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Abstract 

 

The urbanisation process continuously influences human life, causing long-term 

challenges for the planning and management of urban areas. In recent years, with the 

emergence of new forms of data and advances in techniques, the ways of managing 

and governing this process have evolved and formed a new research field: urban 

analytics. A growing number of human behaviours can be traced through quantities of 

data, which enables attributes of the urban environment to be managed more efficiently, 

potentially beneficial to complex decision-making processes by stakeholders. As such, 

how to extract useful information from new data and provide more suitable methods 

requires careful consideration. 

The question of how human activity relates to the built environment has been an 

important topic in the sensing of cities. Existing ways to perceive the city either focus 

on environmental aspects that cover historical, social, or cultural dimensions of urban 

space through surveys, interviews, or mobility data (e.g., social media data), or extract 

visible features from georeferenced images to gain perceptions of the city. However, 

both approaches are often disconnected and lack dynamic consideration. 

The main aim of this thesis is to address these challenges and gaps within urban 

analytics. It develops a methodological framework to leverage user-generated 

geotagged images and modern analytical techniques to obtain insights. Such 

framework is designed to mine spatial, temporal and image attributes of the Flickr 

images, which combines multiple dimensions including spatiotemporal dynamic 

analysis, computer vision models, summary statistics, and varying machine learning 

algorithms that allow understanding of human interactions with the built environment.  

The overall analysis and results enrich our current understanding of how user-

generated urban pictures represent but also shape the city. This is especially important 

given the growing popularity of volunteered geographic information and urban 
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analytics over the last decade. Their rapid growth has facilitated debates worldwide, 

but there is still a large potential of volunteered geographic information such as 

geotagged image information which has been underestimated in most circumstances. 

The findings presented in this thesis offer richer evidence that aims to help the 

improvement of strategic planning systems, and empowering policymakers to make 

smarter decisions in terms of urban governance.  

 

Keywords: volunteered geographic information, geotagged Flickr images, urban 

perception, urban areas of interest, machine learning, housing 
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1. Introduction 

 

1.1 Sensing the City Through Urban Analytics 

A city possesses various functions for human living covering at least four fundamental 

categories: dwelling (e.g., houses), work and service (e.g., offices, schools, stores), 

entertainment (e.g., galleries, parks, plazas), and transportation (e.g., railway stations; 

Ittelson, 1978). Given their composition, variability, and complexity, cities can hardly 

be understood at a single scale (Singleton et al., 2018). Within various perspectives, a 

city can be viewed as a single entity, or abstracted as an object that is spatially located 

at bounded extends. Over the past 100 years, humans have witnessed worldwide 

urbanisation under economic, cultural, social, and technical forces. Although the 

forces that drive urbanisation are quite different among different cities of the world, a 

general trend is that people are attracted by the proximity to infrastructure, 

employment opportunities, and cultural districts (Singleton et al., 2018). The transition 

to urbanised living continuously influences human interactions which are complex and 

dynamic, jointly determining urban morphology, structure, and functions (Batty, 2013) 

and posing challenges for the planning and management of urban areas.  

Data are the carriers of digital footprints that shape the world into numbers, characters, 

symbols, images, sounds, bits, and more, constituting the structural elements for the 

creation of information and knowledge (Kitchin, 2014). The unfolding and 

transformed digital world have changed every aspect of humans’ daily life in a city 

(Goodchild, 2007). A growing range of human behaviours can be traced back through 

numerous digital footprints that can expose emerging patterns if aggregated and 

modelled (Arribas-Bel, 2014). This societal change allows urban researchers to 

investigate new forms of data at a more detailed level rather than having to rely entirely 

on traditional data sources (Singleton et al., 2018). Although new forms of data may 

be less representative and comprehensive than traditional data sources, their distinct 
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characteristics make them worth exploring. First, these new data are available at high 

frequencies enabled by sensors such as mobile phones, digital cameras, or computers 

(Manyika et al., 2011). Second, most of these sources are freely available to 

researchers through application programming interfaces (APIs) or open data at 

governmental institutions. Finally, many new datasets such as social media data are 

generated by individuals and can not only quantify human activity but capture human 

perceptions of cities. As such, these data can help reduce the error of location 

measurement observations, avoid discretisation of continuous urban research problems, 

and fill gaps where traditional data are lacking (Arribas-Bel, 2014).  

Unlike traditional sources, new forms of data are often generated as a by-product 

which is unstructured and large and can pose challenges to extracting useful patterns. 

As a response, new forms of data require the development of techniques to process 

this data (Kitchin, 2016). In fact, Data are undergoing an innovative transition to 

exploratory (i.e., data-driven) science, from the mode of complex phenomena 

simulation to new, data-intensive analytical methods (Lynch, 2009). The premise of 

data-driven science is to employ theory-guided knowledge discovery methods to 

recognise hypotheses worth being investigated and tested further (Kitchin, 2014). This 

data-driven science enables the storage, analysis and presentation of new forms of data 

through evolutionary computer hardware (e.g., central processing unit and graphics 

processing unit), more user-friendly software and open-access programming language 

(e.g., Python or R; Singleton et al., 2018).  

Many core approaches in data-driven science are machine learning tasks that happen 

in an automated way without any human intervention (Singleton & Arribas‐Bel, 2021). 

Recently, machine learning has permeated social science more, including quantitative 

analytics in urban geography (Kandt & Batty, 2021). Machine learning is usually 

constituted of unsupervised and supervised learning (Hastie et al., 2009). Primary 

precedents for unsupervised applications within quantitative geography are 

geodemographic analysis or regionalisation and zone design (Openshaw & Openshaw, 
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1997; Singleton & Longley, 2009), which often generate the sociodemographic groups 

based on statistical similarity as well as varying geographic dimensions. Applications 

in supervised learning include spatial econometrics or geographically weighted 

regression (Anselin, 1989; Brunsdon et al., 1998), which integrate space in a regression 

model to automatically build the representations of phenomena. These approaches are 

implemented through different data analytics software, enabling researchers and 

stakeholders to process, analyse, and visualise these new forms of data for problem-

solving at fine spatiotemporal resolutions and frequently for urban governance 

(Kitchin, 2016). This is the so-called new term in the field of urban studies: urban 

analytics that uses the new data sources from social media, crowdsourcing and sensor 

networks, and rely on the power of quantitative modelling from the description, 

prediction and explanation (Singleton et al., 2018). This new field enables attributes 

of the urban environment to be managed more efficiently, which is potentially 

beneficial to complex decision-making processes and different stakeholders. The 

detailed information on urban analytics is stated in Section 2.2.1.  

1.2 Current Opportunities and Challenges  

As the statement of the research context has shown, urban analytics make it possible 

to ask new or complex questions about cities to gain insights using new forms of data. 

Illustrations of urban analytics include integrating these new data in policymaking to 

offer richer evidence for the improvement of strategic planning systems or 

empowering policymakers to make smarter decisions in terms of governance of urban 

areas (Singleton et al., 2018). However, a certain degree of error, uncertainty, or bias 

embedded in all data cannot be neglected. As such, careful considerations are required 

in asking the right questions and using appropriate tools when working with these data 

sources.  

The question about how human activity relates to the built environment has been a 

popular topic over the years, playing an important role in understanding and governing 

cities. Many proposals have been attempted to explore ties between human activity 
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and the built environment from surveys to systematic observations or Geographic 

Information System (GIS)-based analytics (Brownson et al., 2009) at an early stage to 

more data-driven approaches in recent years (Lloyd & Cheshire, 2017; Sulis et al., 

2018; Zhang et al., 2019). Applications vary from unpacking the environmental 

impacts on human activity, such as the effects of infrastructure accessibility on leisure 

activity (Duncan et al., 2005) or proximity to destinations on transportation activity 

(Humpel et al., 2002), to mining human-environment interactions such as travel 

behaviour exploration (O’Brien et al., 2014), event detection (Kisilevich et al., 2010), 

and urban representations recognition (Zhou et al., 2014). Although the rapid 

expansion of urban analytics has provided ample opportunities for stakeholders to gain 

insight into how cities operate, the question of how to better use data and what methods 

are suitable remains open.  

Based on the literature, there are usually two main perspectives to perceive the city: 

one analyses environmental preferences using surveys or interviews to extract 

historical, social, and cultural attributes of cities (Frank & Engelke, 2001; Hristova et 

al., 2018; Sulis et al., 2018); the other one focuses on identifying perceived attributes 

such as safety, wealth, and the uniqueness of the urban environment from images 

(Dubey et al., 2016; Khosla et al., 2014; Naik et al., 2014). The former perspective 

could explore multiple aspects of the environment but very limited involvement in the 

perceived attributes. The latter tends to extract urban perceived attributes mostly from 

Street View imagery, which is often collected by street view fleets (Google Maps 

Street View, 2020) and thus underestimating the importance of human cognition in 

sensing the city. Integrating both approaches to gain a more comprehensive 

understanding of human–(built) environment interactions is challenging. Moreover, 

high mobility of human activity between cities or within the city on a daily or monthly 

basis leads to people’s perception of the city changing dynamically. This is also a 

challenge for stakeholders governing and managing the city.    



 

18 

1.3 Research Objectives  

This research seizes the opportunities presented by the rise of urban analytics and 

contributes to closing some of the gaps outlined above, aiming to answer the following 

primary research question: “How can the perception of the city be better understood 

by volunteered geographic image information?” Using image data about Inner London 

from the Flickr platform, the following research objectives were formulated to address 

different dimensions of the relationship between built and experienced environment: 

1. To identify urban areas of interest (UAOIs) in the city from Flickr images and 

profile their dynamic spatiotemporal attributes.       Chapter 3 

2. To recognise human-perceived scene features from Flickr images to investigate the 

driving factors for the varying popularity levels of urban areas. Chapter 4 

3. To mine dynamic perceived scene features to uncover the temporal variations and 

the formation of UAOIs.                   Chapter 4 

4. To analyse impacts of perceived scene features on the urban environment using 

housing prices as a case study          Chapter 5 

5. To explore the comparative merits in terms of both performance and 

interpretability of modern machine learning models, as compared to traditional 

linear regression approaches, in the application of hedonic models of housing 

prices.               Chapter 5 

1.4 Thesis Structure 

To achieve the above objectives, this thesis provides an in-depth analysis of particular 

volunteered geographic information (VGI): geotagged Flickr images. To leverage 

these images’ potential, the thesis uses a wide range of modern urban analytics 

methods ranging from exploratory spatial data techniques to state-of-the-art computer 

vision algorithms. The overall analysis and results enrich the current understanding of 

how user-generated urban pictures shape the city. This is of special relevance given 
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the growing popularity of VGI and urban analytics over the last decade. Their rapid 

growth has facilitated debates worldwide, but there is still substantial untapped 

potential in VGI, which has been underestimated in most circumstances. Thus, a novel 

research framework is proposed and developed to make full use of geotagged images 

and modern analytical techniques to enrich the research of urban perception field and 

provide richer evidence for stakeholders (see flowchart in Figure 1.1). Such a 

framework is designed to mine spatial, temporal, and image attributes of the Flickr 

data, combining spatiotemporal dynamic analysis, image recognition models, and a 

variety of machine learning algorithms that enhance the understanding of human 

interactions with the built environment through multiple dimensions.  

This thesis is divided into six chapters that together elaborate on how volunteered 

geographic image information can be used to understand cities. This section briefly 

describes what each chapter focuses on, thus providing a holistic overview of the thesis. 

Chapter 1 provides an overview of the thesis. It begins with the research motivation to 

understand the cities, followed by an introduction of new forms of data and data-driven 

science, and then explains urban analytics field which combines new forms of data 

with modern analytical methods together to sense the city. Based on that, a few 

opportunities and challenges are discussed to raise our main research question and 

research objectives. The structure of the thesis is then provided to help readers navigate 

the entire document. Finally, several key contributions of the thesis to theory and 

practice are outlined.   
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Figure 1.1 Method Framework Designed to Sense the City Through Geotagged Flickr 

Images 

Chapter 2 reviews the relevant literature and theoretical context of the thesis. This 

includes the following domains: human interaction and the built environment, new 

data sources that use humans as sensors, and the potential of images in cities. 

Specifically, it first explores the theoretical context of urban perception with a detailed 

definition and an account of its development over time. The chapter then summarises 

work on the relationship between human activity and the built environment and 

different ways to understand human interaction in the city. VGI is introduced, 

discussed, and explained concerning the thesis, first covering social sensing, then 
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social media data, and finally geotagged Flickr data. The main advantages and 

limitations of these sources are thus evaluated in the context of the study. This chapter 

concludes with an illustration of the potential of imagery in urban research and the 

main algorithms currently used to leverage the value of images.    

Chapters 3 through 5 consist of three case studies that explore different directions and 

approaches to understanding the city using volunteered geographic image information 

(i.e., Flickr images). All of these maintain consistency and progression since the same 

study area and time range of data are used. Both Chapters 3 and 4 focus on UAOIs, a 

concept that provides functional definitions of a city’s spatial structure. Chapter 5 uses 

insights from the previous two chapters to exploring the potential of images for helping 

to establish a better understanding of housing prices. 

Chapter 3 is intended to contribute to the understanding of the dynamics of UAOIs 

geographically and temporally, developing a methodological framework that 

combines a clustering algorithm with a technique to delineate tight boundaries around 

clusters of points and an innovative visualisation to profile the dynamics of various 

UAOIs. The results illustrate the interactions between human activity and the built 

environment and visualise how the popularity of certain regions is influenced by time 

and how its levels differ across different areas.  

Chapter 4 extends the work of Chapter 3 and focuses on the image information in the 

Flickr data. It characterises different attractiveness levels of urban areas based on an 

aggregation of information extracted from images collected within the boundaries of 

those areas. An advanced image recognition model was utilised to extract features 

from millions of images from Inner London in the period from 2013 to 2015. The 

identified characteristics were then integrated into different urban areas and time 

ranges followed by a series of visualisation techniques such as feature importance plots 

and accumulated local effects plots. The findings demonstrate that urban areas with 

higher population densities cover more iconic landmarks and leisure zones, while 
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others are more related to daily life scenes. The dynamic nature of these results 

suggests that season determines human preferences for travel and activity modes.  

Chapter 5 further identifies the relationships between urban perceptual features and 

the surrounding housing market. This analysis is based on the image features 

recognised in the previous chapter and property transaction records on a monthly basis. 

Combined with ancillary datasets and built around a traditional housing price model 

(i.e., hedonic price model [HPM]), structural, neighbourhood, and perceived scene 

characteristics were identified to uncover their impacts on housing prices. Two 

machine learning algorithms – random forest and gradient boosting machines – were 

harnessed to compare their performance and interpretability with the baseline model. 

The results corroborate that volunteered geographic image information could be added 

as an additional data source when analysing the housing market. Furthermore, machine 

learning algorithms are shown to be comparable to traditional HPM in terms of 

performance and interpretability. 

Chapter 6 provides a set of concluding remarks, including a summary that highlights 

the main findings and contributions from both theoretical and technical perspectives 

as well as limitations, and suggests further extensions to the work presented in the 

document. The implications of these findings are discussed with a focus on how they 

can be used to inform policies associated with urban planning and design. Implications 

include insights related to human interactions with the built environment, business 

marketing in terms of store site selection, and real estate appraisal concerning the 

adjustment of housing prices and construction of attractive neighbourhoods. The 

chapter concludes that volunteered geographic image information (i.e., Flickr images 

in this study) is a valuable data source for sensing human interactions with the built 

environment and that it can be used to expand and improve upon the previous research 

on urban perception. 
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1.5 Key Contributions  

The core contribution of this thesis is to develop a methodology framework to better 

understand urban perception through volunteered geographic image information, the 

explicit contributions are presented separately in Chapters 3 through 5.   

The methods and results in Chapter 3 are of interest in several fields and domains. 

They could help urban planners develop better strategies in tourism planning such as 

more efficient resource allocation. Local authorities may also benefit from the results 

in terms of police patrol and traffic monitoring. Researchers and practitioners could 

consider UAOIs as an additional geographic layer to understand the use of the urban 

built environment. Furthermore, part of the relevance of the thesis’ contribution lies in 

the fact that it can be deployed using data that are available almost in real-time. Unlike 

more traditional data sources, geotagged Flickr images are constantly added to services, 

thus providing an opportunity to study the evolution of UAOIs not only retrospectively 

but as they evolve. This holds distinct value for practitioners such as urban planners 

and policymakers. 

Chapter 4 contributes to the research field of urban perception. It recognises the value 

of perceived scene features from Flickr images, instead of relying on traditional 

methods that use tags or other image sources like street-level images. More 

importantly, the work bridges the research gap between image recognition techniques 

and urban perception analytics, implying that local scales and dynamic characteristics 

are important to the study of urban perception. In terms of practical significance, the 

regular and dynamic characteristics of the urban environment provide new decision-

making insights for policymakers. The regular characteristics are informative for urban 

planners to have a macroscopic understanding of urban areas and aid them in 

formulating relevant policies such as target investments in certain areas to stimulate 

consumption for economic growth. The dynamic characteristics of perceived scene 

features can help transport planners regulate trip frequency in various seasons, for 

instance with greater trip frequency in the winter than in the summer. Moreover, 



 

24 

retailers may also be inspired by the dynamic perceived scene features to better design 

personalised advertisements at specific places and times or expand their open hours in 

the summer. 

Chapter 5 integrates urban perception into a housing study, which expands and 

improves upon the previous literature since little research has explicitly considered 

volunteered geographic image information to explain and understand the housing 

market. Additionally, the chapter shows that models to investigate the impacts of 

features on housing prices built on machine learning techniques are superior and more 

flexible in performance than the traditional HPM but remain interpretable, avoiding 

the common black-box problems attributed to several machine learning algorithms. 

The findings provide a reference for stakeholders to consider user-generated images 

as an additional dataset for real estate appraisal. This data source can capture human 

interactions with the urban environment, reflecting their interests and perceptions of 

urban scenes. The patterns would also be informative to real estate developers for 

early-stage site selection for the construction of residential buildings. Furthermore, the 

government should pay more attention to the adjustment and design of housing 

development based on various facilities and surrounding urban features, which could 

assist in improving the vitality of the area surrounding a property. This subsequently 

influences people’s willingness to buy that property. 

In summary, Chapter 1 introduced the research background of this thesis and outlined 

current opportunities and challenges in urban analytics and urban perception. A range 

of objectives were proposed to address our research question on “How can the 

perception of the city be better understood by volunteered geographic image 

information?”, followed by a detailed structure and key contributions of the thesis.     
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2. Literature Review 

 

Abstract: This chapter explains the conceptual and empirical knowledge that motivated 

the underlying research question proposed within this thesis. To begin, the theoretical 

concept of urban perception is introduced, and its development is discussed to identify 

the gaps that human cognitions are overlooked in most cases. Different dimensions of 

cities are then outlined to explain why they are relevant to this study and corresponding 

challenges are identified. The next two sections illustrate the data from two 

perspectives: Section 2.3 discusses the data from human participation perspective and 

Section 2.4 unfolds the data from an image perspective. A range of opportunities and 

challenges concerning data quality, data applications, data sources, data-driven 

methods are then proposed. Thus, this thesis sought to build research on these gaps to 

bring theoretical and practical meanings to the knowledge reviewed in this chapter.     
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2.1 Urban Perception  

2.1.1 Background and Origins  

Research on urban perception covers many aspects compared with the traditional 

definition of perception, which includes more general cognition with perception, 

thinking, imagery, and emotion, intention, and assessment (Ittelson, 1978). A direct 

and common perspective to understand urban perception was based on the idea of 

“image” initially proposed by Boulding (Boulding, 1957) and later developed in two 

directions. One direction claimed that individuals form generalised mental images 

when they experience environmental physical elements, which perspective was 

represented by the seminal work of Lynch (1960), while the other emphasised the 

nature of the cognitive image or map and information extraction in terms of people’s 

perception of their living conditions (Milgram, 1976; Tuan et al., 1975). 

Another direction in which to explore urban perception included studies of 

environmental values, preferences, and aesthetics. An early study involved the concept 

of landscape and considered historical and cultural variations of a city as a reflection 

and determinant of social and cultural values in the city (Lowenthal, 1968). More 

empirically oriented studies examined landscape preferences and scenic beauty to 

assess urban environment (Daniel & Boster, 1976; Herzog et al., 1976). This direction 

was then developed into a formal study of environmental or urban aesthetics as an 

empirical topic in Wohlwill’s (1976) work. These works shared a common claim that 

urban value and aesthetics constitute all parts of urban perception.  

It is difficult to neglect the social, cultural, and personal learning contexts, which not 

only influenced environmental elements or aesthetics but also the cognition involved 

(Rapoport & Hawkes, 1970). Urban activist Jane Jacobs claimed that urban streets 

work as principal visual scenes in a city and emphasises the connections between the 

neighbourhoods of inner cities and the social interaction of urban dwellers (Jacobs, 

1961). Environmental psychologist Ittelson (1978) highlighted that the definitions of 

the environment vary in the direction of emphasis among different individuals and 
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groups, but social, cultural, and physical environments cannot be apart. In other words, 

no person acquired any source of information unless through participation in the 

environment. Therefore, the concept of urban perception was complex and rich and 

included studies involving perceptual, cognitive, imaginal, emotional, and meaning 

aspects of a city analysed using a series of methodologies and techniques (Ittelson, 

1978). Except physical, interpersonal, and cultural aspects of urban environment, 

urban perception also highlighted the significance of human conditions, including 

demands, actions, motivation, cognition, and so on, as typically treated in a variety of 

literature sources (Craik & Zube, 1976; Holcomb & Saarinen, 1977; Ittelson, 1978; 

Lawson & Ittelson, 1977; Stokols & Moos, 1979).  

2.1.2 The Development and Evolution of urban perception: From Qualitative to 

Quantitative 

Studies of urban perception have existed since at least the 1960s, though these studies 

have mostly focused on qualitative analysis instead of a quantitative perspective 

(Rapoport & Hawkes, 1970). These qualitative analyses were concerned with 

understanding theories, perspectives, or phenomena through unstructured and 

nonnumerical data collected from participant observation and interviews (Strauss, 

1988), while quantitative analysis relies on numerical data to understand underlying 

patterns and empirical relationships and generalised results to a wider population via 

statistical, mathematical, or computational techniques (Blaikie, 2003). Urban planners 

and architects managed to measure urban perception through a range of evaluative 

dimensions on the basis of visual surveys or interviews (Herzog et al., 1976; Nasar, 

1990; Schroeder & Anderson, 1984; Scott, 1998). For instance, Herzog et al. (1976) 

conducted a nonmetric factor analysis on urban scenes rated by college students, 

demonstrating that the five urban dimensions cultural, contemporary, commercial, 

entertainment, and campus reflect people’s preferences regarding urban environments. 

Nasar (1990) found by interviewing 440 participants that naturalness, upkeep, 

openness, order, and historical significance are significant features according to which 
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the public evaluate a city. In terms of the connection between visual appearance and 

human perception, empty buildings and graffiti were linked with low safety (Schroeder 

& Anderson, 1984) while disorders such as trash and abandoned properties and cars 

were associated with a perception of the breakdown of social order and fear of crime 

(Skogan, 1990). However, the use of surveys or interviews were criticised because 

they were costly, time-consuming, and largely based on traditional expert assessments, 

which resulted in limitations for contextual behaviour evaluation and interaction (Zube 

et al., 1982).  

Qualitative studies remained dominant in the study of urban perception until the 

popularity of new sources of data and the advancement of computer vision techniques 

several years ago (Kandt & Batty, 2021). Since then, there has been an abundance of 

literature exploring urban perception using a quantitative approach. Some concerned 

the identification of visual representations of the city, including evaluation of 

landscape preference by extracting numeric variables from land cover and elevation 

data at the very beginning of the century (Wherrett, 2000), and concentration of the 

discovery of geographically or temporally representative image elements through 

machine learning methods (Doersch et al., 2012; Kennedy & Naaman, 2008; Lee et 

al., 2015; Lee et al., 2013; Zhou et al., 2014, Zhang et al., 2018). Similar works focused 

more on quantifying perceptual characteristics of the city. An important study in this 

context that enabled further studies was that of Salesses and colleagues, who proposed 

a reproducible quantitative measure for the urban perception of safety, class, and 

uniqueness which relied on a survey with pairwise comparisons of the geotagged 

images of a few cities (Salesses et al., 2013). Various researchers later exploited this 

dataset to identify urban perceptual characteristics such as safety, uniqueness, and 

wealth using varying statistical techniques (Naik et al., 2014; Ordonez & Berg, 2014), 

which both measured six perceptual attributes provided by Dubey and his colleagues: 

safe, lively, beautiful, wealthy, boring, and depressing (Dubey et al., 2016). Instead of 

identifying the visible characteristics, some studies further explored the relationships 

between urban perceptual features and other attributes. Arietta et al. (2014) trained a 
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predictor to discover relationships between the visible appearance of a city and its 

nonvisual attributes (e.g., crime statistics and population density). Khosla et al.(2014) 

demonstrated that it is possible to infer the distance to surrounding scenes based only 

on visible attributes far from them. Li et al.(2015) analysed the relationship between 

urban greenery and perceived safety based on the Place Pulse 1.0 dataset. Naik et al. 

(2017) connected changes in urban perceptual characteristics with socioeconomic 

attributes such as population density and proximity to the city centre to predict 

neighbourhood improvement. Zhang et al. (2018) identified 150 scene categories 

segmented from the street view images as being correlated with the six perceptual 

measures identified by Dubey and his colleagues (2016). 

Although many studies attempted to quantify urban perception, they mostly relied on 

street-level imagery (Arietta et al., 2014; Doersch et al., 2012; Lee et al., 2015; Li et 

al., 2015; Naik et al., 2017; Zhang et al., 2018) where a mass of data was collected 

from professional street-view fleets. This led to the perception of the city not being 

captured by different individuals, which weakened the significance of human 

cognitions in the definition of urban perception. Additionally, previous research on 

connecting perceptual features and surrounding nonvisual socioeconomic attributes 

were still limited and mainly focused on crime rate (Arietta et al., 2014; Khosla et al., 

2014; Naik et al., 2017). Therefore, this work intends to reduce these gaps to gain some 

new insights into urban perception.  

2.2 Understanding the Multiple Dimensions of Cities  

2.2.1 The Emergence of Urban Analytics  

Urban analytics is a new term that emerged in the 2010s and is beginning to gain 

traction. There are currently two mainstream definitions: Batty (2019) claimed that the 

term is derived from urban analysis but a wider scope for the term ‘analytics’, 

suggesting a series of tools to cope with issues of big data, urban simulation, and 

geodemographics and grasp and estimate the features of cities. Goodchild defined 
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urban analytics as new types of urban research that take advantage of new data sources 

such as social media, crowdsourcing, and sensor networks as well as the power of 

computer technology (Singleton et al., 2018). As such, urban analytics creates many 

opportunities and challenges. Opportunities come from recently increasing new forms 

of data and associated computational techniques (Arribas-Bel, 2014) that enable more 

accurate measurement and the extraction of actionable insights; challenges primarily 

remain in the nature of urban complexity and how to take full advantage of the 

opportunities new methods provide to help urban planners improve citizens’ quality of 

life (Batty, 2019). 

Understanding a city is a complex process that generally requires multiple sources of 

information such as social, economic, cultural, political, and technical scales. For 

decades, researchers have considered cities as a whole or as coarse aggregations, 

examples of which include but were not limited to modelling urban systems (Batty, 

2005), profiling geodemographic statistics (Singleton & Longley, 2009), unpacking 

human mobility and migration (González et al., 2008), and exploring population health 

and diseases (Ng et al., 2014). These studies mostly analysed cities using longitudinal 

analysis (e.g., UK census data) which was incapable of capturing small details at a 

finer level of resolution. However, real-time and disaggregate data have increasingly 

become available over the last decade, allowing a number of works to analyse high 

spatiotemporal resolution. As a result, urban analytics has become extremely prevalent 

and powerful.   

2.2.2 Human Activity and the Built Environment 

In this context, human activity refers to any bodily movement that generates energy 

consumption in one’s daily life, which could be categorised into leisure-oriented (e.g., 

exercise), occupational, household, or other activities (Caspersen et al., 1985; Frank & 

Engelke, 2001). In the social sciences, the term ‘built environment’ refers to the places 

and spaces humans created and in which they live, work, and access daily, varying in 

scale from buildings to cities and larger areas (Roof & Oleru, 2008). The built 
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environment includes land use patterns, multiscale built and natural characteristics 

such as architectural details, and infrastructure that connects one place to another, such 

as transportation systems (Brownson et al., 2009). Connections between different 

elements of the built environment and human activity have been identified in previous 

works through surveys (e.g., Duncan et al., 2005; Humpel et al., 2002); for example, 

leisure activity was mostly influenced by accessibility to facilities, and transportation 

activity was associated with the proximity to destinations. Hence, to understand the 

relationships between the built environment and human activity, it is necessary to 

better understand each of these separately as well as the meeting points where they 

intersect. 

Over the last few decades, studies have attempted to explore the connections between 

the built environment and human activity using various approaches. At a relatively 

early stage, these measurements primarily consisted of three categories: surveys, 

systematic observations, and archival datasets (Brownson et al., 2009). The first 

category focused on examining which elements of the built environment are most 

likely to affect human activity, such as availability of transport, infrastructure, and 

natural features for activity through telephone interviews or self-administered 

questionnaires; the second was mainly used to quantify attributes that are best 

evaluated through observational measures, such as street layout patterns, quality of 

public space, and sidewalk quality; and the third used GIS-derived metrics and 

analytics to assess relationships between the built environment features and human 

activity derived from existing datasets that have a spatial reference. Assessed variables 

primarily included population density, land use mix, accessibility to facilities, and 

street pattern (Brownson et al., 2009). Unlike the first two measurements, which had 

problems with low response rates and time-consuming collection processes, GIS-

based analytics were considered the only feasible way to obtain objective measures 

when studies concerned dispersed individuals or neighbourhoods within a large 

geographic area (Boarnet, 2003). However, a very small centralised national repository 
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of GIS data existed, and the time dimension was mostly absent from previous studies 

at the early stage of the measurements (Boarnet, 2003; Forsyth et al., 2016).  

More recently, an increasing number of studies have used varying geographic 

granularities (e.g., census tracts, postcode areas, or points from GIS data) since the 

popularity and power of urban analytics to measure relationships between human 

activity and the built environment. Examples include mining human mobility patterns 

using census data in administrative areas (Cao et al., 2018; McCollum et al., 2020); 

exploring human travel patterns using different transport data such as taxis, subways, 

and bicycles at local or global geographic granularities (El-Assi et al., 2017; Liu & 

Cheng, 2020; O’Brien et al., 2014); detecting human events and behaviours through 

social media and mobile data in bounded or vague areas (Kisilevich et al., 2010; Li et 

al., 2013; Papadopoulos et al., 2011); and linking human activity to the housing market 

by accessibility to facilities and natural landscape at the household or district level 

(Baker et al., 2016; Hamilton & Morgan, 2010). Although these measures facilitated 

advancements in understanding correlations of human activity and the built 

environment, challenges remain, such as more potential attributes of the existing data, 

more novel and reliable methods, and more active interaction between humans and the 

built environment.    

2.2.3 Urban Areas of Interest  

Points of interest (POIs) is a widely used term describing the significance and 

popularity of the population concedes specific places of cities (Hu et al., 2015). An 

UAOI, which Hu et al. (2015) first introduced, was a part of the urban built 

environment that could be identified and delineated through aggregations of human 

activity. Such areas included varying POIs such as tourist attractions, iconic landmarks, 

business buildings, or recreational areas that were of interest to large numbers of 

people (McKenzie et al., 2014). UAOIs also referred to the areas that simply offered 

places for people to view the landscape rather than contain famous POIs, such as the 

areas that provide a good view of an urban landmark (Hu et al., 2015). The typical 
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geometric representations of UAOIs are polygons instead of points. In terms of 

computation, operations performed on polygons were more efficient than a set of 

points (Akdag et al., 2014). Additionally, such polygons created geographic 

representations of areas of interest that are simpler and more accessible to understand. 

In addition to the ability to capture the physical spaces of the city, the concept of UAOI 

also offered opportunities to capture the functional aspects of the social morphology 

(Crooks et al., 2016). As such, UAOIs were also part of the perceptual spaces that 

emphasised the significance of human cognition and could thus be utilised to explore 

interactions between people and places (McCullough, 2005). For UAOIs to be useful, 

they should emerge from the aggregation of activities of different people and vary 

among people of different contexts, ages, and cultures.  

Prior to the definition of UAOI, similar studies mostly focused on the investigation of 

POI and fuzzy areas (i.e., areas without clear boundaries). For instance, some studies 

concentrated on personalised POI recommendations (Crandall et al., 2009; Ye et al., 

2011), while others mined spatial patterns from fuzzy areas built from the aggregation 

of large quantities of people (Hollenstein & Purves, 2010; Li et al., 2013). These works 

highlighted the interactions between human activity and the built environment. 

However, in these frameworks, it was difficult to capture the overall characteristics of 

areas and their relatively long-term spatiotemporal changes due to a lack of clear 

geographic boundaries. The concept of UAOI was necessary to fill in this gap. 

2.2.4 Housing in the Built Environment  

The pursuit of a good life is easier in a built environment that was equipped with 

facilities enabling links to other communities, encouraging human activity for self-

fulfilment and a healthy lifestyle (Molinsky & Forsyth, 2018). Within this context, 

housing and neighbourhood environments are particularly important in that they are 

the locations where people spend most of their time and which have a significant 

impact on physical, psychological, and social health. From the urban planning 

perspective, the characteristics of housing and neighbourhood can be viewed as 
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measurements of human progress and quality of life (Molinsky & Forsyth, 2018). The 

embodiment of these characteristics is housing prices, which are outcomes of the 

interaction of multiple parties (Law et al., 2019). Housing prices not only reflect 

housing characteristics such as varying property types and locations but also factor in 

neighbourhood features such as accessibility to transportation and facilities (Kong et 

al., 2007; Lu, 2018; Powe et al., 1995; Wilhelmsson, 2009). Accordingly, these features 

jointly influence the housing market and people’s willingness to purchase, creating 

challenges for urban planners, urban designers, and practitioners in terms of regulation, 

construction, or evaluation.  

Given the importance of housing and neighbourhood in the built environment, many 

studies were implemented to analyse their characteristics that impact housing prices 

(e.g., Hamilton & Morgan, 2010; Jim & Chen, 2006; Wen & Tao, 2015; Zhang & Dong, 

2018). Traditional data sources included an official or commercial statistical database, 

proprietary listings, and questionnaire surveys (Granziera & Kozicki, 2015), and 

traditional methods relied on the Hedonic Price Modelling (HPM) to uncover the 

intrinsic value of a single attribute based on the prediction of the marginal changes in 

observed prices (Palmquist, 1984; Rosen, 1974). For example, Wen and Tao (2015) 

utilised HPM to examine the influence of urban structure on housing prices where the 

housing data was provided by a real estate agent company and neighbourhood data 

was obtained from a field survey. However, these data sources were labour intensive 

in collection and management, and they may not be freely available to the public. 

Furthermore, HPM had limitations on strong assumptions in terms of linear relation 

and spatial heterogeneity issues (Anglin & Gençay, 1996; Dubé & Legros, 2014). 

Although alternative methods such as spatial econometrics, geographically weighted 

regression, and machine learning (Choumert et al., 2014; Huang et al., 2017; Park & 

Bae, 2015) as well as more recent data such as social media (Liu & Long, 2016; Rae 

& Sener, 2016) were employed to reduce the limitations, challenges still exist 

regarding the interpretation of methods and mining of valuable information from data. 

As such, how to apply urban analytics (i.e., new data and new methods) to characterise 
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the housing and neighbourhood of the built environment to improve the research is an 

important remaining challenge.  

2.3 Citizens as Sensors: Human Participation 

2.3.1 Volunteered Geographic Information 

In the middle of the first decade of the new century, an evolving phenomenon gained 

popularity: increasing numbers of individuals began to voluntarily engage in the 

creation of geographic information that has significant impacts on the relationship 

between geography and the public. This phenomenon was termed VGI (Goodchild, 

2007). Specifically, VGI referred to large numbers of citizen volunteers acting as 

sensors to create, collect, and disseminate geographic data for mapping. The process 

of VGI was enabled and facilitated by modern web technologies (Web 2.0). On the one 

hand, Web 2.0 allowed users to supply information to websites instead of only 

downloading the content and even enabled them to edit content generated by others, 

which was so-called user-generated content (UGC). On the other hand, the turn of the 

century saw the appearance of large numbers of digital devices, particularly mobile 

phones, embedded with technologies to accelerate the process of VGI, such as location 

identification with coordinates enabled by the global positioning system (GPS), high-

quality graphics, and accessible internet broadband connection. The emergence of VGI 

contributed to some developments and applications that relied on UGC (Flanagin & 

Metzger, 2008), such as the online map platform Wikimapia (Wikimapia.org) that 

provided possibilities for users to add location-based places and annotations and 

OpenStreetMap (https://www.openstreetmap.org/), which allowed individuals to 

create detailed and up-to-date maps based upon their GPS data and view, edit, and use 

the maps (Goodchild, 2007). More recently, various mobile apps such as Twitter and 

Flickr made it more convenient for users to play the role of active sensors to contribute 

geographical information ( Li et al., 2013).  

http://www.wikimapia.org/
https://www.openstreetmap.org/
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VGI has become increasingly important in recent years. A variety of location-based 

data and georeferenced images of VGI allowed monitoring of geographic phenomena 

at the high spatiotemporal resolution, which significantly improved environmental 

knowledge and geographers’ understanding of Earth (Goodchild, 2007; Flanagin & 

Metzger, 2008). Additionally, VGI was less expensive than any other alternative 

because individuals voluntarily provided it, so the data was available to all users.  More 

importantly, compared to the information produced by traditional professional 

institutions and government agencies, VGI had an advantage in terms of the 

information that required native experience and up-to-date local circumstances since 

individuals were in the best position to offer users emotional value and social 

interaction (Flanagin & Metzger, 2008; Parker et al., 2013). As a result, the most 

valuable aspect of VGI was its ability to represent local life and activities in various 

areas that were overlooked by the global media (Goodchild, 2007). 

The motivations of individuals’ contribution to the contents of VGI were self-

promotion and social networking, which pursued personal satisfaction and convenient 

connections with communities (Goodchild, 2007). Hence, a few limitations associated 

with VGI should also be given careful notice. First, data provided by volunteers were 

quite heterogeneous, and the data quality varied among different people, which was a 

critical issue for the reliability of VGI (Flanagin & Metzger, 2008). The content of VGI 

was provided by its creator without any citation, reference, or other authority, and most 

volunteers were not trained in or familiar with the intricacies of geographic 

information generation (Goodchild, 2007). As a result, before using VGI, the data 

content must be carefully considered in terms of whether there is a straightforward 

statement of the data source; whether the metadata is open to all; and whether the data 

is structured, finished, or correct (Brown et al., 2013; Flanagin & Metzger, 2008). 

According to Goodchild and Li (2012), intrinsic approaches can be used to determine 

the data quality of VGI in three domains: crowdsourcing revision (assure data quality 

by various contributors), social measures (estimate data quality by evaluating the 

contributors), and spatial consistency (analyse the consistency of contributed entities). 



 

37 

It is worth mentioning that although many studies investigated VGI quality, there was 

still no solid framework to assess crowdsourced spatial data. On the one hand, the 

nature of VGI can vary if handled by various geospatial experts; on the other hand, 

geographic information retrieval techniques can extract various VGI content from the 

internet that was distinct from conventional spatial data (i.e., it was difficult to make a 

comparison between VGI data and traditional data to assess VGI data quality; 

Antoniou & Skopeliti, 2015). 

2.3.2 Social Sensing 

The term ‘social sensing’ represents a set of individual-level spatiotemporal big data 

(i.e., GPS trajectory data and social media check-in data) and associated methods and 

applications to capture human behaviours including activity and movement, social ties, 

and perceptions in order to detect socioeconomic characteristics of the environment to 

complement remote sensing data (Liu et al., 2015). Compared with VGI, social sensing 

emphasised the importance of mining socioeconomic characteristics instead of a new 

data collection approach (Liu et al., 2015). Furthermore, social sensing can capture 

people’s perception, which was helpful to model both activities and social ties, while 

some conventional VGI such as POIs and street lines contained little such information. 

Hence, social sensing was a subset of VGI that was generally related to particular 

objectives such as disaster response and social networking (Goodchild & Glennon, 

2010; Steiger et al., 2015).  

Based on the concept of social sensing, several attributes can be listed. First, on the 

collective level, social sensing data can be used to analyse the geographical influence 

on the observed patterns, such as research on land use detection (Vyron Antoniou et 

al., 2016), human-environment interaction (Luo et al., 2016), and place semantics (Hu 

et al., 2015). Second, the rich temporal information of social sensing data enables the 

identification of specific events and monitoring of dynamic variations. Examples of 

previous research include the measurement of urban vitality from dynamic mobility 

data (Sulis et al., 2018), deriving retail centre locations and catchments based on tweets 
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posted at a different time (Lloyd & Cheshire, 2017), and linking typical behaviours to 

observable characteristics in the context of geodemographics from the 24-hour 

weekday cycle of Twitter (Lansley & Longley, 2016). Finally, social sensing created 

interactions between individuals and places that helped build spatial networks, such as 

the works about human mobility (Kou & Cai, 2019; Luo et al., 2016; Steiger et al., 

2015).  

However, social sensing data could suffer from several issues which required much 

attention. First, the study area should be discretised into regular or irregular units when 

analysing the temporal variations of activities (Liu et al., 2015). The local spatial 

heterogeneity of various activities resulted in sharp distribution gradients if a high 

spatial resolution was adopted. Hence, a coarser resolution should be chosen to smooth 

the activity distributions. However, most activities extracted from social sensing data 

were correlated with population density (Kang et al., 2012), which was quite different 

between urban areas and rural areas. Therefore, a varying resolution scheme would be 

more reasonable instead of the regular rasterisation that most existing studies have 

adopted (Reades et al., 2009; Sun et al., 2011; Toole et al., 2012). Furthermore, the 

activity rhythms would be different as seasons change, while most research using 

social sensing data only covered short periods such as one month, which made it less 

possible to focus on long-term dynamics (Liu et al., 2015).  

2.3.3 Social Media Data 

Social media data is a special kind of VGI and core data source of social sensing 

(Goodchild, 2007; Liu et al., 2015). Platforms for social media are virtual communities 

and digital networks where people build, post, exchange, and comment on content 

(Ahlqvist, 2008); they include Twitter, Foursquare, Flickr, and Instagram. According 

to Ahlqvist et al. (2008), social media is built on three pillars: content, communities, 

and Web 2.0. Users generate different formats of content such as check-in, short text, 

or images to post on the internet. As such, communities are created so that individuals 

can communicate with their peers or people who have common interests. Both content 
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and communities are enabled by Web 2.0 (Goodchild, 2007). People can share 

information about their activities and interactions in relation to the built environment 

at any time, and such social media is also known as a participatory sensing system 

(PSS; Burke et al., 2006). 

Social media data was expanded further by introducing a spatial dimension through 

location-based services, which built connections between cyberspace and the actual 

physical environment. Geotagged social media (GSM) referred to social media that 

allowed people to connect geospatial information with shared content; GSM differed 

slightly from a location-based social network (LBSN; Zheng et al., 2014). An LBSN 

was a social networking platform that heavily relied on the interactions between 

individuals and locations (Roick & Heuser, 2013). On the contrary, GSM focused more 

on human activity and experiences with their surroundings, where the geographic 

locations of the content can be attached or not. For instance, Flickr was a GSM 

platform rather than an LBSN platform, while Foursquare was a LBSN which could 

also be considered a GSM application. Millions of individuals interacted with places 

in their everyday lives through different forms of GSM, such as uploading geotagged 

images to Flickr, checking in at a location on Foursquare, or tweeting about a local 

event. 

Researchers examined the general principles and applicability of GSM data in spatial 

and social sciences (Batty, 2016; Elwood et al., 2012; Silva et al., 2013; Sui & 

Goodchild, 2011). GSM data was individual-level data that represented one’s 

behaviour at a finer spatial and temporal precision, creating new possibilities for urban 

study. As a response, it could also be viewed as an extremely comprehensive lens from 

which to perceive cities (Arribas-Bel, 2014). 

2.3.4 Geotagged Flickr Data 

Flickr was a website that allowed users to import, browse, archive, organise, and post 

images and videos from anywhere in the world (https://www.flickr.com/). According 

https://www.flickr.com/
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to Goodchild (2007), Flickr was a good demonstration of VGI because it was a 

platform that helps users locate images on the Earth’s surface using latitude and 

longitude coordinates. Since Flickr was launched in 2004, there have been over 100 

million registered users, 10 billion images were shared on the website, and nearly one 

in every 30 photos was geotagged (Catt, 2009; Smith, 2021). The large numbers of 

users and available geotagged images showed the consistency and popularity of Flickr. 

One of the advantages of Flickr data is that most Flickr images are taken in an urban 

built environment (Hollenstein & Purves, 2010). Furthermore, Flickr metadata is 

accessible for retrieval through its public API, and users have been able to access this 

data from anywhere in the world since 2004 (Hu et al., 2015). This feature makes it 

possible to unpack people’s behaviours and how they evolve, which set it apart from 

other LSBNs like Twitter and Foursquare, which have limited long-term data. More 

importantly, Flickr data is more targeted compared to Twitter data. For instance, people 

at a specific location may tweet random content such as common activities and their 

emotional expressions, which means that unrelated information was contained at the 

particular geolocations from which the individuals tweeted. By contrast, Flickr is a 

platform designed for users to upload and share photos, suggesting that the information 

contained in photos is more targeted and associated with the actual geographical 

environment.  

Given geotagged Flickr images contained plenty of spatial, temporal, text, and image 

information, a range of applications were intensively researched aiming to address 

urban issues. Some explored features of important events such as where and when 

events took place that using spatial and temporal attributes of the data (Kisilevich et 

al., 2010; Rattenbury et al., 2007). Similar research focused on landmark detection or 

POIs that grouped spatial information through aggregations of geotagged Flickr 

images and found representative photographs based on the text attribute (Crandall et 

al., 2009; Lee et al., 2014; Papadopoulos et al., 2011; Sun et al., 2015). Further works 

paid attention to the attractive regions instead of places, which extended the use of 

similar analysis to bounded areas enclosed by convex hull technique or vague areas 
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drawn by kernel density estimation approach (KDE; Hollenstein & Purves, 2010; Li 

et al., 2013). Alternatively, a few other works such as land cover classification (Vyron 

Antoniou et al., 2016), important places definition (Li & Goodchild, 2012), cultural 

ecosystem investigation (Hristova et al., 2018), and human-environment correlation 

(Ahlfeldt, 2013) were also conducted to mine potential of geotagged Flickr images. 

The methods commonly used in these works included spatiotemporal analysis, 

semantic analysis, statistical analysis, clustering analysis, and prediction analysis 

(Ahlfeldt, 2013; Kennedy & Naaman, 2008).  

Most of the research conducted relied on spatial, temporal, and semantic attributes of 

geotagged Flickr images, whereas the content of images was limited mined and utilised 

which was the key pillar of the data ( Lee et al., 2014; Li & Goodchild, 2012; Miah et 

al., 2017; Sun et al., 2015). Given data text attribute is highly heterogeneous 

(Goodchild, 2007), the titles and tags embedded in each image were not necessarily 

associated with the image itself. As a result, the reliability of the data would be lower 

without looking into the content of images. This work seeks to fill in this gap in terms 

of the rarely used image attribute of geotagged Flickr images.   

2.4 The Potential of Images in Urban-Related Issues 

2.4.1 Primary Image Data Sources 

An image – an artificial entity that depicts people’s visual perception – is generally a 

photograph or other two-dimensional (2D) picture. Much information could be 

identified from images when sensing cities: (1) the appearance such as colour, shape, 

and coverage of the objects or people involved can reflect the beauty of the natural 

landscape (Seresinhe et al., 2017); (2) the high temporal frequency and spatial 

resolution can capture certain patterns that are currently difficult to measure in other 

ways, including crime surveillance and greenery coverage and detection (Collins et al., 

2000; Stubbings et al., 2019); and (3) the global coverage enabled forecasting of 

weather conditions and air pollution (Ferrare et al., 1990; Jedlovec, 2013). These 
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embedded signals had great potential for mining the socioeconomic characteristics of 

the cities. However, images were undervalued until the early 2010s when advances 

were made in image recognition via deep learning and computer vision (Lecun et al., 

2015). The diversity of image data sources and various computer vision algorithms 

allowed an increasing number of researchers to assess a wide range of issues since the 

2010s (Dubey et al., 2016; Naik et al., 2014; Richards et al., 2018; Salesses et al., 

2013).  

There were primarily three types of image data sources to understand cities at different 

geographical granularities. The first one consisted of remote sensing data from satellite, 

plane, and drone images, which allowed the understanding of the physical appearance 

of the built environment from above (Liu & Long, 2016; Zhang et al., 2017). The 

second category covered street-level imagery and user-generated imagery that can not 

only capture physical appearance but also provided a direction on how people 

perceived and experienced the built environment (Doersch et al., 2012; Dubey et al., 

2016; Law et al., 2020; Zhang et al., 2018; Zhou et al., 2014). The third type mainly 

focused on the real estate market, which involved indoor imagery that offered a 

perspective to uncover household preferences from inside spaces for residence, 

entertainment, and working (Ahmed & Moustafa, 2016; Zhang et al., 2017). These 

types of image data sources have been confirmed as applicable in addressing complex 

research questions in cities through different computer vision algorithms over the last 

decade.  

2.4.2 Dominant Image Recognition Algorithms 

Computer vision involved the task of quantifying the representation of visual elements 

in raw form, where the computer understood a scene from a few presented image 

samples (Lecun et al., 2015). The dominant technique for computer vision has been 

convolutional neural networks (CNN) since a significant success during an ImageNet 

competition in 2012. CNN was designed to process data in the form of multiple arrays, 

such as colour image data which consisted of three 2D arrays presented as pixel values 
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in the three colour channels. A typical CNN architecture comprised convolutional, 

pooling, and fully connected layers, which can be trained differently with different 

algorithms based on various image recognition tasks (Guo et al., 2016). The dominant 

CNN algorithms that tackled urban-related issues can primarily be divided into three 

categories: (1) image classification, (2) image segmentation and localisation, and (3) 

generative models.  

Image classification categorised the content of an image into a single or multiple 

features from a fixed set of categories trained from an imagery database (Karpathy, 

2016). Large numbers of accurately pre-trained CNN models have been developed 

since 2010; notable examples included AlexNet (Krizhevsky et al., 2012), VGGNet 

(Simonyan & Zisserman, 2015), GoogLeNet (Szegedy et al., 2015), ResNet (K. He et 

al., 2016), and DenseNet (Huang et al., 2017). These models were mostly trained on 

1,000 object categories from an ImageNet image dataset. The applications of image 

classification algorithms were mostly twofold: one was to directly extract categories 

from a pre-trained model, such as recognising scenic categories to quantify the beauty 

of outdoor places (Seresinhe et al., 2017), and the other was to finetune a few 

parameters of the layers from a labelled image dataset based on pre-trained models, 

such as evaluation of the activeness of street frontage (Law et al., 2020) and urban 

landcover or land use classification (Kang et al., 2018).  

Object detection and image segmentation (i.e., semantic segmentation) enabled 

identifying and localising multiple objects in an image. Object detection identifies 

different sub-images and generates a bounding box around a recognised object, while 

image segmentation partitions an image into objects or parts with accurate boundaries 

(Gandhi, 2018). The notable models for this category included region-based CNN (R-

CNN; Girshick et al., 2014), fast R-CNN (Ren et al., 2017), you only look once 

(Redmon & Farhadi, 2017), and mask R-CNN (K. He et al., 2017). These models were 

generally trained on the common objects in context (COCO) dataset, a large-scale 

image dataset with 80 categories released for segmentation and localisation tasks 

(COCO, 2018). Examples of this type of image recognition task included localising 
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building polygons in the given satellite images (Zhao et al., 2018); detecting the 

amount of vegetation from street-level imagery (Stubbings et al., 2019); and 

quantifying the perception related to safe, lively, boring, wealthy, depressing, and 

beautiful from a new crowdsourced imagery dataset (Dubey et al., 2016). 

Generative models outputted the representation of images in an unsupervised way 

without being shown labelled inputs, which provided a less data-intensive alternative 

to CNNs that did not require the assembly of numerous labelled images to train the 

networks (Comber et al., 2020; Ibrahim et al., 2020). Typical models for this image 

recognition task included autoencoders, deep belief networks, and generative 

adversarial networks (GANs; Goodfellow et al., 2016). For instance, GANs model 

generates synthetic and new graphical data in an unsupervised way, enabling the 

creation of unique objects or scenes relied on the underlying features of the trained 

images. Applications for this task included extracting visual features from leisure and 

retail environments (Comber et al., 2020) and exploring urban forms based on a large 

set of street networks collected from satellite imagery across millions of cities 

(Moosavi, 2017). 

Although different image data sources and computer vision algorithms have been used 

to address urban issues related to the built environment, such as urban representations 

(Zhou et al., 2014), land use classification (Zhang et al., 2017), urban safety (Naik et 

al., 2014), urban perception (Khosla et al., 2014), and so on, challenges remained in a 

few aspects. First, most studies were implemented on a global and city scale, while 

limited research applied and scaled up such algorithms to certain areas of a city (e.g., 

UAOI introduced in the previous subsection 2.2.3). As a response, representations of 

small areas in a city were rarely analysed. Second, the task of capturing rapid urban 

changes (e.g., weekly, or monthly) was complex and remained under explored. This 

was probably because intensive research relied heavily on street-level images, which 

was not real-time and was often released at frequencies longer than one year (Google 

Maps Street View, 2019) Although several satellite images could take images from 

above every few days, applications in the built environment were generally restricted 
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in land use classification (Hu et al., 2016; Zhang et al., 2017). The last challenge was 

algorithm implementation. The CNN algorithms had a few common restrictions, 

including high computational expense that usually required a good graphic processing 

unit (GPU) to process the image recognition tasks, and trained on intensive training 

data to acquire well-fitted models in most cases. As such, this thesis intends to use 

volunteered geographic image information to capture rapid urban change 

characteristics at a neighbourhood level through a pre-trained CNN model which was 

trained on our dataset and has relatively high accuracy (Zhou et al., 2018).  

2.5 Summary 

This chapter started with reviewing urban perception in Section 2.1, where its concept 

and development in the last few years was introduced and discussed. The research gaps, 

that human cognitions into urban perception were underestimated in most cases, were 

identified and hence the key research question of this thesis was motivated and 

proposed. Within this theoretical framework, different dimensions of cities were then 

outlined in Section 2.2 to explain why they were used in this study. To begin with, 

urban analytics as a new and emerging research field has enabled a number of works 

to analyse finer spatiotemporal resolution. The research on the relationships between 

human activity and the built environment, as a result, benefited from urban analytics 

through identifying more attributes from new forms of data and more novel methods. 

A specific research orientation termed UAOI was then introduced and stated as an 

object to explore the correlation between human activity and the built environment, 

which has the capacity to capture the areal characteristics and long-term geo-temporal 

dynamics but was overlooked before. The final subsection discussed housing which 

was a specific embodiment of the study of human activity and the environment. By 

reviewing previous works and methods issues associated with housing prices, the 

research opportunities were identified to bring human-generated images into urban 

perception studies.  
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The next two sections illustrated new forms of data used in this research from two 

aspects. Section 2.3 introduced and discussed commonly used terms and notions 

related to the data, illustrating that this kind of data was using citizens as sensors 

through how they experienced the environment. Furthermore, data attributes, data 

quality, data-driven approaches and data applications were listed and reviewed to 

obtain an implication that user-generated geotagged images have been underestimated 

but had great potential.  The last section of this chapter focused only on image data. A 

range of widely used image data sources and image recognition models were reviewed 

and discussed to determine which data source and model would be utilised in this study 

and why they were selected.  
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3. Understanding the Dynamics of Urban Areas of 

Interest through Volunteered Geographic Information 

 

N.B. The research presented in this chapter is an adapted version of the publication: 

Chen, M., Arribas-Bel, D., & Singleton, A. (2019). Understanding the dynamics 

of urban areas of interest through volunteered geographic information. Journal 

of Geographical Systems. https://doi.org/10.1007/s10109-018-0284-3 

 

Abstract: Obtaining insights into the dynamics of urban structure is crucial to the 

planning and management of urban areas. This chapter focuses on urban areas of 

interest (UAOIs), a concept that provides functional definitions of a city’s spatial 

structure. Traditional sources of social data can rarely capture these aspects at scale 

while spatial information on the city alone does not capture how the population values 

different parts of the city and in different ways. Hence, we leverage Volunteered 

Geographic Information (VGI) to overcome some of the limits of traditional sources 

in providing urban structural and functional insights. We use a special type of VGI - 

metadata from geotagged Flickr images - to identify UAOIs and exploit their temporal 

and spatial attributes. To do this, we propose a methodological strategy that combines 

Hierarchical Density-Based Spatial Clustering for Applications with Noise 

(HDBSCAN) and the ‘α-shape’ algorithm to quantify the dynamics of UAOIs in Inner 

London for a period 2013 to 2015, and develop an innovative visualisation of UAOI 

profiles from which UAOI dynamics can be explored. The results expand and improve 

upon the previous literature on this topic, and provide a useful reference for urban 

practitioners who might wish to include more timely information when making 

decisions. 
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3.1 Introduction 

As stated in Chapter 1, the rapid growth of urban populations across the globe is 

resulting in new kinds of technical, physical, material, and social challenges and 

constraints (Chourabi et al., 2012). To tackle such issues, how to better plan, govern 

and manage a city to improve its sustainability, optimise processes and maximise the 

provision of collective public and private services have become a significant urban 

strategy in many developed and developing regions of the world (Harrison et al., 2010; 

Washburn et al., 2010; Batty, 2017). In terms of operationalisation, it is often relevant 

to obtain timely insights into the dynamics of urban population at a temporal 

granularity finer than that of traditional surveys, which can be enhanced by or provided 

through digital technologies. 

It is within this context that the present chapter engages with the concept of UAOIs, 

which refer to parts of the urban built environment that can be delineated in their extent 

through the clustering of human activity. Such areas may contain business zones, 

tourist attractions, iconic landmarks, recreational zones, or other attractors (Hu et al., 

2015). The notion of a UAOI is, therefore, a combination of morphological features 

including buildings and streets, and ‘Points of Interest’, as defined by the relevance 

the population concedes specific parts of cities. As such, a UAOI can be viewed as a 

perceptual space, which is captured by the social morphology of the city, albeit rooted 

in physical space (Crooks et al., 2016). Accordingly, a UAOI should emerge from the 

activities of a large collection of different people to avoid very individual conceptions. 

Furthermore, such definitions are complex, as unlike well-defined geographic 

divisions or administrative districts, the delineation of a UAOI may vary between 

people in different contexts, ages, and cultures. 

Identifying and understanding UAOIs has applications in multiple fields. For spatial 

planning, they may assist in identifying areas with greater public priority in the context 

of limited resource availability (Gandy, 2006). For retailing, they can help identify 

areas where people cluster, and how these have evolved, which might aid in-store 
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location or for targeting advertisements more effectively. For transport planning, they 

may help prioritise traffic flows or the provision of public transport; for statistical 

agencies, they may provide useful reference distributions in comparison with official 

geographical divisions. 

The challenge of defining UAOIs over time resides in the need for granular 

spatiotemporal data recorded within cities. Although traditional data sources used in 

urban studies, such as remotely sensed data, have a lengthy history of application and 

can be used to characterise urban morphology, they do not capture human dynamics 

beyond expansion or contraction of the built form. Alternatively, survey or census data 

might be utilized to inform the discovery of UAOIs, but these are usually costly to 

administer and may be of limited temporal granularity (Shi et al., 2014; Tasse and 

Hong, 2014). A third alternative has emerged in the last few years. Several new forms 

of digital data derived from urban activity through passive or active forms of data 

collection capture urban form and/or social functional geography (Arribas-Bel, 2014; 

Crooks et al., 2016). Such data are referred to as Volunteered Geographic Information 

(VGI; Goodchild, 2007), which includes the use of digital devices by communities or 

individuals to create, accumulate, upload, and communicate geographic information, 

typically through contemporary web technology. Commonly designated as VGI is a 

variety of content from social media networks, which often support geolocation of 

assets and include networks such as Twitter, Facebook, Flickr, and Instagram. Data 

derived from these networks have been used in a variety of contexts to explore spatial, 

temporal, and even semantic information about human activities (Jiang et al., 2015; 

Lansley and Longley, 2016; Lloyd and Cheshire, 2017; Gao et al., 2017). 

In this chapter, we examine the potential of data derived from the online photo 

management and sharing website Flickr to extract and understand Urban Areas of 

Interest. Although there are inherent biases associated with geotagged Flickr data, a 

number of studies have utilised these data effectively to explore various issues within 

urban contexts (Hollenstein and Purves 2010; Lee et al., 2013; Hu et al., 2015; Gao et 

al., 2017). Flickr offers an attractive proposition as a data source for a number of 
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reasons. The scale of the Flickr network is extensive and, as of 2016, Flickr had 122 

million users with more than 10 billion images shared, demonstrating a large degree 

of penetration (Smith, 2016). Secondly, the metadata of each Flickr photo is available 

through its public Application Programming Interface, which can be retrieved back to 

2004, making it possible to consider the temporal dimension of imagery. These 

features are in contrast to other sources of VGI from social networks, which have rather 

limited data retrieval limits (e.g., Foursquare only allows one month; Foursquare for 

Developer, 2017). Finally, studies have suggested that Flickr photos, in most cases, are 

taken in the urban built environment, and as such, enhance their suitability as a source 

to identify UAOIs (Crandall et al., 2009; Hollenstein and Purves 2010). 

Our goal is, therefore, to present a new method of extracting UAOIs and to provide 

new insights into their fine-grained spatiotemporal evolution and characteristics. We 

used geotagged Flickr data from three recent years (2013-2015), and have focused 

particularly on the seasonal variability of the UAOIs. A recent hierarchical algorithm 

was used to extract clusters, reducing many of the drawbacks of traditional, previously 

used, density-based methods. An ‘α-shape’ algorithm was then utilised to construct 

boundaries identifying the UAOI extents. Once built, we conduct further analysis on 

the spatial and temporal patterns associated with the identified UAOIs, and propose an 

approach to build a spatiotemporal profile for each UAOI. 

The structure of this chapter is organised as follows. The next section discusses related 

work about points of interest and areas of interest, as well as techniques for the analysis 

of geotagged photo data. Section 3.3 describes the data collection, data bias and pre-

processing stages. Section 3.4, the core of the chapter, proposes a methodological 

framework to extract and understand UAOIs, including an approach to validate the 

number of Flickr users in the extracted UAOIs. This is followed by a discussion of the 

spatiotemporal dynamics of the identified UAOIs. Finally, section 3.6 concludes the 

chapter and suggests future extensions to this research. 
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3.2 Literature Review 

There is a growing body of research that uses geotagged photos, which has examined 

both the attributes contained within the metadata and the image itself. Most studies 

have focused on exploring landmark detection involving travel route recommendations, 

which generally integrate some aspect of movement/trajectory analysis (Zheng et al., 

2012; Sun et al., 2015). Alternative approaches examine geotagged photos to address 

the question of where and when events take place (Rattenbury et al., 2007; Kisilevich 

et al., 2010b; Papadopoulos et al., 2011). There is also further work that combines both 

image analysis with exploration of the metadata, and applies it across a range of topics 

including detecting cultural differences (Yanai et al., 2009), land cover classification 

and validation (Antoniou et al., 2016), and definition of significant places on the basis 

of people’s interaction with their surroundings (Li and Goodchild, 2012). 

The most prevalent use is how geotagged social media are used to extract points of 

interest are based upon exploiting the locational aspect of semantics (e.g., crowd-

sourced tagging). For example, Crandall et al. (2009) presented techniques that can 

automatically identify popular places through representative images and textual labels 

from Flickr. Lee et al. (2013) proposed a framework to extract points of interest and 

their agglomerations from geotagged photos. Andrienko and Andrienko (2013) 

extended such work through the additional consideration of the time of geotagged 

social media through a number of space-time visual analytic approaches. Other related 

work has extended the use of similar analysis techniques to include the exploration of 

attractive regions. For example, Kisilevich et al. (2010a) proposed a systematic 

framework for the exploration of points of interest obtained from Flickr and Panoramio, 

utilizing a convex hull to create boundaries of concentrated areas for visualization. 

Hollenstein and Purves (2010) also linked the derivation of data-driven density 

surfaces to the extraction of urban boundaries; this was extended by Li, Goodchild, 

and Xu (2013) who constructed spatial boundaries using KDE, which was utilized to 

approximate the number of place occurrences per unit area. In some sense, a generality 
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between all of these was an aim of creating clusters of geotagged data. However, with 

limited exception, this line of inquiry has rarely focused on spatiotemporal changes, 

and acutely so over a multi-year period. Furthermore, although the popular non-

parametric density estimation technique –KDE has examples of use to construct and 

visualise attractive aggregations of points of interest, this approach is not designed to 

delineate specific boundary lines of clusters, a valuable and necessary feature when 

identifying areas of interest.  

One alternative to KDE is density-based clustering algorithms. This family of 

techniques has more recently been applied to identify points of interest or attractive 

areas (Kisilevich et al. 2010a; Kisilevich et al., 2010b; Lee 2013; Andrienko and 

Andrienko, 2013; Gao et al., 2017). The most widely used approach in this category is 

DBSCAN (Density-based spatial clustering for applications with noise, Ester et al., 

1996), which involves two parameters: the search radius (epsilon) and the minimum 

number of points (MinPts). Once both are specified, the algorithm identifies clusters 

of at least MinPts observations using epsilon as the maximum distance for the 

neighbour search. However, both parameters need to be finely tuned, typically 

requiring manual experimentation in both cases before an appropriate value can be 

selected. In addition, DBSCAN only uses a global (single) density threshold to extract 

a flat partition, which fails to distinguish clusters of different densities. The OPTICS 

(Ordering Points to Identify the Clustering Structure, Ankerst et al., 1999) algorithm 

presents an improvement to DBSCAN as it only requires the MinPts parameter to be 

specified while also producing a hierarchical result. However, this approach still relies 

on a global density threshold, which is unable to find the most significant clusters 

based on different density levels (Campello et al., 2013). 

A recent application of DBSCAN with particular relevance to this chapter was 

proposed by Hu et al. (2015), and presented a methodological approach that extracts 

UAOIs for six cities based on ten years’ worth of geotagged Flickr photos. Building 

on this work, our research provides new insights into spatiotemporal changes in 

UAOIs by proposing a number of extensions. First, we focus on finer temporal scales, 
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which allows us to consider seasonal variability. We demonstrate that this degree of 

resolution matters because it can capture seasonal UAOIs that emerge and disappear 

rapidly. Secondly, in terms of UAOI discovery, we introduce a more advanced method 

(Campello et al., 2013) than DBSCAN called HDBSCAN for extracting UAOIs. As 

discussed later in the methodological framework section, this approach overcomes 

some of the main drawbacks of other density-based clustering methods. Third, we 

propose the creation of spatiotemporal profiles based on small-scale geographic areas 

and use these to quantify the characteristics of spatiotemporal change in the UAOIs. 

3.1 Data 

3.3.1 Data Description 

Greater London was used as the study area because the regional boundaries contain a 

very large volume of geotagged photographs. Flickr data can be retrieved and 

downloaded using a public Application Programming Interface (API, 

https://www.flickr.com/services/api/) through the Python interface (Stüvel, 2016). 

Among the 10 billion images shared on Flickr, 3.33% contain geographic information 

(Smith, 2016; Catt, 2009). We used a bounding box to collect all geotagged data 

uploaded for Greater London. Dates between 1 January 2013 and 31 December 2015 

were selected, as these three years have the highest number of Flickr photos since 

Flickr was launched (Michel, 2017), and the data volume is decreasing due to storage 

limitation of images for each Flickr user. As this study focuses on the geo-temporal 

exploration of UAOIs, only locational and temporal metadata were retrieved and used 

in this study1. Our data set contained a total of 1,575,200 entries contributed by 34,615 

unique users, with the following attributes: user ID, geographic coordinates, and 

 

1 The use of only location and timestamp does not mean we do not recognise the value of other forms of metadata 

such as tags and text, or even content from each photo itself. These are fundamentally different sources of 

information that do not directly relate to the identification of UAOIs, and is hence beyond the scope of this paper. 

Their use is illustrated, for example, in Crandall et al. (2009), Li, Goodchild and Xu (2013) and Gao et al. (2017). 
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timestamp (i.e., the time when the photo was taken). Table 3.1 displays an extract from 

the data. 

Table 3.1 A sample of georeferenced Flickr metadata in London 

 

 

 

 

 

 

As with other geotagged social media data, the Flickr sample had a few issues related 

to data quality. Data quality has been defined as data that are fit for use by data 

consumers (Wang and Strong, 1996). In our case, “fit for use” involves allowing us to 

identify the spatial dynamics of the urban population. Data quality cannot be assured 

since it varies among different contributors, leading to data sources that are quite 

heterogeneous (Goodchild, 2007; Imran et al., 2015). For example, as Flickr provides 

users with manual geotagging; the photo might be geotagged in a place by one user 

that differs from where it was taken in practice. In this case, the results would not be 

able to accurately identify areas of interest. In addition, social media use is self-

selecting; users may not necessarily be representative of everyone who lives in or visits 

a city. For example, the primary user age group of Flickr is between 35 and 44 

(Kahootz Media, 2018). In addition, usage of the Flickr service is rather uneven, with 

more active users contributing to a larger number of photos (Davies, 2016; Li, 

Hollenstein and Purves, 2010). Such issues imply that research results may be focused 

on a particular segment of the population, and thus warrants caution when drawing 

conclusions. However, the degree of penetration and popularity of Flickr is such that 

we argue our results are still meaningful and can help us better understand urban 

dynamics from the perspective of people who experience the city through these lenses. 

User ID Latitude Longitude Date 

1 51.507577 -0.099349 2015-01-19 19:40:42 
2 51.500504 -0.127419 2015-03-07 15:36:50 
3 51.499434 -0.163905 2013-11-29 16:00:27 
4 51.51353 -0.113193 2013-03-13 12:30:09 
5 51.500461 -0.138487 2013-03-09 12:23:55 
6 51.516541 -0.097525 2013-01-21 08:06:11 
7 51.530199 -0.125688 2014-03-30 15:27:43 
8 51.55811 -0.282823 2013-01-26 21:37:44 
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3.3.2 Data Pre-processing 

Data obtained directly from the API was preprocessed before analysis in two main 

stages: (1) subdividing the data set, and (2) eliminating noise. 

A visualisation of the spatial distribution of the downloaded geotagged photo 

locations in London can be seen in Figure 3.1, where KDE (O'Sullivan and Unwin, 

2014) is applied. The darker the red the higher the density, thus implying that more 

photographs were taken in central London relative to peripheral areas. Indeed, 73.5% 

of our Flickr data are located within the Inner London2 definition. Thus, the study 

extent was narrowed to that of Inner London. In terms of the time dimension, our 

interest is set on the seasonal variability at the monthly level. Thus, we further divided 

the data into 36 monthly slices covering the periods between the first and last day of 

each month. 

 

2 The Inner London definition comprises a series of centrally located London Boroughs within the Greater 

London Authority Extent (Mayor of London, 2017) 
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Figure 3.1  Distribution of the spatial density of Flickr photos in London from 2013 to 

2015 using a kernel density visualisation 

 

Figure 3.2 Relationship between the number of Flickr photos taken by each unique 

user and the number of unique users in London (2013-2015). 
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Next, we needed to identify erroneous or noisy records. First, we considered those 

cases where a user uploaded a few photos at identical geographic locations (i.e., at 

least two photos geocoded with the same longitude and latitude by the same user) in 

a month. Many photographs at the same longitude and latitude (given the recorded 

degree of precision of the coordinates shown in Table 3.1) are quite unlikely, and as 

such are classified as erroneous in terms of the location attribute, perhaps as a result 

of faulty hardware. To remove this effect, only one record for each of these users was 

maintained. A similar case arises when a user takes multiple photos in the same 

second of one day at different places; we also removed these cases. More importantly, 

Figure 3.2 shows that a small group of users contributes a large proportion of the 

photos. These are known as ‘active users’ by Hollenstein and Purves (2010) and Hu 

et al. (2015). The figure shows that a single user may upload hundreds of photos in a 

year, while most users only upload dozens. In our definition of a UAOI, we argue that 

these entities should be agreed upon by many people, and the dominance of an active 

user may lead to bias in extracted UAOIs. An overemphasis on contributed content 

from any one user or subset of users (and their associated interests) will also influence 

the generality of the definitions of the UAOIs. To reduce the impact that such active 

users may have on shaping the outcomes of the analysis, we implemented a further 

set of cleaning routines that reduced the proportion of photos from active users, by 

keeping only one photo for each user based on tags used and the time when the photo 

was taken. Specifically, if a user took several photos in a minute but with the same 

tags, only one photo was retained. The rationale for this approach was to remove 

photos within a limited spatial extent on the hypothesis that people’s average walking 

speed is 5km/h (Onaverage, 2017). On this basis, the maximum walking distance 

within a minute is approximately 83m. Within this distance, only a single user’s photo 

that has the same text is retained. The specific data pre-processing steps are 

summarised in Table 3.2, showing how many photos and users are removed following 

each step. After this process, an average number of 12,228 photos and 2,275 unique 

users remained in each month. 
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Table 3.2 The number of photos and users at different stages of data pre-processing 

(1) Subdividing dataset The total number of photos The total number of unique 
users 

Raw data collected in bounding box 1,579,694 39,531 

Data within Inner London 1,162,891 34,700 

(2) Eliminating noise 

The number of photos in each 
month 

The number of unique users in 
each month 

Mean Median  Standard 
Deviation Mean Median Standard 

Deviation 
Subdivide data into 36 time slices 32,221 32,991 5,070.98 2,287 2,248 402.16 

Remove photos geocoded with 
identical coordinates of one user 16,116 15,899 2,618.94 2,287 2,248 402.16 

Remove systematic outliers 15,493 15,595 2,342.96 2,275 2,244 393.02 

Remove dominance of active users 12,228 11,913 1,794.09 2,265 2,233 392.69 

3.4 Methodological Framework 

In the following section, we present a systematic framework designed to extract and 

map the evolution of UAOIs from the subset of geotagged Flickr photos outlined in 

the previous section. Our methodology consists of two main parts: cluster detection 

and boundary delineation. 

3.4.1 Extracting Urban Areas of Interest by the Hierarchical Density-Based Spatial 

Clustering for Applications with Noise algorithm 

We define UAOIs as those areas where multiple Flickr users have gathered and taken 

large numbers of spatiotemporally clustered photos, reflecting a consensual view that 

some aspect of the urban environment is of interest. The extraction of such areas can 

be understood as a clustering problem, in particular, as one that has the aim of 

identifying robust, non-overlapping, and dense concentrations of points. Following 

recent advances in the literature, we selected a density-based method. The advantages 

of such an approach are that they can produce results without pre-specification of 

cluster frequency, and are robust to arbitrary shapes and the presence of outliers/noise 

deviating away from the main spatial distribution (Hans-Peter et al., 2011). 
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We applied the HDBSCAN (Hierarchical Density-Based Spatial Clustering for 

Applications with Noise; Campello et al., 2013) as our clustering method as this 

overcomes several of the major drawbacks of other density-based algorithms, which 

fails to distinguish clusters of different densities that only use a single density threshold. 

Contrary to more traditional algorithms, there is only one parameter to tune in 

HDBSCAN, with the other key parameter in the original DBSCAN implementation, 

i.e., the minimum cluster size (MinPts), which is endogenously determined by the 

method. This approach represents a step forward in the direction of more robust, 

automated, and data-driven techniques for the delineation of UAOIs. McInnes et al. 

(2017) describe the HDBSCAN process as comprising five steps: 

1) Transform the space based on the estimates of density by defining a ‘mutual 

reachability distance’, which is a new distance metric to spread apart points with low 

density; 

2) Build a minimum spanning tree to implement single-linkage clustering, which is 

a core feature of this algorithm; 

3) Construct a cluster hierarchy of connected components by iteratively sorting the 

edges of the tree by distance in increasing order. The result can be viewed as a 

dendrogram that shows where robust single linkage stops; 

4) Condense the cluster hierarchy shown in the dendrogram into a smaller tree by 

attaching more data to each node; 

5) Extract clusters that persist and are robust from the condensed tree. 

Operationally, various epsilon values are generated automatically by the different 

density levels resulting from the single-linkage hierarchy, which allows HDBSCAN 

to find clusters of various densities. Also, it ensures improvements over OPTICS and 

DBSCAN by providing a clustering hierarchy, where a simplified tree of the most 

significant clusters (i.e., maximised stability) can be easily extracted.  
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When using HDBSCAN, the only parameter to specify is the minimum cluster size 

(mclSize), representing the minimum number of points (i.e., Flickr photos) required 

for a UAOI to exist. In order to select an appropriate mclSize, we extensively explored 

the sensitivity of the final solution to changes in the parameter. A few thresholds 

representing the minimal number of Flickr photos, from 10 to 1,000, were set as the 

minimum cluster size (mclSize) parameter, which was applied in all time slots. Figure 

3.3 presents example outputs from this sensitivity analysis. We can see that if the 

mclSize is small (e.g.,10 or 50), more UAOIs are identified but there are also greater 

numbers of points labelled as noise (i.e., not part of any clusters); if the mclSize is 

larger (e.g., 500 or 1,000), more robust results emerge, although clusters are 

significantly larger, causing potentially interesting smaller areas to be missed. 

Furthermore, due to the number of Flickr photos and users varying between months, it 

could be argued as being inappropriate to assign an absolute value for all time 

sequences. To handle these issues, values of 1% to 4% of the Flickr photos in each 

month were assigned to mclSize across different iterations as discussed previously in 

order to produce appropriate frequencies of groups that fit the definition of a UAOI. 

After multiple experimental results, 1% of Flickr photos in each month were used as 

the value for the minimum cluster size parameter, ensuring a higher number of UAOIs 

but also being cognizant of smaller clusters that may be of relevance. 
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Figure 3.3 Different urban areas of interest extracted by different minimum cluster size 

(min_cluster_size) values in one month. Colours indicate the location of clusters. 

As UAOIs should be formed through the collective actions of multiple users within 

each specific time slice, the 1% parameter selection does not ensure that a set number 

of Flickr users are captured in each UAOI. As such, it was then necessary to verify the 

practical significance of the extracted UAOIs. An intuitive approach is to examine the 

relationship between the number of Flickr photos and the number of users in each 

month. If they are correlated, then we can estimate the number of Flickr users by the 

number of photos per month. Specifically, the scatter plot in Figure 3.4 (a) shows that 

there is a high positive correlation between the two variables, with a Pearson 

coefficient of 0.85, implying that as the number of photos increases, so too does the 

number of users in a given UAOI. A linear regression model was then fitted using these 

two variables so that the user number could be estimated based on the number of 

photos in each month. The resulting R-Squared was 0.725 with a p-value for the 

coefficient value below 0.05, implying that the model is statistically significant and 

72.5% of the variation in photo numbers could be explained by the model. Figure 3.4 

(b) is a graph presenting the number of photos, users, and the calculated user number 

in various time sequences. The red line fluctuates slightly around the black line, 



 

62 

meaning that the 1% photo number as the HDBSCAN parameter value can be 

interpreted as having at least 1% of users in each UAOI, which satisfies our definition 

of a UAOI. Therefore, we adopt these clustering results for the next stage of the 

analysis, which turns clusters of points into polygon boundaries. 

Figure 3.4 Exploring the relationship between Flickr photographs and users to ensure 

each urban area of interest contains multiple users. (a) Correlation analysis and (b) 

estimated proportion 

3.4.2 Constructing a Perceptual Boundary to Enclose the Extracted Urban Areas of 

Interest 

The clusters from the method described above are represented as a group of points. 

However, within this study, we are interested in extracting largely non-overlapping 

UAOIs that refer to an area within a specific border. In other words, we are interested 

in identifying polygons rather than sets of points. The reason behind this procedure is 

twofold. First, as mentioned when introducing the concept, a UAOI was defined as a 

section of the city with an extraordinarily large density of images. Under this definition, 

two overlapping UAOIs would simply be merged into one. Secondly, our focus is to 

quantify spatiotemporal changes in the shape and extent of these polygons. In this 

(a) (b) 
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context, even though a UAOI is identified with fixed borders at each point in time, its 

definition over time is much vaguer and is allowed to change, evolve, and morph in 

line with changes to its underlying structure. 

As such, the next step involves the construction of boundaries that enclose all 

geotagged images identified as part of a UAOI cluster. To delineate these shapes, we 

adopted a variant of the concave hull algorithm: the alpha shapes (Edelsbrunner, 

Kirkpatrick & Seidel, 1983). Alpha shapes are a widely used, robustly tested algorithm 

that creates a tighter boundary as compared to the traditional convex hull method, 

which may produce large empty areas that do not belong to the original point data set 

(Akdag et al., 2014). 

An alpha shape, which is a geometric concept, is a linear approximation of an original 

shape. It is a generalisation of the convex hull, and a subgraph of the Delaunay 

Triangulation (Edelsbrunner, Kirkpatrick & Seidel, 1983). It establishes a connection 

between each point and nearby points and removes the furthest triangles that are away 

from their neighbours. In this context, ⍺ is a parameter that controls the desired level 

of detail, ranging from the standard “crude” convex hull (⍺ = ∞) to the set of points 

itself (⍺ = 0, Da, 2018). The algorithm first computes a Delaunay triangulation of the 

set of points (S) and for each Delaunay edge, it computes the values ⍺-min (e) and ⍺-

max (e). Next, for each edge e, if ⍺-min (e) ≤ ⍺ ≤ ⍺-max(e), the edge is kept in the ⍺-

shape of S. We have tailored this general method to our application by developing a 

technique to find the most appropriate alpha value for each cluster. Like the parameter 

selection in HDBSCAN clustering, an absolute alpha value for all point clusters would 

not be suitable in that some areas would contain more empty areas in the range from 

0.001 to 0.005. We then identified the first case where a single point was excluded 

from the main polygon, and selected the previous value of alpha. This strategy resulted 

in the tightest polygon that still contained every point in the cluster. As an illustration, 

Figure 3.5 represents three examples of different UAOIs produced with varying alpha 

values. In this case, 0.003 excludes a point (which in the original algorithm is still 

linked through an edge, but not an area), and 0.001 implies too sparse a solution 
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compared to 0.002, which allows a tighter shape that still includes all points in the 

cluster within the same polygon. Hence, the value selected for this case is 0.002. 

 

Figure 3.5 An example of one Urban Area of Interest that changes with different alpha 

values for one month of data 

3.5 Results 

After applying the method described above to the geotagged Flickr photo data set of 

inner London from 2013 to 2015, the UAOIs were extracted for the 36 monthly slices 

to capture spatiotemporal characteristics presented in this section. 

We begin from a purely spatial perspective, “compressing” the temporal dimension. 

This approach allowed us to gain an idea of the stability of different parts of the city 

in being identified as UAOIs. Figure 3.6 presents each UAOI together in a single map. 

Figure 3.6 is produced by overlaying all UAOIs from different time sequences with a 

large degree of transparency to show the spatial distribution of the more stable UAOIs. 

Areas in darker pink are thus consistently identified as being of interest during the 

three-year period, including Trafalgar Square, St. Pancras International and tube 

station, King’s Cross, Jubilee Gardens, Westminster Pier, Borough Market, 

Millennium Bridge, Tower Bridge, the Canary Wharf financial centre, and the 

museums located on Museum Lane. These represent popular tourist attractions, 

cultural venues, business centres, and locations with intense traffic 
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Figure 3.6 All Urban Areas of Interest extracted in inner London from 2013 to 2015 

showing the most stable and popular spatial zones 

Figure 3.7 The overall spatial distribution of the total area of the Urban Areas of 

Interest in each Middle Layer Super Output Area  
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Figure 3.7 is generated by aggregating the results of our analysis at the administrative 

boundary level, i.e., the Middle Layer Super Output Area (MSOA). MSOAs are 

designed to improve the reporting of small area (neighbourhood) statistics and are built 

from a hierarchy of Output Areas (OAs; Office for National Statistics, 2018). These 

areas are intermediate in size between Output Areas and local authorities. Our intention 

with Figure 3.7 was to transfer the extent to which a given part of the city belongs to 

a UAOI into fixed geography that can be analysed over time. The map displays the 

total area identified as a UAOI in each MSOA over the entire period considered. The 

map effectively represents those small-scale areas that are more popular, shifting the 

attention from the organically evolving shapes of UAOIs to the more stable boundaries 

of MSOAs. The overall pattern displayed is similar to that in Figure 3.6, showing 

higher values in the northwest of Newham, the border of Tower Hamlets and 

Greenwich, the City of London, and the middle of Westminster borough, implying a 

higher degree of attention in these districts.  

Although by the nature of the analysis and the source of data employed, it is very hard 

to carry out a formal validation of the results, the patterns displayed in Figures 3.6 and 

Figure 3.7 are well aligned with established knowledge from the literature. Both maps 

result from the interaction between the urban built environment and human behaviour, 

and highlight popular areas generally covering business centres, public entertainment 

(theatre, Art Centre, and Sports Centre) and food markets, as well as open spaces. They 

also illustrate that people are more likely to take photos in those regions where most 

of the significant landmarks and unique buildings are located. A good example is the 

City of London, which contains a historical centre with historical buildings as well as 

modern skyscrapers, and serves as a central business district. We can also see that the 

districts on the border of Tower Hamlets and Hackney are not always identified as part 

of a UAOI, which suggests that the degree of popularity of these districts is influenced 

by different factors and may vary seasonally. 

The temporal nature of UAOIs is explored in Figure 3.8, which shows how their extent 

changes during a single year (i.e., 2013). We can see that some UAOIs emerged and 
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disappear suddenly in the span of one or two months, which indicates that there is a 

high probability that large-scale but temporary events took place in these areas. For 

example, the UAOI extracted in the north of Camden existed only in January and 

February and then disappeared during the following months. This is likely caused by 

the first snowfall in London in January 2013, as Hampstead Heath is known as a good 

place for people to enjoy snow by sledging, activities that are usually recorded in 

photographs. This event was reported in multiple media (Emms, 2013; Pettitt, 2013).  

Figure 3.8 The spatiotemporal evolution of Urban Areas of Interest in 2013 



 

68 

Although useful, it is difficult to scale the spatiotemporal variation in Figure 3.8. Every 

additional month involves a full map, and comparing a large number of maps at the 

same time carries a large cognitive load. To be able to extend the analysis and consider 

the entire period of three years at a fine temporal resolution, we created area profiles 

for stable geographical entities. We designed this approach to avoid directly examining 

and comparing the shape of each UAOI over time, as it is difficult and unintuitive to 

track and follow change with such an approach. Because of their organic and rapidly 

evolving nature, their shape and extent may vary significantly over time. This makes 

consistent temporal analysis complicated if the original shapes are to be used. For this 

reason, we returned to the MSOAs. Area profiles are a series of time plots that display, 

for every MSOA, the percentage of the area that is considered part of a UAOI in a 

given month. These figures are able to intuitively summarise the degree of 

participation of a given MSOA in UAOIs, as well as their evolution over the period 

considered, jointly capturing space and time in a single figure. To put this profile into 

context, the time plot is complemented with a map that shows the location of the area 

considered. 

 

Figure 3.9 Spatiotemporal profiles for Urban Areas of Interest based on Middle Layer 

Super Output Layer geographic areas 
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Figure 3.9 shows the UAOI profiles of three MSOAs with distinct characteristics 

throughout the three years from January 2013 to December 2015. These 

spatiotemporal profiles can thus help stakeholders better understand the dynamic 

characteristics of these districts when, for example, allocating resources more 

effectively, or enhance their understanding of the seasonal interest in specific 

geographic areas of the city.  

The first profile corresponds to an area in Westminster. The profile clearly shows a 

seasonal evolution, oscillating around 15-20%, with higher percentages in warmer 

months (June, July and August), and lower participation in UAOIs in colder months. 

In addition, there are also three outliers corresponding to February 2013, and January 

and February 2015, which display a larger share of the area being part of a UAOI. In 

particular, the 2015 outliers reach the full extent of the MSOA. It is hard to tell why 

these occurred, and in-depth exploration of each of these warrants further research (e.g., 

semantic analysis or image recognition), which is beyond the scope of this chapter. 

However, what they help to highlight is the ability of the profile to make these patterns 

explicit and alert the analyst about their existence in a way that traditional maps do not. 

The ability is even clearer if we consider the profile of the area in Tower Hamlets. In 

this case, the seasonal variation is more pronounced, moving from about 20% to the 

entire coverage of the MSOA. These spikes are not necessarily outliers, as they occur 

in each of the three years considered during the warmer months. The only one that 

could be considered an anomaly is that of March 2014, which took place at a time 

outside the summer period. Equally, the MSOA was not part of any UAOI during 

November and December of 2015 which, compared to the previous years, was 

expected. Again, these patterns warrant further research to explore the drivers behind 

them, but the role of the profile in highlighting them is clear. Finally, the third panel in 

Figure 3.9 shows a different type of area. The Newham example displays several 

months in which the area is not part of any UAOI. However, the spring and summer 

months see it consistently having around a third of its extension within an identified 

UAOI. This pattern implies that the popularity of this district is significantly 
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influenced by season and its role in the overall hierarchy is less prominent than that of 

the other two areas considered here. 

3.6 Discussion and Conclusions 

This chapter provides insight into several questions relevant for research concerned 

with VGI as a means of better understanding urban environments. We propose a 

framework to extract UAOI boundaries from geotagged image data, and use them to 

build spatiotemporal profiles of areas. When compared to existing literature, our 

approach is distinct in two key dimensions. First, we introduce the use of the recent 

HDBSCAN clustering algorithm, which we show improves on the results of other 

commonly used density-based algorithms employed in previous studies (Kisilevich et 

al. 2010; Hollenstein and Purves, 2010; Li, Goodchild, and Xu, 2013; Lee 2013; Gao 

et al., 2017). Second, our approach is significantly more detailed in terms of temporal 

resolution, which allows us to characterize areas based on their seasonal profiles. This 

again brings a new perspective to previous approaches (e.g., Andrienko and Andrienko, 

2013; Hu et al., 2015), which focus on coarser temporal scales.  

The results on the spatial dimension of the analysis suggest that the urban environment 

influences human activity, shaping the attention of people and attracting them to areas 

where many unique buildings and important landmarks are located. Conversely, the 

temporal aspect of the results reflects how human activity changes and shapes the use 

of the urban environment. Putting these two together, our spatiotemporal profiles 

visualise how the popularity of certain regions is influenced by factors such as time of 

the year and season, and also make visually explicit how popularity levels differ across 

areas. This approach is distinct from related works that use VGI to study UAOIs, such 

as Hu et al (2015), in that our perspective is more granular and thus allows us to 

uncover qualitatively different types of dynamics. Spatially, we are focused on the 

internal dynamics of urban environments and comparing areas within the same city. 

Temporally, we use the higher resolution to consider seasonal changes, rather than 

longer-term evolution. 
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The methods and results presented in this chapter are of interest for several fields and 

domains. For example, it can help urban planners to develop better strategies related 

to tourism planning. If certain tourist attractions showed a seasonal pattern according 

to the spatiotemporal profiles produced in this study, urban planners could allocate 

resources for tourism more efficiently. Local authorities may also be interested in those 

UAOIs that are the most stable and have a larger area throughout the year for purposes 

such as police patrol and traffic monitoring. The results can also be used by researchers 

and practitioners as an additional geographic layer to understand the use of the urban 

built environment. Furthermore, part of the relevance of our contribution lies in the 

fact that it can be deployed using data that are available in near real-time. Unlike more 

traditional data sources, geotagged images are constantly added to services such as 

Flickr, thus providing an opportunity to study the evolution of UAOIs not only 

retrospectively but as they evolve over time. This holds distinct value for practitioners 

such as urban planners and policy makers. 

There are several avenues towards which the work presented in this chapter could be 

extended. Although the data set used here is extracted from Flickr, geotagged images 

from other websites could be used. Different platforms provide slightly different 

services that attract different populations (Lazer & Radford, 2017). Incorporating 

different sources would thus likely improve the coverage of the analysis and provide 

a novel comparison of the inherent biases of each platform. Furthermore, the algorithm 

used to cluster UAOI could be improved by using Spatio-temporal DBSCAN to 

visualise clusters in a space-time cube rather than just take into consideration of spatial 

information. Besides, a few approaches could be used to evaluate the clustering results 

to increase the reliability. Additionally, our current focus has been on the spatial and 

temporal aspects of the images. A promising further avenue for research is to include 

information in the analysis other than spatiotemporal stamps such as, for example, the 

text included in tags, or the images themselves. The former would expand existing 

work on semantic ontologies (Kisilevich et al. 2010; Lee et al., 2014), while the latter 

would complement recent advances on deep learning that aim at extracting features 
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from images (Krizhevsky et al., 2017; Zhou et al., 2017; Redmon and Farhadi, 2017). 

Finally, this analysis could also be further extended by considering the socioeconomic 

characteristics of Flickr users, seeking to establish a link between e.g., Flickr metadata 

and census data. These applications, although beyond the scope of this present chapter, 

warrant future attention by researchers. 

  



 

73 

4. Quantifying the Characteristics of the Local Urban 

Environment through Geotagged Flickr Photographs 

and Image Recognition 

 

N.B. The research presented in this chapter is an adapted version of the publication: 

Chen, M., Arribas-Bel, D., & Singleton, A. (2020). Quantifying the characteristics of 

the local urban environment through geotagged Flickr photographs and image 

recognition. ISPRS International Journal of Geo-Information, 9(4). 

https://doi.org/10.3390/ijgi9040264 

 

Abstract: Urban environments play a crucial role in the design, planning, and 

management of cities. Recently, as urban population expands, the ways in which 

humans interact with their surroundings has evolved, presenting a dynamic distribution 

in space and time locally and frequently. Therefore, how to better understand the local 

urban environment and differentiate varying preferences for urban areas have been big 

challenges for policymakers. This chapter leverages geotagged Flickr photographs to 

quantify characteristics of varying urban areas and exploit the dynamics of areas where 

more people assembled. An advanced image recognition model is used to extract 

features from large numbers of images in Inner London within a period of 2013-2015. 

After the integration of characteristics, a series of visualisation techniques are utilised 

to explore the characteristic differences and their dynamics. We find that urban areas 

with higher population density cover more iconic landmarks and leisure zones, while 

others are more related to daily life scenes. The dynamic results demonstrate that 

season determines human preferences for travel modes and activity modes. Our study 

expands the previous literature on the integration of image recognition methods and 

urban perception analytics and provides new insights for stakeholders, who can use 

these findings as vital evidence for decision making. 
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4.1 Introduction 

Urban environments play a crucial role in decision making in terms of the design, 

planning, and management of cities, which are closely linked with urban functions and 

their ecosystems. From a social perspective, understanding how humans experience 

these environments is important for improving urban functions. For example, areas 

with a large population density and exposure require more attention and in-depth 

strategies. In recent years, as the urban population has expanded, how humans interact 

with their surroundings has evolved (Singleton et al., 2018). The distribution of the 

population has changed over space and time locally and frequently.  

Traditional approaches to understanding the urban environment have relied on survey 

data. These approaches can be used to characterise urban morphology, but they can 

generate gaps between data collection and data quality that are costly and problematic 

(Stubbings et al., 2019). Although recently emerging street-level imagery data can 

overcome these gaps, these data are mostly from Google’s street view fleets, which 

rarely capture human perceptions of the urban environment. Therefore, challenges 

remain for policymakers to plan and manage urban environments. In the past few 

decades, improvements in location technology, such as the global positioning system 

(GPS), have produced plenty of georeferenced urban data sources (Arribas-Bel, 2014), 

such as social media data and mobile data. In addition to geographic information, many 

of these new forms of data also have other attributes, such as time, user profiles, user 

evaluation, or user photographs, providing great opportunities for research in social 

and urban domains (Hollenstein & Purves, 2010). Among these attributes, photographs 

offer a wealth of information on the environment that can be analysed to determine 

why and how humans interact with urban areas (Dorwart et al., 2010). However, 

previous research on the content analysis of photographs is relatively rare (Chen et al., 

2019; Crandall et al., 2009; Y. Hu et al., 2015a; Kisilevich et al., 2010).  

Recently, thanks to advances in computer vision and deep learning techniques, 

especially improvements in convolutional neural network (CNN) performance, images 
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have gradually been proven to be powerful for investigating the visual perception of 

our environment (Naik et al., 2017; Seresinhe et al., 2018; F. Zhang, Zhang, et al., 

2018). Since the early 2000s, CNNs have been applied to image recognition but were 

neglected until a big success during an ImageNet competition in 2012 (Lecun et al., 

2015). CNNs have since become the dominant method for all image recognition tasks.  

Drawing on the limited research of dynamic urban perceptions and the ongoing 

improvements in image recognition performance, this chapter focuses on urban areas 

of interest (UAOIs) and their outer urban environments. An UAOI is a perceptual space 

captured by the social morphology of the city, which reflects the real interests of large 

numbers of people and may emerge and disappear at different times (Chen et al., 2019; 

Crooks et al., 2016). A UAOI is not only a perceived region of a place but an outcome 

of human interactions with the environment. More importantly, many geotagged 

photographs that represent the physical appearances of UAOIs are available. As such, 

research on UAOIs offers a way to explore the connections between human cognition 

and digitally and visually represented geographies.  

The objective of this study is to quantitively formalise and understand urban areas 

through geotagged images. Not only do we analyse photographic metadata, but we 

also exploit information from the images themselves. Also, dynamic analysis is 

considered, which bridges a research gap. The research questions are proposed as 

follows: 1) Why do people gather at certain areas all year or at certain times? 2) Is 

there any difference between UAOIs and other areas? 3) What are the visual 

characteristics of UAOIs over time? We first extract the UAOIs in Inner London 

through a method framework proposed by ( Chen et al., 2019); then, an advanced and 

novel CNN model called Places365-CNN is utilised to extract features inside and 

outside the UAOIs. These features are then integrated to explore the regular 

characteristics of the urban environment. Finally, a finer temporal scale is applied to 

understand the dynamic characteristics of the UAOIs through a heatmap based on a z-

score.  
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The structure of this chapter is organised as follows. The next section discusses the 

past and recent work using geotagged images in urban analytics, as well as common 

techniques of image recognition in this domain. Section 4.3 introduces the methods 

used to characterise UAOIs, including data description, the CNN model, characteristic 

integration, z-score standardisation, and heatmap analysis. This is followed by an 

interpretation and discussion of the results of the overall and dynamic characteristics 

of UAOIs. Finally, section 4.6 concludes the chapter and suggests future extensions to 

this research.  

4.2 Literature Review 

4.2.1 Previous Studies on Geotagged Images from Social Media 

In earlier research, geotagged images from photo sharing social media websites like 

Flickr, Instagram, and Picasa have been widely utilised to address a series of urban 

issues. Previous research includes proving the utility of Flickr data in mapping the 

urban environment (Crandall et al., 2009; Dunkel, 2015), analysing user behaviour 

(Antoniou et al., 2010; Miah et al., 2017), facilitating event detection (Kisilevich et al., 

2010; Papadopoulos et al., 2011; Rattenbury et al., 2007), travel route 

recommendations (Sun et al., 2015; Zheng et al., 2012), places/areas of interest 

identification Chen et al., 2019; Lee et al., 2014; Li et al., 2013), and cultural 

ecosystem analysis (Hristova et al., 2018). However, certain information in geotagged 

photographs is currently underused, such as the content of photographs that were taken 

in urban areas. The density of photographs can only reflect the popularity of a place or 

an area but cannot demonstrate the reasons behind those patterns. It is thus necessary 

to understand if the photographs are relevant to the built environment and what aspects 

of the city are of greatest interest to people in a specific area (Richards & Friess, 2015). 

Many studies have used the ‘tags’ attribute of photographs to estimate public interest 

or capture large-scale events (Crandall et al., 2009; Kisilevich et al., 2010; Lansley & 

Longley, 2016; Luo et al., 2016; Papadopoulos et al., 2011; Rattenbury et al., 2007; 
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Steiger et al., 2015). However, these studies have ignored the key attributes (i.e., 

photographs) of geotagged Flickr photographs. Furthermore, these tags may not be 

related to the photographs themselves due to their heterogeneity (Goodchild, 2007), 

while several users add no tags at all.  

4.2.2 Image Recognition and Urban Analytics 

Due to the great improvements in computer vision and deep learning techniques in 

recent years, a growing number of works have attempted to apply image recognition 

techniques to understand urban environments, mostly relying on Google Street View 

(GSV) images. Some harnessed GSV images to measure the perception of safety, class, 

and uniqueness, thus creating reproducible quantitative measures of urban perceptions 

and characterising the inequality of different cities (Salesses et al., 2013). Law and his 

colleagues combined GSV images with 3D models generated from the GSV images 

and used a CNN to classify the street frontages of a front-facing street image in Greater 

London (Law et al., 2017). Similarly, Liu et al., (2016) exploited GSV images to 

predict the visual quality of the urban environment by comparing ratings based on a 

survey to train an image classification ConvNet model to predict a façade's quality 

scale. Some studies have combined GSV images with other imagery datasets to extract 

parcel features for urban land use classification ( Kang et al., 2018; Zhang et al., 2018). 

Naik and his colleagues used an image segmentation approach and support vector 

regression to monitor neighbourhood changes and correlate socioeconomic 

characteristics to uncover predictors for the improvement of physical appearance (Naik 

et al., 2017). More recent research developed a deep CNN model, a hierarchical urban 

forest index, to quantify the amount of vegetation visible based on street-level imagery 

(Stubbings et al., 2019). 

However, GSV is not the only image source that can be used to explore the urban 

environment. Alternatives have also appeared in recent urban studies. For example, 

images from Flickr, the most prevalent online photograph sharing website, were 

proven to be usable by (Antoniou et al., 2016; Xing et al., 2018) for land cover 
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classification and validation, and the 3D reconstruction of the city. Flickr was also 

exploited in the work of (Richards et al., 2018), who developed a novel framework for 

ecosystem service assessment using Google Cloud Vision and hierarchical clustering 

to analyse the contents of Flickr photographs automatically. Apart from Flickr, ‘Place 

Pulse 1.0’, a crowdsourced image dataset created by Salesses and colleagues (2013), 

was used to predict the human judgement of a streetscape’s safety (Naik et al., 2014). 

The results showed that geotagged imagery combined with neural networks can 

quantify urban perceptions on a global scale. Other novel image datasets, such as 

‘Scenic-or-not’, an online game that crowdsources the ratings of the beauty of 

geotagged outdoor images, was used to quantify the beauty of outdoor places in the 

UK through Places365-CNN models (Seresinhe et al., 2017). 

All these works demonstrate that geotagged images in collaboration with image 

recognition techniques in computer vision can provide a deeper understanding of our 

built environments. Meanwhile, a variety of challenges have emerged in these 

applications. Most studies are based on the global urban environment, while finer 

urban areas are rarely involved. More importantly, few efforts have associated image 

recognition with urban change (Ilic et al., 2019; Naik et al., 2017). Nevertheless, urban 

dynamics play an important role in understanding cities, especially for the perceived 

urban spaces that reflect human interactions with the built environment. Therefore, this 

study will bridge this research gap to quantify the characteristics of local urban built 

environments (i.e., UAOIs) and explore their dynamic patterns. 

4.2.3 Recent Approaches to Image Recognition 

For about a decade, there have been improvements in the techniques used for image 

recognition. Some of the most notable techniques include image classification, object 

detection, and image segmentation. Image classification refers to labelling a 

photograph based on its content from a fixed set of categories (Karpathy, 2016). Image 

classification gained significant attention when the ‘AlexNet’ model became the 

winner of the ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC-
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2012), which was a breakthrough that significantly reduced the error rate of images to 

15.3% (Krizhevsky et al., 2012). ILSVRC is an annual contest that aims to 

automatically estimate the content of photographs from a subset of a large hand-

labelled ImageNet dataset (1000 object categories for training and validation). Since 

then, an increasing number of pre-trained CNN architectures/models have been 

proposed for the contest, such as GoogleNet, ResNet-152, Inception-v4, etc., which 

have constantly improved the accuracy of image classification (He et al., 2016; 

Szegedy et al., 2015, 2017). Several studies in recent years have used image 

classification to solve empirical problems—for example, to retrain one’s own image 

dataset based on pre-trained architecture for prediction (Law et al., 2017; Liu et al., 

2016) or to extract features from images through a pre-trained model (Richards et al., 

2018; Seresinhe et al., 2017; Xing et al., 2018). By manually labelling data or using 

ready-made training data, an image can be identified by a single attribute/label or by 

multiple features. 

More sophisticated techniques include object detection and image segmentation.  

Compared to image classification, these two methods are able to recognise and locate 

multiple objects from an image. The former method identifies different sub-images, 

drawing a bounding box around a recognized object, while the latter partitions an 

image into regions or parts present with accurate boundaries (Gandhi, 2018; Murali, 

2018). Recent approaches that have gained wide popularity include Faster R-CNN 

(Region Convolutional Neural Network; Ren et al., 2017) and YOLO (You Only Look 

Once; Redmon & Farhadi, 2017) for object detection and Mask R-CNN (He et al., 

2016) for image segmentation. Unlike image classification tasks that primarily using 

the ImageNet dataset for training, most object detection and image segmentation tasks 

are trained on COCO. COCO is a large-scale image dataset, with 80 categories used 

for object detection and segmentation (COCO, 2018). These categories mainly include 

everyday objects, such as vehicles, people, and a few animals. These data have been 

widely applied in pose estimation (Papandreou et al., 2017),  medical imaging 
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(Johnson, 2018), real-time video surveillance (Shaifee et al., 2017), and so on (Naik et 

al., 2017). 

Considering the suitability and availability of these approaches, a recently introduced 

and scene-related image classification model, Places365 CNN (Zhou et al., 2018), is 

used in our study. Places365 CNN worked as a classifier to identify 365 scenes from 

the built environment, which was mainly trained on millions of Flickr images over the 

world. Compared to other pre-trained CNN models, this model corresponds to our 

motivation to identify scene attributes from a built environment, while other object 

detections or segmentation models are office furniture, vehicle and animal-related. 

More importantly, this model is freely available and well documented (Zhou et al., 

2018) but has been rarely used in previous urban analytics (Seresinhe et al., 2017).  

4.3 Methods 

In the following section, we introduce the Flickr data, study area, and UAOI extraction 

and subsequently characterise the features of the UAOIs and the outer areas through 

an image classification model. In addition, a finer time dimension is included to further 

explore the dynamic characteristics of UAOIs.  

4.3.1 Data and UAOI Extraction 

Data were collected from Greater London, as Greater London is the capital of, and the 

largest city in, the United Kingdom, with a population of over 8 million, according to 

the latest 2011 census. Furthermore, the raw data show that Greater London has a 

larger volume of geotagged Flickr photographs than many other cities. In particular, 

Inner London (London City Hall, 2019b), the interior part of Greater London, is used 

for characterisation, as a large volume of Flickr photographs is available from Inner 

London over a variety of years. Figure 4.1 demonstrates the spatial density of the 

photographs in Inner London and Greater London visualised by KDE (O’Sullivan & 

Unwin, 2010).  
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Figure 4.1 Spatial distribution of the geotagged Flickr photographs in Inner London 

and Greater London. 

Flickr is an online photograph management and sharing website, where public 

photographs uploaded by users can be requested and downloaded from its public API, 

https://www.flickr.com/services/api/). The scale of Flickr is extensive, with 122 

million users and over 10 billion photographs as of 2016, with a large degree of 

penetration (Smith, 2021). Unlike commonly used geotagged GSV images that are not 

real-time (Google Maps Street View, 2019), Flickr image data are accessible at any 

time and have been available since 2004, making it feasible to investigate the dynamic 

characteristics of UAOIs in a finer time dimension (Chen et al., 2019). Furthermore, 

the locations of Flickr images result from human choices and are a representation of 

human interactions with the built environment. However, photographs are captured in 

a biased way, as the aspects of the urban environment rely on how populations interact 

with that environment. As such, the representation of Flickr images is skewed and not 

necessarily realistic. These warrants caution when drawing conclusions. Nevertheless, 

we argue that Flickr image data are still meaningful for our study due to their 

https://www.flickr.com/services/api/
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embodiment of human perceptions of the built environment and flexibility in the time 

dimension.   

The first two stages of data pre-processing and UAOI extraction are based on the 

framework of (Chen et al., 2019). All geotagged Flickr metadata uploaded within Inner 

London has been collected through a bounding box, with a time span from the first day 

of 2013 to the last day of 2015. The attributes of each data record include geographic 

coordinates, the capture times of the photographs, user IDs, and download URLs for 

each photograph. This three-year time span has more Flickr photographs than others, 

since the site was launched in 2004. It also allows us to explore the dynamic 

characteristics of images within UAOIs by subdividing the time by month. To decrease 

the influence of a few active users who will dominate the analysis outcomes, we 

retained only one photograph for each user based on the tags used and the time when 

the photograph was taken ( Chen et al., 2019). It is because some active users may take 

many similar photographs in a high-density area which will influence the extraction of 

UAOI. Specifically, if a user took several photographs in a minute but with the same 

tags, only one photograph was retained. The rationale for this approach was to remove 

photographs within a limited spatial extent based on the hypothesis that a person’s 

average walking speed is 5 km/h (Onaverage, 2017). On this basis, the maximum 

walking distance within a minute is approximately 83 m. Within this short distance, 

only a single user’s photograph with the same text is retained.  

For UAOI extraction we rely on the methodology from previous chapter which 

combines HDBSCAN (hierarchical density-based spatial clustering for application 

with noise; McInnes et al., 2017) and alpha shapes (Akkiraju et al., 1995). We 

identified UAOI every month by HDBSCAN and constructed the corresponding 

boundary for each UAOI via Alpha shapes. Figure 4.2 shows the spatial distribution 

of all extracted UAOIs from 2013 to 2015 in Inner London in a light coral colour. We 

subsequently downloaded all photographs within Inner London through the URL links 

embedded in the Flickr metadata. Since spatial information is available for the UAOIs, 

in other words, images that are grouped as UAOI are available, we subsequently 
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divided them into two image subsets: UAOI and NON-UAOI images, with a total 

number of 187,064 and 816,058 photographs, respectively.  

 

Figure 4.2 The spatial distribution of all urban areas of interest extracted per month for 

three years from (same with Figure 3.6). 

4.3.2 Extracting the Characteristics from UAOIs and Outer Areas  

To uncover the potential driving factors that influence the formation of UAOIs, an 

image recognition technique is conducted to identify the objects in each Flickr image. 

CNN models are generally designed to process data in the form of multiple arrays, 

such as colourful image data consisting of three 2D arrays presented as pixel values in 

the three colour channels.  

In this work, an image classification model Places365 CNN is used to extract the 

characteristics of UAOIs. The reason for using this classification model instead of 

object detection is primarily because we are interested in the characteristics of places. 

Places365 CNN can work as a classifier to identify scenes from the built environment. 

Alternatively,  other image recognition models could be used as well, while we deemed 
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Places365 CNN as the most productive model in this context, Places365 is the latest 

subset of the Places2 Database, which is trained by 1.8 million images from 365 scene 

categories, where there are, at most, 5,000 images per category (Zhou et al., 2018). We 

specifically use the Places365-ResNet model, fine-tuned on the ResNet152 (152-layer 

Residual Network) architecture. This CNN model has the best performance; its top 5 

classification accuracy reaches 85.08%, whereas the top 5 classification accuracy for 

other popular CNNs, such as Places365-AlexNet, Places365-GoogleNet, and 

Places365-VGG is 82.89%, 83.88%, and 84.91%, respectively (Zhou et al., 2018). 

All photographs within and outside the UAOIs are fed to the Places365-Resnet model3, 

with the aim of exploring if there are any unique characteristics at UAOIs compared 

to other areas. As each photograph may contain more than one scene class, the model 

is set to return the maximum top five labels based on the probability for each 

photograph of our dataset. Further, the top five labels’ classification accuracy (85.08%) 

is far beyond that of the top one label (54.74%), which was validated in the work of 

(Zhou et al., 2018). Then, we integrate the probability of all identical labels together 

and divide by the total number of photographs for UAOIs and other areas separately. 

This step helps us acquire the mean regular probability of each label in different areas. 

Table 4.1 features a numeric illustration of how the results are interpreted and 

visualised in section 4.4.1. It displays portions of the extraction from the 365 

categories/labels, where the higher probability of a label represents more significant 

characteristics in that area, and vice versa.   

 

 

 

 

3  For high-efficiency implementation, the recognition process of all photographs 
(approximately 100 GB) was undertaken using a single Nvidia Quadro M5000 GPU with 8 GB 
memory. 
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Table 4.1 The mean probability of partial labels quantified inside and outside urban 

areas of interest. 

Considering the temporal nature of UAOIs, certain UAOIs emerged and disappeared 

within just a few months (see examples in Figure 4.3). The UAOI in the northwest of 

Newham appears in July and August but disappears in September 2013, and the UAOI 

emerges in the middle of Southwark in August but vanishes in the next month. 

However, the regular characteristics recognised at the UAOIs over three years are 

unable to capture these minor seasonal changes. As a result, it remains challenging to 

explain why people would gather at certain UAOIs at specific times without 

identifying the dynamic patterns underlying these images. 

Figure 4.3 A few urban areas of interest emerged and disappeared at certain months. 

To understand the factors that contributed to the dynamic changes of UAOIs, we 

subdivided photographs into a finer temporal resolution (i.e., we grouped photographs 

by month). Similarly, the maximum top five probabilities of labels were returned, and 

the mean probability of each label for UAOIs and Non-UAOIs in a month was 

calculated. Next, 36 tables similar to Table 4.1 were acquired at different months. Then, 

we concatenated them into a single table and determined the label probability of the 

UAOIs, where the row and column represent 365 features and 36 different months 

separately. We finally calculated the average values of the label probability for 

 Bus 
Station Street Stage  Skyscraper Downtown Tower Museum  Train 

Station 
Music 
Studio 

UAOI 0.0223 0.0253 0.0032 0.0291 0.0191 0.0385 0.0084 0.0071 0.0020 

Non-UAOI 0.0448 0.0301 0.0169 0.0133 0.0115 0.0104 0.0096 0.0096 0.0094 
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identical months but different years, as shown in Table 4.2, which includes a small 

sample from the 365 labels and a numeric illustration for section 4.4.2. By doing this, 

the significant characteristics for the UAOIs in different months are identified, thereby 

allowing us to capture several interesting dynamic patterns.  

Table 4.2 The mean probability of the partial labels quantified in urban areas of interest 

per month. 

The probability values from Table 4.2 vary greatly among individual labels. For 

example, the values of the label ‘tower’ are about 20 times higher than the values for 

the label ‘carousel’. The disparity of scales created a large challenge in simultaneously 

comparing the variety of all characteristics. To handle this, we calculated the z-score 

to standardise all label probability values by row; these values can be used to compare 

the results to the sample mean of the label probability for every row. This method 

returns a normalised value (z-score) based on its mean and standard deviation. The 

basic Z-Score can be calculated by the formula below: 

 Z =
𝑥𝑥 − x�
𝑠𝑠

 

where x represents the value of the data point, and x� and s represent the sample mean 

and sample standard deviation. This process ensures that the values in each row in 

Table 4.2 are on the same scale, thus laying the foundation for the subsequent heatmap 

analysis. A heatmap is a graphical presentation of data where the values contained in 

 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

tower 0.038 0.032 0.036 0.039 0.032 0.041 0.042 0.044 0.041 0.042 0.036 0.041 

skyscraper 0.034 0.034 0.035 0.028 0.025 0.026 0.028 0.026 0.028 0.027 0.026 0.033 

bridge 0.026 0.021 0.022 0.026 0.023 0.029 0.027 0.024 0.027 0.028 0.027 0.029 

street 0.026 0.024 0.023 0.026 0.025 0.038 0.024 0.026 0.021 0.023 0.025 0.022 

hospital 0.002 0.003 0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.003 0.002 

outdoor library 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.002 0.003 0.003 0.001 0.001 

jewellery shop 0.002 0.003 0.002 0.002 0.003 0.001 0.003 0.002 0.002 0.002 0.003 0.003 

carousel 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.003 0.010 
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a matrix are represented as colours; the darker the colour is, the higher the value or the 

density. We performed heatmap analysis on the z-score of the probability of a label 

because it returns an instant visual pattern of the labels in a timeline, offering better 

insight into the dynamic characteristics of UAOIs.  

4.4. Results and Discussion 

Based on the mean regular probabilities of the 365 categories for UAOIs and outside 

areas, we visualised the top 50 categories for both in an inverted pyramid graph (see 

Figure 4.4). The labels for the left and right y-axes were organised hierarchically, 

representing the significance of the characteristics from most to least within and 

outside the UAOIs. The top three characteristics for UAOIs are ‘tower’, ’skyscraper’, 

and ‘bridge’, suggesting that the Tower of London, skyscrapers, and a variety of 

bridges, such as Millennium Bridge and Tower Bridge, are the most significant 

representations of UAOIs and the primary reasons for why people gathered in these 

places. The overall composition of the UAOIs includes iconic landmarks, historic and 

famous buildings, entertainment places, and museums and galleries, as the most high-

frequency appearances of these characteristics include the tags ‘canal’, ‘harbour’, 

‘church’, ‘amusement park,’ ‘museum’, ‘gallery’, and so on. The components of areas 

outside the UAOIs are more strongly related to buses or train stations, as well as 

several indoor venues, such as ‘music studio’, ‘beauty salon’, ‘coffee shops’, ‘bakery 

shops’ and ‘bars’. These are ordinary scenes from daily life, which are less attractive 

to large numbers of people.  
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Figure 4.4 Top 50 feature probabilities extracted at urban area of interests and other 

areas.  

4.4.1 Regular Characteristics of UAOIs and Non-UAOIs 

There are a few repetitive characteristics in the top 50 for both categories, making it 

difficult to determine the differences between UAOIs and Non-UAOIs. For example, 

the labels ‘tower’, ‘street’, ‘bus_station’, ‘skyscraper’, and ‘downtown’ are identified 

in the top 10 for both. We then distinguished the most significant characteristics for 

both areas by calculating the different values of the mean regular probability of all 

labels in the UAOIs and Non-UAOIs. Figure 4.5 shows the differences in features 

between UAOIs and Non-UAOIs. By plotting this, features that are common in both 
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would cancel out if their probabilities are the same and thus not features both higher 

in the figure. The bars in light coral and grey, respectively, represent more significant 

features for UAOIs and Non-UAOIs. A total number of 28 labels have a higher 

probability in UAOIs, while more labels are identifiable in Non-UAOIs. This can be 

attributed to the huge and manifold areas of Non-UAOIs, where larger numbers of 

photographs were taken. Although the significant levels of characteristics in UAOIs 

and Non-UAOIs are slightly different from those in Figure 4.4, the overall pattern 

conforms to the features shown above. UAOIs involve more scenic spots and places 

of entertainment, such as ‘tower’, ’church’, ‘canal’, ’fountain’, ’amusement park’, 

and ’shopping mall’, while the areas of less interest are more strongly related to daily 

life, including labels like ‘bus station’, ’street’, ‘bar’, ‘conference centre’, and ’railroad 

track’.  

Figure 4.5 Significant features in the urban areas of interest and outer areas separately. 

These regular characteristics quantitatively suggest why people would gather at 

UAOIs regularly over several years, as well as the characteristic differences between 

UAOIs and other areas. A large number of world-famous landmarks, modern 

skyscrapers, large-scale shopping malls, plazas, and places of entertainment are 
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located at UAOIs. The uniqueness of these elements has attracted thousands of people 

(both travellers and residents in Inner London) to take photographs of them. 

Conversely, the characteristics of photographs taken outside UAOIs are relatively 

common and anonymous and are primarily associated with daily-life scenes. We would 

like to highlight that the features like music studio and pub display a small lean over 

Non-UAOI but do not feature as a clear signifier of the class (in other words, they can 

be found in the middle of the figure). Subjectively, this could correspond to people 

taking photos with no specific purpose in these areas compared to the more purposeful 

photographs taken within UAOIs, such as recording certain tourist attractions like the 

Tower Bridge.  

More importantly, the results demonstrate that geotagged Flickr images can be used to 

quantify the characteristics of the urban environment instead of tags. This has been 

rarely explored in past research, where quite a few works have instead used tags of 

Flickr to understand the urban environment and people’s perceptions of it ( Hu et al., 

2015; Kisilevich et al., 2010; Li et al., 2013). Moreover, these results will help 

familiarize us with the perception features of large communities on a local scale, 

whereas previous attempts were primarily focused on global urban appearance features.  
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Figure 4.6 Seasonal variations in the dynamic characteristics of UAOIs based on the 

z-score. 

4.4.2 Dynamic Characteristics of UAOIs 

Based on the z-score conversion, Figure 4.6 displays a heatmap with the top 50 labels 

in terms of probability of occurrence. This representation uncovers the underlying 

characteristics of UAOIs at certain time periods, where darker red or darker blue 

represent the standard deviation above or below the mean of a label over the period, 
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respectively. The top three characteristics of the UAOIs ‘tower’, ‘skyscraper’, and 

‘bridge’ primarily present an intermediate colour between red and blue, with z scores 

ranging from -1 to 1, implying that these three characteristics remain attractive to 

people all year round. The colour for several transport-related labels, such as 

‘subway_station’, ‘train_station’, and ‘airport_teminal’ was slightly red from January 

to March but was blue for the rest of the year, suggesting that more photographs with 

these travel modes were taken during these months. Conversely, people’s travel mode 

priorities might differ when the weather becomes warmer, possibly including more 

walking and fewer vehicles. This manifests in the ‘street’, ‘promenade’, and 

‘crosswalk’ labels, whose z-scores of probability peak in June or July but remain at an 

average probability during the other months. We also uncovered various seasonal 

patterns of indoor and outdoor activities for UAOIs. For example, a series of indoor 

museums and galleries labelled as ‘museum/indoor’, 

‘natural_history_museum’, ’science museum’, and ’art_gallery’ were more prevalent 

during relatively cold months (February and March) compared with the others, while 

a number of magnificent buildings, as well as outdoor leisure places with the labels 

like ‘church’, ‘palace’, ‘mosque’, ‘castle’, and ‘plaza’, ‘bazaar’, and ‘sky’ were more 

likely to be identified in relatively warm seasons.  

These dynamic patterns demonstrate that the season has an important impact on human 

activity and considerably changes the travel modes and activity modes of people, 

leading to the different scene characteristics of UAOIs over the year. UAOI features 

tend to contain more vehicles and indoor buildings in winter, as people prefer to take 

photographs of vehicles and indoor activities during the cold season. Correspondingly, 

the UAOI features consist of more crosswalks, magnificent buildings, and recreational 

areas in warmer months, as more photographs related to these features were taken 

during this period.  

These results also illustrate how urban perception changes over time, showing that 

dynamic analytics are important for the urban environment. These bridge the identified 

research gap on the dynamic features of cities (Ilic et al., 2019; Naik et al., 2017). 
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Meanwhile, the practical implications of the dynamic characteristics of UAOIs can be 

reflected in the actions of retailers and local authorities. For example, a few retailers 

within UAOIs could expand their opening hours or deliver targeted advertising to 

potential customers in the summer, as people were more active during this period.   

4.4.3 Capacity and Bias of Using Places365-CNN within This Context 

In addition, the above heatmap also suggests that certain patterns deserve special 

attention. It is obvious that some characteristics are highly popular (i.e., reddest) over 

just a single month, such as coffee shops, streets, crosswalks, and amusement parks. 

To investigate what happened during these months with the corresponding 

characteristics, the ‘amusement_park’ label was selected as an example for inspection. 

Specifically, we extracted the photographs that were classified as ‘amusement_park’ 

in December for three years, setting a classification probability of 0.5 to filter 

photographs less than the threshold. A total of 175 photographs were kept after filtering, 

the majority of which (54.7%) were distributed at UAOIs, where Hyde Park, Trafalgar 

Square, London Bridge, and North Greenwich are located. Figure 4.7 4  displays a 

handful of samples from the 175 photographs we extracted, which were taken by 

various photographers in various years. Here we can see a ferris wheel, street food 

markets, roller coaster rides, ice skating, and carousels; these kinds of scene attributes 

are located in from the upper half of the images that were taken at Hyde Park. This 

seems related to Hyde Park’s Winter Wonderland, a Christmas extravaganza that is 

open to the public for 6 weeks every year from mid-November to the end of December 

(Wonderland, 2019). This is one of the reasons why ‘amusement_park’ peaked in 

December, in agreement with our common knowledge.  

 

4 Due to the different shapes of the photographs, some images have been rescaled and cropped to aid visualisation 
in this figure. Photographers (Flickr user IDs) of images in Figure 4.7: ©17576427@N00, ©89333651@N00, 
©91832335@N04, ©42230049@N03, ©16483105@N02, ©87076514@N02, ©64882892@N08, 
©24605992@N06, ©75209620@N00, ©42112515@N06, ©42230049@N03, ©29558445@N00, 
©36054481@N00, ©74264857@N00. Copyright of the images is retained by the photographers. 
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However, this does not relate exactly to the installation of an actual amusement park 

when examining the photographs shown in the rest of Figure 4.7. These photographs 

were taken at Trafalgar Square instead of Hyde Park, where a sculpture of a giant blue 

chicken, a Christmas tree, and a fountain with a red light was captured by multiple 

photographers. These scenes are not parts of an amusement park in the strictest sense, 

but their integration at a specific place and time can be considered a provisional 

amusement park, as the blue sculptures, green trees, and red fountains are similar to 

the colourful characteristics of an amusement park. The probable reason for this 

phenomenon is that groups of people gathered around Trafalgar Square in December 

because the Christmas tree appeared here in early December, and manifold events, 

such as a lighting ceremony and carol singing, happened during this period (London 

City Hall, 2019a). Therefore, ‘amusement_park’ became extremely prevalent in 

December because many seasonal landmarks appeared, and spectacular events 

happened in a few UAOIs due to Christmas.  

 

Figure 4.7 Representative photographs taken in December; identified as an amusement 

park. 
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Additionally, one of the other distinct classes shown in Figure 4.6 was identified as 

‘crosswalk’, which peaked in June over the year. Follow the same procedure, the 

photographs labelled as ‘crosswalk’ larger than the threshold 0.5 were selected to 

further manually validate the outputs of the Places365-CNN. 56 photographs were 

remained after filtering and a few representative ones were selected as samples (see 

Figure 4.8). Generally, the large proportions of photographs identified as ‘crosswalk’ 

contained a person or a few people gathered on a road. Although crosswalk lines were 

limitedly captured from these photographs and people were not necessarily crossing 

the roads, the model was able to identify the pedestrians on a street or a road to a 

certain degree.  

 

Figure 4.8 Representative photographs taken in June, identified as the crosswalk 

These patterns demonstrate that the pre-trained Places365-CNN model may not fit 

Flickr images very well, as several images can be identified based on biased 

characteristics. Nevertheless, the capacity of this CNN model to unpack the 

characteristics of the local built environment cannot be underestimated, which other 

models can rarely have. Although the model cannot accurately identify features as 

labelled, it was able to extract similar scene features and thus still helpful to this study, 

which can be used as a reference for policymakers and stakeholders. 
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4.5 Conclusions 

In this study, a recent and rarely used image recognition method, Places365 CNN, was 

used to extract and quantify features of the local urban environment from Flickr 

photographs. We first compared the differences of the regular characteristics within 

and outside UAOIs over three years. Then, we explored the dynamic characteristics of 

UAOIs over that period. The results help explain why people become interested in 

certain urban areas more than others, what characteristics these areas possess, and if 

these characteristics can change over time. We found that the UAOIs were mainly 

identified in areas where iconic landmarks, tourist attractions, magnificent buildings, 

and leisure zones are located, such as towers, bridges, skyscrapers, churches, plazas, 

and shopping malls, which are different from the characteristics of Non-UAOIs, where 

more daily life-related areas are captured, such as stations, shops, and indoor venues.  

In terms of the dynamic characteristics of the UAOIs, UAOIs extracted in winter 

contained more vehicles and indoor buildings, while UAOIs extracted in other seasons 

consisted of more crosswalks, magnificent buildings, and recreational areas. These 

patterns demonstrate that the season has an important impact on human preferences 

for travel and activity modes. People tend to travel by various vehicles and conduct 

indoor activities on cold winter days but walk and engage in outdoor activities when 

the weather gets warmer.  

This study contributes to both the theoretical and practical domains. We demonstrated 

that Flickr photographs themselves can be used to understand the perceived features 

of cities, instead of traditional methods, by using Flickr tags and other image sources 

like GSV images. More importantly, this work provides a potential way to bridge the 

research gap between image recognition techniques and urban perception analytics. 

Local scales and dynamic characteristics play important roles in recognising the 

features of the urban environment. In terms of practical significance, the regular and 

dynamic characteristics of the urban environment provide new insights for 

policymakers, who can use these findings as vital evidence for decision making. The 
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regular characteristics of UAOIs would be informative for urban planners to give them 

a macroscopic understanding of urban areas and aid them in formulating relevant 

policies, such as investing more funds in certain UAOIs to stimulate consumption for 

economic growth. The dynamic characteristics of UAOIs can help transport planners 

regulate trip frequency in various seasons, with a greater trip frequency in winter than 

in summer.  Furthermore, a few retailers may also be inspired by the dynamic 

characteristics of UAOI, helping them better design personalised advertisements at 

specific places and time or expand their opening hours in summer.   

However, the limitations of this study warrant further attention in future work. Flickr 

offers only one type of geotagged image data. Future work should incorporate multiple 

image sources together, which would make the results more persuasive and improve 

the coverage of the analysis. In addition, although the Places365 CNN model that we 

used to extract the urban features has a relatively high classification accuracy 

compared to others, the model is trained on the Flickr dataset globally instead of 

certain local cities or areas, implying that the model could be biased for this study area. 

This could lead to several features identified by Places365-CNN being incompatible 

with the real features of images. This issue can be addressed by manually labelling the 

features for a certain number of images and then retraining them by fine-tuning the 

parameters in the max-pooling layer of the Places365-CNN. Furthermore, except for 

comparing the characteristics variations between UAOI and non-UAOI at the 

aggregated level, the work could also be extended through identifying characteristics 

of each UAOI. By creating a unique profile for each UAOI, a few distinct events or 

characteristics can be extracted from specific urban areas. Finally, the study area we 

selected was located at the local level of Inner London; more interesting patterns could 

be uncovered at a smaller scale by including more cities in future work.  
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5. Using Geotagged Images and Machine Learning to 

Unpack the Impacts of Housing Prices  

 

Abstract: The characteristics of housing and neighbourhood can be viewed as 

measurements of human progress and the quality of life, which play an important role 

in urban planning process. This chapter identifies the relationships between urban 

perceptual features and the surrounding housing market. The analysis is based on the 

image features recognised in the previous chapter and property transaction records. By 

Combining with ancillary datasets and built around a traditional housing price model 

(i.e., HPM), structural, neighbourhood, and perceived scene characteristics are 

identified to uncover their impacts on housing prices. Two machine learning 

algorithms – random forest and gradient boosting machines – are utilised to compare 

their performance and interpretability with the baseline model. The results demonstrate 

the usefulness of volunteered geographic image information in housing market studies. 

This could capture impacts of how people interacted with the built environment rather 

than traditional neighbourhood features extracted from Point of Interest data. 

Furthermore, machine learning algorithms are shown to be comparable to traditional 

HPM in terms of their performance and interpretability. This study could help the 

restructuring and optimisation of residential areas in future regional construction, 

planning and development. 
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5.1 Introduction 

The desire for a good life is easier within a built environment that is equipped with 

facilities enabling connections to other communities and encouraging a healthy 

lifestyle (Molinsky & Forsyth, 2018). Within this context, housing and neighbourhood 

environments are particularly important since they are the locations where people 

spend most of their time, making a significant impact on physical, psychological, and 

social health. From the perspective of urban planning, the characteristics of housing 

and neighbourhoods can be viewed as measurements of human progress and the 

quality of life, and also as an alternative to shape the economy (Molinsky & Forsyth, 

2018). A key indicator of these characteristics is housing price, which is an outcome 

of the interaction of several parties (Law et al., 2019). The price of a property is an 

integrated reflection of housing characteristics such as age, the property type and 

geographical location, as well as neighbourhood features such as accessibility of 

transportation and facilities. Accordingly, these features jointly influence the housing 

market and people’s willingness to purchase, bringing challenges to urban planners, 

urban designers, and practitioners for regulation, construction, and evaluation. 

When people perceive a city, their experience with the surrounding environment could 

be considered as different mental images (Lynch, 1960). Perceived urban scenes 

represent distinctive place characteristics or physical attributes of the city evaluated 

and identified by individuals (Fu et al., 2019; Zhou et al., 2014). The spatial 

distributions of these perceived scenes show diversity, complexity and heterogeneity, 

affecting the recognition and understanding of urban citizens (Dubey et al., 2016; 

Haney & Knowles, 1978; Zhang et al., 2018). As such, elements of perceived urban 

scenes play an important role in people’s quality of life, public health and urban design. 

For instance, urban greenery has multiple functions including decreasing the pressure 

and negative emotions of pedestrians (Maller et al., 2006), increasing residents’ 

probability of walking (Lu, 2018), and helping local government in road design (Zhang 

& Dong, 2018); scenes like open plazas allow residents and pedestrians to hold 
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multiple outdoor activities which can improve their physical health (Gubbels et al., 

2016; Jackson, 2003); urban areas with rubbish and graffiti are more likely to be unsafe 

for pedestrians that decrease people’s willingness to live in (L. He et al., 2017); and 

public and social scenes could be utilised to create design prototypes to make cities 

more vibrant, equitable, and resilient over time (Barkham et al., 2018).   

In recent years, the wider availability of new urban data, growing computational power, 

and advancements in machine learning and computer vision methods have made it 

easier for more urban features to be identified from urban photographs. An image could 

contain abundant information related to human activity in the environment and the 

cities, providing opportunities in addressing complex questions in the cities. Its 

applicability has been confirmed in crime surveillance, greenery coverage detection, 

and natural landscape aesthetics (Collins et al., 2000; Seresinhe et al., 2017; Stubbings 

et al., 2019). However, the quantifiable measurements of the impacts of perceived 

urban scenes on real estate have been rarely discussed (Fu et al., 2019; Law et al., 2020; 

Zhang & Dong, 2018), which could help multi-stakeholders. For instance, the research 

could be meaningful for urban studies to recognise what scenes make a city more 

attractive, or facilitative for government and urban planners to revitalise the residential 

neighbourhood, or inspirational for urban design to beautify the city appearance 

(Barkham et al., 2018).  

This study explores whether perceived urban scenes correlate to housing prices and 

how they influence real estate values. To achieve this, we use convolutional neural 

networks (CNN) to identify perceived urban scenes from user-generated image data 

(i.e., geotagged Flickr), which allow us to combine them with common housing price 

indicators. In addition to the traditional hedonic price model, two machine learning 

algorithms (random forest and gradient boosting) are also deployed to be compared in 

performance and interpretation. Our work differs from previous studies in two main 

aspects. Perceived urban scenes could capture elements of human perception that have 

impacts on housing prices. This is an aspect that remains largely unexplored in the 



 

101 

literature that extracting neighbourhood features of housing prices from physical POI 

data rather than actual perception from human perspective. Moreover, the confirmed 

usability and interpretability of random forest and gradient boosting methods 

demonstrate the bias of using hedonic price modelling (e.g., linear regression models) 

as a baseline in housing price studies.  

The remainder of the chapter is structured as follows. Section 5.2 reviews 

measurements and models related to housing price estimation, and the potential of 

geotagged images employed in this application field. The next section describes three 

primary datasets collected and pre-processed to obtain housing structural, 

neighbourhood and image characteristics for estimation models. Section 5.4 presents 

the methods used and the process implemented in this study. The experimental results 

and discussion are reported in Section 5.5. Finally, we conclude the main contributions 

and limitations of this study in Section 5.6.  

5.2 Literature Review 

5.2.1 Hedonic Models of House Prices  

The characteristics that affect housing prices vary on different scales. Within the macro 

scale, housing price is generally influenced by economic bases (Wang et al., 2017), 

such as population, household income and building cost at the administrative or city 

level (Baker et al., 2016; Cai & Lu, 2015). While at the microscale or intra-urban 

dimension, urban residents are affected by common macroeconomic variables, 

surrounding environmental and social characteristics, therefore, become dominant 

factors (Hu et al., 2019). There have been many studies to investigate the influence of 

housing prices within intra-urban settings, such as the age of houses, urban greenery, 

landscape features, distance to the city centre, air, water, or noise quality, etc. (Chen & 

Jim, 2010; Jim & Chen, 2006; Yao et al., 2018; Zhang & Dong, 2018; Morancho, 2003). 

These are a measurement of social and environmental characteristics that significantly 

affect the value of the house as buyers tend to purchase houses with better amenities 
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(Chen & Jim, 2010). The characteristics generally can be summarised as three types: 

structural features, location features and neighbourhood features (Xiao et al., 2017). 

Structural features refer to the features related to the property itself such as the type of 

property or the number of bathrooms; location features reflect characteristics of the 

geographic location of the property, such as the distance to the city centre or suburban 

areas; and neighbourhood features can be viewed as the availability and accessibility 

of several important urban amenities or landscapes, such as educational facilities, 

urban parks, and healthcare services.  

A typical and frequently used theoretical model to analyse characteristics that 

influence housing value is the hedonic price model, which has been used in various 

studies (Chen & Jim, 2010; Zhang & Dong, 2018; Hamilton & Morgan, 2010; Wen & 

Tao, 2015). This model measures how each of the potential characteristics affects 

housing prices, playing a role in uncovering the intrinsic value of a single attribute 

based on the estimation of the marginal changes in observed prices ( Rosen, 1974). For 

instance, Hamilton & Morgan (2010) integrated Lidar data and GIS into a hedonic 

price model to estimate the household’s desire to purchase for beach access and view. 

Wen & Tao (2015) employed a hedonic price model to examine the polycentric urban 

structure in determining housing prices. However, the hedonic price model has been 

criticised for its strong assumptions on the linear relation between characteristics and 

prices and its inability to handle spatial heterogeneity (Anglin & Gençay, 1996; Dubé 

& Legros, 2014). Although alternative methods such as spatial econometrics and 

geographically weighted regression (GWR) have been proposed to incorporate spatial 

effects (Choumert et al., 2014; Z. Huang et al., 2017), they require prior knowledge, 

the assumption of linear relationships between attributes and housing prices as well, 

and cannot address multiscale effects well (Hu et al., 2019). As a result, to overcome 

the above issues, more recent studies have turned to machine learning techniques in 

housing research. Some have compared the model performance among multiple 

regression approaches to determine better models for real estate prices estimation 

(Chen et al., 2016; Hu et al., 2019; Park & Bae, 2015), and others have proposed 
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improvements of original models or a combination of two models in housing studies 

(Wang et al., 2014; Yao et al., 2018; Hu et al., 2019). These works have proven the 

usability and advantage of machine learning methods in the field of forecasting 

housing prices due to their fit for non-linear relationships and better prediction 

accuracy over traditional hedonic prices. However, the interpretation and visualisation 

of machine learning results remain limited, granting further investigation.  

5.2.2 The Potential of Social Media Image Data in Housing Studies 

Traditional research on the determinants of housing prices primarily relies on data 

collected from official statistical databases, proprietary listings, and questionnaire 

surveys (Granziera & Kozicki, 2015). These traditional data sources are labour 

intensive in collection and management and may not be freely available to the public. 

Nowadays, a growing number of studies have employed new forms of data since there 

is growing evidence of their potential in the analysis of regional and urban research 

(Arribas-Bel, 2014). Regarding the nature of easy access and available spatiotemporal 

attributes, data derived from social media platforms has become prevalent in housing 

studies in recent years (Chen et al., 2016; Hu et al., 2019; Liu & Long, 2016; Rae & 

Sener, 2016). For instance, housing data obtained from Anjuke, a real estate platform, 

was used to map spatial patterns of housing rental prices in Guangzhou, China (Chen 

et al.,2016). Similar research was implemented in London, UK, where Rae & Sener 

(2016) explored the spatial patterns of housing search using data generated from 

Rightmove, the UK’s leading housing market portal. Social media data have been 

largely used in previous works for measuring landscape (Neuhaus, 2012), land uses 

(Shen & Karimi, 2016), urban areas (Chen et al., 2019), and the public’s perception of 

the built environment (Chen et al., 2020), all of which are social and environmental 

characteristics that have significant impacts on housing prices (Bowes & Ihlanfeldt, 

2001; Kong et al., 2007). However, fewer studies have captured how these 

characteristics generated from social media data affect housing prices (Soo, 2013; Wu 
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et al., 2016), which is a promising data source to measure people’s perception of a 

place that may affect the neighbourhood housing value.  

In terms of human perception of a city, it has been claimed by scientists that an image 

physically or mentally is an intuitive and direct perspective to capture this type of 

information (Ittelson, 1978; Lynch, 1960). However, as previous studies primarily 

relied on qualitative analysis such as visual surveys and interviews (Nasar, 1990; Scott, 

1998), quantitative measurements remained limited until the technological advances 

in computer vision that revolutionised the field a decade ago. Since then, an increasing 

number of researchers have utilised images in urban perception studies. Some are 

interested in the identification of visual representations in the city (Chen et al., 2020; 

Comber et al., 2020; Doersch et al., 2012; Zhang, et al., 2018), some focused on 

quantifying perceptual characteristics of the city or their further relationships with non-

visual socioeconomic attributes, such as population density and crime rate (Arietta et 

al., 2014; Dubey et al., 2016; Khosla et al., 2014; Naik et al., 2014; Salesses et al., 

2013). These works measured the perception of the places through varying image 

recognition techniques.  Many of them are based on street view imagery mostly 

captured by street view fleets rather than geotagged imagery (i.e., photographs) 

derived from human users (Google Maps Street View, 2020). As a response, the 

perceptual characteristics identified in previous works focus more on urban perception 

directly captured from physical appearance instead of perception based on how people 

experience the environment. 

Taking the above into consideration, this study seeks to exploit the potential of image-

based social media (i.e., Flickr photographs) to housing price studies, aiming to 

uncover if social media images can be used to explore the environmental impacts on 

the property nearby and how these perceptual characteristics affect the housing values. 



 

105 

5.3 Data 

Three primary datasets are collected and used in this study. The first two represent 

traditional housing attributes which include housing structural characteristics and 

neighbourhood characteristics, the third includes geotagged images collected from the 

social media platform Flickr, capturing scenes around properties. Our data focuses on 

London as a case study, as it is the most populated city with over 8 million people in 

the United Kingdom and provides a good degree of Flickr usage. To obtain a higher 

density of images, Inner London is selected to explore our house price model, which 

has a larger volume of Flickr images (73%) than Outer London. In terms of the time 

dimension, datasets are collected within the years from 2013 to 2015, as Flickr users 

were the most dynamic, based on the number of photographs uploaded, during these 

three years. Figure 5.1(a) shows the distribution of housing price transactions in Inner 

London collected from the UK HM Land Registry and its geographical extent of 

London, where the prices display a decreasing pattern from western borough 

Hammersmith and Fulham to eastern Newham; Figure 5.1(b) creates a hexagonal 

aggregation of geotagged Flickr images within the three years, calculating the density 

of images at the grid size of 50 and 30 (i.e., the number of hexagons in the x-direction 

and y-direction) to show the spatial density.     
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Figure 5.1 The spatial distribution of housing price and Flickr imagery datasets. (a) 

Choropleth of property transaction prices, (b) hexagonal aggregation of the density of 

Flickr images in Inner London 

(a) 

(b) 
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5.3.1 Traditional Housing Characteristics  

Structural characteristics are obtained from house price paid data published by the UK 

HM Land Registry (HM Land Registry, 2019), which tracks property sales in England 

and Wales monthly since 1995. The original dataset we collected for London includes 

a total of 226,332 property transactions within the time range from 2013 to 2015. The 

dataset is subsequently cleaned based on the work by Dong et al. (2019), which only 

keeps properties sold for full market values, as repossessions or buy-to-lets are not a 

reflection of real estate market values. Since all housing structural characteristics are 

categorical data, we converted them into indicator variables for each category. 

Additionally, to identify neighbourhood and perceived scene characteristics, a 

geocoding process is necessary to assign spatial coordinates to all postcode addresses 

of houses. Furthermore, as we only focus on Inner London, the data outside our study 

area is removed. After this pre-processing steps, 137,132 property transaction records 

remained, with each containing property transaction price, the postcode address, the 

spatial coordinates, the date of transfer, the property type (flats, semi-detached, and 

terraced), whether the property is new or old, and the tenure type (freehold or 

leasehold). 

Neighbourhood characteristics are collected from Point of Interest data and Open 

Greenspace data published by Ordnance Survey (Ordnance Survey, 2020), which 

produces detailed location information for Great Britain. As demonstrated in the 

literature reviewed above, buyers tend to purchase houses with perfect amenities that 

relate to the area where it is located, such as convenient transportation, easy access to 

social infrastructure and access to open spaces (Hu et al., 2019). We, therefore, 

measured the number of buses, underground stations, schools, medical care, and 

entertainment centres within an area of 800 m of each house and the distance from one 

house to the nearest amenities. Furthermore, areas of green space within 800 m 

distance of houses are also calculated following evidence of their relevance in 

determining housing values (Hu et al., 2019; Sirmans et al., 2005). Particularly, 800 m 
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Euclidean distance is used as a threshold because it was argued as a pedestrian and 

cycling-friendly distance for residents that lived in this neighbourhood (Liu et al., 

2020).  

5.3.2 Scene (Image) Characteristics  

Scene characteristics are identified from geotagged social media images, which are 

collected from Flickr, an online photo-sharing community with over 90 million 

monthly users (Smith, 2020). Unlike street view imagery, Flickr image data can reflect 

people’s perception of the built environment. On the one hand, the image contents are 

collected, derived, and shared by different individuals, reflecting their preferences and, 

in aggregate, suggesting how the city is collectively perceived. On the other hand, 

Flickr data can distinguish the most iconic landmarks in scenes such as towers, bridges 

and skyscrapers, from those including daily-life scenes such as bars, stages and 

conference centres (Chen et al., 2020). Despite that Flickr data has biased aspects such 

as possible image distortion, possible GPS bias of image geolocation, and most 

importantly self-selection, its usability in identifying urban representative 

characteristics is powerful and has been demonstrated by many studies (Chen et al., 

2019; Kisilevich et al., 2010; Seresinhe et al., 2018; Zhou et al., 2014). 
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Figure 5.2 7 more relevant features selected through the feature selection process 

A total of 501,098 geotagged images are collected from the official Flickr API (Flickr, 

2021) and used for image recognition, with each image including latitude, longitude 

and specific date taken. Scene characteristics are extracted by a pre-trained Places365 

convolutional neural network model, an image recognition technique designed for 

identifying 365 scene related categories or places (Zhou et al., 2018). This model is 

used due to its high performance, the recognised accuracy of the top five categories 

approaching 85.08% (Zhou et al., 2018). Furthermore, its capability of identifying 

scenario-based places from the built environment has gone beyond many other image 

recognition models such as YOLO (You Only Look Once, Shaifee et al., 2017), which 

were trained on 20 objects that include office furniture, animals and food-related 

categories. Through this procedure, each image is assigned to return only five scenario-

based categories with identified probabilities from high to low, where a category with 

higher percentage values implies more significant characteristics of that image.  
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To investigate the possible impacts of features encoded in images on houses, we select 

images georeferenced within the same 800 meters distance of houses, subsequently 

quantifying the probability of each scene characteristic based on corresponding space 

and time. However, several scene characteristics we identified may have little impact 

on housing prices, leading to higher computational cost and lower model performance. 

Thus, feature selection is implemented to select a subset of 365 scene features that are 

important and relevant to housing prices so they can be included in the traditional 

modelling framework. Given limited computational capacity and possible 

multicollinearity among features ( Li et al., 2017), we employ the feature importance 

of random forest to select features by its built-in mean decrease impurity (MDI) 

function. MDI refers to the total decrease in node impurity averaged over all trees of 

the ensemble, where the impurity represents a function that is weighted by the 

proportion of samples reaching that node (Pedregosa et al., 2011). The impurity 

measures the goodness of any node of decision trees (i.e., variance for regression). The 

smaller impurity, the purer the node and the better the prediction accuracy (Louppe, 

2014). The logic of this feature selection mechanism is, when training a tree, the more 

a feature decreases the impurity, the more important the feature is. For many decision 

trees in random forest, the impurity decrease from each feature can be averaged across 

trees to compute the final importance of the variable (Breiman, 2001). To select more 

robust and important features, the standard deviation of variance is set as a threshold 

to drop features that are lower than the value. Figure 5.2 displays more important scene 

features selected (sky blue bars) after feature selection using Random Forest feature 

importance. Finally, we have a total of 23 independent variables to explore their 

impacts on housing prices, the overall descriptions and statistics of three types of 

characteristics are displayed in Table 5.1. 
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Table 5.1 Descriptions and statistics of three types of variables for housing prices 

 

5.4 Methods 

We propose a method framework (see the flowchart in Figure 5.3) to explore two 

aspects of housing price estimation: (1) whether geotagged images are an efficient data 

source to unpack impacts on housing price; (2) whether novel machine learning 

methods are more promising tools in terms of performance and interpretation 

compared with a traditional hedonic price model.  

To explore the first aspect, models will be trained on two sets of variables and their 

performance compared. One includes 16 basic housing structural and neighbourhood 

characteristics and another is the entire 24 characteristics summarised in Table 5.1. To 

Categories Variables Descriptions Mean 

Structural 
characteristics 

type_F Dummy variables, 1 if the property type is flat 0.785 
type_S Dummy variables, 1 if the property type is semi-detached 0.025 
type_T Dummy variables, 1 if the property type is terraced 0.183 
new_Y Dummy variables, 1 if the property is newly built 0.128 
tenure_L Dummy variables, 1 if the tenure is Leasehold 0.795 

Neighbourhood 
characteristics 

bus_num Number of bus or coach stations within 0.8km distance 0.031 
sub_num Number of underground stations within 0.8km distance 0.219 
lei_num Number of leisure or sports centres within 0.8km distance 0.157 
med_num Number of medical care centres within 0.8km distance 0.187 
sch_num Number of primary schools within 0.8km distance 2.165 
bus_dis Distance to the nearest bus and coach station 2.174 
sub_dis 
d 

Distance to the nearest underground station 1.477 
lei_dis Distance to the nearest leisure or sports centre 0.875 
med_dis Distance to the nearest medical care centre 0.918 
sch_dis Distance to the nearest primary school 0.240 

 park_area Coverage of parks and gardens within 0.8km distance  0.048 

Scene 
characteristics 
(within 0.8 km 
distance of 
houses) 

church Mean probability of images classified as church  0.002 
crosswalk Mean probability of images classified as crosswalk 0.008 
plaza Mean probability of images classified as plaza  0.013 
restaurant Mean probability of images classified as restaurant  0.005 
ind_area Mean probability of images classified as industrial area  0.008 
museum Mean probability of images classified as museum  0.006 
palace Mean probability of images classified as palace 0.002 



 

112 

consider the second aspect, three models are employed, including one hedonic price 

model that serves as a baseline, and two machine learning models: The Random Forest 

and Gradient Boosting Machines. The estimations will then be analysed and evaluated 

through model performance and model interpretation. Model performance evaluates 

how well the constructed models fit the observations and model interpretation unpacks 

the relationships between all independent variables and housing prices. The best model 

will be recognised based on prediction performance and interpretation. The remainder 

of this section provides a summary of each technique and procedure involved in our 

method framework.  

Figure 5.3 Overall methodological framework 

5.4.1 Baseline Hedonic Price Model 

A parametric hedonic price model (HPM) is firstly used as a benchmark in our 

approach. The HPM assumes a linear functional form described by a group of 

parameters, the coefficients of independent variables (Horowitz & Lee, 2002). 

Although non-parametric approaches such as Kernal estimates avoids the strong linear 

assumptions underlying the parametric methods, it has been criticised for its “curse of 

high dimensionality” and computational burden. Therefore, a semi- logarithm HPM is 
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selected regarding its intuitive interpretation, ease of use and variation consideration 

(Sirmans et al., 2005; Zhang & Dong, 2018). Particularly, the property transaction 

price is viewed as the dependent variable and all characteristics are independent 

variables. Before fitting the models, the input variables are standardized to express 

each variable in the same units (i.e., between 0 and 1) and thus ease interpretation. The 

mathematical formula of semi-log hedonic model is displayed in Equation (1): 

𝐿𝐿𝐿𝐿𝐿𝐿 =  𝛼𝛼 +  ∑𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜀𝜀                         (1) 

𝐿𝐿𝐿𝐿P refers to the logarithmic form of transaction price at the postcode level, 𝛽𝛽𝛽𝛽 is the 

coefficient of one housing characteristic where k represents the number of independent 

variables C, 𝛼𝛼 is a constant term, and 𝜀𝜀 is the random error term. 

The mechanism of this model is to find the optimal coefficients for all the variables 

that minimize the error. Its interpretation is relatively straightforward: the estimated 

coefficients represent that the marginal change of the dependent variable when a unit 

increase in one of the independent variables. However, this approach is highly 

sensitive to multicollinearity and outliers, limited to capture non-linear relationships 

and large numbers of variables (Sirmans et al., 2005). As a result, the Variance Inflation 

Factor (VIF) is used to check for multicollinearity in our model trained with all 23 

independent variables. VIF is a measure of collinearity and correlation among 

predictor variables within a multiple regression model. A rule of thumb is that if the 

VIF is larger than the threshold of 10, then the variable is considered highly colinear 

and correlated with the other variables (Kutner et al., 2004). The calculated VIFs of 

the property type of flat (35.40), property type of terraced (21.47) and tenure type of 

leasehold (12.59) are greater than 10, representing these three housing variables are 

highly correlated with each other. Multicollinearity is not a problem for non-parametric 

tree-based methods. Hence, two machine learning methods are compared with the 

baseline semi-log HPM.  
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5.4.2 Machine Learning Methods 

Both RF and GBM are ensemble machine learning methods, which combine the 

predictions of several base estimators on a given algorithm to gain better robustness 

than a single estimator (Pedregosa et al., 2011). These two have been commonly used 

due to their ability to handle larger features, high accuracy performance, and 

robustness to skewed distributions, multicollinearity, outliers and missing values ( Pal, 

2017). On the other hand, these two models have been stated usability in housing price 

studies and higher interpretability compared to other machine learning models, such 

as neural networks (Arribas-Bel et al., 2017; Hu et al., 2019). Their joint pitfalls are 

computationally expensive and may overfit particularly noisy datasets.   

RF generates a multitude of uncorrelated decision trees based on averaging random 

selection of predictor variables from the training set (Breiman, 2001). According to 

Pal, (2017), “it is a form of nonlinear regression model where samples are partitioned 

at each node of a binary tree based on the value of one selected input feature”. The 

bootstrap sampling (bagging) for each decision tree generation and the random 

selection of features at each node de-correlate the trees and thus reduce the variance 

of the prediction error when trees are averaged. The predictor variables for RF can be 

of any type: numerical, categorical, continuous, or discrete. The method implicitly 

includes interaction among the predictor variables in the model due to the hierarchical 

structure.  

GBM trains a series of models in a stage-wise, additive, and sequential manner: it 

allows the optimization of arbitrary differentiable loss functions (Friedman, 2001). 

Unlike RF where each tree can be trained independently, each tree in GBM is 

determined by previous outputs. Specifically, decision trees are constructed greedily, 

choosing the best split nodes in each phase based on purity scores. A gradient descent 

procedure is used to fit and minimise the residuals (errors) in the predictions when 

adding subsequent trees one at a time. The training process stops once loss reaches an 

acceptable level or is no longer being improved (Brownlee, 2016).  
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A distinct benefit of using GBM is that it allows users to select any differentiable loss 

function or define their own, which offers more control and increases the robustness 

to the effects of the outliers (Arribas-Bel et al., 2017). There are several popular loss 

criteria, each aligned with various real-world contexts, such as least squares regression 

generally used for regression and logarithmic loss used for classification. More 

detailed information about these two approaches is referred to, for example, Breiman 

(2001) and Mason et al.(2000) for the interested readers.  

A common characteristic in machine learning methods is that they are parameterised 

by a range of hyperparameters, which are required to be tuned and optimised to yield 

an optimal model that minimises some predefined loss function (Claesen & Moor, 

2015). Manual and grid search are the most frequently used hyperparameter 

optimisation methods, however, they have difficulties reproducing results and suffer 

from too many trails to dimension exploration. (Bergstra & Bengio, 2012). Hence, 

random search, where each parameter setting is sampled independently from a 

specified distribution over the cross-validated search, is implemented due to mostly 

high efficiency and less computational time. To obtain a reasonably decent set of 

values of the hyperparameters, either a distribution over possible and random values 

or a list of discrete choices can be specified for each parameter. The important 

parameters to adjust for RF are the number of trees, the minimum number of samples 

at a leaf node and the number of features for a split. For GBM are the number of 

boosting stages, learning rate, the minimum number of samples at a leaf node and to 

split the node, the maximum depth to limit the number of nodes (Pedregosa et al., 

2011)5 . 5-fold cross-validation, a typical split-train-test strategy that minimises the 

estimator error is used in our random search. More details of cross-validation are 

explained in section 5.4.3. The optimised hyperparameters of RF and GBM are shown 

in the footnote. 

 
5 The values for hyper parameters that we use include: 
 RF: n_estimators = 200, min_samples_leaf = 2, max_features= ‘auto’, max_depth = 30; 
GBM: n_estimators = 350, learning_rate= 0.1, min_samples_split= 25, min_samples_leaf= 

50, max_depth = 10. 
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5.4.3 Model Performance and Interpretability 

In any modelling context, validation and performance are crucial to evaluate how 

accurate and reliable the constructed models are (Hastie et al., 2009). We use a set of 

visualisation tools to validate the prediction, and two popular statistical metrics, mean 

squared estimation (MSE) and the coefficient of determination (R2), to evaluate the 

model performance. The combination of these two metrics can imply the predictive 

power of the model and also what variation of observed variable is described by 

independent variables. Alternative metrics such as mean absolute error and mean 

absolute percentage error is also feasible in this case. MSE computes the average 

squared error or loss between the predicted and the actual values, which is always 

positive and represents better predictions the smaller its value. R2 is an index that 

represents the percentage of the variance in the output that is explained by predictors 

(i.e., independent variables) in a regression model, which ranges from 0 to 1 and where 

larger values represent more explanatory models.  

To avoid overfitting and unreliable results, we use cross-validation (CV) to evaluate 

all model performances on our limited data sample. The basic approach is called k-

fold CV, which divides the dataset into the number of k non-overlapping partitions 

(James et al., 2013). For each of the k groups or folds, a model is trained on k-1 of the 

folds and the remaining part of the data is treated as testing data to measure the model 

performance. The resulting measure is often summarised with the average of the values 

computed in the k loop. Considering the data size of this study and the computational 

cost, a commonly used k=5 (Arribas-Bel et al., 2017; James et al., 2013) is configured 

to calculate cross-validated MSE and R2, then the model with better performance will 

be recognised for interpretation.  

Since RF and GBM cannot be interpreted by examining regression coefficients and 

significance due to their non-parametric nature, we, therefore, rely on permutation 

importance and accumulated local effects (ALE) plots to explore the relationships 

between variables and the observations. These two methods primarily assist us to gain 
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insights into how input variables relate to the target. Permutation importance is 

calculated by two steps: firstly, a baseline metric of the estimator is evaluated on the 

training dataset; secondly, a single feature column from the validation set is permuted 

and the metric is recomputed (Breiman, 2001; Pedregosa et al., 2011). The importance 

is the difference between the baseline and the drop in overall metric by permuting the 

column. In addition to being more reliable, permutation importance can also overcome 

the misleading of many unique values compared to the traditional feature importance 

method of several ensemble methods. MSE is the metric used in this study to measure 

feature importance. ALE plots visually reflect how features affect the prediction of a 

machine learning model on average (Apley & Zhu, 2016). To estimate local effects, 

the feature is divided into many intervals defined by the quantiles of the feature 

distribution to measure their differences in the predictions. The value of the ALE 

represents the key effect of the feature at a given value compared to the average 

prediction. Unlike the more popular partial dependence plots (PDPs), which display 

the marginal effect of one or two features on a machine learning prediction model, 

ALE plots are faster, unbiased and a more interpretable tool (Molnar, 2019). This is 

because PDPs can greatly bias the estimated feature effect if features are correlated, 

which is the case in our study.  
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5.5 Results and Discussions 

5.5.1 Model Performance 

 

Figure 5.4 Visualisation of actual and predicted values of all the models 

We first visualise in Figure 5.4 the actual and predicted values (upper graph) and their 

density distribution fittings (lower graph) of different models. A KDE plot is used for 

visualizing the density distribution of observations and predicted values of varying 

models, using a continuous probability density curve in more dimensions. The left side 

and right side represent models trained on data with housing characteristics only and 

with additional scene characteristics, respectively. Overall, we can see that the 

predicted values derived from two HPMs (green dots) deviate from actual values and 

only a small fraction of predicted values distribute at the same density fitting of actual 
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logarithmic housing prices. The larger gaps of HPMs are most likely due to the 

influence of multicollinearity on the models, which have been discussed in section 

5.4.1. The predictions of machine learning models appear to fit the observations better 

than HPM. The density distribution of RF and GBM is approaching actual log prices 

more when scene characteristics are added into independent variables. The figure 

indicates that models trained with two ensemble machine learning methods fit our data 

well and have better performance than both predictions of HPMs no matter if images 

are added into the variables.  

Next, the cross-validated MSE and R2 are calculated to reflect generalization 

performance, as shown in Table 5.2. The results demonstrate that the overall 

performance of the three models improved significantly, with higher R2 and lower 

MSE, when image attributes are considered. The performance of HPM is inferior to 

RF and GBM, as shown by larger MSE and smaller R2; on the contrary, RF model 

shows better accuracy and robustness, with the highest R2 and smallest MSE, where 

66.5% of the variance in the observation could be explained by the entire 24 input 

variables. This table illustrates the superiority and flexibility of the two machine 

learning models due to their smaller uncertainty (lower MSE) and higher accuracy 

(higher R2). Furthermore, the improvements in prediction with additional perceived 

scene characteristics demonstrate that geotagged images can be viewed as a useful data 

source in housing price estimation. 

Table 5.2 Accuracy and error score for various models with various attributes 

Metrics Housing attributes only Housing attributes + Image 
attributes 

 HPM RF GBM HPM RF GBM 
R2 

MSE 
0.305 
0.355 

0.619 
0.193 

0.626 
0.189 

0.356 
0.363 

0.665 
0.169 

0.635 
0.185 
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Since RF with the entire 24 variables performs better than others, we further create a 

spatial residual map shown in Figure 5.5 to visualise the difference of logarithmic 

house prices between observations and estimations to gain an intuitive insight into the 

spatial distribution of the errors. The dots with blue and red colours represent the 

estimations higher and lower than the actual log house prices. The overall residuals of 

housing prices in Inner London fluctuate around 0 (i.e., white dots), while properties 

distributed at western areas of Inner London (Borough of Kensington and Chelsea, 

Westminster as well as Camden) have lower estimations than the actual prices, 

implying that the errors located at these areas are difficult to be explained by our 

regression model. A possible factor of this error is the average house prices of these 

three boroughs are far higher than the other areas in Inner London as shown in Figure 

5.1(a).  

Figure 5.5 Spatial distribution of residuals of actual and predicted log house prices  

5.5.2 Model Interpretation  

Before looking into the interpretability of RF which has the best performance, it would 

be good to see how the baseline linear HPM behaves, in other words, the magnitude 
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of all 24 independent variables. This procedure could help us enhance the reliability 

of the interpretation of RF. The effect sizes (coefficient) and significance of estimated 

variables (p-values) within 95% confidence interval are displayed in Table 5.3, the 

larger coefficient values the more marginal changes in the outcome related to a unit 

increase in each determinant.  

Table 5.3 Standardised coefficients of the baseline HPM model with different number 

of variables  

Features 
traditional housing 
features (16) 

with additional perceived 
scene features (24) 

 coefficient P>|t| coefficient P>|t| 
intercept 13.08  0.00  13.08  0.00  
type_F -0.31  0.00  -0.34  0.00  
type_S -0.03  0.00  -0.04  0.00  
type_T -0.17  0.00  -0.18  0.00  
new_Y 0.02  0.00  0.02  0.00  
tenure_L -0.14  0.00  -0.14  0.00  
sch_dis 0.05  0.00  0.05  0.00  
med_dis -0.07  0.00  -0.03  0.00  
lei_dis 0.04  0.00  0.04  0.00  
bus_dis -0.03  0.00  -0.01  0.00  
sub_dis -0.36  0.00  -0.32  0.00  
num_sch 0.00  0.27  0.00  0.45  
num_medi -0.02  0.00  -0.01  0.00  
num_lei 0.01  0.01  0.01  0.01  
num_bus 0.00  0.87  0.00  0.32  
num_sub -0.07  0.00  -0.09  0.00  
park_area% -0.02  0.00  -0.02  0.00  
plaza - - 0.06  0.00  
crosswalk - - 0.05  0.00  
palace - - 0.06  0.00  
restaurant - - 0.05  0.00  
museum - - 0.04  0.00  
industrial_area - - -0.01  0.07  
church - - 0.05  0.00  

Overall, traditional housing features such as the type of house (i.e., flat or terraced), 

the distance to the nearest subway station and whether the tenure type is leasehold or 

freehold (type_F, type_T, sub_dis, tenure_L) affect the housing prices much more than 

others and are also statistically significant. Most coefficients and significance remain 
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stable regardless of whether perceived scene features are considered or not. Only a 

minor reduction of impacts on the location-type variables by introducing scene 

variables. In addition to the number of subway stations, the number of other POIs 

including schools, health centres, retail centres and bus stations has little impact on the 

house prices within 0.8 km distance. On the contrary, scene features including plaza, 

crosswalk, palace, restaurant, museum and church have more influence and significant 

explanatory power in predicting the housing prices. Particularly, the type of flat and 

terraced, the nearest distance to subway station and health centres have negative 

relationships with housing prices, the higher values of these variables, the more 

decrease in housing prices. Conversely, most of the scene variables have positive 

effects on the estimation, which conform to prior knowledge that the more attractive 

scenery and robust infrastructure around a house, the higher the price. 

Based on the understanding of the baseline model, we then turn to the interpretation 

of RF trained on all features. Figure 5.6 plots the importance scores computed, where 

the light blue bar represents more important features to the prediction that larger than 

the median of importance. It is obvious that the distance to the nearest subway stations 

within 0.8 km distance contributes the most to the predictive power of the model, the 

other four accessibility variables (i.e., the nearest distances to a property) and the 

coverage of parks also have important effects on the estimations. The type of flat and 

terraced and tenure type of leasehold is far more important than the other housing 

structural features. Significant perceived scene characteristics are palace, plaza and 

crosswalk, conforming to common knowledge that attractiveness and accessibility 

have clear impacts on house prices. However, whether the property is new or old and 

the type of semi-detached shows almost no association to its housing price. Besides, 

the number of different POIs and infrastructures within 0.8 km distance of the property 

proves less relevant to the estimation. The possible reason for the above scenarios is a 

very small fraction of transactions have records for these features during the period in 

this study, such as the valid values for the degree of new or old and the type of semi-
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detached property only accounting for 10% and 3% of the data, consequently, hardly 

contribute much to the predictive power of the model.  

The overall interpretation of RF model is similar to that of benchmark HPM except 

that RF model captures more significance in terms of service accessibility and the 

coverage of green parks. The more important input variables are associated with 

convenient transportation, accessibility of essential social infrastructure, the property 

type of flat, the property type of terrace, tenure type of leasehold and a few perceived 

scenes on housing prices. The results display that in addition to conventional influence 

characteristics of housing prices, how people interacted with the surrounding 

environment of the properties also have impacts on housing markets. Compared with 

the neighbourhood characteristics identified through POI data, image-based perceived 

scene characteristics highlight the dynamic significance of attractiveness of certain 

local amenities and places to housing prices. This is the core merit of considering 

perceived scene characteristics into housing prices as well, helping restructuring and 

optimisation of residential areas in future regional construction, planning and 

development.   

Figure 5.6 Feature importance of Random Forest based on different input variables 
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To further explore the relationships between variables and estimations, Figure 5.7 

displays the ALE plots of the most relevant variables from three types of characteristics 

as shown in Figure 5.6, which are the type of flat, the nearest distance to the subway 

station and perceived palace scene. To help the interpretability of the results, we also 

include ALE plots of baseline HPM for comparison. The horizontal and vertical axes 

represent the range of variables and accumulated local effect values, respectively. We 

can see that the overall patterns of ALE plots for both baseline HPM and RF are 

consistent, the features property type of flat and the nearest distance to subway station 

have negative relationships with the observation, while perceived scene feature palace 

is positively associated. The differences between the two models are firstly linear and 

non-linear relations, and secondly, the average prediction of HPM changed more than 

RF with the same increasing values of features. Specifically, the average prediction 

decreases with the increasing value of property type of flat, but it flattens out until 0.5 

for the rest. The higher values of distance to the nearest subway station, the lower the 

prediction; conversely, the perceived scene feature palace has a strong positive effect 

on the prediction.  

Figure 5.7 Accumulated local effects plots for partial representative characteristics 
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The results suggest that a closer distance to subway stations, less opportunity to live 

in the property type of flat, and more potential to live next to the attractive scene such 

as palace, can significantly increase the local real estate prices. The findings could be 

informative for policymakers to formulate equitable housing policies and help urban 

governance not only based on physical environment, but also relied on its popularity 

through how people perceived and interacted with. Additionally, dynamic changes in 

housing prices are of significance for local planners. For example, developing a 

healthy housing market through neighbourhood public services configuration and 

distribution and more affordable homes to a wider population. 

5.6 Conclusions 

This chapter explores the utility of geotagged social media images for monitoring 

housing transaction prices and the superiority and flexibility of using machine learning 

methods to understand the impacts of various characteristics on the housing market. 

We employ multiple datasets to extract three types of characteristics: structural, 

neighbourhood and scene attributes. With these, we check if scene characteristics can 

be considered as a potential data source for the understanding of housing market. Two 

machine learning methods, random forest and gradient boosting machines, are used in 

comparison with the traditional linear hedonic price model. Our results illustrate 

random forest proved to be the best model, based on performance, and it is also 

interpretable through a series of visualisation to HPM. In summary, the empirical 

results indicate that scene characteristics extracted from geotagged social media 

images have clear impacts on housing prices in Inner London. Properties surrounded 

by well-equipped amenities and natural scenes tend to have higher attraction and value.  

Our main contributions are two-fold. On the one hand, we proved the potential of 

geotagged social media images as an additional dataset to incorporate in housing price 

estimation and monitoring. This filled in current research gaps that neighbourhood 

characteristics identified from POI data was unable to capture how people experienced 

and interacted with the physical environment. Through the inclusion of urban scene 
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characteristics extracted by various citizens, the impacts of popularity of scenes are 

uncovered and convinced on the housing market. On the other hand, our findings 

demonstrate that HPM is not an appropriate baseline to investigate the impacts of 

housing prices when multicollinearity was presented in the data. This is also applicable 

to other traditional empirical-statistical methods that considering spatial heterogeneity 

such as GWR, which has a high dependence on prior knowledge and poor capability 

of addressing multiscale effects (Hu et al., 2019). However, the machine learning 

models are not only proven to be superior performance-wise and more flexible than 

the traditional hedonic price model, but also interpretable in similar ways to linear 

models, avoiding the common black-box problems attributed to these algorithms.  

In addition to traditional datasets produced by official departments, the stakeholders 

may also consider user-generated images as an additional dataset when assessing the 

housing transaction market. This data source can capture the interactions with the 

urban environment from residents, reflecting their interests and perceptions on urban 

scenes. The patterns would be informative to real estate developers for early-stage site 

selection of the residential buildings. Living environments with good amenities such 

as convenient transportation, accessibility of green space, recreational places, as well 

as distinctive scenes such as plaza, palace and crosswalk have important impacts on 

housing values. Furthermore, the government should pay more attention to the 

adjustment and design of housing development based on various facilities and 

surrounding urban features. It can assist to improve the vitality of the area surrounding 

a property, which subsequently influences people’s willingness to buy that property.  

Our works could be extended and improved in a few ways. First, other image 

recognition methods such as image segmentation can be used to extract more precise 

scene characteristics for our housing price estimation model. Second, additional 

datasets could be used to capture possible impact factors on real estate prices, such as 

the data includes more housing structural characteristics like the size or the number of 

bedrooms for a single house, and the visual images from property inside (Ahmed & 

Moustafa, 2016) and street view (Law et al., 2020). Furthermore, more cities could be 
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included to compare the relationships and differences. For example, how identical 

impact factors influence local housing prices and are there any distinctive scene 

characteristics for each city. Moreover, the time dimension could be further considered 

to unpack dynamic impacts of housing prices, helping monitor the changes of the 

housing market and regulate housing prices in time.  
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6. Conclusions 

 

6.1 Summary and Discussions 

This thesis aims to answer the general research question “How can the perception of 

the city be better understood by volunteered geographic image information?”. Through 

a theoretical argument and a data-driven methodological framework, answers to the 

question are unpacked from varying perspectives. From a theoretical perspective, this 

thesis enriches urban analytics in two aspects. First, it brings  geotagged Flickr images 

into urban analytics to emphasise the importance of human cognition relating to urban 

perception. It fills the gaps that relevant research often only focuses on perception 

captured from a single built environment rather than the perception from human-

environment interactions and it also highlights how much the representativeness of 

using this data. Second, a clear connection between physical scene attributes and 

neighbourhood non-visual attributes of the environment is developed, suggesting new 

avenues for the application of urban perception. In terms of technical contributions, 

this thesis introduces and develops a detailed methodological framework that involves 

exploratory spatiotemporal analysis, dynamic change profiling, image recognition 

techniques, and a range of machine learning algorithms. This framework provides a 

coherent workflow to study human perception of a city, starting from data collection 

and pre-processing, all the way to the integration of perceptual features in housing 

studies.    

The objectives proposed in the introduction section are achieved and answered in 

different chapters throughout the document. Chapter 3 engages with Objective 1, 

identifying UAOIs at finer spatiotemporal granularity and profiling their dynamic 

patterns through the HDBSCAN machine learning algorithm, the computational 

technique alpha shapes, and a statistical measure based on the geographical area of 

UAOI. This analysis approach is distinct from other works that explore POIs or UAOIs 
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through VGI which have been reviewed in Section 2.2.3 and Section 3.2. It is more 

granular and allows varying types of dynamics in both spatial and temporal dimensions. 

The findings suggest how the built environment influence human activity and how 

human activity could potentially shape the use of the built environment. The areas 

where people taken photos suggest that people are attracted by areas where many 

unique buildings and important landmarks are located. Furthermore, it also reflects 

how human activity evolves and shapes the use of the urban environment. People are 

likely to be attracted by iconic landmarks and unique buildings, and meanwhile, the 

functions of these areas may be affected by human activity due to varying months of 

the year or seasons. The findings of this chapter would be especially beneficial for 

urban planners and policymakers in local authorities or city councils. For instance, 

urban planners could manage resource allocation more efficient in tourism if certain 

urban areas showed clear seasonal dynamics based on the spatiotemporal analysis of 

this chapter.  

Chapter 4 engages with Objectives 2 and 3. A recently introduced image recognition 

technology is utilised to identify scene features from urban areas with varying 

popularity levels (i.e., UAOIs and non-UAOIs). By comparing the difference of the 

general characteristics within and outside UAOIs, the driving factors for why certain 

areas are more attractive for people are uncovered. In terms of the reason for the 

formation of UAOIs, the findings further confirm the implications obtained in Chapter 

3 but provide richer evidence. Urban areas with more popularity (i.e., high-density 

population flow) are more likely to be tourist attractions, iconic landmarks, and leisure 

zones, which are attractive to both residents and tourists in Inner London. Conversely, 

urban areas with less popularity are closely associated with people’s daily lives, which 

may only be relevant for residents rather than tourists. Moreover, by analysing the 

dynamic perceived characteristics of UAOIs, the seasonal nature of these is further 

demonstrated as an important index to influence human activity in the built 

environment, particularly affecting travel modes and activity modes: Cold winter days 

contribute to a higher frequency of use of various vehicles and more indoor activities 
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while warmer seasons lead to more walking and outdoor activities. These findings on 

urban dynamics are of significance to transport-related stakeholders, helping them to 

monitor and maybe adjust travel trips by seasons in variation.  

Chapter 5 accomplishes Objectives 4 and 5 by analysing relationships between 

identified perceived scenes and the housing market to illustrate the usability and 

interpretability of geotagged social media images for housing studies. Compared to a 

traditional housing price model, more modern and interpretable machine learning 

approaches are used to imply the bias of using HPM. Specifically, it combines 

perceived features with features extracted from ancillary datasets and builds around a 

traditional HPM to analyse their influence on housing prices. Given perceived features 

have a significant impact on housing prices, volunteered geographic image 

information is, therefore, deemed a useful additional data source for the understanding 

of the housing market and real estate appraisal. Furthermore, two machine learning 

algorithms -RF and GBM- are developed and compared with the baseline HPM in 

terms of performance and interpretability. The higher performance and lower error 

indicate their flexibility and superiority, and a series of available visualisation 

techniques including feature importance and ALE plots illustrate how they can be 

interpreted in comparable ways to an HPM. The findings of this chapter are mainly of 

interest to stakeholders in housing including real estate developers, housing 

policymakers and housing price assessors to take geotagged social media images into 

consideration within their work progress. An example of impacts could be configuring 

and distributing neighbourhood infrastructure better to develop a healthy housing 

market and more affordable homes to a wider population. 

The overall significance and impacts of the thesis are beneficial to urban planning that 

forked into tourism planning, transport planning, housing planning and design. First, 

UAOIs can be used to manage tourism dynamically through more flexible regional 

resource allocation that has more popularity at specific months over the year. 

Furthermore, transport departments could regulate trip frequency in various seasons, 

with greater trip frequency in the winter than in the summer, which relied on dynamic 
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perceived features of UAOIs. Additionally, regular characteristics could help urban 

planners to have a macroscopic understanding of urban areas and thus formulating 

relevant policies. For example, allocating more attention and resources to attractive 

urban areas with more tourism resources and infrastructure development. In terms of 

housing planning, results in this thesis suggest that policymakers could also pay 

attention to geotagged images perceived by different individuals. This enables human 

perception is also captured which did have impacts on housing but is not achievable 

through traditional POI data. In doing so, the housing market could be better 

understood, and more appropriate policies could be made to help reduce wealth 

inequalities.  

6.2 Limitations and Further Works  

Despite these contributions, we note several general data issues that remain unresolved 

in the literature. Firstly, new forms of data are often generated as a by-product without 

specific design, implying that the volunteered geographic image information (i.e., 

geotagged Flickr data) harnessed in this thesis is likely to be anonymous and 

unstructured, which is less targeted and reliable than traditional planned data sources. 

A possible solution is to select specific groups that relied on keywords in a bounded 

area, e.g., all Flickr images grouped as parks in London. Nevertheless, this may also 

generate a drawback that the number of available geotagged images within the areas 

is relatively small, which cannot be used to gain general patterns.  

Secondly, we should note that the data has a limitation in representation. On the one 

hand, the use of the platform is a kind of self-selection process, indicating that the 

number of users cannot represent the population at all age groups and genders. The 

latest survey about the demographics of social media demonstrates that the dominant 

age groups for many social media users are teenagers or middle-aged males (Barnhart, 

2021). Hence, the urban perception we captured were mainly derived from certain 

population groups, which were not representative enough. Additionally, since more 

photographs were associated with tourist attractions and important buildings, implying 
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that representation skewed for tourists more than for residents. On the other hand, as 

stated in the literature, the content of VGI is provided by varying volunteers without 

any reference, citation, or restrictions. Different Flickr users display uneven volume 

and quality of contributions. For example, active users may contribute the largest share 

of images while predominant users only share a few (see Figure 3.1b). As such, the 

data bias is still included even if a series of data preprocessing works have been 

conducted in Section 3.1.  

To reduce the above-mentioned data biases, one possible way in further works is to 

combining other VGI as input, such as text-based Twitter and image-based Google 

Photos (https://www.google.com/photos/about/). By linking them through aggregated 

spatial and temporal scales, varying datasets could jointly improve the coverage of the 

analysis (e.g., include semantic analysis as well to identify the emotional perception 

of the city). The combination and comparison of various results of analysis making it 

more possible to gain reliable and general patterns. Furthermore, administrative data 

(e.g., census data) could also be used to blend with geotagged Flickr images. This will 

enable us to understand the percentage of population groups of users and their 

socioeconomic characteristics, mitigating data bias of Flickr images.   

In addition to conceptual issues, a few empirically driven limitations should also be 

outlined. Most techniques utilised to build the methodological framework require 

careful parameter tuning, such as the minimal size of point for HDBSCAN to identify 

UAOIs, the α value for alpha shape to delineate the area boundary, and the number of 

estimators or the minimal number of samples at a leaf node in the RF or GBM machine 

learning models. Although a series of processes have been conducted in section 3.4 

and section 5.4 to find a reasonable value for each core parameter, the outputs of these 

approaches cannot be assured of the best results due to empirically pre-defined 

computational thresholds. For example, the random search for hyperparameter 

optimisation of machine learning models in Chapter 5 is implemented within a set of 

thresholds based on general empirical values, and different thresholds probably will 

generate different results for the parameter values and thus influence the final results 

https://www.google.com/photos/about/
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and interpretation. 

Furthermore, a few other issues remain unresolved that could be improved in future 

works. First, the semantics of Flickr images are not considered in this thesis in that we 

argue that text (i.e., title and tags of Flickr images) may not necessarily be related to 

the contents of images and many images do not have any text. However, the text could 

still be used as an additional supplement to develop features based on the images. For 

this, careful data processing and modelling need to be applied to reduce the issues. 

Second, HDBSCAN used in this thesis could be replaced by a more advanced 

algorithm such as Spatiotemporal DBSCAN that can generate clusters with the 

consideration of both spatial and temporal dimensions instead of only spatial 

information. Furthermore, hundreds of scene categories were generated from Flickr 

images to explain how people perceived the urban areas, some of which were quite 

similar and could be grouped further to improve the interpretability of the results in 

Chapter 4. Last but not the least, this thesis uncovers the influence of volunteered 

geographic (image) information on housing prices, building a connection between 

urban perception and housing studies. A similar approach could be used in a variety of 

other applications. For example, areas such as population mobility or social status 

could prove fertile soil for the use of features based on perceived scenes.  

6.3 Concluding Remarks 

In summary, this thesis provides a methodological framework for obtaining insights 

using volunteered geographic image information and advanced analytical techniques. 

Through a combination of multiple approaches such as spatiotemporal dynamic 

analysis, image recognition algorithms, statistical analysis, and various machine 

learning approaches, this thesis contributes to our understanding of how a city is 

perceived by the people who experience it, and how such perception interacts with the 

environment that makes up the urban fabric. The overall research and findings also 

add to our existing knowledge of how volunteered geographic image information not 

only reflects but also shapes the city. This is particularly significant considering the 
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increasing popularity of volunteered geographic knowledge and the recent rise of 

urban analytics. The findings outlined in this study provide a richer understanding that 

seeks to aid in the advancement of urban planning processes and enable policymakers 

to make more informed decisions about urban governance.  
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