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Abstract

There are two main categories of Distributed Denial of Service (DDoS) attacks that are
capable of disrupting the daily operations of internet users and these are the low and high-
rate DDoS attacks. The detection and prevention of DDoS attacks is a very important
aspect in network security in ensuring that the operations of businesses, communication, and
educational facilities operate efficiently without disruptions. Over the years, many DDoS
attacks detection systems have been proposed. These detection systems have focused more
on obtaining high accuracy, reduction of false alarm rates and simplification of detection
systems. However, less attention has been given to the computational costs of detection
systems (processing power requirements and memory consumptions), early detection and
flexibility in their deployment to support the different needs of networks and distributed
monitoring approaches.

The focus of this thesis is to investigate the use of a robust feature selection approach and
machine learning classifiers to develop useful DDoS detection architectures for fast, effective,
and efficient DDoS attacks detection to achieve high performance at low computational cost.

To achieve this, a lightweight software architecture which is simple in design using minimal
number of network flow features for distinguishing normal from DDoS attack network flows
is proposed. The architecture is based on the Decision-Tree (DT) classifier and distinguishes
DDoS attack from normal traffic network flows with a detection accuracy of over 99.9% when
evaluated with up-to-date DDoS attack datasets. In addition, it can flexibly be deployed in
a real-time network environment and at different network nodes to meet the needs of the
network being monitored creating an avenue for distributed monitoring. Also, the use of
minimal network flow features selected through a robust features selection approach results in
a massive reduction in memory requirements when compared to traditional systems. Results
from the software implementation of the architecture indicated that it uses just 7% processing
power of a core of the detection system’s CPU in offline mode and provides no additional
overhead to the monitored network.

However, software applications for distinguishing normal from DDoS attack traffic are
struggling to cope with the ever-increasing complexity and intensity of DDoS attack traffic.
This increased workload ranges from the capturing and processing of millions of packets per
second to classification of thousands of network flows per second which is evident in some of
the most recent DDoS attacks faced by a variety of companies.

To cope with this workload, a hardware accelerated hybrid network monitoring appli-
cation is proposed. The proposed application is capable of fast network flows classification
by leveraging the hardware parallel processing characteristics of a Field Programmable Gate
Array (FPGA) whilst using a software application in the CPU for the network flow pre-
processing required for classification. The hybrid system is capable of distinguishing DDoS
attacks from normal network traffic flows with a detection accuracy of over 98% when de-
ployed in a real-time environment under different network traffic conditions with detection
in 1µs which is over thirty times faster than the software implementation of the architecture.
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The hardware accelerated application was implemented in the Zynq-7000 All Programmable
SoCs ZedBoard which can monitor up to 1Gbps line rate.

The evaluation results and findings from analysis of the experimental results of the hard-
ware accelerated application provide some important insights in improving the programma-
bility, overall performance, scalability, and flexibility in deployment of the detection system
across a network for accurate and early DDoS attack detection.

In the final part of this thesis, the use of distributed network monitoring is explored with
the implementation of the lightweight DDoS attacks detection architecture using Network
Simulator 3 (NS-3). The systems are distributed at different parts of a network and results
from the approach indicated that effective implementation of distributed network monitoring
systems dramatically reduces the effect of DDoS attack to a minimal on the target network
or network node.
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Chapter 1

Introduction

There has been a rapid growth in the Internet and the field of Information Technology (IT)

over the past decades. In addition, there has been an exponential growth in the number

of organizations, companies and individuals using the internet and according to projections,

these areas will continue to experience growth due to the offered benefits and advantages to

humanity. However, the absence of security from the original design of the internet, shortage

of security agreements, absence of international laws, vast availability of attack tools and lack

of collaboration between Internet Service Providers (ISP) have led to the internet being a

platform that can be used by attackers to perform unlawful activities and launch devastating

attacks [1].

Distributed Denial of Service (DDoS) attacks are key security threats that have grown

significantly over recent years and are some of the most prominent attacks affecting the use

of the Internet [1]. These attacks are achieved by sending large volumes of network traffic

from many exploited systems called zombies to either a host or a network targeting the

exhaustion of network resources. These attacks exhaust the network resources rendering

services unavailable and subsequently leading to loss of confidential and critical information

as well as financial loss [1].

These attacks are structured and designed to disable internet services, reduce network

performance, generate large volume of traffic and damage internet applications [1], [2]. How-

ever, these attacks are not solely designed to compromise or steal data such as passwords

or usernames [2]. With the emergence of the Internet-of-Things (IoT) concept, varieties of

devices that are connected to the internet are not adequately secured. With this inadequacy

in security, attackers exploit these unsecured devices and use them to instigate large-scale

sophisticated DDoS attacks [3], [4].

1.1 DDoS Attacks Severity

DDoS attacks have become more complex, rampant and hard to mitigate due to the ever-

changing threat landscape [5]. There has been an exponential increase in the size of attacks

over the past two decades and continues to increase as shown in Figure 1.1. The attacks sizes

1
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were relatively small-scale initially with an estimate network traffic of 200Mbps in 2001 and

has increased to over 2Tbps in 2020 [6], [7].

Small size DDoS attacks were capable of bringing down the network of victims at the

early days. For example, a continuous maximum 90Mbps DDoS attack was capable of crip-

pling Estonia’s Internet for almost three weeks causing damages to the banking, media and

government websites in 2007 and in 2008, the Internet infrastructure of Georgia was crippled

for almost one month as a result of a 200Mbps attack [8], [9]. These attacks resulted in

disruption of business, government organisations and financial losses [8], [9].

Figure 1.1: Largest DDoS attack size per year worldwide [10], [11].

With the massive growth of the Internet and the emergence of IoT, attackers are using

large numbers of exploited devices to increase the size and complexity of DDoS attacks with

the sole objective of bringing down the networks of a wide range of victims. Earlier forms

of DDoS attacks focused on mainly targeting a specific organization or business whereas

current attacks have evolved and have the capacity of bringing down the Internet of several

organizations and businesses within a selected region.

The whole Internet infrastructure was tested in 2013 when a DDoS attack of around

300Gbps was launched against Spamhaus, which is a not-for-profit anti-spam organization

[12]. This attack was successful in taking down the servers of Spamhaus resulting in internet
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congestion across Europe and disrupting accessibility to some major websites [12]. The

following year, a 400Gbps DDoS attack was launched against OVH which is a web hosting

company [13].

Another major DDoS attack peaking over 1Tbps was launched in 2016 using Mirai Botnet

which resulted in some high profile websites becoming inaccessible for users [13]. Some of the

affected websites included Airbnb, Twitter, GitHub and Reddit [13]. Furthermore, another

DDoS attack peaking over 2Tbps was launched in 2017 and 2020 against Google Cloud and

Amazon Web Service (AWS) [7].

Due to the disruption caused on the daily operations of individuals, government organiza-

tions and business spanning across several sectors by the severity of DDoS attacks, important

attention and effort should be given so that these attacks are detected and mitigated more

effectively. However, the detection of DDoS attacks is not an easy task. Traditional forms

of DDoS attacks involves the sending of high volume and high-intensity network traffic that

is directed to the victim’s network that leads to a denial of service whereas newer forms of

DDoS attacks involve a combination of high and low intensity network traffic directed to a

victim with the capability of congesting the network links that are shared by the victims and

third-party devices [14], [15].

The combination of both low and high-rate DDoS attacks has led to increased complexity

and have made it much more difficult for traditional detection systems to effectively and

efficiently detect and mitigate DDoS attacks [15].

The DDoS attacks detection, mitigation and protection market is currently valued at

USD 4.6 billion and is projected to experience a Compound Annual Growth Rate (CAGR)

of 13.2% between 2021 and 2027 [16], [17]. Some of the keyplayers in the market include

Arbor Networks, Juniper Networks, Akamai, A10 Networks, Fortinet, CloudFlare, Huawei,

Microsoft, Nexusguard, Imperva, Radware, Corero, Verisign, F5 Networks and Nsfocus [16],

[17].

1.2 Problems with Current Detection Solutions

Some of the characteristics of an ideal DDoS detection system include the detection of DDoS

attacks network traffic with high detection accuracy and in real-time, mitigation of DDoS

attacks closer to the source, which reduces the potential damages to the victim’s network

and doing this with low computational cost [18]. This means that the primary goals of

a DDoS attacks detection system include high detection accuracy, early detection and low

computational cost. High detection accuracy is synonymous to low false positive and high

true positive rates, low computational cost is synonymous to low complexity in designs with

less resource requirements and early detection is synonymous to detection of attacks close of

the source of attack.

Due to the distributive nature of DDoS attacks, attack traffic stem from multiple sources

and the aggregate of this traffic which results in a huge volume leads to the exhaustion of

the victim’s network infrastructure. This indicates that the generated network traffic at the
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source is usually small compared to the traffic received at the victim’s network. Therefore,

detecting and mitigating the attack closer to the source will dramatically reduce the potential

damages caused by the attacks.

Currently, many proposed DDoS detection systems have focused more on obtaining high

accuracy, reduction of false alarm rates and simplification of detection systems [18], [19].

However, less attention has been given to the computational costs of detection systems i.e.

processing power requirements and memory consumptions, programmability of systems due

to the everchanging attack landscape and flexibility in deployments to support the different

needs of networks [18], [19]. The main issues highlighted above that are hindering the

effectiveness and efficiency of DDoS attacks detection are:

1.2.1 Flexible Detection

Previous DDoS attacks detection solutions have been effective in effectively detecting attacks

however; these solutions are struggling to cope with the ever-increasing size and complexity of

attacks [18]. Examples of these detection systems are NetBouncer, D-WARD and LADS [20]–

[22]. Some of these detection solutions apply some techniques, which are not very effective

in detecting newer DDoS attacks due to the variations and complexity of these attacks.

In addition, these rely on fixed thresholds which result in detecting only specific types

of attacks without consideration for the different variations and complexities of newer at-

tacks [18]. There are some promising techniques in detecting newer attacks such as the use

of entropy-based approaches however; there is limitation in detection accuracy due to the

selected features and the set thresholds used in detecting normal and DDoS attack traffic

[23]–[27].

The over-reliance of commonly used network traffic features such as the five tuple of

network flows (which are the network protocol used, source and destination port numbers of

the packets and source and destination Internet Protocol (IP) addresses of the packets) has

led to the neglecting of other attributes such as packet Inter-Arrival-Time (IAT), number of

received packets, total size of network flows, etc., that may lead to more accurate detection

of DDoS attacks.

Currently, some industry based solutions which have been effective in detecting a wide

range of DDoS attacks include FortiDDoS by Fortinet, Prolexic by Akamai, Arbor Cloud

by Arbor Networks, Azure DDoS Protection by Microsoft, etc. However, these solutions

are quite expensive with some ranging between $6,000 and $80,000 with additional licenses

incuring extra charges for hardware based solutions [28]. The cost of cloud based solutions

provided my Microsoft start from $2,944 per month with additional licenses incuring extra

charges [29]. However, due to the high cost of DDoS protection and mitigation solutions,

smaller organisations are often ill equiped and are often the targets of these attacks [30].

Therefore, there is a need for the design and implementation of low-cost solutions that are

affordable and flexible in detecting a wide range of DDoS attack types.
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1.2.2 Computational Cost

The ever-increasing size of DDoS attacks means that a lot more resources are required to

fully process the network traffic [18]. In addition, the processing of huge volume of network

traffic especially in a large network can lead to high computational cost or even failure of

the monitoring and processing systems especially in the case of a centralised monitoring

approach [18].

However, this problem can be overcome by monitoring and processing only the relevant

network traffic features instead of capturing and processing all the features. This will dras-

tically reduce the computational burden on the detection system, as only a few features are

required in processing network traffic. Additionally, the use of distributed monitoring ap-

proach leads to the distribution of network loads across the monitoring and detection system,

thereby, reducing the computational burden on each system [31].

1.2.3 Programmability

Network monitoring and DDoS attacks detection systems are programmed to perform the

required processing of network traffic to effectively and efficiently detect DDoS attacks. Tra-

ditional monitoring systems lack programmability, which leads to them struggling to cope

with the ever-increasing attack landscape [31]. To effectively cope with the changing demands

of networks, monitoring and detection systems should be programmable. This programma-

bility characteristic is present in some of the current network devices i.e. some switches can

be programmed to deal with certain needs of networks.

1.2.4 Scalability

The increasing sizes of network and network traffic presents some challenges in efficiently

processing the huge volume of traffic and effectively detecting DDoS attacks. One of the

main challenges of scalable monitoring and detection systems is the smooth processing of

network traffic without incurring an overhead on the network being monitored.

However, some promising solutions have increased scalability in detecting DDoS attacks.

These techniques include NetFlow and sFlow technologies [32], [33]. The use of these tech-

niques along with appropriate network traffic sampling approaches to reduce processing cost.

However, these solutions struggle to detect attack traffic that are stealthy in nature since

not all types of network traffic are analysed [31].

In this case, scalability of DDoS attacks detection solutions can be increased using

lightweight architecture incorporated with a robust feature selection approach that considers

a wide range of network features through analysis of up-to-date datasets. These solutions

should be low cost to enable distributed monitoring approaches to effectively cope with the

needs of the network with the ever-increasing size and complexity of the network traffic.
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1.2.5 Flexible Deployment

Flexible deployment of network monitoring and detection systems is important to deal with

the demands of current networks. Currently, the need for systems, which are capable of

flexible deployment, is crucial in dealing with the different needs of networks. These systems

should be capable of being deployed at different network nodes to meet demands.

1.3 Problem Statement

The problems of current network monitoring and DDoS attacks detection systems are sum-

marized in the following problem statement:

The major problem with current DDoS attacks detection solutions is their inability to

accurately detect a wide range of DDoS attacks as early as possible in medium and large-

scale networks. Traditional DDoS attacks detection solutions are often centralized and are

not very effective in accurately detecting DDoS attacks early due to limitations in flexible

detection, programmability, scalability, computational cost and flexible deployment.

Therefore, the use of new approaches in effectively and efficiently detecting DDoS attacks

accurately and early is important.

1.3.1 Research Questions

Based on the problems facing current DDoS attacks detection systems highlighted in Section

1.2, attempts to address these problems will be covered in this thesis by providing answers

to the following research questions:

How can DDoS attack detection systems effectively and efficiently detect attacks early

with high detection accuracy and low computational cost?

The above stated question is further broken down into some sub-questions:

1. How can high detection accuracy be achieved in DDoS attack detection

systems with scalability?

This question is related to the flexible detection and scalability issues discussed in

Section 1.2. This thesis tries to answer this question by examining the use a wide

range of datasets that consists of different attack types and considering only relevant

features in the detection systems which leads to early detection as very little processing

is required. In addition, it examines the use of Machine Learning (ML) algorithms.

This leads to improved scalability, flexible detection and low computational cost.

2. How can fast and early detection be achieved?

This question is related to the flexible detection and deployment issues highlighted in

Section 1.2. This thesis tries to answer this question by examining the implementation

of Machine Learning (ML) algorithms on different high-computing platforms such as

Multi-core processors and Field Programmable Gate Array (FPGA) for fast network

traffic classification leading to fast detection of DDoS attacks. These high-computing
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platforms offer the flexibility of deployment at different network nodes. In addition,

it examines the use of distributed monitoring approach across different network nodes

for early detection.

3. What are the most effective feature selection methods?

This question is related to computational cost and scalability issues highlighted in Sec-

tion 1.2. This thesis tries to answer this question by examining several robust feature

selection techniques such as Backward Feature Elimination, Low Variance filter, For-

ward Feature selection, etc. in selecting only the relevant features required in effectively

detecting DDoS attacks. In addition, it tries to evaluate the tradeoffs between complex-

ity of detection systems due the number of selected features and detection accuracy.

Furthermore, it attempts to evaluate the effects of different number of selected features

to computational cost.

1.4 Thesis Structure and Research Contributions

An overview of the thesis and its contributions are highlighted in a tree structure shown in

Figure 1.2.

Figure 1.2: Thesis Contributions
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Below are brief discussions on the contributions of the thesis.

1.4.1 Thesis Structure

The remaining content of this thesis is organised as follows.

• Chapter 1 – Introduction

This chapter introduces Distributed Denial of Service (DDoS) attacks. In addition,

discussion of some of the problems faced by current DDoS attacks detection solutions

was provided based on extensive reviews conducted on these solutions. Furthermore, a

problem statement is provided along with some of the possible answers to address the

issues discovered.

• Chapter 2 - Background and Related Work

This chapter outlines information relating to the existing status of DDoS attacks land-

scape, Machine Learning Classification techniques, feature selection approaches, high

performance computing platforms, analysis of existing detection solutions and identifi-

cation of research gaps in current literature.

• Chapter 3 - A Lightweight Decision-Tree Algorithm for detecting DDoS

flooding attacks

In this chapter, a lightweight Decision-Tree (DT) architecture for accurately detecting

DDoS flooding attacks is presented. The motivation to designing and implementing a

real-time detection system using ML algorithms is presented. The proposed architec-

ture uses a robust feature selection technique to select only the most relevant features

and can be deployed on multiple host machines at different network nodes. In addition,

an extensive analysis of the results obtained is carried and comparisons are drawn with

existing related detection solutions.

• Chapter 4 - Hardware Accelerated Application for DDoS flooding attacks

detection

In this chapter, a hardware accelerated DDoS flooding attacks detection solution based

on a high performance computing platform is proposed. The solution is based on the

implementation of the proposed detection ML model from chapter 3 on an FPGA. Re-

sults obtained from multiple experiments conducted are presented and comparisons are

drawn with both related work and software implementation of the detection solution.

• Chapter 5 - Distributed Monitoring for DDoS Flooding Attacks Detection

This chapter evaluates the modelling of DDoS flooding attacks using Network Simulator

3 also known as NS3. In addition, the potential damages of a successful DDoS attack

without the use of detection systems are presented. Furthermore, an evaluation on the

effectives of distributed monitoring approach where detection systems are distributed

across a network is conducted. Finally, the impacts of DDoS attacks initiated in the

presence of many distributed detection systems are investigated.
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• Chapter 6 - Contributions and Future Work

In this chapter, conclusions and evaluation of the applications of the various proposed

monitoring and detection solutions are presented. In addition, the contributions and

findings from the research conducted are highlighted. Furthermore, future research

prospects on the subject are proposed.

1.5 Publication List

Godswill Lucky, Fred Jjunju, and Alan Marshall. ”A Lightweight Decision-Tree Algorithm

for detecting DDoS flooding attacks.” 2020 IEEE 20th International Conference on Software

Quality, Reliability and Security (QRS 2020).



Chapter 2

Background and Related Work

This chapter introduces the concept of Distributed Denial of Service (DDoS) attacks and

the current attack landscape. It discusses some important approaches in DDoS attacks

detection such as Machine Learning Classification techniques, feature selection techniques,

high performance computing platforms and distributed monitoring. In addition, it reviews

the literature of existing DDoS attacks detection solutions and identifies some of the well-

known DDoS attacks datasets and testbeds used in evaluating the solutions. Current research

gaps are highlighted in the summary of this chapter.

2.1 Distributed Denial of Service Attack

Distributed Denial of Service (DDoS) attacks can be referred to as large-scale coordinated

versions of Denial of Service (DoS) attacks. The aim of DDoS attacks is to disrupt network

services and render them unavailable to legitimate users and are achieved by sending large

volumes of network traffic from many exploited systems called zombies to either a host (i.e.

end devices, servers) or network links targeting the exhaustion of network resources [34]–[36].

The success of these attacks can lead to loss of confidential and critical information as well

as financial loss [36].

DoS attacks involve the use of a single attack source whereas DDoS attacks are conducted

using many exploited devices called zombies which could be hundreds of thousands from

different networks across the globe [37]. Due to the nature of these attacks involving the

use of many devices, their sizes are significantly large especially nowadays, where the largest

record size is around 2.5Tbps as discussed in Chapter 1.

The first recorded large-scale attack occurred in the year 2000, when the success of a

high volume flood attack rendered major Internet sites offline for several hours. These sites

included ZDNet, CNN, Yahoo and eBay [38]. DDoS attacks have grown both in size and

complexity over the years leading to disruption of major Internet services across the globe.

10
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2.1.1 How to Launch a DDoS Attack

There are many strategies and tools used by attackers to launch effective DDoS attacks. An

effective attack is an attack that is successful in breaching security defences and causing the

required disruption to services. These attacks require the use of a large number of exploited

devices in launching the attacks against either an end device or an organization’s network

link. These attacks are classified under two categories based on the method used in launching

the attacks. These categories are direct and indirect flooding.

1. Direct Flooding

This method of launching DDoS attacks involves the sending of commands to all ex-

ploited devices (zombies) to send attack traffic straight to the target end device or

network link as shown in Figure 2.1.

Figure 2.1: Direct Flooding Architecture [39].

Some examples of Direct Flooding Attacks (DFA) include:

• ICMP Flood Attacks

The Internet Control Message Protocol (ICMP) Flood attack also referred to as

Ping Flood is a type of DDoS attack that involves the sending of a large number

of pings to a target so that it becomes overwhelmed and does not respond to

legitimate requests [40], [41].
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• UDP Flood Attacks

These attacks abuse the User Datagram Protocol (UDP). These attacks are launched

by sending a large number of UDP packets to random ports of the target device

so that it is overwhelmed and does not respond to legitimate requests [40], [41].

• SYN Flood Attacks

These attacks aim to create many half-open connections by abusing the three-way

handshake of the Transmission Control Protocol (TCP) so that it exhausts the

resources of the end device and does not respond to legitimate requests [40], [41].

The three-way handshake session comprises of three messages exchanged between

a server and a client in order to establish a successful connection as shown in

Figure 2.2.

Figure 2.2: TCP three-way handshake [42].

The first message towards establishing a successful connection is a SYN message

sent from the client to the server and the server responds with the second message

SYN-ACK to the client. The connection will be fully established after the client

responds with the third message ACK [41]. However, under the SYN flood attacks,

many SYN requests are sent to the server without responding with the required

ACK message. There will be increase in half-open connections whilst the server is

waiting for the ACK message from the client. The server becomes unresponsive to

legitimate requests due to the accumulated half-open connections exceeding the

server’s resources [41].

2. Indirect Flooding

This method of launching DDoS attacks involves the sending of attack traffic to third-

party end devices. The third-party end devices in turn route the attack traffic to the

target device as shown in Figure 2.3. In some attack scenarios, the third-party devices

have the ability to magnify the attack traffic in order to inflict a larger impact on the

target devices [31].
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Figure 2.3: Indirect Flooding Architecture [31].

In essence, this attack method aims to conceal the original source of the attack to avoid

detection. Some examples of Indirect Flooding Attacks (IFAs) include:

• Coremelt attack

This Indirect Flooding Attack was introduced in 2009. Its aim is to congest the

network links of the target’s network core through the use of many zombies as

sources of destinations of attacks [9]. These zombies are capable of communicating

with one another legitimately. This attack has proven to be a difficult challenge

in terms of detection as the attack traffic generated by the zombies are similar

to legitimate network traffic. This attack was demonstrated through a simulation

using two network sizes of 4746 and 720 Autonomous Systems (ASes) [14]. The

demonstration proved successful with the use of 700,000 to 1,008,000 zombies [14].
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• Crossfire Attack

The aim of this attack is to congest the network links of the target’s network by

sending attack traffic to decoy servers in the target’s network [15]. This attack is

similar to the Coremelt attack as both attacks make use of zombies for sending

the attack traffic however, the intention of the Crossfire attack is not to cause

the target servers inaccessible but to act as decoy servers which aids in flooding

the network links that are connected to the server [15]. In addition, both attacks

are similar as they aim to congest network links between the source and target’s

network. The Crossfire attack is carefully coordinated to ensure targeted net-

work links are successfully congested in order to cut-off the internet access of the

targeted organization’s network.

• Reflection Attack

This attack makes use of reflectors on the network in directing attack traffic to

the target’s network [43]. A reflector is any network device that is capable of

returning received packets such as routers, web servers and Domain Name Server

(DNS) servers [43]. In order to orchestrate a powerful flooding attack traffic to the

target, attackers often combine the use of reflectors and the attacker’s machines.

Reflectors often act as amplifiers as their reply packets are often larger than the

received packets [43]. Therefore, a lot of damage can be caused to the target’s

network with the use of a large number of reflectors. The use of reflectors can

conceal the original attack source thereby resulting in a high level of stealthiness

[43]. From the literature, reflectors pose a serious threat to the Internet. These

reflectors include TCP based servers that suffer predictable sequence numbers,

GNUTELLA servers and DNS servers.

• Amplification attack

This attack makes use of third-party end devices to either broadcast requests

with the use of spoofed IP address that is usually the IP address of the target

leading to an influx of replies to the target or amplify small requests into larger

requests that are directed to the target [44]. A Smurf attack is an example as

ICMP echo requests are sent by the attacker to a vulnerable broadcast domain,

which causes all the end devices in the domain sending echo reply messages to the

target resulting in a huge volume of network traffic which can deplete the network

bandwidth of the target [44]. This attack is like reflection attack as spoofed source

IP addresses are used. DNS amplification is another example of this attack as the

open recursive feature of DNS servers is taken as an advantage by the attacker

to send recursive queries to the server, which results in the server sending out

large amplified traffic to the target as responses. Other examples include the

NTP amplification attack, which is very similar to the DNS amplification attack

with the difference being that it exploits the MONLIST command of NTP servers.

Therefore, target’s bandwidth can easily be depleted by an amplification attack
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because there is a significant increase in the attack traffic load directed to the

target.

2.1.2 DDoS Attacks Intensities

DDoS attacks can be classified based on their intensities and these are low and high-rate

DDoS attacks [31].

• Low-Rate DDoS Attacks

A low-rate DDoS attack is a type of DDoS attack which is stealthy in nature as it

makes use of a low-rate or slow network attack traffic to saturate the target’s network.

A Low-Rate DDoS attack such as Slowloris [45] does not rely on network traffic volume

in causing denial-of-service but seeks to keep hold of as many opened connection ports

as possible to prevent legitimate users from having access to the target server. These

attacks are capable of crippling the target’s network through significant increase in

aggregated attack volume without activating the detection systems. Other low-rate

attacks aim to degrade a target service over a long period of time to achieve economic

damage instead of completely disrupting service [8].

• High-Rate DDoS Attacks

A high-rate DDoS attack is a type of DDoS attack that makes use of a high network at-

tack traffic to exhaust the target’s network resources [46]. An example of this attack is

Smurf attacks which involves the transmission of attack packets at a high transmission

rate to the target’s network that results in a large traffic volume [44]. However, detec-

tion systems can be triggered by the rapid increase in network traffic, which can lead

to successful mitigation and prevention of the target’s network from adverse damages

[44].

2.1.3 DDoS Attack Targets

The targets of DDoS attacks are mostly network links and end devices (hosts) in the target’s

network as these are the core for effectively providing a service.

• End Device (Host) In terms of end devices, DDoS attacks target the resources of the

host such as memory, CPU, service resources especially in a server or hardware such

as switches and edge routers with the aim of bringing down the end device.

• Network Links In terms of network links, DDoS attacks aim to congest the network

links and exhaust the link bandwidth, which results in bringing down the communi-

cation link to the target’s network. The attacks on network links are considered more

severe as a successful bringing down of a network link results in subsequent bringing

down of all hosts in the target network.
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Figure 2.4: Methods of launching DDoS attacks

2.1.4 Launching a DDoS Attack

There are different ways of launching DDoS attacks and these are explained below.

• Botnets

A botnet is defined as a collection of connected systems that have been compromised

and are are usually controlled by an attacker [47]. A large proportion of the network

security incidents on the Internet are based on the use of botnets [47]. These compro-

mised systems are referred to as bots. Due to the fact that these bots are cheap and

easy to deploy, many of these are sold at low prices on the dark web [31]. Due to their

easy deployability, minimum effort is required by the attacker in initiating the attacks

using the bots. The only effort from the attacker is uploading the attack command

into Command & Control (C&C) servers which are used to distribute the commands

to the individual bots [31].

A network that comprises of bots that are connected to a single C&C server is referred to

as a botnet [31]. These bots are usually distributed globally and are used for launching

DDoS attacks directed at a target’s network. There has been a rapid increase in the

number of bots used in initiating DDoS attacks since 2013 and this is evident in the

exponential increase in the size and complexity of DDoS attacks [31]. An example of

one of the most recent DDoS attacks botnet is the Mirai botnet. Below are some of

the well-known botnets used in initiating DDoS attacks.

– Internet-of-Things (IoT) Botnet

An IoT botnet is a type of botnet that comprises of IoT devices that are poorly

secured but have access to the Internet. These poorly secured IoT devices are
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referred to as IoT bots and some of the well-known IoT botnets are the Hajime

and Mirai botnets.

– Internet Chat Relay (IRC) Botnet

The IRC is the network protocol that is used by connected devices for real-time

text messaging [48]. In order to manage the the busy channels used by the IRC

protocol, the IRC bots were introduced. However, these bots are currently used

for launching DDoS attacks by attackers targetting IRC servers and users [49].

The attackers make use of a C&C server to initiate the attacks. Some of the

well-known IRC botnets are Spybot, Kaiten, Nesebot and Agobot [6].

– Code Red Worm (CRW) Botnet

The CRW botnet makes use of a worm which quickly spreads and infects hundreds

of thousands of devices within a short period of time [31]. Each of the compromised

devices (bots) has a specific target that has been predefined [31].

– Peer-to-peer (P2P) Botnet

The P2P botnet makes use of P2P compromised devices for launching DDoS

attacks but unlike the previous botnets which rely on C&C server, it makes use of

communication between the P2P bots [50]. This results in more resilient attacks

as any P2P bot can act as C&C server instead of using a special designated server

[50]. Some of the well-known P2P botnets include Peacomm, SpamThru, Phatbot

and Nugache [51].

2.1.5 DDoS Attack Tools

There are several DDoS attack tools that are readily available to attackers for launching

DDoS attacks. Since these attacks target the resources of the target network, attackers make

use of a variety of tools for initiating these attacks. This is evident in the increasing size and

complexity of DDoS attacks. In addition, the available tools are mostly automated thereby

making it easy for attackers to manage and coordinate large-scale DDoS attacks. Below are

descriptions of some of the well-known DDoS attack tools and a summary of these tools with

respect to the network protocols used in generating these attack types is shown in Table 2.1.

• Hping3

Hping3 is a network security tool that can be used for a wide range of network capability

and security testing. It is command-line oriented and can act as both an assembler

and analyser of TCP/IP packets. In addition, it can be used to launch a wide range of

DDoS attacks as shown in Table 2.1.



Chapter 2. Background and Related Work 18

• Tribe Flood Network (TFN)

TFN is a DDoS attack tool that provides an attacker the platform for launching a

wide range of DDoS attacks which are directed to either random or specified ports of

devices in the victim’s network [52]. These attacks include UDP flood, Smurf, ICMP

flood and TCP SYN flood attacks. This DDoS attack tool comprises of a set of servers

for launching the attacks and a master.

To launch DDoS attacks, attack commands are sent by the master to the servers [52].

Since the communication between the master and the servers is masked using the ICMP

Echo reply packet, DDoS attacks initiated with TFN are not very easy to mitigate [52].

In addition, filtering such packets will stop some applications which depend on these

packets from functioning appropriately.

• Low-Orbit Ion Canon (LOIC)

LOIC is a DDoS attack tool which is open source and provides an attacker the plat-

form for launching TCP and UDP attacks [53]. A major disadvantage of using LOIC

to launch DDoS attacks is that the source of attack can be tracked because the IP

addresses of the generated traffic are not masked [53].

• Stacheldraht

Stacheldraht is a DDoS attack tool which provides an attacker the platform for launch-

ing ICMP flood, Smurf, UDP flood and TCP SYN flood attacks [52]. A major advan-

tage of using Stacheldraht for launching DDoS attacks is that it is difficult to trace the

attack source as this tool makes use of encrypted packets for communication [52].

• MStream

MStream is a DDoS attack tool which provides an attacker the platform for launching

rapid DDoS flood attacks such as TCP SYN flood and ICMP flood which deplete

the bandwidth of the target’s network [54]. A major advantage of using MStream for

launching DDoS attacks is that the IP addresses of the source of attacks are masked

[54].

• Trinoo

Trinoo also referred to as Trin00 is a DDoS attack tool which provides an attacker the

platform for launching UDP flood attacks which deny specific services [52]. It is quite

a sophisticated tool as an attacker is capable of modifying the sizes of network traffic

packets and specify the duration of a DDoS attack [52].
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Table 2.1: DDoS attack tools with protocols for launching attacks

Name of Attack Tool Protocols for launching attack

HPing3 ICMP, UDP and TCP

LOIC TCP and UDP

TFN ICMP, UDP and TCP

MStream ICMP and TCP

Stacheldraht ICMP, UDP and TCP

Trinoo UDP

Shaft ICMP, UDP and TCP

Knight TCP and UDP

Trinity TCP

2.2 How to Detect a DDoS Attack

DDoS attack detection is referred to a process through which attack network traffic are effi-

ciently and accurately distinguished from legitimate network traffic. DDoS attacks detection

systems are important in effectively detecting the occurrence of attacks in order to secure

the activities of a network. DDoS attacks detection methods are commonly grouped into

three categories, which are the anomaly, hybrid and signature-based detection methods.

2.2.1 DDoS Attacks Detection Methods

The primary aim of an Intrusion Detection System (IDS) with respect to DDoS attacks is

the detection of the emergence of DDoS attacks, which helps in taking the necessary steps to

mitigate and prevent the adverse effects of these attacks. An IDS can either be a software or

hardware application that monitors networks and reports any suspicious behaviour especially

in the case of attacks to a system administrator for further action to be taken [55]. These

detection solutions are widely used in DDoS attacks detection and are classified as either

network or host-based depending on the implementation target. It is host based if it is

implemented in an end device (host) and network-based if implemented in a network device

like firewalls, routers, etc. [55].The signature, hybrid and anomaly-based detection systems

are the three categories of detection systems. This is based on the technique that is adopted

by an IDS for intrusion detection.

• Signature-based IDS

A signature-based IDS (SIDS) consists of a database used for storing signatures of

known attacks. All incoming packets to a target’s network are monitored and compared

to the stored signatures. Once there is a match in the signatures, the packets are

marked as malicious [56]. These systems are easy to develop and implement which

are major advantages. However, a major disadvantage is that only known attacks are

detected therefore, constant updates of the database with signatures of new attacks are

necessary [57]. These detection systems are also known as Knowledge-Based Detection

or Misuse Detection [56].
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• Anomaly-based IDS

Anomaly-based detection systems also referred to as Anomaly Detection Systems (ADS)

are modelled with normal behaviour of the network through the use of knowledge-based,

machine learning or statistical-based techniques [57]. The network activity is monitored

for any significant deviation of behaviour from the modelled normal behaviour. Once

a significant deviation is detected, it is interpreted as an attack scenario [57].

These detection systems are developed with the assumption that legitimate network

traffic behaviours are different from attack traffic behaviours. Therefore, abnormal

behaviours are classed as attacks [57]. The ability to detect new/zero-day attacks

is a major advantage of these detection systems due to their ability to recognize any

abnormal behaviour in the network [58]. This is a major advantage that these detection

techniques have over the signature-based detection approach.

However, the difficulty in defining the perfect thresholds is a major disadvantage as

small deviations from the perfect threshold can create a significant number of false

positives, which leads to low accuracy in the detection of attacks [59]. Once attacks

are detected, response mechanisms, which could either be rate limiting or filtering

algorithms, are activated against such network traffic.

• Hybrid IDS

Hybrid Intrusion Detection Systems (HIDSs) are a combination of signature-based and

anomaly-based solutions. It is regarded as one of the most effective detection strategy

as it can detect a wide range of DDoS attacks due to constant updates of DDoS patterns

in a set database [60].

2.2.2 Packet Classification Strategies for DDoS Attacks Detection

DDoS attack detection systems make use of two main network traffic classification strategies

as part of the detection process. These network traffic classification stategies are flow and

packet classification. Below are descriptions of these two classification stategies.

• Packet Classification

Packet classification incolves the analysis of individual network traffic packet using the

Deep Packet Inspection (DPI) technique to distinguish legitimate from attack network

packets [61]. This approach makes use of some predefined characteristics of a network

packet in determining if a packet is an attack or legitimate i.e. in a traditional TCP

SYN flooding DDoS attack scenario, the attack is initiated using TCP packets with the

SYN-flag set, therefore, this characteristic could be used along with other properties

of the packet to determine if it is a legitimate or attack packet [61]. This approach

has been evaluated not to be the best approach in detecting recent variations of DDoS

attacks as the packets in these attacks are well coordinated and synchronised to behave

more like legitimate packets [31].
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• Flow Classification

To overcome the limitations of the network traffic packet classification approach, the

flow classification approach is used instead. A network flow can be defined as a stream

of network traffic packets with the same network protocol, destination IP address,

source IP address, destination port and source port within a period of time [31]. The

network traffic flow classification approach can easily be deployed at a nework switch

node for the detection of attacks and filtering.

To detect DDoS attack network flows, a variety of distribution analysis are used by the

flow classification approach. However, the pre-processing of network traffic flows can

be a time consuming task especially when it involves a large volume of network traffic

therefore, the use of lightweight applications are required for the collection of statistics

[31]. The flow classification approach can be subdivided into two types based on the

number of flow samples considered within the chosen time interval and these are the

sampling and complete detection.

2.2.3 DDoS Attack Detection Architectures

There are two major architectures used for the detection of DDoS attacks and these are the

distributed and centralised architectures. Below are descriptions of these two architectures.

• Centralised Architecture

In the centralised architecture, all network traffic received are transferred to a central

location of the network to be processed [62]. This architecture is better suited for small

enterprise networks [62]. The detection of DDoS attacks using this architecture has

been evaluated to be ineffective in larger-scale networks due to the huge volume of net-

work traffic involved which can result in a single point of failure and high computational

requirements on the centralised system [62].

• Distributed Architecture

In the distributed architecture, multiple devices are used as part of a wider detection

ecosystem which results in a distribution of the computational requirements across

the devices instead of a single device [62]. A major advantage of this architecture is

that the single point of failure present in the centralised architecture is completely

eliminated [63]. In addition, the network traffic received are processed by the different

devices distributed across the network for the detection of DDoS attacks [62]. However,

devices is this architecture must be strategically deployed to achieve better detection

accuracy and scalability results [62].

2.3 Major Global DDoS Attack Incidents

There has been a significant increase in the size, complexity and number of DDoS attacks

over the years. Personal, financial and political gains have motivated these attacks [64].
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Some of the well-known DDoS attacks which have occurred over the past years are outlined

below.

• The Spamhaus Attack

Spamhaus is an organisation that is responsible for online filtering of malware and spam

transmitted through the Internet. In 2013, it was hit with a DDoS attack peaking at

300Gbps [65]. The attack was successful in overloading servers used by Spamhaus

and resulted in huge Internet congestion [65]. The attacker made use of the Open

Resolver Domain Name Server in transmitting a huge volume of network attack traffic

directed at the servers of Spamhaus and the attack successfully crippled the network

of Spamhaus for the duration of more than a week [65].

• The ProtonMail Attack

ProtonMail is an organisation that provides free, secure and encrypted email services

across Europe. In 2015, it was hit with a DDoS attack that brought down its main data

centre. All the providers of upstream Internet Services connected to the ProtonMail’s

data center were unable to access it due to the congestion experienced from the attack

[66]. The attack continued for over a week with over one hundred affected companies

[66].

• The BBC Attack

In December 2015, the BBC was hit with a then record breaking DDoS attack of 600

Gbps [67]. The attack that was carried out by the group called “New World Hacking”

using its BangStresser application tool. BBC services including the BBC’s website and

its iPlayer on-demand service were successfully taken down for about three hours by

the attack [67].

• The Dyn Attack

Dyn is an organisation that is responsible for servicing a major proportion of the

Domain Name Server infrastructures of the Internet. In 2016, it was hit with a DDoS

attack peaking at over 1.2 Tbps through the use of a Mirai botnet [68]. The attack

make use of over one hundred thousand compromised systems (bots) which successfuly

took down major websites including Twitter, Github and Netflix [68].

• The GitHub Attack

GitHub is a well-known online code management service which is utilized by millions

of developers across the globe, GitHub was hit with a then record breaking 1.3 Tbps

of network traffic which flooded the company’s servers at a packet rate of 126.9 million

packets per second in 2018 [69]. This attack successfully took down GitHub’s servers

for around twenty minutes.
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• The Amazon Web Services (AWS) Attack

In February 2020, Amazon Web Services (AWS) was hit with a then record breaking

network attack traffic which peaked at 2.3 Tbps [70]. Some Connectionless web servers

making use of the Lightweight Directory Access Protocol (CLDAP) were hijacked by

the attacker and used for conducting the attack [70].

2.4 Network Traffic Analysis Tools

A network traffic analysis tool is an application that can be used to record and analyze

specified network traffic within a network [71]. These tools are capable of dissecting network

traffic based on IP addresses, applications, network protocols, etc. and can produce visual

representations of data flows through tables or diagrams. Furthermore, these tools aid in

the identification of problems within a network insfrastructure with possible solutions [71].

Some of the most widely used network traffic analysis tools are described below:

2.4.1 Wireshark

This is an open source network analyzer that can be used to display packets/flows passing

through a network using a Graphic User Interface (GUI) [72]. It comprises of a wide range of

properties i.e. live packet capturing, filtering of packets using either protocol type or other

methods. The filters are of two types i.e. capture filter for capturing specific type of data

and display filter for the display of specific data type i.e. TCP, UDP, etc. [72]. Wireshark

can be installed and executed on Windows, Linux or Mac Operating Systems.

2.4.2 TShark

This is a network protocol analyser that can be used to capture live network traffic or

read packets from previously captured files [73]. It makes use of the native capture file

format pcapng which is widely used by wireshark and other network capture and analysis

tools. TShark can be installed and executed on Linux and Mac Operating Systems via the

Command Line Interface (CLI).

2.4.3 Scapy

This is a python based powerful interactive packet manipulation program with the capabilities

of forging and decoding packets of a wide range of network protocols [74]. In addition, it can

send packets over the wire, capture network traffic and other security tasks such as scanning,

probing, tracerouting, etc. [74]. Scapy can be executed and run on Windows, Linux or Mac

Operating Systems.
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2.5 Feature Selection and Machine Learning Classification

This section provides a discussion on feature selection and the importance of using feature

selection techniques in large datasets. Furthermore, it provides on overview into Machine

Learning (ML) and provides a review on some of the related works conducted in the field of

DDoS attacks detection using machine learning classifiers.

2.5.1 Feature Selection Techniques

Feature selection methods are a subset of dimensionality reduction techniques, which is a

critical aspect in building Machine Learning classification models. Dimensionality reduction

is the process whereby the number of available attributes in a dataset are reduced to a set

of principal attributes which are deemed effective in solving the specified problem [75], [76].

Some benefits of dimensionality reduction include:

• Reduction in the number of attributes leads to lower memory requirement for data

storage.

• Less computation/training time for ML algorithms

• It helps some ML algorithms to perform better as the use of a large number of attributes

can affect performance.

• It resolves the problem of multicollinearity as redundant features are removed.

• It helps in data visualization.

Dimensionality reduction consists of aspects such as feature selection, projection based and

component/factors-based reduction as shown in the Figure 2.5.

Selection of the most salient features to be used in detecting attacks is one of the most

frequent issue faced by researchers. The selection of features is a very important step to

determine the performance of the system. For example, the use of too many features may

lead to high detection accuracy, however, it may also lead to an overly complex system

which will require more processing power while the use of too little features may lead to low

detection accuracy [76], [77] albeit using less processing power. Finding the balance between

high detection accuracy and low complexity in design is important. This is because although

high level of accuracy is very important, available resources in implementing the detection

systems may be limited especially in terms of memory and processing power requirements.

Some of the most widely used feature selection methods in this research area include the

Backward Feature Elimination, High Correlation filter, Forward Feature selection, Random

Forest and Chi-squared feature selection. A discussion on some of the well-known feature

selection techniques has been provided in Chapter 3.
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Figure 2.5: Dimensionality Reduction Techniques

2.5.2 Machine Leaning Classification

Machine learning (ML) is regarded as an approach through which different machine learning

models gain up-to-date knowledge using already existing knowledge with the aim of improving

performance [78], [79]. Over the past years, ML approaches have been implemented for the

purpose of detecting and preventing more sophisticated DDoS attacks that traditional DDoS

detection solutions struggle to cope with [79]. Due to the ever-increasing size, number and

complexity of network traffic anomalies, the analaysis of network tarffic for detecting these

anomalies were carried out using different ML approaches since 1994 [80]. These ML models

are also referred to as ML classifiers.

Some of the most widely used ML classifiers for solving classification problems include

Multilayer Perceptron, Random Forest, Decision-Tree and Support Vector Machine algo-

rithms. Detailed explanations of these classifiers have been provided in Section 3.3 of Chap-

ter 3.



Chapter 2. Background and Related Work 26

2.5.3 Machine Learning DDoS Attacks Detection Solutions

Based on recent literature, some proposed machine learning solutions used for DDoS attacks

detection are reviewed in the next paragraphs.

The work presented in [81] proposed a multi-ANN classifier for efficient and accurate

DDoS attacks detection using an enhanced Genetic Algorithm (GA) and Principal Compo-

nent Analysis (PCA) for both the optimisation of parameters and improvement in feature

selection. The proposed classifier was trained using samples from both old and up-to-date

datasets. From the results presented, the approach was effective and accurate in detecting

unknown and known DDoS attack samples with similar patterns to those used in the training

set.

DDoS attacks detection based on feature selection (i.e. 27 features) using an ensemble

ML consisting of Multilayer Perceptron, Random forest, and Näıve Bayes was proposed to

improve the detection accuracy of DDoS attacks [82].

Work proposed in [83] makes use of statistical features selected from a Simple Network

Management Protocol (SNMP) Management Information Base (MIB) instead of using real

DDoS attack packets. Their implementation using the Support Vector Machine (SVM)

algorithm was effective in detecting a real attack after being tested with real DDoS attack

traces.

An intelligent DDoS attack detection system based on packet analysis and the SVM

algorithm was implemented in [84]. The detection system made use of packet properties

such as difference in the mean-time interval between the attacker and victim, the mean-time

interval frequency of the attackers IP addresses, etc. and achieved a detection rate of over

85% using two different datasets.

A deep learning approach was proposed for the DDoS attacks detection for the Internet

of Things (IoT) infrastructures [85] with higher accuracy. A distributed approach was imple-

mented, and tests were carried out using the KDDCUP99 and NSL-KDD datasets with 41

selected features. The results indicated a high detection rate for intrusions such as Probe and

Denial of Service attacks and highlighted the advantages of using distributed over centralized

monitoring systems and deep models over shallow [85], [86].

A Feature Feature Score (FFSc) technique for multivariate data analysis was proposed in

[87] to distinguish normal network traffic from DDoS attack traffic. The approach was tested

on a normalised Center for Applied Internet Data Analysis (CAIDA) 2007 DDoS dataset

and it achieved a detection rate of over 98%.

A hybrid machine learning technique DDoS attack detection system is proposed in [88].

The approach made use of the Genetic Algorithm for features selection based on 43 features

generated using Network Measurement and Accounting System (Netmate) Software [89].

The Multilayer Perceptron algorithm was used for attack detection using a ten-fold cross

validation technique. The approach achieved a high detection rate of over 99% however, a

single dataset was used throughout the paper therefore its performance on a wider and more

recent range of datasets would need to be validated.
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On the other hand, an approach proposed in [90] makes use of an ANN classifier to flag

both known and unknown DDoS attacks (which could be TCP, ICMP and UDP) from legiti-

mate network traffic. The detection results obtained were compared with training conducted

using both old and up-to-date datasets and it was observed that poor detection results were

obtained with improper training of old patterns. In addition, based on the results presented,

the proposed approach showed better precision, accuracy, specificity and sensitivity output

when compared to other traditional detection systems such as Probabilistic Neural Network

(PNN), Snort and Back-Propagation (BP) approaches [90].

In another study in [91], the authors proposed the use of Learning Vector Quantisation

(LVQ) neural network classifier which is a supervised form of quantisation used for classifi-

cation, data compression and pattern recognition tasks for the purpose of detecting DDoS

attacks. The experiment conducted made use of dataset samples that were converted to nu-

merical values which were used as inputs to the neural network for DDoS attacks detection

[91].

The use of a SVM based detection system was proposed in [92]. The authors made use

of a hierarchical clustering algorithm for data pre-processing before training and testing the

classifier. The use of the hierarchical clustering algorithm resulted in the reduction of dataset

size with sustained quality of the original dataset. This application resulted in a reduced

training time and better detection accuracy by the classifier [92].

A real-time DDoS attacks detection system using an enhanced Seupport Vector Machine

(eSVM) string kernel was proposed in [93] for classifying incoming network traffic flows as

either legitimate or attack flows. In the authors approach, a normal network traffic profile

was constructed using the behaviour of the user’s access which was then used to build a

model file by the eSVM for classifying network traffic as either attack or legitimate [93].

The authors in [94] proposed a DDoS attacks detection system using the Decision-Tree

(DT) classifier based on the C4.5 algorithm. In addition, the c4.5 algorithm was used as part

of the feature selection technique for splitting the datasets into further smaller subsets. The

datasets were repeatedly splitted until all data samples in the subsets belong to the same

class [94].

2.6 High Performance Computing Platforms

Nowadays, most computers are used as general-purpose computers as a variety of tasks are to

be performed and for these tasks to be accomplished, multiple programs are to be executed.

Apart from general-purpose computers, there is an availability of special-purpose computers.

These special-purpose computers are mostly used to solve specific problems and are designed

based on specific requirements. However, the capability of problem solving is dependent on

the program stored and the computer system’s design as stated in [95].

Both special-purpose and embedded systems are designed and dedicated to specific tasks.

These tasks are performed repeatedly to meet the needs of the task assigned. The design of

these systems consists of both hardware architecture and software methodology, which can
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be controlled by the embedded system designer. The flexibility of hardware design, software

development, embedded system platforms including memory design, processor architecture

and operating systems lead to improved design performance and reduced costs [96].

However, real-time constraints are often faced by embedded systems for example; em-

bedded systems have the traditional problem of maintaining efficiency during the real-time

execution of complex algorithms [96]. To address the traditional problem of embedded sys-

tems, parallel computing platforms and parallel programming methods can be used. This

parallelism is often employed in High Performance Computing (HPC) environments. To build

HPC systems using parallel computing platforms, different options are available. General-

purpose computing can be found on Graphics Processing Unit (GPU), Multi-core processing

systems, Field Programmable Gate Array (FPGA) and Application-Specific Integrated Cir-

cuits (ASICs) devices. A detailed discussion of these parallel processing high-performance

computing platforms that can be used to obtain optimized real-time performance in embed-

ded systems can be found in Chapter 4.

2.7 Available DDoS Attacks Datasets

There are some well-known DDoS attacks datasets that have commonly been used for de-

veloping DDoS attacks detection solutions over the years. Some of these datasets include

the 1998 DARPA Intrusion Detection dataset generated and managed by MIT Lincoln Labs,

the 1999 KDD intrusion detection, the CAIDA 2007 DDoS dataset, the Information Se-

curity Centre of Excellence (ISCX) 2012 daaset, the Canadian Institute for Cybersecurity

Intrusion Detection System 2017 (CICIDS2017) dataset and the the Canadian Institute for

Cybersecurity 2019 DDoS (CICDDoS2019) dataset just to name a few [97]–[99].

However, for the experiments carried out in thesis, the CAIDA 2007, CICIDS2017 and

the CICDDoS2019 datasets were selected as these consists of relevant and up-to-date DDoS

attack types spanning over just over a decade. The three main datasets used in this thesis

are described below:

• The CAIDA 2007

This is a well-known DDoS attack dataset which is widely used by researchers around

the world and one of the most prominent datasets currently widely available [100].

It consists of approximately one hour of network traffic traces with over 350 million

normal and attack packets captured on the 4th of August 2007. It consists of ICMP and

TCP SYN flooding DDoS attacks. The results of a comprehensive analysis conducted

on the dataset can be found under Appendix A and the analysis were carried out using

the CICFlowMeter tool [101]. From the data analysis carried out, this dataset consists

of over 300,000 network flow records.

• CICIDS2017

This dataset was generated through a 5 days simulation of different network attacks

in a real network environment by the Canadian Institute for Cybersecurity [98]. It
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contains both legitimate and the most common up-to-date DDoS attacks [102]. The

DDoS attacks data samples were extracted from the dataset and used in the experi-

ments carried out in this research [98], [102]. From the data analysis carried out, the

CICIDS2017 dataset consists of 225,745 network flow records of which around 57%

were classed as attack and around 43% as legitimate network traffic flows.

• CICDDoS2019

This dataset is provided by the Canadian Institute for Cybersecurity and consists of

both legitimate and the most common up-to-date DDoS attacks in Packet Capture

(PCAP) format that were generated in a real network environment [5]. The dataset

contains different up-to-date DDoS attacks such as SYN flooding, LDAP, Port Map,

UDP flooding, NetBIOS, UDP-Lag, SNMP, MSSQL, DNS and NTP attacks [5], [99].

From the data analysis carried out, the CICDDoS2019 dataset consists of 294,627

network flow records of which around 58% were classed as attack and around 42% as

legitimate network traffic flows.

2.8 Summary

In this chapter, a thorough review has been conducted on the concept of DDoS attacks

including the different classification of attacks and the ever-increasing severity of these at-

tacks to network infrastructure. In addition, the different DDoS attacks detection methods,

strategies and architectures have been studied and reviewed. Related works in the areas of

feature selection, use of machine learning models and the use of high-performance computing

platform for fast and early detection of DDoS attacks have been reviewed and presented.

The main observations made from reviewing several DDoS attack detection approaches

can be summarised:

• All DDoS attack detection approaches concentrate mostly on improving the accuracy of

detecting host-based DDoS attacks. Based on the review conducted on existing DDoS

attacks detection solutions, less attention has been given to the computational costs of

detection systems (processing power requirements and memory consumptions), flexi-

bility in deployments to support the different needs of networks and accurate detection

of network link based DDoS attacks.

Therefore, the investigation on the development and implementation of a generalised

lightweight and accurate DDoS attacks detection system (capable of detecting a wide

range of DDoS attacks both host-based and network link-based attacks) with low com-

putational cost and high flexibility in deployment is paramount to meet the different

needs of current networks.

• Existing DDoS attacks detection solutions lack the capability of early detection of

a wide range of DDoS attacks with high accuracy. Most traditional DDoS attacks

detection systems are centralised and as such, focus on detecting DDoS attacks within

the target’s network from a single monitoring point.
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With the ever-increasing size, complexity and severity of DDoS attacks, distributed

monitoring techniques should be adopted to detect the occurrence of DDoS attacks

early and mitigate the adverse effect that these attacks may have if successful. The

use of distributed monitoring approach will lead to early detection and closer to the

sources of attacks so that they are adequately mitigated. Furthermore, the use high-

performance computing platforms would aid fast classification of network traffic flows

(between hundreds of nanoseconds to a few milliseconds as shown in the literature)

leading to early detection of attacks.

• Current DDoS attack detection solutions lack flexible deployment, programmability,

scalability for detecting a wide range DDoS attacks attack types. Existing detection

solutions are only deployed in specific locations of a network for example, most tradi-

tional solutions are deployed centrally to meet the needs of the network being monitored

however, the growing sizes of networks and the increasing demands mean that the use

of detection solutions that can be flexibly deployed at different network nodes is crucial

in order to meet the different needs of the network and aid the early detection of these

attacks.

The programmability of detection solutions is very important due to the increasing com-

plexity of modern attacks. Programmability offers the possibility of detection models

to be retrained with new datasets with new attacks trends to be able to effectively cope

with new attacks.



Chapter 3

A Lightweight Decision-Tree

Algorithm for detecting DDoS

flooding attacks

In Chapter 2, different network DDoS attack types were presented. These attacks are

achieved by sending large volumes of network traffic from many exploited systems called

zombies to either a host or a network targeting the exhaustion of network resources. Several

proposed DDoS attacks detection solutions were reviewed in the literature but a lot of these

are software based and focus more on detection rates and accuracy with very little or no

focus on system’s resource utilization.

In this chapter, the limitations of the detection methods presented in the literature are

presented and a lightweight Decision-Tree algorithm called DT3 based on a classification

approach is presented. A lightweight DDoS attacks detection application as explained in [103]

is an application with low processing overhead, low resource utilization and fast detection (in

milliseconds) of DDoS attacks. The proposed lightweight architecture distinguishes attacks

from normal network traffic flows with a detection accuracy of over 99.6% across all selected

datasets. The architecture presented is optimised for deployment in low-cost environments

for efficient, rapid detection and prevention of DDoS attacks. To achieve a computationally

efficient architecture, the model was trained with a minimal number of features using a robust

feature selection approach and validated against the CAIDA 2007, Canadian Institute for

Cybersecurity (CIC) CICIDS2017 and CICDDoS2019 datasets. Analysis of the design is

presented along with system resource utilization under different network traffic conditions

and results shows that the new architecture provides no additional overhead to the monitored

network.

3.1 Background and Motivation

In Chapter 2, it was outlined that DDoS detection methods are categorised as:

• Signature-based;

31
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• Anomaly-based and

• Hybrid

To tackle DDoS attacks, many researchers have proposed different detection systems [19].

Some make use of data mining techniques as part of the implementations. However, the ever-

increasing variations of DDoS attacks have rendered some of the proposed detection systems

ineffective as these systems struggle to cope with the current network line rates and the

complexity of current attacks. Furthermore, some systems are very complex, leading to high

computational cost, and incur a high overhead to the network being monitored.

Previous research into DDoS detection have focused more on obtaining high accuracy,

reduction of false alarm rates and simplification of detection systems [18], [19]. However,

less attention has been given to the computational costs of detection systems (processing

power requirements and memory consumptions), and flexibility in deployments to support

the different needs of networks and distributed monitoring [18], [19].

This suggests there remains scope for new and more efficient approaches to detect DDoS

attacks. For these reasons, a lightweight architecture for detecting DDoS attacks using

a robust feature selection technique is proposed in this chapter. The proposed approach

comprises of the design and implementation of a DDoS attack detection solution that is based

on a Machine Learning (ML) classifier. The main advantage of the proposed solution is its

ability to be distributed throughout the network being monitored, leading to a lightweight

and scalable architecture that retains the ability to obtain high detection accuracy using

simple designs with low computational cost without affecting the performance of the network.

3.2 Proposed Approach

The use of ML classifiers provides an avenue through which data samples are assigned to

known class labels. In the proposed approach presented in this chapter, there are only two

known class labels of network traffic flows: legitimate and attack. The type of classification

involving two class labels is known as a binary classification issue. Each class label in a

classification method consists of a series of extracted features from past observations in one

or more datasets.

The process of choosing a classifier for distinguishing legitimate from DDoS attack net-

work traffic flows is a non-trivial task as it is not possible to know apriori which one is

the best in solving the stated problem. Therefore, several supervised learning classification

methods were evaluated, and it was discovered that the Decision-Tree classification algorithm

performed the best. This chapter focuses on the implementation using the Decision-Tree clas-

sification algorithm. However, comparisons will be drawn with respect to related work in

areas which made use of other supervised classification methods. The subsections below will

outline the steps that are required in effectively choosing the ML classifier which is capable of

efficiently and accurately distinguishing legitimate from DDoS attacks network traffic flows

as shown in Figure 3.1.
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Figure 3.1: Proposed approach.
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3.2.1 Datasets

The primary dataset used is the CAIDA 2007 DDoS attack dataset. In addition, the CI-

CIDS2017 and CICDDoS2019 datasets were used to test the validity and robustness of the

selected Machine Learning (ML) models. The data samples (network flows) were randomly

selected from the datasets described in Chapter 2 to create a balanced dataset of equal

number of legitimate and attack network traffic flows from all selected datasets as shown in

Table 3.1. This was done to overcome the problems of bias and overfitting which can occur

as a result of using unbalanced datasets to train classifiers [104]. These were used for training

and testing the selected ML classifiers.

Table 3.1: Number of network flows extracted from the selected datasets

Dataset
Total Number of

samples
Legitimate

samples
DDoS Attack

samples

CAIDA 2007 172,800 86,400 86,400

CICIDS 2017 195,400 97,700 97,700

CICDDoS 2019 101,000 50,500 50,500

3.2.2 Pre-processing

To effectively and efficiently implement the DT models, important attributes relevant to the

DDoS attack flows were extracted from the datasets. The approach focuses on distinguishing

normal from attack traffic flows and not on individual packets. Over 40 network flow features

were extracted from the datasets using the Tshark Library and CICFlowMeter used in [5],

[73], [101], [102]. Not all features are highly correlated in distinguishing flow records, in this

regard a robust technique; Low Variance Filter (LVF) feature selection to highlight only the

most relevant DDoS features was utilized.

3.2.3 Feature Selection Methods

Below are descriptions of the most widely used feature selection techniques in selecting the

top ranked features that are deemed effective in distinguishing normal from DDoS attacks

network flows using ML algorithms along with the approach explored in this chapter:

• Missing Value Ratio (MVR)

This method is used to reduce the features with significant missing values. If the

dataset consists of attributes with too many missing values based on a set threshold,

then these attributes are dropped.

• High Correlation Filter (HCF)

This technique is used to remove highly correlated attributes from a dataset. This is

because data attributes that are correlated are likely to carry very similar information.

To achieve this, the dataset must be normalised as correlation is scale sensitive [77]. In
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addition, the correlation coefficient between attributes that are numerical or nominal in

nature are calculated using the Pearson’s chi square value and the Pearson’s Product

Moment Coefficient [77]. Then, pairs of attributes are reduced to a single attribute

when a high correlation coefficient value which is above a set threshold is attained. For

example, a correlation coefficient that is equal to means that there is no correlation

between selected attributes however, if it is equal to 1, it indicates that there exists a

full correlation so one of the attributes can be dropped.

• Random Forest (RF)

Apart from being effective classifiers, random forests are useful techniques for feature

selection. This technique presents the importance of each attribute in the dataset. It

achieves this by generating a set number of constructed trees against a specific attribute

and uses the statistics obtained to find the most informative subset of features. An

attribute that is often selected is likely to be an informative attribute and it is retained.

The calculated score of the attribute’s usage statistics shows its predictive power with

respect to the other attributes in the dataset. The top features are retained thereby

leading to dimensionality reduction in the dataset.

• Backward Feature Elimination (BFE)

This technique aims to eliminate the attributes that offer the least predictive power

towards the overall accuracy of the ML model in use through multiple iterations of

training. To achieve this, at the first iteration, the chosen classification algorithm is

trained with the total number of attributes (n) in the dataset. Then the attribute

whose removal produces the smallest increase in the error rate of the algorithm is

removed from the dataset and the model is trained with n − 1 attributes n times [105].

This process is then repeated using n − 2 attributes until a set threshold is met. For

each iteration i , a model is trained with n − i attributes and an error rate e(i). By

setting a maximum tolerable error rate, a set number of attributes necessary to achieve

a classification performance are selected [105].

• Forward Feature Selection (FFS)

This technique is the inverse to the Backward Feature Elimination technique. It starts

with a single attribute and progressively, one attribute is added after each iteration

and the attributes that contributes the highest performance increase are reserved [105].

Both the Forward Feature Selection and Backward Feature Elimination techniques are

time and computationally expensive [105]. Therefore, these techniques are practically

applied to small datasets with low number of attributes [106].

• Chi-Squared

This statistical test technique is applied to a group of categorical attributes to evaluate

the likelihood that there is a correlation or association between the attributes based

on the frequency distribution of the attributes [107].
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• Low Variance Filter (LVF) Feature Selection

In this technique, attributes with very little or no changes in the dataset carry very

little information and are therefore ignored. This technique is very effective in datasets

that are numerical in nature [77]. The technique is used to filter out attributes with low

variances which might contribute little or nothing towards the overall efficiency of the

model and it involves calculating the variance (using Equation 3.1) of each attribute

from a balanced dataset and filtering out the attributes with low variances below a set

threshold. Also, variance is range dependent therefore, normalization of the dataset is

required before the application of this technique.

Table 3.2: Characterisation metrics.

Metrics Equation

Basic summary statistics

Minimum min = min (xi)
Maximum max = max (xi)

Sum sum =
∑N

i=1 xi
Range range = min−max

Central tendency

Mean µ = 1
N

∑N
i=1 xi

Mode mode = freq(X)

Median median = 1
2

(
xN

2
+ xN

2
+1

)
of sort(X)

X represents all samples; Xi is the i − th sample; N represents the total number of

samples; freq is the most frequent value; sort represents values in sorted order.

V ariance (σ2) =

N∑
i=1

(Xi − µ)2

N
(3.1)

where µ is the mean of all the values of the selected attribute and is calculated using

the equation highlighted in Table 3.2. Xi represents individual sample values for the

specific attribute and N is the total number of samples.

Some of the extracted network flow features and their meanings are shown in Table 3.3.

However, tables containing all the extracted network flow features and their meanings can

be found in Appendix E.

Also, Table 3.4 shows some typical network flow records with some of the features. However,

since variance is range dependent, normalisation of the dataset is therefore necessary before

applying the Low Variance filter. In this regard, the min-max normalisation technique (using
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Table 3.3: Some Extracted Features and their meanings

Features Meaning

Fwd IAT Mean
Mean time between two packets sent in the
forward direction received by target

Fwd Bytes Number of bytes in the forward direction received by target

Avg Packets/s Average size of packet of flow

Fwd IAT Std Standard deviation time between two packets received by target

Fwd Packets/s Number of forward packets per second received by target

Total Fwd Packets Total packets in the forward direction received by target

PSH Flag Count Number of packets with PUSH flag set

Bwd Bytes Number of bytes in the backward direction sent by target

Bwd IAT Mean
Mean time between two packets sent in the
backward direction sent by target

Bwd IAT Std Standard deviation time between two packets sent by target

ACK Flag Count Number of packets with ACK

Fwd PSH Flags
Number of times the PSH flag was set in
packets received by target

SYN Flag Count Number of packets with SYN flag set

Total Bwd Packets Total packets in the backward direction sent by target

Bwd Packets/s Number of backward packets per second sent by target

Bwd PSH Flags
Number of times the PSH flag was set in
packets travelling from target

Fwd IAT Tot
Total time between two packets sent in
the forward direction

Equation 3.2) was applied where each data value is normalised to a value between 0 and 1

where 0 is minimum and 1 the maximum using the equation below and some examples of

the normalised samples are shown in Table 3.5.

Table 3.4: Some extracted network flow features from the CICDDoS2019 dataset

Flow Duration
(microseconds)

Flow
Packets/s

Fwd IAT
Mean

(microseconds)

Bwd IAT
Mean

(microseconds)
Label

47549279.00 0.42 5283241.56 5283241.67 DDoS

46000372.00 0.43 5111141.33 5111140.56 DDoS

48494766.00 0.29 5388299.00 6507682.00 DDoS

43082212.00 0.37 4786902.78 5586661.60 DDoS

47986607.00 0.50 3691269.77 5331839.56 DDoS

30489331.00 1.97 1218439.72 923060.06 BENIGN

225244.00 159.83 9889.94 10830.29 BENIGN

464754.00 234.53 8529.71 6833.42 BENIGN

140318.00 228.05 8243.47 7644.54 BENIGN

10096655.00 4.16 5430.06 457639.68 BENIGN
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x̃kj =
xkj −mink

maxk−mink
(3.2)

where xkj is the j − th value of the k − th feature and the minimum and maximum values of

the k − th feature are mink and maxk respectively.

Table 3.5: Records of some normalised network flow samples from the CICDDoS2019
dataset.

Flow Duration
(microseconds)

Flow
Packets/s

Fwd IAT
Mean

(microseconds)

Bwd IAT
Mean

(microseconds)
Label

0.953101804 0.000000008 0.105899967 0.105899969 DDoS

0.957746177 0.000000009 0.106416010 0.106415994 DDoS

0.942219682 0.000000006 0.104690914 0.126439749 DDoS

0.929872761 0.000000008 0.103318987 0.120580727 DDoS

0.963597766 0.000000010 0.074122751 0.107066305 DDoS

0.985743927 0.000000064 0.039393110 0.029843254 BENIGN

0.971636388 0.000689460 0.042662293 0.046718687 BENIGN

0.947657197 0.000478219 0.017392515 0.013933693 BENIGN

0.915818579 0.001488422 0.053802955 0.049893896 BENIGN

0.966234623 0.000000398 0.000519649 0.043795426 BENIGN

To evaluate possible changes in variance of the extracted features, the variance of each

attribute was calculated from a pool of 6,000, 12,000, 24,000 and 48,000 balanced and nor-

malised flow records. In addition, the average variance value from the different pools of

normalised flow records was recorded for each attribute.

From the 40+ extracted features, 15 features were observed to have variance values be-

tween 0.00032 and 0.37544 with other features having zero variance as shown in Table 3.6.

Commencement of training and testing were conducted using attributes with conservative

(i.e. lower) threshold values but discovered that higher detection accuracy stems from at-

tributes with variance values above 0.025. Therefore, this was set as the threshold value.

As can be observed in Table 3.6, the first three features contribute most value to the

overall sum of the variance values from all attributes. Accordingly, the top 3, 5 and 7

features were selected respectively due to high variance values of over 0.025 compared to

the other attributes. The results from using the top 3, 5 and 7 features from the LVF are

compared with the results from using the top 3, 5 and 7 features from different feature

selection techniques to evaluate the effectiveness of the selected features.

Table 3.7 and Table 3.8 summarise some of the related work carried in the field highlight-

ing the feature selection techniques applied, the number of selected features and the different

Machine Learning algorithms implemented. From the tables, it can be observed that most of

the feature selection techniques applied have been discussed in Section 3.2.3 of this chapter.
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Table 3.6: Variance of Extracted Network Flow Features

Extracted Flow Features Variance values

Fwd IAT Mean 0.37544

Fwd Bytes 0.22656

Avg Packets/s 0.20336

Fwd IAT Std 0.03251

Fwd Packets/s 0.02879

Total Fwd Packets 0.02795

Fwd PSH Flag Count 0.02542

Bwd Bytes 0.01942

Bwd IAT Mean 0.01878

Bwd IAT Std 0.01767

ACK Flag Count 0.01480

Fwd PSH Flags 0.00624

SYN Flag Count 0.00284

Total Bwd Packets 0.00148

Bwd Packets/s 0.00032

Bwd PSH Flags 0.00000

Fwd IAT Tot 0.00000

Table 3.7: Summary of feature selection for ML-based DDoS detection systems

Work
Feature

Selection
Selected Features

ML Detection
Model

[83] SNMP MIB

ip.ipInReceives, ip.ipInDelivers,
ip. ipOutRequests, ip.ipOutDiscards,
tcp.tcpAttemptFails, tcp.tcpOutRsts,
udp.udpInErrors, icmp.icmpInMsgs,

icmp.icmpInErrors,
Icmp.icmpInDestUnreachs,

icmp.icmpOutMsgs,
icmp.icmpOutErrors,

Icmp.icmpOutDestUnreachs

SVM

[84]
Characteristic-

based

total number of packets,
mean time interval,
mean packet size,

number of packets per second,
number of bytes per second &

total amount of bytes
for each IP address

SVM

[85] - 123 encoded features Deep Learning

[88]
Genetic

Algorithm
total fpackets, max biat,

std biat, mean idle, burg cnt
MLP

[108]
Chi-squared,
Symmetrical
Uncertainty

ip.srccountry, frame.len,
ip.proto, syn flag, ack flag,

rst flag, ip.ttl, frame.deltatime
DT: C4.5
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Table 3.8: Summary of feature selection for ML-based DDoS detection systems cont.

Work Feature Selection Selected Features ML Detection Model

[109] - - Naive Bayes

[110]
Characteristic-

based
- SVM

[111]
Forward feature

selection
Over 11 selected features

Hybrid supervised
learning algorithm

[112] -

Number of Packets,
Average of Packet Size,
Time Interval Variance,
Packet Size Variance,

Number of Bytes,
Packet Rate, Bite Rate

Neural Network

[113]

Information
Gain,

Gain Ratio,
Chi-squared,

RelifF

13 selected features DT: J48

[114]
Characteristic-

based
-

Dendritic Cell
Algorithm

[115]
Chi-squared,
Information

Gain

Ratioicmp, Land,
Ratioudp, OnewayRatio,
Ratiotcp, Protocoltype,
AverageLengthIPFlow,
RatioofInOut Packets

Näıve Bayes (NB),
DT: C4.5, K-means,

SVM, k-NN,
Fuzzy c-means

[116]
Random Forest,

ID3
Over 30 selected features SVM

[117]

Consistency-
based Subset
Evaluation,

Characteristic-
based

Over 10 selected features MLP

Table 3.9 summarises the characteristics of some feature selection techniques used in this

field of research.

3.3 Machine Learning Algorithms

Machine Learning (ML) algorithms have been used to solve multiple real world problems

over the years and this continues to be the case [78]. These algorithms are also being applied

in the area of network monitoring and security to detect abnormal behaviours and attacks

in networks [18]. As noted previously, the process of choosing a classifier for distinguishing

legitimate from DDoS attack network traffic flows is a non-trivial task as it is not possible

to know a priori which one is the best in solving the stated problem. Therefore, several

supervised learning algorithms such as Multilayer Perceptron (MLP), Random Forest (RF),
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Table 3.9: Summary of feature selection techniques and their characteristics

Feature
Selection
Technique

Numerical
input Data

Categorical
input Data

Numerical
output

Categorical
output

High
Computation
Requirement

High
Correlation

Filter
Y N Y Y N

Chi-squared N Y N Y N

Forward
feature

selection
Y N Y N Y

Backward
Feature

Elimination
Y N Y N Y

Random
Forest

Y Y Y Y Y

Low
Variance

Filter
Y N Y Y N

Decision-Tree (DT) and Support Vector Machine (SVM) are used as these are the most

widely used ML algorithms for solving classification problems.

3.3.1 Types of Classifiers

There are hundreds of machine learning classifiers available for classification, however, differ-

ent classification problems require different types of classifiers to produce the best classifica-

tion results [118]. According to the survey paper, there are a total of 17 families of classifiers

in machine learning: discriminant analysis, bayesian, neural networks, support vector ma-

chines, decision trees, rule-based classifiers, boosting, bagging, stacking, random forests and

other ensembles, generalised linear models, nearest-neighbours, partial least squares and prin-

cipal component regression, logistic and multinomial regression, multiple adaptive regression

splines and other methods [118].

The paper evaluated the performance of 179 classifiers on 121 datasets and found that

there is no single classifier that can be used to solve all classification problems [118]. It

was discovered that the classifiers with the overall best performance across different datasets

are Decision-Tree, Random Forest (ensemble classifiers built from decision trees), Support

Vector Machines and Neural Networks. These classifiers are described as follows:

• Decision-Tree Algorithm

It is an active learning algorithm that makes use of a predictive modelling technique

based on a structure similar to a flow chart, with classification rules contained in the

internal nodes and the class labels in the leaf nodes [119]–[121]. Once constructed, the

DT uses the classification rules which were generated from the supplied features at the

training stage to predict a test sample into a class label. These classification rules are
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used as operating guidelines for distinguishing legitimate from DDoS attack network

traffic flows. The root node is the attribute with the best conditions for splitting the

samples into different internal or terminal (leaf) nodes using the characteristics of the

samples as shown in Figure 3.2.

Figure 3.2: Decision-Tree structure.

The most frequently used DT classifiers are the Classification And Regression Tree

(CART) which include the Iterative Dichotomiser 3 (ID3) and C4.5 algorithms [122]–

[125]. The C4.5 algorithm is a revised version of the ID3 algorithm, which utilizes

the information gain ratio for selection of the attributes with the best split. This

algorithm possesses a series of advantages over the CART and ID3 algorithms. It

effectively handles continuous attributes compared to CART, using the information

gain ratio to handle the problem of overfitting which exists in ID3 and it can efficiently

handle missing values in a dataset [104]. In this chapter, the DT model is constructed

using C4.5 following the construction guidelines from [104], [125]–[127]. The processes

involved in the development and implementation of the Decision-Tree algorithm can

be found in Appendix B.

• Random Forest (RF)

It is one of the classification trees algorithms and it consists of decision tree classifiers,

termed a forest. To implement it, individual trees from the selected number of trees

in the forest predict the expected output and a voting technique is used to select the

output that obtains the highest number of votes [128]. Also, to overcome over-fitting,

the average of the probabilistic predictions is used [128]. A structure of the Random

Forest classifier with N number of trees is shown in Figure 3.3.
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Figure 3.3: Random Forest structure with N number of trees.

• Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a type of supervised machine learning approach

which is capable of performing pattern recognition and network traffic analysis through

the mapping of input attribute vectors to a higher dimensional attribute space [127].

The SVM classifier transforms the initial dataset (normalised dataset) to a higher

dimension using non-linear mapping. In order to properly separate the class labels, it

searches the hyperplane and the closest data to the hyperplane are known as support

vectors [127], [129]. There are three main kernel approaches in collaboration with

the SVM classifier. These are the Radial kernel SVM (R-SVM), Polynomial kernel

SVM (P-SVM) and Linear kernel SVM (L-SVM)- [130]. The SVM classifier supports

the γ and C parameters, which are the deviation of the kernel and the penalty for

misclassification respectively.

• Multilayer Perceptron (MLP)

The Multilayer Perceptron is a type of deep artificial neural network-based classifier

[131], [132]. It consists of more than a single perceptron. It composes of an arbitrary

number of hidden layers between the input and output layers [91], [133]. The hidden

layers act as the computational engines of the MLP. Each attribute acts as an input

and the outputs are the class labels. The MLP may be linear if a single layer of nodes

is used. However, it can be non-linear when several hidden layers with multiple layers

of nodes are used in its application [133]. Figure 3.4 shows the structure of an MLP

with a single hidden layer.
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Figure 3.4: Multi-layer Perceptron structure.

The ML classifiers discussed above are implemented using the Scikit-learn Python module

explained in [127] for classification of samples. The tuning parameters used by the selected

ML classifiers for the classification of samples using the Scikit-learn Python module are high-

lighted in Table 3.10. The top 3, 5 and 7 features were selected due to their high variance

values of over 0.025 which contributed more towards high accuracy in classification compared

to the other features. Therefore, the results obtained based on the use of the Low Variance

Filter are compared with the results from other feature selection techniques explored in this

thesis using the threshold of 3, 5 and 7 features.

Table 3.10: Summary of the ML Classifiers and the parameters used in Scikit-learn

Classifier Parameters Value

Decision-Tree criterion gini, entropy
max features 3 , 5, 7

Random Forest n estimators 1, 5, 10, 50, 100, 200, 500
max features 3 , 5, 7

C 10−2, 10−1, · · · , 103

Support Vector Machine γ 10−9, 10−8, · · · , 103

max features 3 , 5, 7

Multi-layer Perceptron
max iter 10, 50, 100, 200, 500, 1000
activation functions relu, sigmoid
max features 3 , 5, 7

The maximum number of selected features (max features) used across the classifiers are

three, five and seven based on the top selected features by the different feature selection

techniques employed. The number of hidded layers explored for the Multi-layer Perceptron
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classifier are between 1 and 4 layers as recommended in [134] to obtain optimum performance

in classification accuracy and other performance measures used to evaluate the classifiers.

3.3.2 Classification and Performance Evaluation

Well-known open-source data mining tools such as the Waikato Environment for Knowledge

Analysis (WEKA) and Scikit-Learn which is a Python module were used to implement the

ML classifiers. These data mining tools consists of different algorithms and their functions

include clustering, classification, regression, etc. Also, they provide several metrics i.e. True

Positives (TP), True Negative (TN), False Positives (FP), False Negatives (FN), Accuracy,

Sensitivity, Precision, F-measure, etc. which can be used to evaluate the performance of the

classifiers [127], [134]. Below are the performance measures used in evaluating the perfor-

mance of the classifiers:

• Accuracy: This is the proportion of correctly classified records over the total number

of classification attempts.

• Precision: This is the ratio of the correctly classified records to the number of positive

results predicted by the classifier.

• Misclassification Error Rate: This is the proportion of legitimate traffic flows that

are classified as attack.

• Sensitivity: This is a measure of the proportion of normal flow records that are

predicted as legitimate flows. It is also known as Recall.

• Specificity: This is the proportion of attack records which are predicted as attack.

• F–Measure: This is the harmonic mean of the sensitivity and precision. It shows

how precise the classifier model is (how many instances it correctly classifies). Also,

it shows how robust the classifier is (i.e. if it does not miss a significant number of

instances).

The results of the performance measures discussed above range between 0 (worst outcome)

and 1 (best outcome) based on the overall classification of all samples. These measures are

calculated using the formulas highlighted in Table 3.11. In addition, these measures are

computed for both legitimate and DDoS attacks samples in order to evaluate how well each

label is classified.

However, before evaluating the performance of the classifiers, classification needs to take

place. At the core of classification algorithms is the classification phase, where the network

flow samples are classed as either legitimate or attack. Two stages are involved in the

classification of network flow samples and these stages are training and testing.

In the training stage, the classifiers are trained to learn how to distinguish attack from

legitimate network traffic flows. This is achieved with the use of a training set obtained

from the selected datasets. The training set comprises of several network flow samples in
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Table 3.11: Evaluation of Classification Measures.

Classification Measure Equation

Accuracy ACC = TP+TN
TP+TN+FP+FN

Precision P = TP
TP+FP

Sensitivity SE = TP
TP+FN

Specificity SP = TN
TN+FP

F-Measure Fm = 2P×R
P+R

which the class labels are well-known. The classification performance of the classifiers can be

improved by tuning specific parameters associated with them. These parameters are selected

by estimating the performances of the classifiers which is achieved through the application

of the cross-validation technique on the training set. In this chapter the stratified K-fold

cross-validation technique is used with ten as the value of K.

The supplied sample data set is subdivided into 10 subsets with each part containing an

equal number of network traffic flow records. A subset is chosen for testing while the rest

are used as training sets. The process runs repeatedly for 10 times. The advantage of this

approach is that the whole supplied sample data set are used as training and testing sets.

Each subset from the whole sample is tested for one time [104] and this ensures that all the

samples are evenly represented.

In the testing stage, the classifiers use the training received to classify new network flow

samples present in the test set (a new collected data set) to the different classes. However, in

order to effectively evaluate how accurate the classifiers perform in assigning the new samples

to the correct class labels, the class labels of the samples in the test set are unknown to the

classifiers.

The overall normalised dataset was subdivided in two parts: 75% of the samples represented

the training set and 25% represented the test set.

3.4 Experimental Results

The experiments were performed using a system consisting of an Intel core i7 Central Process-

ing Unit (CPU) with 3.6GHz Quad core processor, 500GB of memory and 16GB of Random

Access Memory (RAM) running a Windows 10 Operating System. In this section, the results

of the experiments conducted in this chapter are presented. This involves the performance

evaluation of the selected ML classifiers using the different number of selected features from

the feature selection techniques across the datasets described in Section 3.2.1.
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3.4.1 Performance of the selected ML Classifiers

In this section, the performance of the ML classifiers are evaluated with the use of different

numbers of selected features from different feature selection techniques.

• Use of Chi-Squared Feature Selection Technique

The Select-K-Best with Chi-squared (SKB-Chi2) feature selection approach was used

to select the top three, five and seven ranked features from the datasets. These fea-

tures were used in training and testing the different ML classifiers. Figure 3.5 shows

the classification accuracy of the ML classifiers using the different selected number of

features.

Figure 3.5: Classification accuracy of the ML classifiers with selected features using Chi-
squared.

From the figure, it can be seen that the DT and RF classifiers performed the best with

accuracies of over 86%, 93% and 99% with 3, 5 and 7 selected features respectively.

In addition, the MLP classifier performed the least with just over 74% classification

accuracy. Overall, it can be observed that there is an increase in classification accuracy

with increase in the number of selected features across the classifiers apart from the

SVM classifier which experienced a slight drop in accuracy when 5 features were used.
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• Use of BFE and FFS Feature Selection Techniques

The application of the Backward Feature Elimination (BFE) and Forward Feature

Selection (FFS) feature selection techniques in selecting the top three, five and seven

ranked features from the datasets yielded the same features and these were used in

training and testing the different ML classifiers. Figure 3.6 shows the classification

accuracy of the ML classifiers using the different number of selected features. From

the figure, it can be seen that all the classifiers achieved similar classification accuracy

of over 93% on average across the selected number of features.

Overall, it can be observed that there is an increase in classification accuracy with

increase in the number of selected features across all classifiers.

Figure 3.6: Classification accuracy of the ML classifiers with selected features using BFE
and FFS.

• Use of LVF Feature Selection Technique

The Low Variance Filter feature selection approach is the proposed feature selection

technique which has been explained in Section 3.2.3. Figure 3.7 shows the classification

accuracy of the ML classifiers using the different number of selected features. From

the figure, it can be seen that the DT and RF classifiers achieved very high and sim-

ilar classification accuracy of over 99% across the selected number of features. This

displayed the highest classification accuracy obtained for the two classifiers when com-

pared to results from the other feature selection approaches explored above. Overall,
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it can be observed that there is an increase in classification accuracy with an increase

in the number of selected features across all classifiers.

Figure 3.7: Classification accuracy of the ML classifiers with selected features using LVF.

Overall, the DT classifier outperformed the other classifiers as it achieved a significant

99.93% classification accuracy in the CAIDA 2007 and CICDDoS2019 DDoS attacks datasets

respectively. This classifier was selected and explored further in the subsequent sections. For

further detailed information regarding the performance of these classifiers (i.e. Accuracy,

Precision, Sensitivity and F-measure), please refer to Appendix B.

3.4.2 Performance of the DT Classifiers

Figure 3.8 shows a partial DT classifier/model which was constructed using 3 selected fea-

tures. As shown, the split at the root node (node 1) is based on the attribute (Avg Packets/s).

Based on the structure of the DT model, the classification rules can be extracted. For exam-

ple, if the Avg Packets/s at the root node is less than or equal to 60.5 and the magnitude of

Fwd Bytes at node 2 is less than or equal to 112 then the network flow is classified as benign.

Another classification rule is that if the Avg Packets/s at the root node is less than or equal

to 60.5 and magnitude of Fwd Bytes at node 2 is greater than 112 then the network flow

is classified as a DDoS attack. The use of dashed lines is to indicate that there are further

internal nodes and splits between node 5 and the leaf nodes connected to it.
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Figure 3.8: Partial Constructed DT model with 3 selected features.

3.4.3 Performance of the DT Classifiers on selected datasets

Different DT models are constructed using different numbers of features which were selected

using the Low Variance Filter technique to investigate the optimal number of selected features

for best efficiency and effectiveness. Table 3.12 shows the performances of DT models with

3, 5 and 7 features.

Table 3.12: Performance of DT Models with Different Number of Selected Features using
LVF

Datasets

DT model
(based on
number of
features)

Modelling time
(seconds)

Classification
accuracy (%)

CAIDA 2007
DT3 0.20 99.93
DT5 0.26 99.93
DT7 0.31 99.93

CIC 2017
DT3 0.16 99.69
DT5 0.24 99.61
DT7 0.34 98.98

CIC 2019
DT3 0.09 99.93
DT5 0.20 99.92
DT7 0.23 99.88

From Table 3.12, it can be seen that the DT constructed with the top 3 selected features

based on the Low Variance filter technique produced high classification accuracy across all

three datasets when compared with the DT models using 5 and 7 selected features. The ef-

fectiveness of using the DT model with the top 3 selected features based on the application of

the Low Variance filter technique was evaluated using the performance measures. As shown

in Figure 3.9, the DT model achieved high results with respect to sensitivity and specificity.

However, these classification accuracy results are based on Decision-Tree classifiers with a
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depth of 3. An increase in the number of selected features led to an increase in classification

accuracy when the tree depth is increased from 3 to 4 from the experiments carried out how-

ever, it is worth noting that increase in the tree depth will lead to an increase in complexity

and additional computational requirement.

Figure 3.9: Effectiveness of the DT model with 3 selected features across the 3 datasets.

This shows that the model achieved high accuracy in predicting legitimate and attack

network flow samples from the number of predicted samples. It achieved high TP results,

showing it is effective in predicting benign samples that belonged to the benign class label.

Also, it achieved high TN results showing that it can predict most of the attack samples

from the total number of attack predictions made.

Furthermore, the model achieved very low false alarms. The FP and FN rates achieved

is 0.1% in both the CAIDA 2007 and CIC 2019 datasets showing that misclassifications were

very low as displayed in Figure 3.10. The highest false positive and false negative rates

of 0.3% occurred on the CICIDS2017 dataset. However, the FP and FN rates can vary

depending on the number of samples that are incorrectly classified with respect to the total

number of samples used in the experiment. The values obtained are based on the experiments

conducted in this chapter.

Overall, this shows that the proposed lightweight DT model with just 3 selected features

is effective and efficient in distinguishing legitimate from DDoS attack network traffic flows

when deployed in a real network environment.
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Figure 3.10: False positive and False negative of the DT model.

3.4.4 Real-time network monitoring using DT3 model

The DT model was deployed at different monitoring points of the Advanced Network Re-

search Group (ANRG) private network at the University of Liverpool to tests its effectiveness

and reliability in a real-time environment. The different points of the network where the

models were deployed are indicated with the monitoring nodes 1-3 shown in Figure 3.11.

The attacker node shown in the Figure 3.11 was used to generate the attack traffic

targeting server 1 and workstations 1 and 3. The attack and normal network traffic (around

500 network flows per second of which 400 were attack and the rest were normal) in the

CAIDA 2007, CIC 2017 and 2019 DDoS datasets were replayed using the attacker node

directed at the different target nodes in the network. As shown in Figure 3.12, the red and

the green small rectangles in the real-time network monitoring application represent attack

and legitimate network packets respectively moving through the network link.

The port mirroring technique is applied whereby all packets going into each network

switch are mirrored to the monitoring node attached to each switch. Once packets are

captured in the monitoring nodes, relevant features are extracted from each network flow

and fed to the DT models for classification. Results from preliminary tests show that the

DT model with three selected features was effective in distinguishing normal from attack

network traffic flows.
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Figure 3.11: Real-time deployment of DT model in the ANRG network.

Figure 3.12: Real-time network monitoring application
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3.4.5 Real-time Monitoring Implementation System Resource Utilization

The resource utilization (CPU processing power) was examined for the DT3 model under the

different network traffic conditions highlighted in Table 3.13. These network traffic scenarios

were modelled based on the network traffic scenario in the CAIDA 2007 dataset whereby the

ratio of attack to legitimate network traffic flows was approximately 5:1. However, in other

real attack scenarios, this ratio could be larger in favour of attack traffic flows.

Table 3.13: Different network traffic conditions

Traffic conditions
Number of legitimate
network traffic flows

Number of attack network
traffic flows

Scenario 1 10 0

Scenario 2 10 50

Scenario 3 20 100

Scenario 4 100 Over 1000

It was discovered that an increase in the network traffic directed to server 1 from the

attacker node leads to an increase in the CPU resource utilization of the monitoring node

1 shown in Figure 3.13. In scenario 1, ten legitimate with no attack network traffic flows

were directed to server 1 and around 2% of a core’s processing power was used to analyse the

network flows and produce results based on the DT3 model. Increasing the network traffic

flows to sixty comprising of fifty attack and ten legitimate from scenario 2 led to an increase

in the core’s processing power requirement to around 10% as shown in Figure 3.13.

Figure 3.13: Process CPU resource utilization
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In addition, increasing the traffic to scenario 3 led to a further increase in the core’s pro-

cessing power requirement. Finally, introducing over a thousand attack traffic flows directed

to server 1 led to the monitoring system utilizing close to 100% of the core’s processing

power. This shows that increase in network traffic directly leads to an increase in the CPU’s

processing power requirement as shown in Figure 3.13.

3.4.6 Comparison with related works

The effectiveness of the proposed DT3 model is compared with other related works in terms

of feature selection techniques used, number of selected features and the overall classification

accuracy of the models. Based on the related works and the different approaches taken by

other researchers, it can be seen in Table 3.14 and Table 3.15 that although the proposed

model uses the least number of features in this field, results show that it is effective in dis-

tinguishing legitimate from attack samples when compared to related works. It competes

with other models in classification accuracy whilst validating its effectiveness with multiple

up-to-date DDoS attacks across multiple datasets.

Table 3.14: Comparison of approach with related work

Work
DDoS

Attacks

Feature
Selection
Technique

Number of
Selected
Features

Dataset
ML

Detection
Model

Accuracy
(%)

[83]
TCP SYN,
UDP and

ICMP
SNMP MIB 13 - SVM 99.53

[84]
TCP SYN,
and ICMP

Characteristic-
based

6 CAIDA SVM 98.7

[85] - -
123

encoded
features

NSL-KDD
Deep

Learning
99.27

[88]
TCP SYN,
and ICMP

Genetic
Algorithm

5 CAIDA MLP 99.98

[108]
TCP SYN
and ICMP

Chi-squared,
Symmetrical
Uncertainty

8 CAIDA DT: C4.5 95

[109]
HTTP

flooding
- -

Generated
dataset

Naive
Bayes

95

[110]
TCP SYN,
UDP and

ICMP

Characteristic-
based

-
Generated

dataset
SVM 98.99

[111] -
Forward
feature

selection

Over 11
selected
features

NSL-
KDD

Hybrid
supervised
learning

algorithm

98.9

[112] - - 7
DARPA
LLDOS

2000

Neural
Network

94
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Table 3.15: Comparison of approach with related work cont.

Work
DDoS

Attacks

Feature
Selection
Technique

Number of
Selected
Features

Dataset
ML

Detection
Model

Accuracy
(%)

[113] -

Info. Gain,
Gain Ratio,
Chi-squared,

RelifF

13
NSL-
KDD

DT: J48 99.67

[114] TCP SYN
Characteristic-

based
-

Generated
dataset

Dendritic
Cell

Algorithm
-

[115]
TCP SYN
and ICMP

Chi-squared
and

Information
Gain

8 CAIDA

Näıve Bayes
(NB),
DT:
C4.5,

K-means,
SVM,
k-NN,
Fuzzy

c-means

98.7

[116] -
Random
Forest,

ID3

Over 30
selected
features

KDD99 SVM 82.99

[117] -

Consistency-
based Subset
Evaluation,

Characteristic-
based

Over 10
selected
features

NSL-
KDD

MLP 91.7

DT3
TCP SYN,
UDP and

ICMP

Low
Variance

Filter
3

CAIDA
2007,

CIC 2017
and

CIC2019

DT

Over
99.69
across

all
datasets

3.5 Summary

The detection of DDoS attacks is a very important aspect in the area of network security

and traditional monitoring and detection systems are either very complex which may lead

to a higher computational cost in operation, or are less effective in attack detection. In this

chapter, a lightweight DT3 model based on the C4.5 algorithm has been proposed using a

robust and effective feature selection technique. The DT3 model was constructed based on the

number of selected features using the Low Variance filter technique with a variance threshold

of 0.025 (from normalised datasets using the min-max normalisation technique) obtained

after a series of tests starting from conservative threshold values. Analysis of the design

shows that it can maintain high detection accuracy using only 3 features. Also, it consumes

minimal processing power of the detection system’s CPU resources whilst processing less
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than a thousand network traffic flows per second per core of the system used. However, high

processing power is required for processing over a thousand attack traffic flows per second.

In the next chapter, the DT3 classification model is implemented in a Field Programmable

Gate Array (FPGA) device for classification as it offers fast processing power compared to

traditional CPUs. This property of the FPGA will help reduce the workload on the CPU of

the system. Finally, the applicabilition of the proposed solution to network monitoring for

detecting DDoS attacks will be discussed.



Chapter 4

Hardware Accelerated Application

for DDoS Flooding Attacks

Detection

The use of different Machine Learning models for DDoS attack detection were presented in

Chapter 3. From the selected ML models, the Decision-Tree (DT) model called DT3 was

found to outperform the other models and was implemented as part of a software-based

network monitoring system for detecting DDoS attacks. In addition, the performance of the

monitoring system was evaluated under different network traffic conditions with respect to

the system’s resource utilization.

In this chapter, an insight is provided into different parallel processing platforms that can

be used to obtain optimized real-time performance in embedded systems when implementing

classification algorithms. The limitations of the network monitoring system for distinguishing

legitimate from DDoS attacks network flows presented in Chapter 3 are presented and a hy-

brid network monitoring system using both FPGA and multi-core processor having multiple

Central Processing Units (CPUs) is developed.

Some of the main characteristics of FPGAs include high performance, reconfigurability

and low power consumption, however, FPGA logic resources will be greatly wasted with

increase in program development cost if it is used to completely replace a traditional CPU

[135]. Therefore, a more practical and beneficial approach is the combined use of CPU and

FPGA where instructions that require fast execution are handled by the FPGA and the other

instructions are performed in the CPU [135].

The hybrid network monitoring system developed leverages the parallel processing capa-

bilities of the FPGA for fast network flow classification, whilst using a software application

in the CPU for network flow pre-processing required for classification.

The effectiveness of the system is evaluated using the three network datasets mentioned in

Chapter 3 which are the CAIDA 2007, CICIDS2017 and CICDDoS2019 and also a real-time

environment with varying network traffic. It is shown to be capable of distinguishing attacks

from normal network traffic flows with a detection accuracy of over 98% when deployed in

58
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the real-time environment under different network traffic conditions with detection within

1µs, which is over thirty times faster than the software implementation of the architecture

when larger sample sizes are used. The hybrid system presented is optimised for flexible

deployment in low-cost platforms (e.g. in line cards in switches and routers) for the efficient,

rapid detection and prevention of DDoS attacks.

4.1 Parallel Processing Platforms

Below are different parallel processing platforms that can be used to obtain optimized real-

time performance in embedded systems.

4.1.1 Graphical Processing Unit (GPU)

Graphics Processing Units (GPUs) have been used in systems ranging from embedded devices

to supercomputers for High Performance Computing (HPC) applications. The rapid growth

of GPUs resulted in the inception of the concept of general-purpose processing on Graphical

Processing Unit (GPGPU) [136].

A GPU consists of an expanded Arithmetic Logic Units (ALUs) silicon area. The latency

of GPUs are hidden using a thread-level parallelism with the capabilities of executing hun-

dreds of threads at once per GPU. These threads are executed in batches and each batch

comprises of 32 threads called warp. Different parts of a program can be executed through

the flexibility of enabling and disabling threads independently within a warp. The number

of active threads within a warp determine the number of executed instructions per cycle.

However, the use of batching induces an important cost in the aspect of minimizing thread

divergence as all threads execute loops the same number of times and take up the same

conditional statements [137]. The use of multiple GPUs present a number of advantages as

highlighted in [138]:

• Memory can be accessed in parallel as each graphic card consists of its own RAM

leading an overall increase in memory bandwidth

• There is no contention of GPUs for memory access to a shared memory

GPU cores are regarded as native hardware floating-point processors and a single core

is capable of executing hundreds of floating-point math’s operations per clock cycle, which

makes it a good fit for intensive signal and image processing applications [139].

Furthermore, GPUs provide backward compatibility so software with modified algorithms

can still be executed on older chips [139]. However, a major disadvantage of GPUs is their

power consumption as they are regarded as “power hogs” compared to hardware architectures

based on FPGAs [136]. In addition, algorithms are executed in software by GPUs so the

fetch, decode and execute cycle which involves movement of data to and from memory, and

so it will lead to additional latency [136].
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4.1.2 Application-Specific Integrated Circuit (ASIC)

An Application-Specific Integrated Circuit (ASIC) is a customized microchip designed for a

specific application instead of general-purpose use. Both analogue and logic functions can

be incorporated in mixed signal ASIC designs, which are particularly important in building

System-on-Chip (SoC) devices. ASIC chips are designed following some conceptual stages in

[140]. These stages involved are highlighted below although some stages could overlap:

• Design idea with specifications

• Production of structural and functional description which involves the decision on the

best architecture for the design

• Implementation of subsystems through schematics, finite state machine, logic represen-

tation and combinatorial and sequential logic.

• Use of synthesis tool i.e. Design Compiler (Synopsys) and Blast Create (Magma) for

Logic/RTL synthesis. These tools make use of standard cell libraries and RTL hardware

description to generate a Gate-Level Netlist

• Physical implementation of the design, which involves the conversion of the Gate-Level

Netlist to geometric representation.

• Generation of the GDSII file used to fabricate the chip by the foundry

With ASIC technology, product cost can be reduced however; the prices of ASIC solu-

tions are not efficient when low volume production is involved. This is why ASIC designs

are dedicated for special application requirements such as high-performance. Furthermore,

ASIC design involves a more complex design cycle when compared to the design flow of

FPGAs and requires more time to market. Finally, the hardware in ASICs is generally not

reprogrammable, and the design flow requires a time consuming planning, place and route

and time analysis when compared to FPGAs [136], [140].

4.1.3 Multi-core Processors

Multi-core processors are processors that consist of multiple assembled processing units on

the same die for efficient processing of multiple tasks simultaneously, enhanced performance

and reduced power consumption [136]. The main difference between multi-core processors

and a single core processor is that the multi-core processors are capable of executing multiple

instructions at any given time as opposed to the single core processor, which is can execute

a single instruction stream at a time [136].

However, the operation of the multi-core CPUs is the same as the operation of a single

processor in that the cores communicate via the shared memory and a cache memory is

used for performing the synchronization during communication as shown in Figure 4.1. In

addition, each core executes a thread and each thread has a dedicated ALU consisting of

a number of functional units. Also, the status of the thread is stored in a set of registers
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[137]. Furthermore, a large unit handles the scheduling of tasks such as instruction ordering,

speculative execution and branch prediction.

Figure 4.1: ARM Cortex-A9 Architecture [141]

Wide ranges of applications in embedded systems widely make use of multi-core proces-

sors. The performance improvement derived from using multi-core processors is dependent

on the software algorithm to be implemented and its implementation. Performance improve-

ment are obtained in areas of the software that can be simultaneously executed in parallel

by multiple cores and the best achievable performance is a speedup factor of the number of

available cores [136].

The ARM Cortex-A9 is a popular multi-core processor used for implementing low-power

and cost-sensitive applications. It has proven to offer effective solutions in embedded systems

and is flexible for implementing multi-core designs that enhance overall system performance.

It offers a wide range of advantages as highlighted in [136], [141] including:

• Power efficiency and scalable performance across a wide range of applications.

• It is based on ARMv7-A architecture which benefits from:

1. Dynamic length pipeline of 8-11 stages

2. Highly configurable Level-1 (L1) caches

3. Opportunity for NEON technology implementation
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4. A scalable multi-core configuration with up to four coherent cores

• Support for 32-bit software ecosystem

4.1.4 Field Programmable Gate Array (FPGA)

A Field programmable gate array (FPGA) device is an Integrated Circuit (IC) that consists of

configurable logic blocks connected through configurable interconnects as shown in Figure 4.2.

FPGAs are generally used for solving computational problems. The most widely known

FPGA vendors include Altera (now part of Intel), Xilinx, Microchip Technology, Lattice

Semiconductor, QuickLogic and Achronix. The major advantage of using FPGAs is that

they can be significantly faster in specific applications compared to traditional multi-core

processors due to parallel processing nature as multiple instructions can be executed in

parallel.

Figure 4.2: FPGA architecture

The configurable logic blocks are also known as Logic Cells (LCs) and each early LC

comprises of a Look-Up Table (LUT), Digital Flip-Flop (DFF) and a Multiplexer [142]. LUTs

are used in the design of combinatorial functions, as this is its main role. However, some

FPGA vendors employ the use of LUT as block RAM also referred to as distributed RAM.

Additionally, additional functions such as memory blocks are embedded in most FPGAs.

Nowadays, FPGAs contain large distributed chunks of embedded block RAM, as ap-

plications possess wide range memory requirements for effective and efficient performance.
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These distributed memory blocks are located in different parts of the chip i.e. they may

be located across the face of the chip or at the periphery or even organised in columns. In

addition, multiple blocks of memory can be combined to form a larger memory block and

each individual block can be used independently.

Hardware Description Languages (HDLs) are primarily used for FPGA configuration.

The hardware application goes through the process of synthesis which involves the trans-

lation of description hardware application to a set of connected logic elements which may

include LUT, Multiplexer and DFF and are placed on the FPGA structure and then routed

using the FPGA interconnect matrix. The final output of this process is the generated bit-

stream that can be uploaded into the FPGA configuration memory. FPGA designs comprise

of a set of design properties ranging from pipelining, latency, cost and power consumption,

which are discussed below.

FPGA Designs Properties

There are some design characteristics associated with the implementation of a circuit on

an FPGA. These characteristics are power consumption, latency, area and frequency however;

designs in FPGA are compared to other designs in terms of characteristics such as pipelining,

latency, power consumption, cost and size. These characteristics are explained below:

• Pipelining

Pipelining is a technique in which multiple processes overlap during execution. A

pipeline has the structure of a pipe as data enters from one end and exits on another

end [143]. A pipeline consists of stages that are connected sequentially; the input of

the current stage is the output from the previous stage when implemented in signal

processing. For a hardware design to achieve maximum speed, pipelined code should

be written. In addition, larger hardware applications require pipelining of optimized

blocks that are considered bottlenecks to achieve the desired performance.

• Latency

Latency is the time it takes for an output to be generated when an input data sample is

provided. In electronic devices, latency is a measure of the clock cycles taken for a data

sample to navigate its way through a system. In FPGA applications, it is a product of

the number of pipelines and the cycle time. This makes FPGAs a popular choice for

the design and implementation of applications that require reduced latency [144]. In

traditional software applications, the latency ranges between microseconds and many

seconds whilst in the hardware fabric, it is in the range of hundreds of nanoseconds

[31].

• Power consumption

Power consumption has become a very important variable and has always been a con-

sideration in hardware designs. In terms of reducing power consumptions in hardware

designs, FPGAs are a very popular choice as they aid in reducing power consumption
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associated challenges. There are four power components associated with an FPGA

design as stated in [145]. These power components are pre-programmed quiescent, in-

rush programming current, post-programmed static and dynamic power consumption

[136]. Software tools have been provided by FPGA vendors that are used by hardware

designers for estimating power consumptions in designs.

• Size and Cost

Currently, the overall size of the die and package costs have been driven down by FPGAs

to implement convenient custom designs. The generic nature of FPGAs coupled with

the advantages of short time-to-market and reduced material costs lead to cost effective

designs [146].

4.2 Contributions

In this chapter, a hybrid network monitoring system for DDoS attacks detection for both

offline and real-time deployment is proposed using the DT3 model presented in [147]. The

major contributions of this chapter are mentioned below.

1. Selection of just three network traffic flow features for DDoS detection without com-

promising detection accuracy.

2. A hybrid network monitoring system implementation for fast DDoS attack detection.

The hardware implementation is based on a Field Programmable Gate Arrays (FPGA)

device and requires just microsecond to classify a network traffic flow sample as attack

or normal.

3. Evaluation of the proposed hybrid monitoring system and DDoS attacks detection

method in terms of detection time and accuracy in offline mode across three benchmark

network datasets.

4. Evaluation of the proposed hybrid monitoring system and DDoS attacks detection

method in terms of detection time and accuracy in a real-time deployment.

4.3 Proposed Approach

In the field of network monitoring and security, the most challenging difficulty faced is the

running of network monitoring applications in real-time [148]. This is because running soft-

ware applications in real-time using general purpose computers is not always possible as the

resources contained in the computers such as memory, CPU processing power and peripheral

devices are limited leading to fast exhaustion [149].

Network monitoring involves dozens of operations that are performed on each packet

received in a network as information about the packets are extracted and used for flow

classification. In addition, further operations are required for network flows to be classified as
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either legitimate or attack. General purpose processors perform these operations sequentially

which impacts negatively on both resource consumption and performance [150].

However, the FPGA devices possess the capability of executing operations in parallel,

which leads to multiple operations running simultaneously. The proposed approach in this

chapter presents the use of FPGA for fast classification of network flows. It features a

hardware implementation of the DT3 model combined with a software application running

in a general-purpose CPU for packet capturing and pre-processing. As shown in Figure 4.3,

the pre-processing phase involves the capturing of network packets through a network link,

extraction of packet information, classification of packets to flows and temporary storage in

cache.

Figure 4.3: Proposed Network Monitoring Architecture for DDoS attacks detection

Furthermore, the network flow classification phase involves the classification of all network

flows available in the cache into either legitimate or attack. The proposed architecture is

implemented in a System-on-Chip (SoC) device that consists of both a general-purpose CPU

and Programmable Logic (PL) also known as FPGA. The following subsections highlight

the steps required to efficiently implement and evaluate the performance of the proposed

system for effective distinguishing of legitimate from DDoS attacks network flows as shown

in Figure 4.3.

4.3.1 Proposed Device

The device used to carry out this experiment is the ZedBoard Zynq-7000 FPGA development

kit [151]. The Zynq-7000 ZedBoard is different from traditional FPGAs as it contains both

the 7 series FPGA provided by Xilinx and a dual core ARM Cortex-A9 processor on the

same chip.
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Figure 4.4 shows the internal architecture of Zynq-7000 ZedBoard. The ZedBoard consists

of two main parts which are the dual core ARM Cortex-A9 Processing System (PS) and

85,000 series-7 Programmable Logic (PL).

Figure 4.4: Internal architecture of the ZedBoard

The Processing System functions like a traditional processor as it consists of components

such as Memory Controller, USB controller, Gigabit Ethernet Controller, and the ARM

Cortex-A9 whereas, the Programmable Logic consists of all the components present in stan-

dard FPGAs [151]. In addition, the communication between the two components of the

ZedBoard is provided by high performance data-paths as shown in Figure 4.4.

In a FPGA card having this system, those parts containing intense computations are

performed on FPGA and the control parts containing very little or no computations can be

performed on the processor by using software applications.

4.3.2 Host Network Flow Pre-processing Application

The host is running an Ubuntu Operating System implemented in the Dual core ARM

Cortex-A9 PS of the ZedBoard. The network flows pre-processing application is developed

and implemented in the Ubuntu OS. The application captures all network packets through the

link connected to a switch. Only relevant information like packet size, source and destination

Internet Protocol (IP) addresses, timestamp of packet arrival, etc. are extracted from each

packet arriving in the specified network link to be monitored as shown in Figure 4.5.
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Some of the extracted information are used to create a Flow Key (tuple) for identifying

individual network flows. The tuple information along with other relevant network flow

features are stored and constantly updated in cache as highlighted in Figure 4.3. The stored

flows are then sent to the classification model in the Programmable Logic (PL) for effective

and efficient classification as either legitimate or DDoS attack.

Figure 4.5: Processes in Host Network Monitoring Application

4.3.3 Hardware Design and Implementation

The hardware design and implementation phase consist of several stages. These stages range

from the design and implementation of the DT3 model to the implementation of a communi-

cation link between the PS and PL of the ZedBoard for effective and efficient transmission of

data between them. Figure 4.6 shows the hardware design flow for the obtaining the required

bitstream file for the overall design.

4.3.4 DT3 Design and Implementation in FPGA

In this chapter, the IP core of the proposed DT3 model is designed using the Vivado High-

Level Synthesis (HLS) tool [152]. The HLS tool is used to transform an application written

in C, C++ and SystemC language into a RTL implementation that can be used as part of

an overall system hardware design.

In addition, it offers the pipelining of functions through a GUI interface. The input and

output ports to the DT3 block are specified in Figure 4.7 using the AXI interface available

in HLS for data transfer in and out of the block to other components of the design. The

third port shown in the figure is for control signals involve with indicating when the block

is available to receive data and when it is busy with data processing. The data inputs a,

b and c represent the network flow features that are required for effectively distinguishing

legitimate form DDoS attack flows.
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Figure 4.6: Hardware design flow
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Figure 4.7: Handling input data to the Decision-Tree block in HLS

Figure 4.8 shows the generated IP core of the DT3 design with the specified input, output,

clock, and control ports. This generated block is used as part of the overall system design

but it is responsible of network flow classification as legitimate or DDoS attacks.

Figure 4.8: Decision-Tree block design from Vivado HLS

4.3.5 Communication between host application and FPGA

Effective communication between the software application running in the PS (host) and the

DT3 classification model in the PL (FPGA) is paramount for the effective functionality of the

overall network monitoring system. In addition, to create an eligible hardware accelerated

application, an efficient data transmission flow implementation is crucial. Data samples are
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to be transferred from the PS to the PL and the result from the classification is transferred

back to the PS for action to be taken.

To implement a high-speed data transmission in the proposed approach, communication

between the host application and the DT3 block in the FPGA fabric is achieved using the

AXI bus, which interconnects the application on the host to the AXI ports on the PL as

shown in Figure 4.4. The Xillybus IP core is adopted for fast data transmission between the

PS and PL of the ZedBoard [153]. The Xillybus IP core is an Intellectual Property (IP) core

developed by Xillybus Ltd. It contains the implementation of the necessary logic required for

fast and efficient transmission of data between the processor and the FPGA via either PCIe

bus or AXI4 interfaces [153]. The PCIe bus logic is for implementation on a PC whereas the

AXI4 bus is for implementation on SoC devices such as the ZedBoard.

The Xillybus project consists of the necessary software kernel driver for interfacing the

software application to the FPGA and Direct Memory Access (DMA) are used to move

data between applications in the processor and FPGA with minimal processor overhead. In

addition, communication across the buses are transparent leading to design simplicity and

decrease in development time [153]. Furthermore, its core presents a range of bandwidth from

8 bits to 32 bits and runs at 250 MHz. For the proposed hardware design, the bandwidth is

set at 32 bits which is due the size of the data samples. The installation of the Xillybus driver

enables the recognition of the FPGA by the host Operating System that can be Windows or

Linux.

The motivation for hardware acceleration implies that many data samples are required to

be effectively handled. The implemented approach makes use of two threads. The first thread

is responsible for the transmission of data samples from the host application to the FPGA

logic for network flow classification and the second thread is responsible for receiving the

classification results from the FPGA as depicted in Figure 4.9. The host shown in Figure 4.9

is running an Ubuntu Operating System.

Figure 4.9: Xillybus data flow between host and FPGA [153].
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The use of the pipelined technique leads to reduction in hardware latencies as latency is

influenced by the processing time of data samples between the two threads and the through-

put is dependent on the processing capabilities of both the two threads and the FPGA logic.

• Host Application to FPGA Data Transfer

Xillybus IP core uses a continuous stream transport of data samples to the user interface

on either the host application or the FPGA side. It uses the traditional round robin

technique with a set of DMA buffers under the hood [153].

Figure 4.10 presents the flow of data from the host application to the FPGA (down-

stream) direction. The shaded portions in the image represent the unconsumed data

in the storage elements. As shown in Figure 4.10, four DMA buffers are used; however,

this could be modified depending on the requirements of the application.

Figure 4.10: Xillybus data flow from Host to FPGA [153].

As shown in Figure 4.10, data flows from the host to the FPGA logic in three stages

called legs. The first stage also called leg #1 shown in Figure 4.10 is implemented in

the Xillybus driver running in the PS of the ZedBoard by responding to write() system

calls. The selected pool of DMA buffers is allocated in the host’s RAM memory. The

DMA buffers start off empty and belong to the host. The host application then writes

data into the buffers in a round robin matter. In the event of a full buffer, the hardware

is informed that the buffer is ready for use and guarantees not to write into it again

until it is returned to the host by the hardware [153].

In stage 2, the data in the DMA buffers in the host’s RAM are copied into the FIFO

in the PL of the ZedBoard. This is achieved by using the AXI bus interconnect to read

the data directly from the host’s DMA buffers without the intervention of the host’s

processor. The FIFO’s “full” signal is used to control data flow. In the event of a full

FIFO, the internal state machine of the IP core momentarily stops the fetching of data

and then continues from where it stopped in the DMA buffers [153].
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Finally, in stage three, data is fetched from the FIFO by the user application logic in

the PL of the ZedBoard for processing. The FIFO’s “empty” signal is used to indicate

when the FIFO becomes empty to avoid underflow.

• FPGA to Host Application Data Transfer

Figure 4.11 displays the flow of data from the FPGA to the host (upstream) direction.

The shaded portions in the image represent the unconsumed data in the storage ele-

ments. This involves the movement of classification results in the opposite direction to

what is depicted in Figure 4.10. In addition, it involves three stages known as legs.

Figure 4.11: Xillybus data flow from FPGA to Host [153].

In stage one as shown in Figure 4.11, data is pushed by the user application in the

PL into the FIFO, which is connecting the IP core to the user application logic. The

FIFO’s “full” signal is used to indicate when the FIFO becomes full to avoid overflow.

In stage two, data is copied by the Xillybus IP core from the FIFO of the PL to a

DMA buffer in the host’s RAM. To achieve this, the master AXI bus master interface

is used to write data directly to the DMA buffer of the host’s memory without the

intervention of the host’s processor [153].

The third stage is implemented in the Xillybus driver running in the PS of the ZedBoard

by responding to read() system call. The DMA buffers handed to the driver are checked

to determine the presence of unconsumed data. If data is present, the data is copied

into the user buffer and the empty DMA buffers are returned to the hardware [153].

4.3.6 Overall Hardware Design

Figure 4.12 shows most part of the overall system design and the overall design is depicted

in the Appendix C. As shown in the figure, the Decision-Tree (DT) core uses a single AXI

Stream (AXIS) interface configured as slave port on the blockdesign to receive data and
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instructions as well as a single AXIS interface configured as a master port (m axi) to return

the results of the computations by the DT.

In addition, the software application on the host processor (ARM Cortex A9 core) com-

municates with the DT application on the FPGA using an AXI4 interface and this connection

is implemented based on the AXI interconnect block which consist of dedicated AXI4 to AXI

Stream converters and FIFO blocks for data buffering and storage. The use of the AXI in-

terconnect block enables continuous flow of data samples to and from the DT application.

Figure 4.12: Hardware design connectivity between PL and PS of the ZedBoard

4.4 Experimental Results

The testbed for the experiment is presented in Figure 4.13. As shown in the figure, the

ZedBoard is connected to a monitor through the VGA port for display of results and user

experience. In addition, an Ethernet cable is used to connect the ZedBoard to a TP-LINK

16-port smart switch and the USB OTG port on the board is used to connect to both a

keyboard and mouse for interacting with the different elements on the board.

4.4.1 ZedBoard Resource Utilization

The available resources of the ZedBoard required for the effective implementation of the

hardware design of the proposed solution are shown in Table 4.1. These resources include

Flip-Flops (FF), Look-Up Tables (LUT), LUTRAM, Block RAM (BRAM), Input/output

(IO), Buffer Global Clock (BUFG), Mixed-Mode Clock Manager (MMCM) and Phased-

Locked Loop (PLL).
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Figure 4.13: Testbed setup

Table 4.1: Available resources in the ZedBoard

Resource Available Resources

LUT 53200

LUTRAM 17400

FF 106400

BRAM 140

IO 200

BUFG 32

MMCM 4

PLL 4



Chapter 4. Hardware Accelerated Application for DDoS Flooding Attacks Detection 75

Figure 4.14 highlights the resource utilization of the hardware design implementation of

the proposed approach on the ZedBoard. As shown in Figure 4.14, the design utilizes around

10% of the available LUT which is partly used in the design and implementation of the DT3

model. The lowest resource utilized is the LUTRAM where only around 2% are utilized.

Over 42% of the IO resources were utilized which is the highest in the design. The on-chip

power utilization of the hardware application is estimated to be approximately 1.997 Watts

which is significantly less than what modern CPUs utilize.

Figure 4.14: ZedBoard overall hardware design resource utilization

4.4.2 Hardware Timing Diagram

The timing diagram of the implemented DT3 model during the simulation and synthesis

phases is shown in Figure 4.15 using the Vivado Logic Analyzer.

As depicted in the Figure 4.15, the DT3 block starts off (ap idle) in idle state being

1 which is active and changes to 0 when ap start is high (becomes active) through the

introduction of data samples. The data samples, which are the network flow features are

represented with A, B and C, which are 32-bits values.

The result of the classification carried out is represented as outcome, which is a 32-bit

value, and as shown in the figure, the outcomes of the first few samples are zeros, which
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Figure 4.15: Hardware design timing diagram

represent normal network traffic flows. The state of the ap done signal is high when a result

is produced and low when the block is active in the process of classification.

4.4.3 Comparison between Hardware and Software Classification speed

Table 4.2 shows the estimated classification time for both the implementation of the DT3

(optimised classifier) software application on the Dual core Arm processor of the ZedBoard

and the hardware implementation on the same board. Different data sample sizes (number

of randomly selected network traffic flows) were presented to the different applications for

classification and the time required to classify all presented samples were measured. As

shown in Table 4.2, classification using the hardware application is significantly faster than

the software application i.e. when 200 samples were presented to the applications, it took the

hardware application 0.332 milliseconds to classify all samples whereas the software appli-

cation took 4.399 milliseconds. The difference in the classification speed is also highlighted

when 500, 1000 and 2000 network flows were presented for classification.

Table 4.2: Software vs Hardware classification speed of the DT3 classifier.

Network flows
sample size

Software classification
time

(milliseconds)

Hardware classification
time

(milliseconds)

200 4.399 0.332

500 22.456 0.945

1000 53.807 1.671

2000 115.253 3.857
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Further evaluation and comparison regarding the difference in classification speed between

between the hardware and software applications were carried out and the results obtained

indicated that the hardware application performs better than the software application with

around 14 to 32 times faster classification time when tested with 200, 500, 1000 and 2000

network flows data samples. This can be attributed to the pipelining property of PL of the

ZedBoard as some instructions were performed in parallel unlike the sequencial approach

taken by the software application.

In addition, the use of 1000 samples tend to yield the highest hardware speed-up result

compared to the use of 200, 500 and 2000 data samples. With 1000 data samples presented,

the optimised hardware classification model yields a classification result approximately every

1µs which is one of the fastest classification rates achieved in this field. This is due to the

full utilization of the available link bandwidth for data transfer between the host running on

the dual core Arm processor of the ZedBoard and the Programmable Logic (FPGA).

The performance of using 200 and 500 data samples is less due to inefficient use of the data

transfer bus as the bandwidth of data bus is not fully utilized. However, when 2000 samples

were presented, the data bus is unable to transfer all samples at once so, data samples are

transfered in batch leading to an extra latency.

In addition, a classification accuracy of over 98% is achieved when tested with different

data sample sizes across the multiple datasets used in Chapter 3. The classification accu-

racy of the hardware application is slightly less than the one achieved using the software

application due to conversion of the data samples from floating point numbers to integers

for efficient data transfer and classification in the FPGA. This is because the use of floating

point numbers in the hardware application introduced some anomaly in the bheaviour of the

system i.e. classification results were presented incorrectly. However, the use of integers in

place of floating point numbers resolved the abnormal behaviour of the hardware application.

4.4.4 Comparison with Related Research Work

The results obtained from the experiment carried out in this chapter are compared with

results from related works specifically focusing on detection accuracy, speed and power con-

sumption, as these are the key areas in effective and efficient detection of DDoS attacks using

hardware systems.

Table 4.3: Comparison of proposed approach with related work

Work
Number of
selected
features

Hardware and
Software test

Hardware
only test

Classification
time (s)

Detection
accuracy (%)

[154] 3 No Yes 1µs 100%

[155] 5 Yes No milliseconds 96%

[156] - Yes No milliseconds 96%

Proposed
Approach

3 Yes No 1µs 98%
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From Table 4.3 it can be seen that the proposed approach covered in this chapter achieves

high detection accuracy similar to related works using the least number of selected features

carried out in this field. The classification time for work in [155] and [156] involve packet

pre-processing and classification however, the number of packets required for classification

was not stated and it stated that the classification is within milliseconds. Work in [154] only

considered classification by the FPGA block whereas the work proposed in this chapter con-

sidered the transfer of data samples between the host application and the FPGA application

and the classification of data samples in the FPGA in addition to the transfer of classification

results from the harware application to the software application for actions to be taken.

4.4.5 Applications of Monitoring Architecture

The proposed network monitoring architecture implemented on the ZedBoard presents the

potential of a wide range of applications across different network nodes. The ZedBoard

implements a 10/100/1000 Ethernet port which presents a wide of network connection speeds

using the Marvell 88E1518 PHY. This offers the flexibility of monitoring network speeds

from 10Mb/s to 1Gb/s links of which applies to a lot of small to medium size networks [151].

The implementation of the proposed network monitoring solution on the ZedBoard could

be deployed in a network to monitor the network traffic behaviour at a switch or router.

In addition, it could work in collaboration with routers and firewalls to effectively detect,

mitigate and prevent DDoS attacks.

The network monitoring architecture permits a flexible approach to securing networks

from DDoS attacks as it can be deployed into different nodes (connected to switchs or routers)

throughout a network. This is especially important in scenarios where the use of low cost

and efficient distributed network monitoring is to be implemented. This means that different

parts of the network can be monitored at the same time thereby distributing the network

monitoring load across multiple devices instead of using just a single centralised monitoring

node. The proposed architecture has been tested in a real-time network environment with

deployment at the different monitoring nodes highlighted in the ANRG LAN network shown

in Chapter 3.

4.5 Summary

The most prominent processing platforms used in embedded systems for fast processing have

been introduced. Although many embedded systems are Multi-core based, performance

improvement is limited by the fraction of the instructions that can be executed in parallel

simultaneously by the available cores. In addition, GPU based architectures provide a good

pipeline performance, but power requirement is an issue. However, FPGA designs provide

the best trade-off between pipeline performance and power requirements.

In this chapter, a hybrid network monitoring architecture based on the Zynq 7000 Zed-

Board has been proposed. The proposed architecture has advantages for power consumption

and less expensive compared to other systems that exist in the state of the art. In addition,
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the classification application on the FPGA achieved fast classification of 1µs per data sam-

ple. This is over 30 times faster than a tradition core with over 98% classification accuracy.

Furthermore, the proposed design offers the flexibility for both deployment and classification

as data samples can be processed in real-time and offline. The prototype proposed in this

chapter can easily be implemented in other high computing devices like the NetFPGA and

NetFPGA Sume to achieve line rate processing of over 40Gbps [157], [158].

In the next chapter, the DT3 classification model is implemented as part of a distributed

monitoring approach comprising of a predictive model in Network Simulator 3 (NS3) to

investigate the influence of distributed monitoring over centralized monitoring approach used

in traditional DDoS attacks detection solutions. Further investigation will be conducted on

how distributed monitoring approach leads to early detection of DDoS attacks which leads

to reduction in packet loss and network link delays.



Chapter 5

Distributed Monitoring for DDoS

Flooding Attacks Detection

In Chapter 4, a hybrid network monitoring architecture based on the Zynq 7000 ZedBoard

was implemented for DDoS attacks detection. The proposed architecture comprises of a

software application for capturing network packets and an FPGA application for classifying

network flows to either attack or legitimate. The architecture achieved fast classification of

1µs per data sample with over 98% classification accuracy. The classification rate achieved

is over 30 times faster than a traditional core and the classification time includes the move-

ment of data samples between the host software application and the hardware classification

application in the FPGA of the board.

In this chapter, the proposed work includes the development and implementation of a

DDoS attacks simulation model for studying and analysing the defensive approaches against

DDoS flooding attacks. The most commonly implemented DDoS flooding attacks will be

modelled in Network Simulator 3 (NS3) as these attacks account for over 90% of the DDoS

attacks performed across the world [7]. However, to model a real DDoS attack scenario,

several well-known DDoS attacks datasets were analysed, and the information and charac-

teristics of attack network flows are used. Further investigations will be conducted into the

effects of the attacks on the victim’s network infrastructure.

In addition, the use of network monitoring and detection systems will be implemented

to investigate the impact of these systems in the proposed network. The effectiveness of the

systems was evaluated using the distributed monitoring approach.

5.1 Contributions

• Design of a DDoS flooding attacks testbed using NS3

• Implementation of a DDoS flooding attacks predictor model based on statistical be-

haviour of network traffic flows

• Detection of common DDoS flooding attacks such as ICMP and UDP flooding DDoS

attacks

80
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• Analysis of the detection approach and its effectiveness in the rapid detection of the

onset of a DDoS attack and effectively stopping the attack.

5.2 Modelling DDoS Flooding Attacks

The modelling of DDoS attacks is not an easy task in real life [159]. However, these attacks

can be modelled through a specialized network simulator or testbed. In this chapter, the most

affordable and effective option for modelling DDoS flooding attacks is explored. This section

will discuss the choice of network simulator along with the network design considerations.

5.2.1 Choice of Network Simulator

There are a few well-recognised network simulators used by researchers for simulating differ-

ent network behaviours under different conditions. Each of the available network simulators

possess its own advantages and disadvantages therefore, it is crucial that the selected simu-

lator can meet the design specifications based on the aims of the research. After extensive

research on the well-recognised network simulators, the Network Simulatorn 3 (NS3) was

chosen as the tool for conducting the experiment.

Although NS3 is unable to simulate the behaviour of a network server in terms of CPU

utilization, which is important in a DDoS attack scenario, other very important network

parameters (link bandwidth, transmission delay, link bandwidth consumption and packet

loss) which are affected by these attacks, can be simulated in NS3. The highlighted network

performance measures above are the targets of DDoS attacks as it aims to exhaust network

resources and disrupt the performance of networks [50].

For results obtained from simulation to be validated, they must be compared to results

from real networks. However, there are some difficulties in obtaining a 100% accurate com-

parison rate as there could be differences between the real network topology to the one

designed in NS3. In addition, the real network link bandwidth could be higher compared

to ones specified in NS3. These are some of the considerations that should be taken into

account when analysing such simulation results. NS3 however, provides a behaviour that is

close enough to that of real networks [160].

In other network simulators like Riverbed Opnet modeler [159], a DDoS attack scenario

can be simulated by setting some network traffic parameters but server applications, network

links speed, and other important parameters would be missing which makes it difficult to

obtain results that can be compared to those of real networks. The best alternative is

NS3 which is a free network software simulator with a high level of reputation through its

collaboration with the University of Washington and the Georgia Institute of Technology

along with thousands of reseach publications across reputable journals [160], [161]. NS3

allows users to create different network topologies with the added flexibility of automating

network nodes generation thereby spending less time is this design phase. NS3 is very

dynamic as it can support some visualizers which provide a graphical interface where users

can interact with their designs during simulation. Furthermore, it allows users to set network
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traffic parameters (transmission rate, packet sizes, link bandwidth, etc.) and monitor the

behaviour of the network using different network trace objects which are provided.

5.2.2 Network Design Consideration

Below are the network design considerations made in modelling the proposed network designs

presented in this chapter. These considerations include:

• Distributive nature of DDoS attacks

The distributive nature of these attacks mean that the exploited systems could be

from different networks in different geographical areas around the world [162]. This

is evident in real attack scenarios in the past and present which have been captured

and provided in form of empirical datasets which are widely used by researchers in

the field of security. For example, the CAIDA 2007 DDoS attack dataset consists

of over 5,000 unique IP addresses from different classes of networks, which indicates

that the zombies used in the attacks, were from different networks [100]. Based to the

distributive nature of DDoS attacks which is evident across the multiple real-life attack

scenarios, the designed network comprised of multiple connected LANs.

• Number of attack devices

The implementation of DDoS attacks involves the use of many exploited devices known

as zombies to send huge volumes of network traffic to a victim’s network infrastructure.

In the CAIDA DDoS attacks dataset, the approximate ratio of attack to legitimate

network flows was 5:1 meaning there were five times the number of attack devices

compared to legitimate devices [100]. Therefore, this ratio of attack to legitimate

nodes will be used in the modelling of these attacks’ scenarios.

• Network Link Bandwidth

The bandwidth of network links is very important as it determines how much data is

transmitted at a given time and it can range from a few Mbps to hundreds of Gbps.

Furthermore, the higher the link bandwidth, the lower the transmission delay as more

data can be transmitted at a given time period [163]. Also, the transportation of

data is faster at a LAN compared to a Wide Area Network (WAN) and this leads to

a significantly higher transmission delay in WAN links [163]. Due to these reasons,

the designed network comprises of LAN links having higher bandwidth with lower

transmission delay compared to the WAN links.

5.2.3 Emulated Testbed Architecture

In the experiments carried out in this chapter, the testbed architecture used in [5], [102]

shown in Figure 5.1 for generating up-to-date DDoS attack datasets that are widely used by

researchers was emulated and extended in NS3 to form multiple test scenarios.

Figure 5.2 shows the overall proposed network design, which comprises of 16 individual

LANs including that of the victim. The LANs highlighted in green are the legitimate LANs
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Figure 5.1: Testbed Architecture for CICIDS2017 and CIC2019 DDoS Datasets [5], [102]

that consist of only legitimate end devices for generating legitimate network traffic whereas

those highlighted in red are the attacker LANs used for generating high volume DDoS flooding

attack network traffic. R1 to R6 represent the routers used in connecting the different LANs

together.

Figure 5.2: Proposed network design



Chapter 5. Distributed Monitoring for DDoS Flooding Attacks Detection 84

Figure 5.3 depicts the LAN network layout for the victim’s network infrastructure and

how it is connected to other external network LANs. As shown in the figure, the victim’s

LAN consists of a few network and end devices such as router, switches, workstations, and

servers. The core switch labelled as SW1 is directly connected to the gateway router (R1),

Server 1 (S1), Server 2 (S2), switches SW1 and SW2 within the victim’s LAN. In addition,

several workstations along with monitoring and detection systems are directly connected to

SW2 and SW3 respectively as shown in Figure 5.3. All the generated network DDoS attack

and some legitimate network traffic are directed to the victim’s S1, Workstations 1 (W1) and

21 (W21) located in the victim’s network infrastructure.

Furthermore, the monitoring and attack detection systems denoted with M1, M2 and

M3 are distributed across strategic network points in the victim’s LAN to investigate the

effect of distributed monitoring in safeguarding networks from the adverse effect of DDoS

flooding attacks. These monitoring and attack detection systems will be activated during

simulation to measure the effects of active monitoring in the effective and efficient detection

and prevention of DDoS flooding attacks. The victim’s LAN network layout is similar to

the layout shown in Figure 5.1 used in [5], [102]. The attacker LANs which are external to

the victim’s network infrastructure shown in Figure 5.2 consist of several exploited devices

called zombies, which are used to generate the DDoS flooding attack network traffic that are

directed to the victim’s network.

Finally, there are other legitimate LANs that are external to the victim’s network. These

LANs consist of several legitimate network nodes used 1for generating legitimate network

traffic directed to the victim’s servers (S1 and S2).

5.3 Network Traffic Generation

To generate the appropriate network traffic that will emulate the occurrence of DDoS flooding

attacks, multiple factors are considered. The first factor considered involves the use of the

properties of the DDoS attack flows based on the well-known available datasets [5], [100],

[102]. The second factor involves the use of attack to legitimate network flows ratio, which

is important in obtaining a close estimation of real-life DDoS attacks scenarios [5].

5.3.1 Characteristics of Network Flows

Based on the analysis carried out on the characteristics of network flows, which provide

enough information for effectively distinguishing legitimate from attack network flows across

the different DDoS attacks datasets considered in this chapter, the three main features ranked

highest based on the Low Variance filter technique discussed in Chapter 3, were selected. A

few network flows with the selected attributes are presented in Table 5.1.

As shown in Table 5.1, it can be evaluated that both the average packet size and average

packet Inter-Arrival-Time (IAT) for DDoS flooding attacks of selected samples are signifi-

cantly less than those of legitimate network flows. This indicates that these network flow

properties can be used to model both legitimate and DDoS attack scenarios in NS3.
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Figure 5.3: Victim’s LAN network architecture

Table 5.1: Some network flow samples with features and labels from the CIADA 2007
dataset

Flow ID
Average packet

size (Bytes)
Total bytes

Average IAT
(milliseconds)

class

1 124 1364 1841 Normal

2 84 1596 3136 Normal

3 84 1092 3785 Normal

4 60 6000 24 Attack

5 60 6000 27 Attack

6 60 6000 17 Attack

5.3.2 Ratio of Attack to Legitimate Network Flows

Based on the analysis carried out on the CAIDA 2007 DDoS dataset, the ratio of attack to

legitimate network traffic flows was evaluated to be around 5:1 which means that for every

legitimate network node, there are five attack nodes. However, the ratio of attack packets

to legitimate network packets was significantly different as there were many more attack

compared to legitimate network packets. Based on this, different network traffic loads were

introduced at different phases of the simulation. The different network traffic simulation

scenarios are shown in Table 5.2. These are based on the attack to legitimate network flows

ratio.



Chapter 5. Distributed Monitoring for DDoS Flooding Attacks Detection 86

As shown in the Table 5.2, these different scenarios involve the use of several network

nodes in generating the network traffic flows. The behaviour and performance of the vic-

tim’s network under normal and attack traffic conditions are examined under the scenarios

highlighted in Table 5.2.

Table 5.2: NS3 network simulation scenarios

Network Traffic Scenarios Number of Attack Nodes Number of Legitimate Nodes

SC1 50 10

SC2 100 20

SC3 500 100

In Scenario 1 (SC1), the network traffic generated involves the use of fifty attack and ten

legitimate network nodes. In addition, one hundred attack and twenty legitimate network

nodes were used in generating the network traffic conditions in Scenario 2 (SC2). Finally,

the Scenario 3 (SC3) network traffic involves the use of five hundred attack and one hundred

normal network nodes. Figure D.1 in Appendix D.1 shows the network architecture imple-

mented in NS3 under which the simulation of the different DDoS attacks scenarios stated

were conducted. It consists of multiple LANs with multiple nodes and WAN connections.

Following the design considerations, all WAN and LAN network links were assigned 100Mbps

with 1ms and 5ms as minimum and maximum delay within the LAN. In addition, 10ms and

50ms as minimum and maximum delay within WAN connections [164].

5.4 Monitoring, Detection and Mitigation of DDoS attacks

The monitoring and detection approach comprises of mainly two phases. The first phase

involves the use of the flowmonitor model in NS3 to monitor and gather statistics of all

network flows passing through a specified network node/link. In addition, the predictor

model (algorithm 1) is used to predict the emergence of possible DDoS attack network

flows using the network flow statistics gathered by the flow monitor model.

In phase two, if the predicted outcome from the predictor model is attack, the network

flow details are forwarded to the DT3 detection model for validation. If a network flow is

validated is an attack, the IP address of the attacker is used by the gateway router denoted

with R1 in Figure 5.3 to create a rule and all subsequent packets of the attack flow arriving

at the victim’s network are dropped/discarded by the router. Multiple network rules are

created and used by the router to drop all packets that match the rules. This is to mitigate

the adverse effect of DDoS attacks on the victim’s network by dropping the packets at the

gateway router. Also, all subsequent packets of network flows validated as legitimate are

allowed into the network.
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Figure 5.4: Network monitoring and DDoS attacks detection approach

5.4.1 Network Flow Predictor Model

To effectively maintain the performance of a network under DDoS flooding attacks, early

and accurate detection is paramount. A lot of research in the field of DDoS attacks focus

on detection and prevention using various detection techniques. However, if these attacks

are not detected early then the network performance will be greatly affected [18]. Having a

predictor model can be useful for early detection and prevention of attacks to maintain the

effectiveness and efficiency of a network.

A DDoS flooding attacks predictor model is designed and implemented based on the

network behaviour under such attacks. Since, a network under DDoS flooding attacks receives

a high volume of network traffic; the predictor model can predict the possible future network

traffic based on the current condition of the network. To achieve this, network packets

entering a network are captured and the packets are classified into network flows through

the flowmonitor model in NS3, the attributes and details are passed on to the predictor to

predict the characteristic (either normal or a possible DDoS flooding attack) of the network

flow.

The predictor model predicts only network flows with three or more packets within a

time window of t =1s. The chosen packet threshold is because on average, DDoS flooding

attack nodes transmit a high number of packets per second which has been obtained from

analysis carried out on some of the well-known empirical datasets used by researchers and

the DDoS attack tools freely available such as Hping3 [5], [100], [102].
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Algorithm 1: Predictor algorithm

Input: number of packets (num packets), average packet inter-arrival time

(avg iat)

Output: prediction (attack/legitimate)

Threshold: iat thresh = 43ms; pps thresh = 100

Data: network flow sample x

1 initialization

2 while num packets(x) ≥ 5 do

3 Predict the future packet per second (pps) of the next one second for sample x

based on current avg iat using the equation below:

pps(x) = 1
avg iat

4 if avg iat(x) ≥ iat thresh and pps(x) ≤ pps thresh then

5 prediction = legitimate

6 else

7 prediction = attack

8 end

9 return prediction

10 forward details of network flow sample x to DT3 for validation

11 end

If a DDoS attack flow is the result of the prediction, the required network flow attributes are

passed to the DT3 model for validation. Once the network flow is validated by the DT3 as

attack, a network rule is created in the gateway router and subsequent packets that match

the rule are dropped by the router.

5.5 Results and Discussion

The experiments were conducted using NS3 installed on a system consisting of an Intel core

i7 Central Processing Unit (CPU) with 3.6GHz Quad core processor, 500GB of storage and

16GB of RAM running a Linux Operating System. The results of the experiments and the

performance evaluation of using the predictor and DT3 models for predicting and detecting

DDoS flooding attacks are presented in this section. Furthermore, the effects of the DDoS

flooding attacks on the behaviour and performance of the victim’s network are analysed.

5.5.1 Network Traffic Load at the Victim’s network

The different network traffic workload as experienced by the victim’s network infrastructure

are presented in this section based on the different scenarios shown in Table 5.2.

• SC1 simulation

In the normal network traffic condition where only the legitimate nodes were used in

generating the network traffic directed to S1, the workload experienced by the victim’s
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network at SW1 was estimated to be around 55 packets per second on average which

is significantly low compared to the bandwidth of the network link. A combination of

both legitimate and attack network traffic is generated using ten and fifty legitimate

and DDoS attack nodes respectively and the result of this is shown in Figure 5.5.

Figure 5.5: SC1 network traffic conditions from legitimate and attack nodes at SW1

Under the network traffic conditions shown in the Figure 5.5, the peak operational

link bandwidth during the simulation was evaluated to be around 3.2Mbps, which is

significantly less than the assigned bandwidth of 100Mbps as shown in Figure 5.6.

Figure 5.6: SC1 network link operational bandwidth between R1 and SW1
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This low operational bandwidth resulted in little or no link delays resulting from conges-

tion and 0% packet loss for the monitored legitimate network flows across the network.

• SC2 simulation

In the normal network traffic condition simulated, the workload experienced at the

victim’s network at node SW1 was low with an average of 78 packets per second.

A combination of both legitimate and attack network traffic is generated using twenty

and one hundred legitimate and DDoS attack nodes respectively and the result of the

workload is shown in Figure 5.7.

Figure 5.7: SC2 network traffic conditions from legitimate and attack nodes at SW1

Under the network traffic conditions shown in the Figure 5.7, the peak operational link

bandwidth during the simulation was evaluated to be over 21Mbps, which is less than

the assigned bandwidth of 100Mbps as shown in Figure 5.8.

This low operational bandwidth resulted in little or no link delays resulting from conges-

tion and 0% packet loss for the monitored legitimate network flows across the proposed

network.
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Figure 5.8: SC2 network link operational bandwidth between R1 and SW1

• SC3 simulation

In the normal network traffic condition simulated, the result of the workload across

selected network nodes is shown in Figure 5.9.

Figure 5.9: Legitimate network traffic load are different network nodes in SC3

As shown in the figure, the network traffic loads for Server 1 (S1), Workstations 1

and 21 denoted with W1 and W21 and SW1 are displayed. The traffic load at SW1

represents the overall traffic load experienced by the victim’s network infrastructure.
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A combination of both legitimate and attack network traffic is generated using one

hundred and five hundred legitimate and attack nodes respectively and the result of the

workload experienced by different nodes in the victim’s network is shown in Figure 5.10.

Figure 5.10: Legitimate and attack network traffic load at different network nodes in SC3

As shown in Figure 5.10, the network traffic workload is significantly higher than the

workload experienced by the victim’s network in SC1 and SC2 which is evident with

the higher number of network nodes used in generating the network traffic.

Under the traffic conditions shown in the Figure 5.10, the peak operational link band-

width was evaluated to be above 85Mbps, which means that the assigned bandwidth

was consumed during the attack period as shown in Figure 5.11.

Figure 5.11: SC3 network link operational bandwidth between R1 and SW1
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The high operational bandwidth resulted in congestion of the network link leading to

significant level of delays and packet loss across the monitored legitimate network flows.

5.5.2 Effect of DDoS flooding attacks on victim’s network

The results of the victim’s network behaviour without the use of any monitoring and detection

system are presented in this section. The analysed behaviours include network flow mean

delays and packet loss ratio.

• Mean Delays

In Figure 5.12, the effect of DDoS attacks on the victim’s network is expressed with

respect to link delays experienced in the communication between legitimate nodes and

Server 1 (S1). As shown in the figure, the link mean delays across all monitored

legitimate network nodes are equivalent to the theoretical delays in the link used in

communication in SC1 represented with the green bars due to the very low network

traffic generated.

Figure 5.12: Network flows mean delays across the selected scenarios

However, the introduction of more attacking and legitimate nodes in SC2 resulted in

a slight increase in the link delays represented with the orange bars. The introduced

delays were approximately 2ms on average across all the monitored network flows.

In SC3, the use of more attacking nodes with legitimate nodes resulted in the network

link between R1 and SW1 operating at maximum capacity. This led to the introduction

of significant delays, which on average were over twice the original delays experienced
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in SC1. These delays are represented with the blue bars. The minimum and maximum

mean delays experienced in SC3 were 32ms and 162ms when compared to mean delays

in SC1.

• Packet Loss Ratio

Packet loss is another indicator of a successful DDoS attack. This occurs because of

exhaustion of server resources or link bandwidth. This exhaustion leads to congestion,

and received packets are randomly dropped, as the link/server is unable to process all

the received requests.

Across the three scenarios discussed in this chapter, the network traffic conditions in

both SC1 and SC2 resulted in a 0% packet loss as the server and network links were

not tested at maximum operating capacity. However, the network traffic workload in

SC3 resulted in packet loss across all monitored flows due to the large volume of traffic

introduced. In SC3, the network link bandwidth connecting R1 to SW1 and SWI to

S1 were exhausted between t = 8s and t = 30s. This exhaustion resulted in packet loss

shown in Figure 5.13.

Figure 5.13: Network flows packet loss ratio in SC3

As shown in the figure, some network flows experienced a maximum of over 7.5% packet

loss whereas other network flows experienced between 2.5% to over 5% loss. This level

of packet loss can cause significant network performance issues and affect the Quality

of Service (QoS) rendered in a real network environment [165].
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5.5.3 Distributed Monitoring and DDoS attacks Detection Systems

The effects of active distributed monitoring and attack detections on the behaviour of the

victim’s network infrastructure are presented in this section. The analysed behaviours include

network flow mean delays and packet loss ratio.

• Detection Time

The average DDoS attacks network flow detection time was evaluated across the mon-

itoring and attacks detection systems across the different network traffic scenarios dis-

cussed above. Figure 5.14 highlights the different monitoring and detection nodes de-

noted by M1, M2 and M3 which were shown in the victim’s LAN network architecture

in Figure 5.3.

Figure 5.14: Average detection time across the monitoring and attack detection systems

The average detection time at M1 which was directly connected to SW1 was evaluated

to be around 70µs per network flow. In addition, the average detection time at M2 and

M3 were just slightly higher than that of M1 as shown in the figure.

Furthermore, the use of the predictor model was very effective as over 85% of the

network flows predicted as attack were validated by the DT3 model as attack flows.

This indicates that the use of the predictor model was quite effective in accurately

distinguishing legitimate from attack network flows.
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• Monitoring and attacks detection at M1

This network monitoring and detection system for the detection of DDoS flooding

attacks was deployed at SW1 of the victim’s network. This was a strategic approach

as all incoming network traffic are destined to pass through SW1 to get to the different

destinations within the victim’s network infrastructure.

The detection system proposed in this chapter is based on a combination of the pre-

dictor model and the DT3 model implemented in Chapter 3. The predictor model

was used to predict if a network flow arriving at the victim’s network is legitimate,

or attack based on the number of packets received for a specific flow and other flow

features described earlier in this chapter. The system was tested under the network

traffic conditions of SC3.

From the tests carried out, the detection system was effective in detecting the attacks

with a detection time of 70µs per network flow. In addition, the maximum packet loss

ratio across all selected network flows was significantly low at about 1.5% across just

three network flows of all network flows monitored. This was significantly less than

almost 8% recorded without the use of a detection system.

Furthermore, the results obtained indicated that although the use of a single monitoring

and detection node can be effective in reducing the adverse effects of DDoS flooding

attacks, it does not totally eliminate the threat, as the victim’s network infrastructure

will still experience some effects of these attacks. This shows that the use of a single

monitoring and detection node is not the complete solution to completely deal with

these attacks.

• Distributed Monitoring Approach

Hybrid monitoring approach involves the distribution of the monitoring and detection

systems across multiple strategic locations in the victim’s network infrastructure.

The distributed monitoring approach was implemented in the proposed network and the

robustness of the monitoring systems was tested under the network traffic conditions

in SC3. The results from the tests indicated that the distributed monitoring approach

was very effective as packet loss ratio across all selected legitimate network flows was 0

As shown in Figure 5.15, Figure 5.16 and Figure 5.17, the victim’s server S1 and

workstations W1 and W21 experienced a rapid increase in the volume of network

traffic between t=7 and t = 8s because of the initiated DDoS attacks from various attack

networks. Due to the active distributed monitoring and detection systems implemented,

the attacks were effectively detected at t=8s and the packets from the attack flows were

dropped. The attacks were effectively stopped, and the victim’s network was restored

to its normal operating conditions within 3 seconds between t = 8s and t = 11s.

In addition, packet loss ratio was significantly reduced to 0% across the selected legit-

imate network flows and the network link delays were significantly reduced. The link

delays achieved were on average like those experienced in SC2.
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Figure 5.15: Network traffic condition at S1

Figure 5.16: Network traffic condition at W1
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Figure 5.17: Network traffic condition at W21

5.5.4 Comparison between simulated data and the CAIDA 2007 dataset

The packets received at the server in the victim’s network during the simulation in NS3

were captured and analysed. The network flow average packet IAT feature was analysed

and compared with the results of some selected network flows from the CAIDA DDoS attack

dataset to evaluate how the simulated data compares to real life DDoS attacks datasets.

These results are discussed below using the same number of samples as those used across the

different scenarios in Table 5.2.

• SC1 comparison

Based on the results from SC1 simulation, Figure 5.18 shows the box plot of the average

packet IAT for the legitimate network flows across the simulated and CAIDA datasets.

Ten network flows were randomly selected from both the simulated and the CAIDA

datasets and the average packet IAT of the flows were used to create the boxplots.

As shown in Figure 5.18, there are some differences in the distribution of samples in the

two datasets. The samples from the CAIDA dataset tend to have a wider distribution

compared to the samples from the simulated dataset.

Figure 5.19 shows the box plot of the average packet IAT for the attack network flows

across the simulated and CAIDA datasets. Fiffty network flows were randomly selected

from both the simulated and the CAIDA datasets and the average packet IAT of the

flows were used to create the boxplots. As shown in Figure 5.19, there are some
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Figure 5.18: Average packet IAT for
legitimate network flows.

Figure 5.19: Average packet IAT for
attack network flows.

similarities in the distribution of samples in the two datasets especially samples with

lower average packet IAT. However, there exists some differences in the distribution

especially regarding the maximum values as the maximum value of the CAIDA dataset

is significantly larger than that of the simulated dataset.

Comparison between the two box plots show that there are some differences. These

differences are due to the large sample size of the CAIDA DDoS dataset as a pool of

selected samples will be more generalized compared to the dataset generated through

the simulation in NS3.

• SC2 comparison

Based on the results from SC2 simulation, Figure 5.20 and Figure 5.21 show the box

plots of the average packet IAT for both the legitimate and attack network flows (con-

sisting of one hundred attack and twenty legitimate network flows) across the simulated

and CAIDA datasets. Twenty legitimate network flows were randomly selected from

both the simulated and the CAIDA datasets and the average packet IAT of the flows

were used to create the boxplots.

Figure 5.20: Average packet IAT for
legitimate network flows.

Figure 5.21: Average packet IAT for
attack network flows.
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As shown in Figure 5.20, there are some differences in the distribution of samples in the

two datasets. The samples form the CAIDA dataset tend to have a wider distribution

compared to the samples from the simulated dataset especially regarding the minmum

and maximum values as the maximum value of the CAIDA dataset is significantly

larger than that of the simulated dataset but the minimum value is lower than that of

the simulated dataset.

Figure 5.21 shows the box plot of the average packet IAT for the attack network flows

across the simulated and CAIDA datasets. As shown in Figure 5.21, there are some

very close similarities in the distribution of samples in the two datasets especially the

minimum values. The box plots of the simulated data in SC2 look closer to the CAIDA

dataset than the results obtained in SC1.

• SC3 comparison

Based on the results from SC3 simulation, Figure 5.22 and Figure 5.23 show the box

plots of the average packet IAT for both the legitimate and attack network flows (con-

sisting of five hundred attack and one hundred legitimate network flows) across the

simulated and CAIDA datasets. One hundred legitimate network flows were randomly

selected from both the simulated and the CAIDA datasets and the average packet IAT

of the flows were used to create the boxplots.

Figure 5.22: Average packet IAT for
legitimate network flows.

Figure 5.23: Average packet IAT for
legitimate network flows.

As shown in Figure 5.22, there are some major similarities in the distribution of samples

in the two datasets. The minimum and maximum values are very similar in both

datasets as shown in Figure 5.22.

Figure 5.23 shows the box plot of the average packet IAT for the attack network flows

across the simulated and CAIDA datasets. As shown in Figure 5.23, there are some very

close similarities in the distribution of samples in the two datasets especially regarding

the minimum values of both datasets although there are some differences in the median

and interquartile range values.
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Comparison between the box plots in Figure 5.22 and Figure 5.23 show that there are

very close similarities compared to the results from SC1 and SC2. This shows that the

higher the number of samples used, the closer the results.

5.6 Summary

The effective detection and prevention of DDoS flooding attacks is paramount in ensuring

that services across multiple sectors ranging from small online business to large government

and private organizations are available to legitimate users whenever it is required. However,

in order for these attacks to be effectively detected and prevented, multiple monitoring

techniques should be adopted due to the increasing size and complexity of the attacks.

In this chapter, the use of a single and distributed monitoring and detection systems were

explored under different network traffic conditions. The monitoring and detection systems

combined the use of a flowmonitor, predictor model for predicting the start of attack flows

and the DT3 model for detecting the attacks which was discussed in Chapter 3.

The results obtained from the simulation of the proposed network design in NS3 without

the use of monitoring and detection systems indicated the adverse effects of DDoS attacks

especially with the introduction of many attack nodes in SC3. These effects included signif-

icant network link delays and packet loss in legitimate network flows due to the congestion

and exhaustion of network link bandwidth. In addition, the deployment of a single network

monitoring and detection system at the core switch of the victim’s network significantly

reduced the effects of the DDoS attacks as packet loss ratio was reduced from almost 8%

for some of the selected flows without monitoring systems to around 1.5% with significant

reduction in link delays and detection time of around 70µs per network flow.

However, the use of distributed network monitoring and detection systems across different

network nodes in the proposed design significantly reduced the effects of the attacks through

reduction of packet loss ratio to 0% and reduction in network link delays to a minimum.

These results show that the use of a distributed monitoring approach provides many benefits

as opposed the use of a single central monitoring approach, which were explored in this

chapter. In addition, the incorporation of the predictor model shows that attacks can be

detected and prevented in a timely manner which is very crucial to preventing the adverse

effects of the attacks to the victim’s network infrastructure.

In the next chapter, the conclusions to this thesis are provided. In addition, the various

findings and contributions are presented. Furthermore, future works to greatly improve

service availability through the implementation of different network monitoring and DDoS

attacks detection approaches are suggested.



Chapter 6

Conclusion and Future Work

DDoS attacks are regarded as one of the most prominent threats to network security and

these attacks are becoming more complex and larger. The main objectives of these attacks

are to bring down network services and render them unavailable to legitimate users. In

addition, the victims of these attacks range from individuals to large corporations, which

can affect both lives and livelihood as covered in Chapter 2. Therefore, early and accurate

detection and prevention of these attacks is paramount to maintaining stability in network

services.

This thesis has attempted to answer the main research question posed in Chapter 1,

which was “How can DDoS attack detection systems effectively and efficiently detect attacks

early with high accuracy and low computational cost?” by proposing some key components

that are useful in developing and implementing a DDoS attacks detection architecture that

detects attacks early and accurate with low computational cost.

Section 6.1 highlights the major findings and contributions to the field of detection and

prevention of DDoS attacks. Possible future work in the detection and prevention of DDoS

attacks are outline in Section 6.2.

6.1 Findings and Contributions

A major contribution is that the architecture proposed is lightweight in nature with very

little computational cost required. In addition, the architecture can be flexibly deployed at

different network nodes to meet the needs of a network as part of a distributed monitoring

ecosystem. This allows for early detection and prevention of attacks leading to reduction in

the impact of these attacks on a network service. In summary, the findings from the differ-

ent experiments conducted indicate that the detection architecture is effective in accurately

detecting a wide range of DDoS attacks with high detection accuracy using minimal number

of network flow features.

Details of the major conclusions from the thesis are summarised in the following subsec-

tions.
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6.1.1 Introduction, Background and Related Work

The research commenced by first identifying the different characteristics of DDoS attacks and

impacts on several network infrastructures. Through the analysis of some prominent real-

life successful DDoS attacks, it was clear that there is high im-portance in detecting these

attacks early and accurately in order to secure and keep network infrastructure running

without disruption.

The study of the existing detection solutions show that there is a gap in research with

respect to computational cost and flexibility in deployment. Evaluations of these so-lutions

show that many detection systems are designed with little attention to pro-cessing and mem-

ory cost. In addition, the ever-increasing sizes and complexities of these attacks have rendered

some of the detection solutions incapable of accurately detecting new DDoS attacks.

Furthermore, traditional detection solutions are often centralized where only a single

monitoring node is implemented in the network being monitored. In this case, it is difficult

to meet the different needs of the network and often requires large memory, which can be ex-

pensive. Finally, and most importantly, most of these solutions struggle with scalability and

programmability, which are required in modern net-works to meet the different monitoring

needs.

6.1.2 A Lightweight Decision-Tree Algorithm for detecting DDoS flooding

attacks

The limitations of DDoS detection solutions, which are complex with high computa-tional

cost and rigid deployment characteristics, led to the search for new approaches that result

in low computational cost with flexibility in deployment to meet the dif-ferent needs of

networks. The detection of a wide range of attack types also lead to the development and

implementation of new detection techniques for detecting a wide range of existing DDoS

attacks.

The proposed method employs the use of a robust feature selection technique to select

only relevant features required for effectively and accurately distinguishing le-gitimate from

DDoS attack network flows. In addition, it makes use of machine learning algorithms which

using the selected features to improve detection. Further-more, it provides programmability

as machine learning models can be retrained and deployed in no time.

A range of selected features based on an evaluation of the feature selection tech-nique

across multiple up-to-date DDoS attack datasets were used in training a range of machine

learning models.

Results from the evaluation conducted across the different models show that the DT3

model performs well across the different groups of selected features. The architec-ture pre-

sented is optimised for deployment in low-cost environments for efficient, rapid detection and

prevention of DDoS attacks. To achieve a computationally efficiency architecture, the system

was trained with a minimal number of features using a robust features selection approach

and validated against the CIC 2017 and 2019 datasets.
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With just 3 selected features which is the least in this field the DT3 model achieved a

detection accuracy of over 99.9% [147]. Analysis of the design shows that the new architecture

uses just 7% processing power of a core in an offline mode and provides no additional overhead

to the monitored network.

6.1.3 Hardware Accelerated Application for DDoS flooding attacks detec-

tion

It is evident from recent real-life DDoS attack scenarios that there is an increasing intensity

of modern attacks as discussed in Chapter 1. The largest DDoS to date is around 2.5Tbps of

size, which is significantly large when compared to earlier attacks, which were in the range of

Mbps. Thus, software-based solutions may not be adequate to handle high-intensity attacks.

In addition, software-based solutions can easily be bypassed and targeted by the attacker.

On the other hand, hardware specific solutions are less susceptible to attacks. In addition,

hardware solutions have proven to provide significantly faster classification rate leading to

higher detection throughput when compared to software-based solutions. This led to the

study of Chapter 4. In order to facilitate early detections, fast classification systems are

required to cope with the massive network traffic of modern DDoS attacks. The proposed

hybrid network monitoring and DDoS detection architecture implemented in a System-on-

Chip (SoC) hardware device provides fast classification of network traffic flows. The detection

solution is based on the machine-learning model proposed in Chapter 3.

The programmability of the FPGA offers great flexibility for easily retraining and de-

ploying the detection model on the fly. The propose solution offers advantages such as fast

classification (over 30 times faster than the software-based counterpart), low power con-

sumption and flexibility in deployment. Furthermore, it is less expen-sive compared to other

systems that exist in the state of the art with a detection accuracy of over 98%.

6.1.4 Distributed Monitoring for DDoS Flooding attacks detection

Traditional network monitoring and DDoS attacks detection solutions are often centralised

meaning a single node is used in monitoring and detecting attacks. Additionally, the de-

tection system is typically deployed at a strategic location in a network. However, early

detections are required in effective mitigating and preventing mod-ern attacks. To facilitate

early detection of DDoS attacks, the use of multiple detection systems strategically deployed

in a distributed approach across different network nodes is shown to be a much more prefer-

able approach. This enables a distributed network load, which will be easier to manage

compared to processing all network traffic at a single node.

Experiments from Chapter 5 evaluate the use of different detection approaches and their

impact on the efficacy of the DDoS attacks. From the results obtained, the deployment of

a centralised monitoring node at the core switch significantly reduced the effects of DDoS

attacks for example, packet loss ratio was reduced from 8% without detection system to

around 1.5% and reduced network link delays with detection time of around 70µs across the

monitoring and detection systems deployed.
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However, the use of detection systems distributed across different network nodes in the

proposed network design resulted in 0% packet loss ratio and significantly low network link

delays.

6.2 Future Work

The possible directions for future work related to the research field are highlighted in this

section. The findings from this thesis clearly indicate that there is further work to be done

to cope with the ever-increasing number of DDoS attacks, their sizes and complexities.

6.2.1 Distributed hardware detection systems in a real network environ-

ment

The proposed hybrid DDoS detection system presented in this thesis can be extended in a

distributed monitoring scenario in a real network environment to evaluate the effectives of

distributed over a centralised monitoring approach. In addition, the design can be modified

through the use of efficient software and hardware partitioning approaches that will enable

different variations of Decision-Tree algorithms to be ported to faster high computing plat-

forms such as NetFPGA and NetFPGA Sume devices, which are capable of monitoring at

faster network line rates. This could enable deployment at edge or core nodes of a network.

Furthermore, rapid design and deployment could be explored through the use of the Xilinx

Aiengine (which comprises of a host of pre-modelled ML algorithms that can be tailored to

solving specific problems which aids rapid design and implementation process) and Partial

Reconfiguration (PR) for on the fly deployment of newly trained models without the need for

restarting hardware network monitoring devices. This could aid in the dynamic deployment

of IDS across various nodes in a network during run-time.

6.2.2 Extending the proposed detection solution to IoT Environments

There is evidence of successful DDoS attacks that have been initiated with IoT devices.

In addition, the continuous increase in the number of IoT devices poses a security threat

especially in the field of DDoS attacks, as these devices are not adequately secure leading to

possible exploitations. The datasets used in conducting the experiments in this thesis did

not consist of attack traffic from IoT devices. Therefore, possible future research will look

into extending the proposed detection solution in an IoT environment.

6.2.3 Extension of the flow based predictive model in real network envi-

ronment

Since early prediction of DDoS attacks provides an advantage for effective mitigation and

prevention, potential research could be on the implementation of the proposed flow based

predictive model as part of a detection system in a real network environment. This will
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support detection systems in detecting DDoS attacks early, as this is paramount in the

modern DDoS attacks landscape.

6.2.4 Attacks originating from wireless/mobile networks and their devices

Although extensive research has been carried out in the field of DDoS aatacks detection and

prevention against wireless network infrastructures, there is still much research to be carried

out regarding attacks originating from wireless/mobile networks and their devices. Potential

research could look into the use of wireless and mobile devices as botnets for initiating DDoS

attacks and how these attacks could be detected as early as possible to mitigate the potential

damages that could be caused by this method of attacks. This is because there has been a

rapid increase in the use of mobile and wireless devices over the years and these devices have

become targets for executing cyber attacks.

6.3 Summary

In summary, this thesis has provided and overview into DDoS attacks detection systems,

growth of attacks over the years and has contributed to the field of DDoS attack detection

by proposing some useful approaches: (1) a lightweight detection architecture (DT3), (2) a

hybrid accelerated hardware application for fast detection, and (3) a flow based predictor

model to aid early detection. These proposed architectures can provide researchers a better

insight in the use of robust feature selection techniques couple with machine learning models

to develop accurate detection systems. In addition, it provides an insight in hardware ac-

celeration of machine learning models for fast detection of attacks. Finally, it has evaluated

the difference in performance between the use of a centralised monitoring approach and a

distributed approach for early detection and mitigation of attacks.
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Attacks Dataset

A.1 CAIDA 2007 Dataset Analysis

Figure A.1: Overall network traffic variation in the dataset
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Figure A.2: Network traffic variation based on network protocols
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Figure A.3: Number of attack packets in the dataset based on network protocol
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Figure A.4: Number of unique source IP addresses over the traffic duration



Appendix B

Design, Implementation and

Performance of ML Classifiers

B.1 DT3 Construction

Input: Suppose D is the supplied sample dataset Output: Decision-Tree – DT model

Features: A represents the selected features of the DT which is determined by applying the

Low Variance Filter technique described in Chapter 3.

Procedures:

1. Initialize all the data values in the dataset D, calculate the initial entropy of D using:

Entropy(D) =

N∑
i=1

−pilog2pi (B.1)

where pi is the probability of picking a flow record in class i from D, v is the number

of class labels (benign or attack flow). If all the samples in a dataset are from a single

class label, v=1, then pi = 1 and the entropy will be zero. However, if each sample

has its own class label, pi = 1/v and the entropy will be at its largest when Entropy

(D)=log2 v. In this application, v =2 (two class labels, benign or attack) and the

dataset is balanced (equal number of records for each class label)

2. The split entropy of the sample dataset D is calculated. Suppose that a feature par-

titions the sample dataset D into DL, DT and DR. The split entropy is calculated as

the sum of the entropy values for all subsets as shown below:

EntropyF (D) =
DL

D
Entropy(DL)+

DT

D
Entropy(DT ) +

DR

D
Entropy(DR)

(B.2)
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where F is any feature in A, DL, DT and DR are subsets from D with a split criteria

of F. |D| is the total number of samples in the sample dataset D. DL, DT and DR are

the total number of samples in DL, DT and DR respectively

3. Calculate the information gain of feature F. The information gain is used to determine

if a selected feature F can effectively reduce the overall entropy using:

Gain(F ) = Entropy(D)− EntropyF (D) (B.3)

With this, the higher the information gain, the larger the reduction in entropy and

this means the better the attribute for splitting the samples. ID3 algorithm uses the

information gain in splitting samples in a dataset for the construction of the DT models.

However, it is prone to overfitting as it does this by assigning the different classification

results to each sample [125].

4. Determine the information gain ratio. To overcome the problem of overfitting faced by

ID3 algorithm, C4.5 algorithm uses a split information value which is calculated using:

SplitInfo(F ) = −
k∑

i=1

|Di|
|D|

log2
|Di|
|D|

(B.4)

For feature F in A, the information gain ratio can be calculated using:

GainRatio(F ) =
InformationGain(F )

SplitInfo(F )
(B.5)

The information gain ratio of each node (from the root to the terminal nodes) of the DT

model needs to be calculated. The features that achieve the maximum information gain ratio

at each stage are selected and stored at the corresponding node. This process is recursively

executed for subsets split with multiple classes from the sample dataset D until a leaf node

is reached where all samples belong to a single class (a ‘pure’ subset). The paths from

one node to the other are the classification rules. The DT model uses these classification

rules by comparing the sample data values to the different rules to determine the class label

(either benign or attack). Once the construction of the DT model is complete, the process

terminates.

The optimized DT model after pruning consists a minimum of thirty samples per leaf

node with a tree depth of 4. Smaller threshold had minimum impact on the performance

with increase in complexity of the model whereas larger threshold values led to reduction in

the DT model accurately distinguishing normal from attack records.
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B.2 Performance of ML Models with Chi-squared Feature Se-

lection Technique

B.2.1 Performance with three selected Features

Table B.1: DT performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 0.96 0.7 0.81
0.8614

DDoS 0.81 0.98 0.89

Average 0.88 0.86 0.86

Table B.2: RF performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 0.99 0.7 0.82
0.8690

DDoS 0.82 0.99 0.90

Average 0.89 0.87 0.86

Table B.3: MLP performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 0.99 0.42 0.59
0.7482

DDoS 0.69 1.00 0.82

Average 0.82 0.75 0.72

Table B.4: SVM performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.51 0.67
0.7873

DDoS 0.73 1.00 0.84

Average 0.84 0.79 0.77
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B.2.2 Performance with five selected Features

Table B.5: DT performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.86 0.92
0.9390

DDoS 0.9 1.00 0.95

Average 0.94 0.94 0.94

Table B.6: RF performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.86 0.92
0.9392

DDoS 0.9 1.00 0.95

Average 0.94 0.94 0.94

Table B.7: MLP performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.50 0.67
0.7855

DDoS 0.73 1.00 0.84

Average 0.84 0.79 0.77

Table B.8: SVM performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.47 0.64
0.7699

DDoS 0.71 1.00 0.83

Average 0.84 0.77 0.75
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B.2.3 Performance with seven selected Features

Table B.9: DT performance results on distinguishing DDoS attacks from benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 1.00 1.00
0.9984

DDoS 1.00 1.00 1.00

Average 1.00 1.00 1.00

Table B.10: RF performance results on distinguishing DDoS attacks from benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 1.00 1.00
0.9987

DDoS 1.00 1.00 1.00

Average 1.00 1.00 1.00

Table B.11: MLP performance results on distinguishing DDoS attacks from benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.81 0.90
0.9183

DDoS 0.87 1.00 0.93

Average 0.93 0.92 0.92

Table B.12: SVM performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.71 0.83
0.87325

DDoS 0.82 1.00 0.90

Average 0.90 0.87 0.87
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B.3 Performance of ML Models with BFE and FFS Feature

Selection Techniques

B.3.1 Performance with three selected Features

Table B.13: DT performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.87 0.93
0.94153

DDoS 0.91 1.00 0.95

Average 0.95 0.94 0.94

Table B.14: RF performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.87 0.93
0.94153

DDoS 0.91 1.00 0.95

Average 0.95 0.94 0.94

Table B.15: MLP performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.85 0.92
0.93543

DDoS 0.90 1.00 0.95

Average 0.94 0.94 0.93

Table B.16: SVM performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.87 0.93
0.94153

DDoS 0.91 1.00 0.95

Average 0.95 0.94 0.94
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B.3.2 Performance with five selected Features

Table B.17: DT performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.89 0.94
0.95381

DDoS 0.93 1.00 0.96

Average 0.96 0.95 0.95

Table B.18: RF performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.89 0.94
0.95381

DDoS 0.93 1.00 0.96

Average 0.96 0.95 0.95

Table B.19: MLP performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.88 0.94
0.94939

DDoS 0.92 1.00 0.96

Average 0.95 0.95 0.95

Table B.20: SVM performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 0.99 0.89 0.94
0.94938

DDoS 0.92 0.99 0.96

Average 0.95 0.95 0.95



Appendix B. Design, Implementation and Performance of ML Classifiers 130

B.3.3 Performance with seven selected Features

Table B.21: DT performance results on distinguishing DDoS attacks from benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.90 0.95
0.95873

DDoS 0.93 1.00 0.97

Average 0.96 0.96 0.96

Table B.22: RF performance results on distinguishing DDoS attacks from benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.90 0.95
0.95873

DDoS 0.93 1.00 0.97

Average 0.96 0.96 0.96

Table B.23: MLP performance results on distinguishing DDoS attacks from benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 1.00 0.90 0.95
0.95800

DDoS 0.93 1.00 0.96

Average 0.96 0.96 0.96

Table B.24: SVM performance results on distinguishing DDoS attacks and benign network
traffic flows

Precision Sensitivity F-measure Accuracy

Benign 0.99 0.90 0.95
0.95485

DDoS 0.93 0.99 0.96

Average 0.96 0.95 0.95
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B.4 Real-time Monitoring and Network Flow Pre-processing

Application

# Packet Capture and Pre -processor Application using Scapy

import socket

from struct import *

import datetime ,time

import sys ,math

import subprocess ,os

from scapy.all import *

import csv

main_packet_size = {} # dictionary to store list

#of packet sizes for each flow (Here key = flowID , value = list of packet

sizes)

flow_list = [] # contains the flowIDs (a combination of SIP ,

DIP ,

#srcPort , dstPort)

main_inter_arrival_time = {} # dictionary to store list of IATs for each

flow

#(Here key = flowID , value = list of IATs)

last_time ={} # for each flow we store timestamp of the

#last packet arrival

length = 0 # Number of packets in a flow

avg_pkt_size = 0 # average packet size of a flow

std_dev_pkt_size = 0 # standard deviation of packet sizes in a

flow

avg_iat = 0 # average IAT of a flow

std_dev_IAT = 0 # standard deviation of IAT in a flow

pktsize = 0 # packet size

total_bytes = 0 # total bytes in a flow

flow_duration = 0 # Total flow duration

minPacket = 30

var_pkt_size = 0 # variance of packet sizes of a flow

proto = "" # whether a packet/flow is ICMP , UDP or TCP

start_time = time.time() # initial time

def sniffPackets(packet):

if packet.haslayer(IP):

pckt_src=packet[IP].src

pckt_dst=packet[IP].dst

pckt_ttl=packet[IP].ttl

pckt_proto=packet[IP]. proto

time1 = time.time() - start_time

pktsize =packet[IP].len

# Filtering only the required traffic bassed on Protocol

# and destination IP address
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if pckt_proto ==1 or pckt_proto ==6 or pckt_proto ==17

and pckt_dst =="192.168.32.139":

# Three Tuple for classifying network packets to flows

key = str(pckt_src)+"|"+ str(pckt_dst)+"|"+str(pckt_proto)

print(key)

if (key in flow_list):

main_packet_size[key]. append(pktsize)

lasttime = last_time[key]

diff = round(float(time1) - float(lasttime) ,8)

main_inter_arrival_time[key]. append(diff)

last_time[key] = time1

# Call proprocessing function once the number of packets

# threshold is met

if (len(main_packet_size[key]) == 10):

print(key ,"ten packets arrived so far .......")

calculate(key ,proto)

else:

flow_list.append(key)

main_packet_size[key] = [pktsize]

main_inter_arrival_time[key] = []

last_time[key] = time1

# Function for network flow pre -processing and computing values

# for the selected features

def calculate(key ,proto):

feature_vector = " "

packet_list = main_packet_size[key] # packet_list contains the list of

#packet sizes for the flow in consideration

length=len(packet_list) # number of packets

total_bytes = int(sum(packet_list)) # Total_bytes in the flow

avg_pkt_size = total_bytes/length

summ = 0

# for j in packet_list: # calculating standard deviation of packet

sizes

# summ = summ + (avg_pkt_size - j)*( avg_pkt_size - j)

# var_pkt_size = summ/length # variance of packet sizes

# std_dev_pkt_size = int(math.sqrt(var_pkt_size))

inter_arrival_time_list = main_inter_arrival_time[key]

# a list containing IATs for the flows

length = len(inter_arrival_time_list)

length1 = len(inter_arrival_time_list)

if (length > 0):

flow_duration = sum(inter_arrival_time_list) # flow duration

r1 = (length1/flow_duration)

avg_iat = 1000*1.0* flow_duration/length # averag IAT in miliSeconds
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summ=0

for iat in inter_arrival_time_list:

iat = 1000.0* iat # covert each IAT to ms , and then calculate

summ=summ + (iat -avg_iat)*(iat -avg_iat)

# std_dev_IAT = round(math.sqrt (1.0* summ/( length)) ,2)

# standard deviation of IATs

# Selected netwrok flow features sent to DT mpdel for decision

feature_vector = ("Average packet size: "+str(avg_pkt_size)+"

AVG_IAT: "+str(round(float(avg_iat) ,2))+" Total bytes: "+str(

total_bytes))

print(feature_vector)

def main():

# Real -time packet capturing and processing

print("custom packet sniffer")

cap = sniff(filter="ip",iface="eth0",prn=sniffPackets)

if __name__ == ’__main__ ’:

main()
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Hardware Design

C.1 Overall Hardware Design in Vivado Design Suite

Figure C.1: Overall hardware design
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Figure C.2: Internal view of the DT3 hardware IP block



Appendix D

NS3 Network Testbed

D.1 Overall network design

Figure D.1: Final Network simulation model in NS3
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D.2 Network Flow Monitoring in NS3

// #

################################################################################

// Main routine

// #

################################################################################

NS_LOG_COMPONENT_DEFINE ("Multiple -LANs -implementation")

#define vssearch(loc ,vec) std::find ((vec).begin() ,(vec).end() ,(loc))!= (vec)

.end()

void Monitor (FlowMonitorHelper *flowmon , Ptr <FlowMonitor > monitor)

{

float total_bytes , Iat;

float avg_pkt_s;

int r=0, v=0;

double seconds = 0.0;

monitor ->SerializeToXmlFile ("scenario1.xml" , true , true );

monitor ->CheckForLostPackets ();

std::map <FlowId , FlowMonitor ::FlowStats > stats = monitor ->GetFlowStats ();

Ptr <Ipv4FlowClassifier > classifier = DynamicCast <Ipv4FlowClassifier >(

flowmon ->

GetClassifier ());

for (std::map <FlowId , FlowMonitor ::FlowStats >:: const_iterator iter = stats.

begin ();

iter != stats.end (); ++iter)

{

int x[9] = {60 ,7 ,5 ,47 ,42 ,48 ,59 ,406 ,112};

int y[5] = {64 ,269 ,1621 ,6033 ,2811};

int z[11] = {1004 ,2047 ,6222 ,38 ,1584 ,4438 ,636 ,250 ,168 ,125 ,199};

Ipv4FlowClassifier :: FiveTuple t = classifier ->FindFlow (iter ->first);

if (t.destinationAddress == "192.168.1.2") # Monitored destination

address

{

Iat = ((iter ->second.timeLastRxPacket.GetSeconds ()-

iter ->second.timeFirstTxPacket.GetSeconds ())/(iter ->second.rxPackets)

*1000);

avg_pkt_s = (iter ->second.rxBytes)/(iter ->second.rxPackets);

total_bytes = iter ->second.rxBytes;

//int A = avg_pkt_s;

// Classification using the DT3 model

r = decision(x,y,z,avg_pkt_s ,& total_bytes ,&Iat ,v);

seconds = (double) Simulator ::Now ().GetSeconds ();
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NS_LOG_INFO (" ");

std::cout << "Elapsed seconds\t\t: " << seconds << " s" << std::endl;

NS_LOG_UNCOND("Flow ID: " << iter ->first << " Src Addr "<< t.

sourceAddress <<

" Dst Addr " << t.destinationAddress);

NS_LOG_UNCOND("Tx Packets = " << iter ->second.txPackets);

NS_LOG_UNCOND("Rx Packets = " << iter ->second.rxPackets);

NS_LOG_UNCOND("Flow outcome = " << r);

NS_LOG_UNCOND("Throughput: " << iter ->second.rxBytes * 8.0 /

(iter ->second.timeLastRxPacket.GetSeconds ()-iter ->

second.timeFirstTxPacket.GetSeconds ()) /1024 << " Kbps");

}

}

Simulator :: Schedule (Seconds (2), &Monitor , flowmon , monitor);

}
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Extracted Network Flow Features

E.1 Network Flow Features

Table E.1: Network flow features and their meanings

Feature Name Description

Fl Dur Flow duration

Tot Fwd Pkt Total packets in the forward direction

Tot Bwd Pkt Total packets in the backward direction

Tot l Fwd Pkt Total size of packet in forward direction

Fwd Pkt l Max Maximum size of packet in forward direction

Fwd Pkt l Min Minimum size of packet in forward direction

Fwd Pkt l Mean Average size of packet in forward direction

Fwd Pkt l Std Standard deviation size of packet in forward direction

Bwd Pkt l Max Maximum size of packet in backward direction

Bwd Pkt l Min Minimum size of packet in backward direction

Bwd Pkt l Mean Mean size of packet in backward direction

Bwd Pkt l Std Standard deviation size of packet in backward direction

Fl Byte S flow byte rate that is number of packets transferred per second

Fl Pkt S flow packets rate that is number of packets transferred per second

Fl IAT Mean Average time between two flows

Fl IAT Std Standard deviation time two flows

Fl IAT Max Maximum time between two flows

Fl IAT Min Minimum time between two flows

Fwd IAT Tot Total time between two packets sent in the forward direction

Fwd IAT Mean Mean time between two packets sent in the forward direction

Fwd IAT Std
Standard deviation time between two packets sent in the
forward direction

Fwd IAT Max Maximum time between two packets sent in the forward direction

Fwd IAT Min Minimum time between two packets sent in the forward direction

Bwd IAT Tot Total time between two packets sent in the backward direction

Bwd IAT Mean Mean time between two packets sent in the backward direction

Bwd IAT Std
Standard deviation time between two packets sent in the
backward direction
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Table E.2: Network flow features and their meanings cont.

Feature Name Description

Bwd IAT Max
Maximum time between two packets sent in the backward
direction

Bwd IAT Min
Minimum time between two packets sent in the backward
direction

Fwd PSH Flag
Number of times the PSH flag was set in packets travelling
in the forward direction (0 for UDP)

Bwd PSH Flag
Number of times the PSH flag was set in packets travelling
in the backward direction (0 for UDP)

Fwd URG Flag
Number of times the URG flag was set in packets travelling
in the forward direction (0 for UDP)

Bwd URG Flag
Number of times the URG flag was set in packets travelling
in the backward direction (0 for UDP)

Fwd Hdr Len Total bytes used for headers in the forward direction

Bwd Hdr Len Total bytes used for headers in the forward direction

Fwd Pkt S Number of forward packets per second

Bwd Pkt S Number of backward packets per second

Pkt Len Min Minimum length of a flow

Pkt Len Max Maximum length of a flow

Pkt Len Mean Mean length of a flow

Pkt Len Std Standard deviation length of a flow

Pkt Len Va Minimum inter-arrival time of packet

FIN Cnt Number of packets with FIN

SYN Cnt Number of packets with SYN

RST Cnt Number of packets with RST

PSH Cnt Number of packets with PUSH

ACK Cnt Number of packets with ACK

URG Cnt Number of packets with URG

CWE Cnt Number of packets with CWE

ECE Cnt Number of packets with ECE

Down Up Ratio Download and upload ratio

Pkt Size Mean Average size of packet

Fwd Seg Mean Average size observed in the forward direction

Bwd Seg Mean Average size observed in the backward direction

Fwd Byte Blk Mean Average number of bytes bulk rate in the forward direction

Fwd Pkt Blk Mean Average number of packets bulk rate in the forward direction

Fwd Blk rate Mean Average number of bulk rate in the forward direction

Bwd Byte Blk Mean Average number of bytes bulk rate in the backward direction

Bwd Pkt Blk Mean Average number of packets bulk rate in the backward direction

Bwd Blk rate Mean Average number of bulk rate in the backward direction

SubFl Fwd Pkt
The average number of packets in a sub flow in the forward
direction

SubFl Fwd Byte
The average number of bytes in a sub flow in the forward
direction

SubFl Bwd Pkt
The average number of packets in a sub flow in the
backward direction
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Table E.3: Network flow features and their meanings cont.

Feature Name Description

SubFl Bwd Byte
The average number of bytes in a sub flow in the
backward direction

Fwd Win Byte Number of bytes sent in initial window in the forward direction

Bwd Win Byte Number of bytes sent in initial window in the backward direction

Fwd Act Pkt
Number of packets with at least 1 byte of TCP data payload in
the forward direction

Fwd Seg Min Minimum segment size observed in the forward direction

ATV Mean Mean time a flow was active before becoming idle

ATV Std Standard deviation time a flow was active before becoming idle

ATV Max Maximum time a flow was active before becoming idle

ATV Min Minimum time a flow was active before becoming idle

IDL Mean Mean time a flow was idle before becoming active

IDL Std Standard deviation time a flow was idle before becoming active

IDL Max Maximum time a flow was idle before becoming active

IDL Min Minimum time a flow was idle before becoming active
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