (since this instance
corresponds to the path graph of three edges).

▶ Theorem 12. No randomized clock auction (even with unbounded computational power) can
achieve better than a 11/10− ϵ-approximation for ϵ > 0 even when the feasibility constraint
comprises exactly two maximal sets, one containing a single bidder and the other containing
two bidders.

Proof. We proceed via Yao’s lemma. We construct three instances, I1, I2, and I3, as follows.
In each instance, there are two disjoint maximal sets S1 and S2, where S1 contains one
bidder i and S2 contains two bidders j and k. In I1, vi = 1 and vj = vk = 1/3. In I2,
vi = vj = 1 and vk = 1/3. Finally, in I3 vi = vk = 1 and vj = 1/3. Consider an equiprobable
distribution over these three instances. Observe that the expected optimal welfare on this
distribution is 1

3 + 2
3 ·

4
3 = 11

9 . Consider a deterministic clock auction M which achieves an
11/10− ϵ-approximation for some ϵ > 0 on this distribution of instances. It must be that M
obtains expected welfare strictly more than 10

9 . If M were to accept S1 without increasing
the clock price of at least one bidder in S2 above 1/3 then M would obtain expected welfare
1. On the other hand, if M were to accept S2 without first increasing the clock price of at
least one bidder in S2 above 1/3 then M would obtain expected welfare 1

3 ·
2
3 + 2

3 ·
4
3 = 10

9 .
Thus, M must raise the clock price of one of the two bidders in S2 above 1/3. Without
loss of generality (since instances I2 and I3 are equiprobable) suppose M raises the clock
of j above 1/3 first. Then, in instances I1 and I3 bidder j would reject this offer and M
would obtain welfare no more 1. In instance I2 bidder j would accept and M would obtain
welfare no more than 4

3 . Thus, M obtains expected welfare no more than 1
3 ·

4
3 + 2

3 = 10
9 .

But then, M cannot raise the price of either bidder above 1/3 first if it wants to obtain
expected welfare strictly more than 10

9 , a contradiction. Since no deterministic mechanism
can achieve a 11

10 − ϵ-approximation for any ϵ > 0 when facing this distribution of instances,
by Yao’s lemma no randomized mechanism can achieve a 11

10 − ϵ-approximation for any ϵ > 0
against an adversarial instance. ◀

In Appendix A.3, we show that when we instead have two disjoint maximal sets with
one bidder and many bidders, respectively, we may obtain a stronger lower bound on the
performance of any randomized clock auction. We note, however, that the inapproximability
result we show is still far away from the simple upper bound of 2. Thus, we view tightening
the gap between the lower and upper bound even for this simple family of instances as an
interesting open question.

5 Conclusions and Open Questions

In this work, we provide an asymptotically optimal deterministic clock auction for arbitrary
downward-closed feasibility constraints. Throughout the paper we focus on the information-
theoretic limitations of clock auctions and set aside the computational ones, but it is worth
noting that our WFCA gives rise to asymptotically optimal polynomial time clock auctions
for several feasibility constraints of interest. For example, if the feasibility constraint is
a knapsack constraint (e.g., when selling seats on a plane or in a theater), we can solve
the underlying optimization problem within a small constant factor approximation. If the
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feasibility constraint corresponds to weighted interval scheduling (e.g., when scheduling
jobs that each need a machine during a specific time interval), we can exactly solve the
underlying optimization problem using dynamic programming. There are also several natural
generalizations of weighted interval scheduling that admit constant factor approximation
algorithms and correspond to important real-world problems. For example, the weighted
group interval scheduling problem captures settings where the bidders are multi-minded
over intervals, i.e., there are multiple different intervals that each one bidder could use for
scheduling her job [28]. Alternatively, the bidders’ requests could be multi-dimensional (e.g.,
requiring rectangle pieces of land) with the constraints implied by the geometric overlaps of
these requests (e.g., [7, 19]). Since all these families of instances include the lower bound
construction of [24], the logarithmic approximation achieved by the WFCA, when paired
with the corresponding (constant factor approximation) algorithms, is optimal.

Moving beyond deterministic clock auctions, we also provide a way of using randomization
to achieve improved approximation guarantees for interesting families of instances. We
believe that the most exciting direction for future research in this line of work is the study
of the power and limitations of randomized clock auctions. The best known lower bounds
for randomized clock auctions are small constants so, if we set aside the computational
constraints, it could even be possible to design a randomized clock auction that achieves a
constant factor approximation for arbitrary downward-closed feasibility constraints. Whether
such a constant factor approximation is possible or not is, arguably, the most important
open question. Alternatively, rather than general downward-closed feasibility constraints,
one can also focus on specific feasibility constraints of interest, aiming to design optimal
randomized clock auctions for them. Given the highly appealing incentive properties of clock
auctions, achieving small constant approximations can yield very practical solutions.

Another interesting direction is to study the best approximation that can be achieved
by (deterministic) clock auctions using alternative parameters. While the WFCA gives
optimal bounds with respect to the parameters n, m, and v, there are other parameters
that have been used in the literature, for which we do not know what the optimal bound is.
For example, when the feasibility constraint corresponds to the intersection of p matroids,
one may be able to obtain guarantees in terms of p. Note that the existing construction of
[24] implies a Ω(log1−ϵ p) lower bound with respect to this parameter, but we do not know
whether this is tight or not. Similarly, in a combinatorial auction with single-minded bidders
with bundle size at most d (i.e., each bidder wants at most d items), the same construction
implies only a Ω(log1−ϵ d) lower bound. Determining if the WFCA or another clock auction
can obtain bounds with respect to these parameters is an interesting open question.

Finally, every clock auction is obviously strategyproof (OSP), but there could also exist
other OSP mechanisms that do not take the form of a clock auction. Recently, Ferraioli et
al. [30] proved a lower bound showing that the approximation factor of any deterministic
OSP mechanism for downward-closed feasibility constraints is Ω(

√
log n). To the best of our

knowledge, the O(log n) approximation of the WFCA is the best known bound achieved by a
deterministic OSP mechanism. It would be interesting to see whether there exist (non-clock-
auction) deterministic OSP mechanisms that can overcome the logarithmic approximation,
or whether the WFCA is the optimal OSP mechanism in this setting.
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A Omitted Proofs

A.1 Proof of Theorem 7

Proof. We begin by partitioning the bidders by value into ⌈log v⌉ buckets where bucket B1
contains all bidders with value between 1 and 2 (inclusive) and bucket Bk contains all bidders
with value in the range (2k−1, 2k] for all k ∈ {2, . . . , ⌈log v⌉}. Consider the bucket containing
the bidders in the optimal set OPT of highest total value, that is, the bucket Bk∗ with

k∗ = argmaxk∈[⌈log v⌉]

{ ∑
i∈OPT∩Bk

vi

}
.

We then have that v(OPT) =
∑

k∈⌈log v⌉
∑

i∈O∩Bk
vi ≤ (log v + 1) · v(OPT ∩Bk∗). On the

other hand, the welfare obtained by serving the bidders in OPT ∩Bk∗ is at most a factor 2
greater than the revenue earned by offering each such bidder a price equal to 2k∗−1. But the
water-filling auction obtains welfare at least half the optimal revenue achievable in hindsight,
so it then obtains a 4(log v + 1)-approximation to the social welfare as well. ◀

A.2 Proof of Lemma 8

Proof. Let E1 denote the event that S1 has total value at least v(S)/4 and E2 denote the
event that S2 has total value at least v(S)/4. We then seek to lower bound Pr[E1

⋂
E2].

Consider the complement of this event, Ē1
⋃
Ē2. By an application of a union bound

Pr[Ē1
⋃
Ē2] ≤ Pr[Ē1] + Pr[Ē2]. By coupling the event that S1 is some subset T ⊆ S with

the event that S1 is exactly the subset S \ T we observe that Pr[Ē1] + Pr[Ē2] = 2 · Pr[Ē2].
On the other hand, E2 only fails to occur if set S1 has total value strictly greater than 3v(S)

4
(since v(S1) + v(S2) = v(S)). Since bidders are partitioned uniformly at random into S1
and S2 we have that E[v(S1)] = S

2 . We can then upper bound the probability of Ē2 by an
application of the Hoeffding bound. Let Xi be a random variable denoting the contribution
of item i to S1. In other words, Xi = vi if bidder i is in S1 and 0 otherwise. We then have
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that v(S1) =
∑|S|

i=1 Xi. By applying a Hoeffding bound [36] we obtain that

Pr[Ē2] = Pr

[
v(S1)− E[v(S1)] ≥ v(S)

4

]
≤ exp

(
−2(v(S)/4)2∑|S|

j=1 v2
i

)

≤ exp

 −v(S)2/8∑|S|
j=1

(
αv(S)

j

)2


≤ exp

(
−v(S)2/8

α2v(S)2π2/6

)
≤ e− 1

14α2

where the second inequality comes from our defined upper bound on each vi and the third
inequality comes from the convergence of the sum of the squared reciprocals of the natural
numbers. With this in hand, we may conclude that Pr[E1

⋂
E2] ≥ 1− 2 · e

−1
14α2 as desired. ◀

A.3 Stronger lower bound for two disjoint maximal sets
▶ Theorem 13. No randomized auction (even with unbounded computational power) can
obtain better than a 1.144− ϵ approximation for constant ϵ > 0 in a combinatorial auction
setting with n + 1 single-minded bidders even when the feasibility constraint comprises exactly
two maximal sets, one containing a single bidder and the other containing n bidders.

Proof. We proceed again via Yao’s lemma but instead use a family of n + 1 instances
{Ii}i∈[n+1]. In each instance, there are two disjoint maximal sets S1 and S2 where S1 contains
a single bidder and S2 contains n bidders. In all instances the single bidder in S1 has value 1.
In instance Ii the i-th bidder in S2 has value 17

20 and the remaining bidders each have value
3

5n . In instance In all of the bidders in S2 have value 3
5n . Consider a distribution over these

instances where Ii occurs with probability 3
5n for all i ∈ [n] and In occurs with the remaining

probability 2
5 . The expected optimal welfare is then 3

5 ·
(

17
20 + 3(n−1)

5n

)
+ 2

5 = 127
100 −

9
25n .

Consider designing a deterministic clock auction for this distribution of instances. The only
form for a deterministic auction is to raise the price of some (possibly adaptive) number of
bidders in S2 and to choose based on their responses to either accept S1 or S2. Note that an
auction which accepts the bidders of S2 after having only approached bidders in S2 which
reject the increased clock price is weakly worse than one which accepts the bidders in S2
without raising any clock prices. This is because the conditional probability that one of the
bidders in S2 has high value after some number of bidders have rejected the higher price only
decreases and the auction has lost value from the bidders who rejected their price. Thus, an
optimal auction for this setting can only take on three forms: (i) accepting S1 without raising
the price of any bidders in S2, (ii) accepting S2 without raising the price of any bidders in S2,
or (iii) raising the prices of the bidders in S2 one by one and accepting S2 if a bidder accepts
the increased price and enough value in S2 remains (otherwise the auction accepts S1). An
auction which always accepts S1 obtains welfare exactly 1 and fails to give the desired bound.
An auction which always accepts S2 without raising the price of any of the bidders in S2

obtains expected welfare 3
5 ·
(

17
20 + 3(n−1)

5n

)
+ 2

5 ·
3
5 = 111

100 −
9

25n . But then for large enough n

the auction always accepting S2 fails to obtain a guarantee of 127
111 − ϵ ≥ 1.144− ϵ.

Assume that a mechanism M obtains the desired approximation of 1.144 − ϵ. By the
above arguments, it must raise the prices of the bidders in S2 until some bidder accepts.
Since M is deterministic, it must have a fixed order in which it raises the clocks of the
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bidders in S2 assuming all bidders reject. Fix this particular order over the bidders. Observe
that, if fewer than n

4 bidders in S2 remain active before M reaches a bidder who accepts the
increased clock price then M can maximize its welfare by accepting S1. On the other hand,
since if S2 contains a high value bidder each bidder is equally likely to have high value, we
can then calculate the expected welfare that M obtains if a high value bidder exists. If such
a bidder exists, M obtains value 1 if it is in the final n

4 bidders and 17
20 + 3

5n · (n− k) if it is
the k-th bidder. If no high value bidder is contained in S2 (i.e., the instance is In) then M
obtains welfare 1. We then find that M obtains expected welfare equal to

1 · 2
5 + 1 · 3

20 +
3n/4∑
k=1

3
5n
·
(

29
20 −

3k

5n

)
= 481

400 −
9(3n/4 + 1)(3n/8)

25n2 = 881
800 −

27
200n

.

But then for large enough n, M fails to achieve an approximation of 1016
800 − ϵ ≥ 1.144− ϵ if

it raises the prices of bidders in S2 until one bidder accepts the higher price, a contradiction.
Since no deterministic mechanism can achieve a 1.144− ϵ-approximation for any ϵ > 0 when
facing this distribution of instances, by Yao’s lemma no randomized mechanism can achieve
a 1.144− ϵ-approximation for any ϵ > 0 against an adversarial instance. ◀
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