
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 
for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research
The version in the Kent Academic Repository may differ from the final published version. 
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: 
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Akintunde, Michael E., Botoeva, Elena, Kouvaros, Panagiotis and Lomuscio, Alessio   (2021)
Formal verification of neural agents in non-deterministic environments.   Autonomous Agents
and Multi-Agent Systems, 36  (1).    ISSN 1387-2532.

DOI

https://doi.org/10.1007/s10458-021-09529-3

Link to record in KAR

https://kar.kent.ac.uk/92680/

Document Version

Publisher pdf



Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems            (2022) 36:6 
https://doi.org/10.1007/s10458-021-09529-3

1 3

Formal verification of neural agents in non‑deterministic 
environments

Michael E. Akintunde1 · Elena Botoeva1 · Panagiotis Kouvaros1 · Alessio Lomuscio1 

Accepted: 14 August 2021 
© The Author(s) 2021

Abstract
We introduce a model for agent-environment systems where the agents are implemented 
via feed-forward ReLU neural networks and the environment is non-deterministic. We 
study the verification problem of such systems against CTL properties. We show that veri-
fying these systems against reachability properties is undecidable. We introduce a bounded 
fragment of CTL, show its usefulness in identifying shallow bugs in the system, and prove 
that the verification problem against specifications in bounded CTL is in coNExpTimE and 
pSpacE-hard. We introduce sequential and parallel algorithms for MILP-based verification 
of agent-environment systems, present an implementation, and report the experimental 
results obtained against a variant of the VerticalCAS use-case and the frozen lake scenario.

Keywords Verification · Model checking · Neural agents

1 Introduction

Forthcoming autonomous and robotic systems, including autonomous vehicles, are 
expected to use machine learning (ML) methods for some of their components. Differently 
from more conventional AI systems that are programmed directly by engineers, compo-
nents based on ML are synthesised from data and implemented via neural networks. In an 
autonomous system these components could execute functions such as perception [38, 48] 
and control [30, 33]. Employing ML components has considerable attractions in terms of 
performance (e.g., image classifiers), and, sometimes, ease of realisation (e.g., non-linear 
controllers). However, it also raises concerns in terms of overall system safety. Indeed, it is 
known that neural networks, as presently used, are fragile and hard to understand [52].

 * Alessio Lomuscio 
 a.lomuscio@imperial.ac.uk

 Michael E. Akintunde 
 michael.akintunde13@imperial.ac.uk

 Elena Botoeva 
 e.botoeva@imperial.ac.uk

 Panagiotis Kouvaros 
 p.kouvaros@imperial.ac.uk

1 Imperial College London, London, UK

http://orcid.org/0000-0003-3420-723X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-021-09529-3&domain=pdf


 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 2 of 36

If ML components are to be used in safety-critical systems, including various forthcom-
ing autonomous systems, it is essential that they are verified and validated before deploy-
ment; standard practice for conventional software. In some areas of AI, notably multi-agent 
systems (MAS), considerable research has already addressed the automatic verification of 
AI systems. These concern the validation of either MAS models [20, 35, 41], or MAS 
programs [8, 14] against expressive AI-inspired specifications, such as those expressible in 
epistemic and strategy logic. However, with the exceptions discussed below, there is little 
work addressing the verification of AI systems synthesised from data and implemented via 
neural networks. This paper makes a contribution in this direction.

Specifically, we formalise and analyse a closed-loop system composed of a reactive neu-
ral agent, synthesised from data and implemented by a feed-forward ReLU-activated neural 
network (ReLU-FFNN), interacting with a non-deterministic environment. Intuitively, the 
system follows the usual agent-environment loop of observations (of the environment by 
the agent) and actions (by the agent onto the environment). To model the complexity and 
partial observability of rich environments, we assume that the neural agent is interacting 
with a non-deterministic environment, where non-deterministic updates of the environ-
ment’s state disallow the agent from fully controlling and fully observing the environment’s 
state. Under these assumptions, differently from all related work, the system’s evolution is 
not linear but branching in the future.

We study the verification problem of these systems against a branching time temporal 
logic. As is known, scalability is a concern in verification and is also an issue in the case of 
neural systems. To alleviate these difficulties, we are here concerned with a method that is 
aimed at finding shallow bugs in the system execution, i.e., malfunctions that are realised 
within a few steps from the system’s initialisation. This kind of analysis has been shown 
to be of particular importance in applications, see, e.g., bounded model checking (BMC) 
[12], as, experimentally, bugs are often realised after a limited number of steps. Given this, 
we focus on a bounded version of CTL, i.e., a language expressing temporal properties 
realisable in a limited number of execution steps. This allows us to reason about applica-
tions where the agents ought to bring about a state of affairs within a finite number of steps, 
or to verify whether a system remains within safety bounds within a number of steps. This 
enables us to retain decidability even if we consider infinite domains over the reals for the 
system’s state variables, whereas the verification problem for plain CTL is undecidable, as 
we show. To further alleviate the difficulty of the verification problem, we also introduce a 
novel algorithm that checks for the occurrence of bugs in parallel over the execution paths. 
As we show, in the case of bounded safety specifications, this enables us to return a bug to 
the user as soon as a violation is identified on any of the branching paths that are explored 
in parallel. This gives considerable advantages in applications, as we show in an avionics 
application.

A key feature of the parallel verification procedure that we introduce lies in its com-
pleteness: we can determine with precision when a potentially infinite set of states (up to 
a number of steps from the system’s initialisation) satisfies a temporal formula. While this 
results in a heavier computational cost than some incomplete approaches, there are obvi-
ous benefits in precise verification, notably the lack of false positives and false negatives. 
To the best of our knowledge this is the first sound and complete verification framework 
for closed-loop neural systems that accounts for non-deterministic, branching temporal 
evolutions.

The rest of the paper is organised as follows. After discussing related work, in Sect. 4 
we formally define systems composed by a neural agent, implemented by a ReLU-
FFNN, interacting with non-deterministic environments. We analyse the resulting 



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 3 of 36     6 

models built on branching executions and define a bounded version of the branching 
temporal logic CTL to express specifications of these systems. After defining the verifi-
cation problem, Sect. 5 introduces monolithic and compositional verification algorithms 
with a complexity study. In this context we show results ranging from undecidability 
for unbounded reachability, to coNExpTimE upper bound for bounded CTL. We present 
a toolkit for the practical verification of these systems in Sect.  7, implementing said 
procedure, providing additional functionalities, and reporting the experimental results 
obtained. We conclude in Sect. 8.

2  Related work

In [3] a closed-loop neural agent-environment system was put forward and analysed. Like 
the present contribution the agent was modelled via a ReLU-FFNN. However, differently 
from here, a simple deterministic environment was considered. As a consequence, the sys-
tem executions were linear and only bounded reachability properties were analysed. [2] 
extended this work to neural agents formalised via recurrent ReLU-activated neural net-
works and verified the resulting linear system executions against bounded LTL proper-
ties. In contrast, the model put forward here can account for complex, partially observable 
environments resulting in branching traces, and the strictly more expressive specification 
language allows for existential and universal quantification over paths. In addition, while 
the papers above focus on sequential verification procedures, we here develop a parallel 
approach specifically tailored at identifying shallow bugs efficiently. This requires novel 
verification algorithms and mixed-integer linear programming [56] (MILP) encodings.

A number of other proposals have also addressed the issue of closed loop systems. 
For example, [31] presents an approach based on hybrid systems to analyse a control-
plant where neural networks are synthesised controllers. Their approach is incompara-
ble with the one here pursued, since they target sigmoidal activation functions (while 
we focus on ReLU activation functions). Also their verification procedure is not com-
plete, while completeness is a key objective here. Similarly, [15, 28, 32, 57] present 
work addressing closed loop systems with learned controllers and focus on reachable set 
estimation and, hence, incomplete techniques for such systems.

Lastly, there has been recent activity on complete approaches for verifying stan-
dalone ReLU-FFNNs [6, 9–11, 17, 26, 27, 34, 36, 37, 40, 44, 53]. The systems con-
sidered in these approaches are not closed-loop and do not incorporate the environ-
ment. This makes the problems considered there different from those analysed here; for 
instance no temporal evolution can be considered for neural network-controlled agents 
interacting with an environment. We refer to [24, 29, 39] for surveys on the emerging 
area of verification of neural networks.

In comparison with [1], we here report several novel optimisations in the tool with a 
more efficient encoding of the discussed aircraft collision avoidance scenario. We also 
evaluate our tool on an additional reinforcement learning scenario.

More broadly, this line of work is related to long standing efforts in bounded model 
checking   [7, 47] that are tailored to finding malfunctions easily accessible from the 
initial states. While our approach is technically different from BMC, it shares with it the 
characteristic of being more efficient than full exploration methods when only a fraction 
of the model needs to be explored.



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 4 of 36

3  Background

In this section we summarise basic concepts pertaining to feed-forward ReLU networks and 
the formalisation of their verification problem in mixed integer linear programming.

3.1  Feed‑forward ReLU networks

A feed-forward neural network (FFNN) [25] is a vector-valued function 𝖿 ∶ ℝ
s0 → ℝ

sL that 
composes a sequence of L ≥ 1 layers, 𝖿1 ∶ ℝ

s0 → ℝ
s1 ,… , 𝖿L ∶ ℝ

sL−1 → ℝ
sL . Each layer � i , 

i ∈ {1,… L} , composes an affine transformation and an activation function. Formally, we 
have for 1 ≤ i ≤ L

where:

• �0 is the input to the network and �i is the output of the i-th layer.
• �i is the result of the affine transformation of the i-th layer, known as the pre-activation 

of the layer, for a weight matrix �i ∈ ℝ
si×si−1 and a bias vector �i ∈ ℝ

si.
• ���i is the activation function of the i-th layer.

Figure 1 gives a graphical representation of a FFNN. Each layer � i , i ∈ {1,… , L − 1} , is 
said to be a hidden layer; the last layer �L of the network is said to be the output layer. Each 
element of each layer � i is said to be a node (see Fig. 2). The weights and biases of the lay-
ers are determined during a training phase which aims at fitting � to a data set consisting 
of input-output pairs specifying how the network should behave (see, e.g., [21]) for more 
details).

Here we are only concerned with FFNNs whose hidden layers use the Rectified Linear 
Unit (ReLU) and the output layer uses the identity function as activation functions; we 
abbreviate these networks by ReLU-FFNN. The ReLU activation function is widely used 
in supervised learning tasks because of its effectiveness in training [43]. The function is 
defined as

� i(�i−1) ≜ �i,

�i ≜ ���i(�i),

�i ≜ �i�i−1 + �i,

ReLU(z) ≜ max(0, z),

Fig. 1  A feed-forward neural 
network of 4 input nodes, 3 hid-
den layers of 6 nodes each and 4 
output nodes

input node hidden node output node



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 5 of 36     6 

and is applied element-wise to a pre-activation vector �i (see Fig. 3). Since the function 
consists of two linear parts (0, for z < 0 and z for z ≥ 0 ), it is a piecewise-linear (PWL) 
function; that is, a function whose input domain can be split into a collection of subdo-
mains on each of which it is an affine function. Consequently, since a ReLU-FFNN com-
poses affine transformations with PWL activation functions, ReLU-FFNNs are also PWL 
functions.

In this paper we are concerned with the reachability problem for ReLU-FFNN. The 
problem is to establish whether there is an admissible input within a possibly uncount-
able set of inputs for which a given ReLU-FFNN computes an output within a given set 
of outputs (see e.g., [4, 5, 16, 34])). Formally, we have

Definition 1 (ReLU-FFNN reachability problem) Given a ReLU-FFNN 𝖿 ∶ ℝ
s0 → ℝ

sk , a 
set of inputs X ⊂ ℝ

s0 and a set of outputs Y ⊂ ℝ
sk , the neural network reachability problem 

is to determine whether

The neural network reachability problem is known to be NP-complete [34].

3.2  Mixed integer linear programming

A mixed integer linear programming (MILP) is an optimisation problem whereby a lin-
ear objective function over real- and integer-valued variables is sought to be minimised 
subject to a set of linear constraints. Formally, we have

there exists � ∈ X such that � (�) ∈ Y.

Fig. 2  A node in a feed-forward 
neural network

Fig. 3  The ReLU activation 
function



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 6 of 36

where c ∈ ℝ
n , d ∈ ℝ

p , A ∈ ℝ
m×n , B ∈ ℝ

m×p and b ∈ ℝ
m.

For the purposes of this paper, we are interested in the MILP feasibility problem. 
This is concerned with checking whether a set of MILP constraints is feasible, i.e., 
whether there exists an assignment to the variables that satisfies all constraints. There-
fore, we hereafter assume that the objective function is constant (i.e., it does not depend 
on the variables), and associate a MILP with a set of linear and typing constraints. It is 
known that the feasibility problem of MILP is NP-complete [46].

A PWL function can be MILP-encoded using the “Big-M” method. For instance, the 
pairs (z, x), where x = ReLU(z) and z ∈ [l, u] can be found as solutions to the following 
set of MILP constraints that use a binary variable � , real-valued variables z and x and 
constants l and u:

Here, when � = 1 , the constraints imply that x = z and z ≥ 0 , and when � = 0 , the con-
straints imply that x = 0 and z ≤ 0 . This approach of “switching off” constraints using large 
enough constants (l and u in this case) is called the “Big-M” method [22]. Equivalently 
to this formulation, we can compute the same solutions by making use of indicator con-
straints. These have the form (� = v) ⇒ c , for a binary variable � , binary value v ∈ {0, 1} 
and a linear constraint c:

The indicator constraints are read as follows: if � = 1 then z ≥ 0 and x = z should hold, 
and if � = 0 then z ≤ 0 and x = 0 should hold. Indicator constraints are supported by all 
major commercial MILP solvers and can be seen as syntactic sugar for Big-M constraints, 
where one does not have to provide the big M constant in advance. In particular, indicator 
constraints can be used to naturally express disjunctive cases, cf. monolithic encoding in 
Sect. 5.

Since ReLU-FFNNs are PWL, the ReLU-FFNN reachability problem has an exact 
MILP representation: a feasible solution of the corresponding MILP can be used to find 
an input �0 from the given set of inputs X  so that � (�0) belongs to the given set of out-
puts Y  [4, 5, 9, 40, 53]. To define the associated MILP, we assume the following: (i) X  
and Y  can be respectively expressed as sets of linear constraints over variables of the 
inputs and outputs of the network; (ii) a lower bound �i

j
 and an upper bound �i

j
 for each 

pre-activation �i
j
 have been computed (the bounds can be computed from X  via bound 

propagation methods, see, e.g., [50, 55]).

Definition 2 (MILP formulation) The MILP formulation of the ReLU-FFNN reachability 
problem for a ReLU-FFNN � , an input set X  and an output set Y  is

min
�,�

cT� + dT�

subject to A� + B� ≥ b

(�, �) ∈ ℝ
n × ℤ

p,

x ≥ 0, x ≥ z, x ≤ u ⋅ �, x ≤ z − l ⋅ (1 − �).

(� = 1) ⇒ z ≥ 0, (� = 0) ⇒ z ≤ 0,

(� = 1) ⇒ x = z, (� = 0) ⇒ x = 0.



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 7 of 36     6 

There exists an input �0 ∈ X  such that � (�0) ∈ Y  iff the MILP above is feasible.

4  Neural agent‑environment systems

In this section we introduce systems with a neural agent operating on a non-deterministic 
environment (NANES ). These are an extension to non-deterministic environments of the 
deterministic neural agent-environment systems put forward in [3].

In contrast to traditional models of agency, where the agent’s behaviour is given in an 
agent-based programming language, a NANES accounts for the recent shift to synthesise 
the agents’ behaviour from data [33]; we consider agent protocol functions implemented 
via ReLU-FFNNs [25]. Differently from [3], following the dynamism and unpredictability 
of the environments where autonomous agents are typically deployed [42], a NANES mod-
els interactions of an agent with a partially observable environment. In this setting an agent 
cannot observe the full environment state, and therefore cannot deterministically predict 
the effect of any of its actions.

We now proceed to give a formal description of NANES components: a neural agent 
and a non-deterministic environment. The description closely follows the formalism of 
interpreted systems, a mainstream semantics for multi-agent systems [19]. To this end, we 
fix a set S ⊆ ℝ

m of environment states and a set Act ⊆ ℝ
n of actions, for m, n ∈ ℕ . We 

assume that the agent is stateless and that its protocol (also known as action policy) has 
already been synthesised, e.g., via reinforcement learning [51], and is implemented via a 
ReLU-FFNN or via a PWL combination of them.

Definition 3 (Neural Agents) Let S be a set of environment states.
A neural agent (or simply an agent) Ag acting on an environment is defined as the tuple 

Ag = (Act, prot) , where:

• Act is a set of actions;
• prot ∶ S → Act is a protocol function that determines the action the agent will perform 

given the current state of the environment. Specifically, given ReLU-FFNNs �1,… , �h , 
h ≥ 1 , prot is a PWL combination of the latter.

When h = 1 , prot(s) can be defined, e.g., as �1(s) for s ∈ S.

�0 ∈ X (input)

�i = �i�i−1 + �i (pre-activation)

�i
j
≥ 0 (ReLU)

�i
j
≥ �i

j
(ReLU)

�i
j
≤ �i

j
⋅ 𝛿i

j
(ReLU)

�i
j
≤ �i

j
− �i

j
⋅ (1 − 𝛿i

j
) (ReLU)

𝛿i
j
∈ {0, 1} 1 ≤ i < L, 1 ≤ j ≤ si (ReLU)

�L = �L�L−1 + �L (output)

�L ∈ Y (output)



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 8 of 36

The environment is stateful and non-deterministically updates its state in response to the 
actions of the agent.

Definition 4 (Non-deterministic Environments) An environment is a tuple E = (S, tE) , 
where:

• S ⊆ ℝ
m is a set of states.

• tE ∶ S × Act → 2S is a transition function that determines the temporal evolution of the 
state of the environment. Specifically, given the current state of the environment and 
the current action of the agent, the transition function returns the set of next possible 
environment states.

Given the above we can now define a closed-loop system comprising of an agent inter-
acting with an environment.

Definition 5 (NANES ) A Neural Agent operating on a Non-Deterministic Environ-
ment System (NANES) is a tuple S = (Ag,E, I) where Ag = (Act, prot) is a neural agent, 
E = (S, tE) is an environment, and I ⊆ S is a closed set1 of initial states for the environment.

Hereafter we assume the environment’s transition function is PWL and its set of initial 
states is expressible as a set of linear constraints over integer and real-valued variables. 
Also, to enable its finite MILP representation, we assume that the function’s branching fac-
tor is bounded, i.e., there is a (arbitrarily large) b ∈ ℕ such that the cardinality of tE(s, a) is 
bounded by b for all s ∈ S and a ∈ Act.

Example 1 Consider as a running example a variant of the FrozENLakE scenario [45], 
where an agent navigates in a grid world consisting of walkable tiles (frozen surface) and 
non-walkable ones (holes in the ice) leading to the agent falling into water. The goal of the 
agent is to reach the goal tile while avoiding the holes. At each step the agent chooses a 
direction to walk, but since walkable tiles are slippery, the resulting movement direction 
is uncertain and does not only depend on the agent’s choice. Namely, the agent may result 
moving in any of the three directions: the chosen one and to ones to its left or right, see 
Fig. 4 for an illustration. We now formalise this scenario as follows.

The agent is defined as Ag� � = (Act� �, prot� �) , where

Fig. 4  The FrozENLakE surface

1 By closed set we mean a set containing all of its boundary points.



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 9 of 36     6 

• Act� � = {�1, �2, �3, �4} ⊆ ℝ
4 encodes the directions left (�1 ), down ( �2 ), right ( �3 ) and 

up ( �4 ), where �i is the vector with 1 at i-th position and 0 everywhere else, and
• prot� � is the protocol function implemented via a FFNN network.

The non-deterministic environment models the slippery nature of ice. Here we assume a 
3 × 3 grid world, so formalise the environment as E� � = (S� �, tE� �

) , where:

• S� � = {�1, �2,… , �9} ⊆ ℝ
9 , where �i is the vector with 1 at i-th position and 0 every-

where else, and
• tE� �

(s, a) = {mv(s, a−1),mv(s, a),mv(s, a+1)},

where mv(s, d) returns the state s′ resulting from moving from state s in direction d, a−1 is 
the direction to the right of a and a+1 is the direction to the left of a when looking in the 
direction a (e.g., a−1 = �1 and a+1 = �3 for a = �2 ). To see that mv(s, d) is a PWL function, 
note that both S and Act are finite sets.

Finally, we define the set of initial states as I� � = {�1} and the FrozENLakE system as 
S� � = (Ag� �,E� �, I� �) .   ◻

With each NANES S  we can associate a temporal model MS  that is used to interpret 
temporal specifications.

Definition 6 (Model) Given a NANES system S = (Ag,E, I) , its associated temporal 
model MS  is a pair (R, T) where R is the set of environment states reachable from I via T, 
and T ⊆ R × R is the successor relation defined by (s, s�) ∈ T  iff s� ∈ tE(s, prot(s)).

Example 2 Figure 5 gives a graphical depiction of the temporal model of the FrozENLakE 
system S� � , assuming that prot� �(�1) = �2 , prot� �(�2) = �1 , prot� �(�4) = �4 , prot� �(�5) = �3 , 
prot� �(�6) = �2 , prot� �(�8) = �3 , and prot� �(�9) = �2 .   ◻

In the rest of the paper, we assume to have fixed a NANES  S  and the associated model 
MS  . An MS -path, or simply path, is an infinite sequence of states s1s2 … where si ∈ R 
and si+1 is a successor of si , i.e. (si, si+1) ∈ T  , for each i ≥ 1 . Given a path � we use �(i) to 
denote the i-th state in � . For an environment state s = (c1,… , cm) , we write �����(s) to 
denote the set of all paths originating from s and we use s.d to denote its d-th component cd
.

We verify NANES against properties expressed in a bounded variant of the temporal 
logic CTL [13]. It is also possible to verify NANES against bounded versions of LTL, but 
not pursued here. Inspired by Real-Time Computation Tree Logic (RTCTL) [18], formulae 
of bounded CTL build upon temporal modalities indexed with natural numbers denoting 
the temporal depth up to which the formula is evaluated.

Definition 7 (Bounded CTL) Given a set of environment states S ⊆ ℝ
m , the bounded CTL 

specification language over linear inequalities, denoted bCTL
ℝ< , is defined by the follow-

ing BNF:

𝜑∶∶=𝛼||𝜑 ∨ 𝜑||𝜑 ∧ 𝜑||EXk𝜑||AXk𝜑,
𝛼∶∶=c1(d1) +⋯ + cl(dl) ≷ c,



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 10 of 36

where ≷∈ {<,>} , di ∈ {1,… ,m} , ci, c ∈ ℝ , and k ∈ ℕ.

Here atomic propositions � are linear constraints on the components of a state. For 
instance, the atomic proposition (d1) + (d2) < 2 states that “the sum of the d1-st and d2
-nd components is less than 2.” The temporal formula EXk� stands for “there is a path 
such that � holds after  k time steps”, whereas AXk� stands for “in all paths � holds 
after k time steps”. Note that the restriction of bCTL

ℝ< to strict inequalities is crucial to 
the verification algorithm introduced in the next section; the algorithm relies on encod-
ing the negation of the specification to check into MILP, which does not support strict 
inequalities.

Example 3 Consider the FrozENLakE scenario from Example 1. We are interested in assess-
ing the safety of the scenario in terms of the following specifications:

and

for various values of k, where �� ≜
⋀

h∈{3,7}(h) < 0.1 (i.e., holes voided) and 
����������� ≜ (9) > 0.9 . The formula �k

����
 states that in every evolution of the sys-

tem the agent always avoids a hole within the first k steps. The formula �k
����

 states that in 
every evolution of the system the agent always avoids a hole within the first k − 1 steps and 
reaches the goal state at the k-th step. Intuitively, the former means that all k-bounded runs 
are safe (no hole is reached), while the latter means that all k-bounded runs are safe and 
successful (the goal is reached in the end state).   ◻

�k
����

= AX1�� ∧⋯ ∧ AXk��

�k
����

= AX1�� ∧⋯ ∧ AXk−1�� ∧ AXk�����������,

Fig. 5  The temporal model of the FrozENLakE system S� � . Each grid depicts the current position of the 
agent in the environment marked with red colour. Each arrow represents a transition by means of the action 
labelling the arrow



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 11 of 36     6 

We now define the logic CTL
ℝ< built from the atoms of bCTL

ℝ<.

Definition 8 (CTL) The branching-time logic CTL
ℝ< is defined by the following BNF:

where � is an atomic proposition in bCTL
ℝ<.

Comparing bCTL
ℝ< to CTL

ℝ< , we observe that on the one hand AXk� and EXk� are 
expressible, respectively, as AX(⋯ (AX�)⋯) and ¬AX(⋯ (AX¬�)⋯) , where AX is applied 
k times. On the other hand, CTL

ℝ< includes the AF (“in all paths eventually”) and EU 
(unbounded until) modalities capable of expressing arbitrary reachability, whereas bCTL

ℝ< 
admits bounded specifications only. Note that, while bCTL

ℝ< is clearly less expressive 
than CTL

ℝ< , it still captures properties of interest. Notably, bounded safety is expressible in 
bCTL

ℝ< as AGksafe stating that every state on every path is safe within the first k steps.
We interpret bCTL

ℝ< formulae on a temporal model as follows.

Definition 9 (Satisfaction)
For a model MS  , an environment state s, and a bCTL

ℝ< formula � , the satisfaction of 
� at s in MS  , denoted (MS, s) ⊧ 𝜑 , or simply s ⊧ 𝜑 when MS  is clear from the context, is 
inductively defined as follows:

We assume the usual definition of satisfaction for CTL
ℝ< ; this can be given as standard by 

using the atomic case from Definition 9.
Although bCTL

ℝ< does not include negation, it still allows us to express arbitrary CTL 
formulae of bounded temporal depth since it supports all Boolean and temporal operators with 
their duals. Useful abbreviations of bCTL

ℝ< are the temporal modalities EFk� (“Possibly � 
within k steps) and EGk� (“Possibly � for k steps):

The dual temporal modalities AGk� and AFk� , prefixed by the universal path quantifier, 
are analogously defined:

Moreover, bounded until E(�Uk�) (“there is a path such that � holds within k time steps, 
and where � holds up until then”) can be defined by the abbreviations

�∶∶=�||¬� ∣ � ∨ �||AX�||AF�||E(�U�),

s ⊧ c1(d1) +⋯ + cl(dl) ≷ c iff (
∑l

i=1
ci ⋅ s.di) ≷ c;

s ⊧ 𝜑 ∨ 𝜓 iff s ⊧ 𝜑 or s ⊧ 𝜓 ;

s ⊧ 𝜑 ∧ 𝜓 iff s ⊧ 𝜑 and s ⊧ 𝜓 ;

s ⊧ EXk𝜑 iff there is 𝜌 ∈ �����(s) such that 𝜌(k) ⊧ 𝜑;
s ⊧ AXk𝜑 iff for all 𝜌 ∈ �����(s) we have𝜌(k) ⊧ 𝜑.

EFk𝜑 ≜ EX1𝜑 ∨⋯ ∨ EXk𝜑

EGk𝜑 ≜ EX1𝜑 if k = 1;EX1(𝜑 ∧ EGk−1𝜑) if k > 1.

AGk𝜑 ≜ AX1𝜑 ∧⋯ ∧ AXk𝜑

AFk𝜑 ≜ AX1𝜑 if k = 1;AX1(𝜑 ∨ AFk−1𝜑) if k > 1.

E(𝜑U1𝜓) ≜ 𝜓 ∨ (𝜑 ∧ EX1𝜓),

E(𝜑Uk𝜓) ≜ 𝜓 ∨ (𝜑 ∧ EX1E(𝜑Uk−1𝜓)) for k > 1,



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 12 of 36

and analogously with A(�Uk�).
We also note that the formula QXk� , for Q ∈ {A,E} , is equivalent to QX1(⋯ (QX1�)⋯) , 

where QX1 is applied k times to �.
A specification � is said to be satisfied by S  if (MS, s) ⊧ 𝜑 for all initial states s ∈ I . 

We denote this by S ⊧ 𝜑 . It follows that, for example, to check bounded safety we need to 
verify that from all (possibly infinitely many) initial states no state (out of possibly infi-
nitely many) within the first k evolutions is an unsafe state. This is the basis of the verifica-
tion problem that we define below.

Definition 10 (Verification problem) Given a NANES S  and a formula � , determine 
whether S ⊧ 𝜑.

Remark 1 The verification problem is uniquely associated with a model checking problem 
which is to check whether MS ⊧ 𝜑 given MS  and �.

However, when the input is specified in terms of a NANES S  and a specification � , 
generally, the size (of the relevant part) of the model MS  grows exponentially in the size 
of the input.

In the next section we study the decidability and complexity of the verification problem 
here introduced.

5  The verification problem

In this section we study the verification problem for a NANES against CTL and bCTL
ℝ< 

specifications. First, we show that verifying against CTL formulae is undecidable for 
deterministic environments and simple reachability properties. In the rest of the section, 
we focus on bounded CTL, where we develop a decision procedure for the verification 
problem based on producing a single MILP and checking its feasibility. Then we devise 
a parallelisable version of the procedure that produces multiple MILPs and that can be 
particularly efficient at finding counter-examples for bounded safety properties. Following 
this, we analyse the computational complexity of the verification problem against bCTL

ℝ< 
formulae.

5.1  Unbounded CTL

In this subsection we show undecidability of the verification problem for deterministic 
NANES against simple reachability properties, where a deterministic NANES is a tuple 
(Ag = (Act, prot),E = (S, tE), I) , where |tE(s, a)| = 1 for all s ∈ S and a ∈ Act . The undecid-
ability result for arbitrary NANES and full CTL follows.

Theorem  1 Verifying deterministic NANES against formulae of the form AF� is 
undecidable.

Proof We show the result by reduction from the Halting problem which is known to be 
undecidable. Let M = ⟨Q,�,�0, �, q0, qa⟩ be a Turing machine, where

• Q = {1,… , k} is a finite set of states,



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 13 of 36     6 

• � = {0, 1, 2} is a finite tape alphabet, where we treat 0 as the blank symbol,
• �0 = {1, 2} is the set of input symbols,
• q0, qa ∈ Q are the initial and accepting states, respectively, and
• � ∶ (Q ⧵ {qa}) × � ↦ Q × � × {L, R} is the transition function such that given a 

state q ∈ Q ⧵ {qa} and a tape symbol � , �(q, �) = (q�, ��,m) for q� ∈ Q , �� ∈ � and 
m ∈ {L, R} with the following meaning: if the Turing machine is in the state q and 
currently reads symbol � (i.e., the content of the cell where the head currently is is 
� ), then write in the current cell �′ , move the head left if m = L and right if m = R , 
and change the state to q′.

We can assume that the tape of M is open-ended only on the right-hand side, that is, the 
head never goes to the left of the first cell (cell number 1). The Halting problem defined 
as “given an input string 𝜔0 ⊆ 𝛴0

h , decide whether M halts on �0 = a1 … ah , that is, 
whether M eventually enters qa ” for such Turing machine is known to be undecidable.

We construct a NANES S = ((Act, prot), (S, tE), I) and an unbounded temporal formula 
� such that S ⊧ 𝜑 iff M halts on �0 = a1 … ah.

• each state of S  encodes the current configuration of the Turing machine, that is, 
the current state, the content of the tape and position of the head on the tape. We 
account for the position of the head implicitly by storing the content of the tape to 
the left and to the right of the head. Therefore, the state space S consists of tuples 
g = (q,�l, �,�r) where

– q ∈ Q,
– �l represents the left part of the tape and is a real number from [0, 0.3) whose 

ith digit after the dot stores the content of the ith cell to the left of the head, and 
hence is one of 0, 1 or 2.

– � ∈ � is the symbol under the head.
– �r represents the right part of the tape and is a real number from [0, 0.3) whose 

ith digit after the dot stores the content of the ith cell to the right of the head, and 
hence is one of 0, 1 or 2.

   The left �l and right �r parts of the tape can be seen as stacks with the symbols in 
the top part being closer to the head, while in the lower part further from the head. 
In what follows, we refer to them as left stack and right stack, respectively. Mov-
ing the head to the right then corresponds to popping the top symbol from the right 
stack and pushing � onto the left stack, and the other way around.

• I = {(q0, 0.0, a1, 0.a2 … ah)}

• Act = {a} for some a ∈ ℝ.
• the agent’s network N computes the constant (hence, linear) function 

prot(q,�l, �,�r) = a.
• the transition function is deterministic and follows closely the transition function � 

of M. The main technicality here is to implement � by suitably updating �l , � and �r . 
Specifically, tE((q,�l, �,�r), a) = (q�,��

l
, ��,��

r
) where

– �l = ⌊�l ⋅ 10⌋ and �r = ⌊�r ⋅ 10⌋ are the top symbols of �l and �r , respectively,
– there exists �n and m such that �(q, �) = (q�, �n,m),
– ��

l
= (�n + �l) ⋅ 0.1 , �� = �r and ��

r
= �r ⋅ 10 − �r if m = R , that is, we push the 

new symbol �n to left stack and pop the top symbol from the right stack, and



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 14 of 36

– ��
l
= �l ⋅ 10 − �l , �� = �l and ��

r
= (�r + �n) ⋅ 0.1 if m = L , that is, we pop the top 

symbol from the left stack and push �n onto the right stack.

• � is the reachability specification EF((1) > |Q| − 1) , where we assume that all states 
in Q are numbered from 1 to |Q|, and qa is the state number |Q|.

It is straightforward to see that S  and � are as required.
It can also be seen that tE is a linearly definable function. We only show an implementa-

tion of the function computing the integer part ⌊x⌋ of a non-negative real number x ∈ [0, 3) 
via a ReLU FFNN N⌊⋅⌋ . Then tE can be computed by combining it with appropriate linear 
expressions and conditional statements.

Below we depict the network N⌊⋅⌋ in which each hidden neuron is split into two nodes, 
resulting from the linear transformation of the previous layer, and the labelled result of 
ReLU activation; the weights are drawn on the edges and biases below the nodes. For 
instance, y1 is computed from x as ReLU(3 ⋅ x − 4) , while ⌊x⌋ is computed from z1 and z2 as 
−z1 − z2 + 2 .  

To see that this network computes what is intended, observe that the intermediate values 
yi and zi are as follows:

• y1 > 0 iff x ≥ 2

• z1 = 0 if x ≥ 2 , and z1 = 1 if x < 2

• y2 > 0 iff x ≥ 1

• z2 = 0 if x ≥ 1 , and z2 = 1 if x < 1

Conversely, we can construct a NANES S� = ((Act�, prot�), (S�, t�
E
), I�) where t′

E
 is a linear 

function and prot′ is a PWL function such that S′ ⊧ 𝜑 iff M halts on �0 . Namely,

• Act� = S� = S , I� = I,
• t�

E
(s, a) = a , and

• prot�(s) = tE(s, _).

  ◻

We observe that the above result holds even for strongly restricted NANES where 
either the protocol or the transition function is linear (but not both at the same time). 
Intuitively, since every piecewise-linear function can be exactly represented by a ReLU-
activated neural network, NANES (even with deterministic environment transition func-
tion) are able to simulate recurrent neural networks that are known to be Turing-com-
plete [49].

As a corollary, we obtain undecidability of the verification problem against full CTL.



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 15 of 36     6 

Corollary 1 Verifying NANES against CTL
ℝ< formulae is undecidable.

5.2  Bounded CTL

We now proceed to investigate the verification problem for the bounded CTL specification 
language. We start by showing an auxiliary result that allows us to assume without loss of 
generality that the cardinality of tE(s, a) is the same for each state s and action a.

Lemma 1 Given a NANES S = ((Act, prot), (S, tE), I) and specification 𝜑 ∈ bCTL
ℝ< , 

there is a NANES S� = ((Act, prot�), (S�, t�
E
), I�) , such that |t�

E
(s1, a1)| = |t�

E
(s2, a2)| for all 

s1, s2 ∈ S� , and a1, a2 ∈ Act , and a specification 𝜑� ∈ bCTL
ℝ< such that S ⊧ 𝜑 iff S′ ⊧ 𝜑′.

Proof Consider b = maxs∈S,a∈Act |tE(s, a)| , following the assumption on boundedness of 
|tE(s, a)| for all s ∈ S and a ∈ Act . First, we define a NANES S� = ((Act, prot�), (S�, t�

E
), I�) 

so that |t�
E
(s, a)| = b for all s ∈ S� , a ∈ Act:

• S� = S × {0, 1} and I� = I × {1} . The added dimension indicates whether a state is 
valid (1) or not (0).

• The agent’s protocol function prot′ is defined as prot�((s, f )) = prot(s) for each s ∈ S , 
f ∈ {0, 1}.

• The transition function t′
E
 is defined as

– t�
E
((s, 1), a) = tE(s, a) × {1} ∪ {(s1, 0),… , (sb−l, 0)},

– t�
E
((s, 0), a) = {(s1, 0),… , (sb, 0)}

   for s ∈ S , a ∈ Act , |tE(s, a)| = l and s1,… , sb pairwise distinct states from S.

Now, suppose that S = ℝ
m . We set specification �′ to be the formula in bCTL

ℝ< obtained 
from � by replacing each atomic proposition � with 𝛼 ∧ ((m + 1) > 0.9) . It is straightfor-
ward to see that S ⊧ 𝜑 iff S′ ⊧ 𝜑′ , and hence, �′ is as required.   ◻

In the rest of this section we assume that |tE(s, a)| = b for all s and a, and that tE is 
given as b piecewise-linear (PWL) functions ti ∶ ℝ

m+n → ℝ
m . To see that the latter is pos-

sible, note that, assuming an ordering (e.g., lexicographical) on the elements of ℝm , we can 
define ti to return the i-th element of the result by tE , which is clearly a PWL function. Also 
note that this assumption is used when devising the verification procedure presented below.

The procedures that we put forward recast the verification problem to the MILP fea-
sibility problem (see Sect.  3 for preliminaries on MILP). Given a MILP program � , 
we use vars(�) to denote the set of variables in � . Denote by � the assignment function 
� ∶ vars(�) → ℝ , which defines the specific (binary, integer or real) value assigned to a 
MILP program variable. We write � ⊧ 𝜋 if � satisfies � , i.e., if �(�) ∈ {0, 1} for each binary 
variable � , �(�) ∈ ℕ for each integer variable  � , and all constraints in � are satisfied. Here-
after, we denote by boldface font tuples � of MILP variables (of length m for S ⊆ ℝ

m the 
set of environment states) representing an environment state and call them state variables.

As a stepping stone in our procedures, we encode the computation of a successor 
environment state as a composition of the protocol function prot and of the transition 
functions  ti . By assumption, prot and each  ti is a PWL function, and so the predicate 
� = ti(�, prot(�)) is expressible as a set of MILP constraints by means of the Big-M 



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 16 of 36

method, which we denote by Ci(�, �) (note that � ∪ � ⊂ vars(Ci(�, �)) ). Solutions of 
Ci(�, �) represent pairs of consecutive environment states:

Lemma 2 Let Ci(�, �) be a MILP program corresponding to � = ti(�, prot(�)) . Given 
two states s and s′ in MS  , we have that s� = ti(s, prot(s)) iff there is an assignment � to 
vars(Ci(�, �)) such that s = �(�) , s� = �(�) , and � ⊧ Ci(�, �).

Proof The result follows from the fact that ti(�, prot(�)) is a PWL function and that every 
PWL function can be encoded into a set of MILP constraints. Details can be found in [3].  
 ◻

5.2.1  Monolithic encoding

First, we devise a recursive encoding of a NANES and a formula into a single MILP, 
referred to as monolithic encoding, and define the corresponding monolithic verification 
procedure.

Denote by bCTL
ℝ≤ the bounded CTL language over atomic propositions � where 

≷∈ {≤,≥} (i.e., linear constraints over non-strict inequalities). Given a NANES S  and a 
formula � ∈ bCTL

ℝ≤ , we construct a MILP program �S,� , whose feasibility corresponds 
to the existence of a state in MS  that satisfies � . For ease of presentation, and without 
loss of generality, we assume that � may contain only the temporal modalities EX1 and 
AX1 , for which we write EX and AX, respectively.

We now define the monolithic encoding �S,�.

Definition 11 Given a NANES S  and a formula � ∈ bCTL
ℝ≤ , their monolithic MILP 

encoding �S,� is defined as the MILP program �S,�(�) , where � is a tuple of fresh state 
variables, and �S,�(�) is built inductively using the rules in Fig. 6.

The monolithic encoding creates one single MILP that entirely accounts for the 
semantics of the formula, and in particular, every kind of disjunction (in �1 ∨ �2 and 
EX� ) is handled by appropriate MILP constraints. Intuitively, the variables � in the pro-
gram �S,�(�) refer to the states that satisfy the formula � . In Fig. 6, the base case �S, �(�) 
for an atom � produces the MILP program consisting of a single linear constraint cor-
responding to � and using variables in � . Each inductive case depends on the state vari-
ables � but might in turn generate programs for subformulas which depend on freshly 
created state variables different to � (such as � , �1 , �2 , etc). All other auxiliary variables 
employed in the encoding are also fresh, preventing undesirable interactions between 
unrelated branches of the program.

Fig. 6  Monolithic encoding �S,� for � ∈ bCTL
ℝ≤ , where for a set of constraints � , (� = v) ⇒ � abbreviates 

the set of indicator constraints {(� = v) ⇒ c
||c ∈ �}



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 17 of 36     6 

• Disjunction uses a binary variable � and two sets of indicator constraints. In a feasi-
ble assignment � , when � is 1, �1 is satisfied and the values of � are assigned accord-
ing to �1 , while when � is 0, �2 holds and the values of � are assigned as per �2.

• We encode conjunction as the union of the constraints for each of the conjuncts, 
which all must be satisfied at the same time.

• We encode an operator EX by a b-ary disjunction using binary variables �1,… , �b . 
Each of the possible b next states is chosen by activating one of �i hence ensur-
ing that the relevant Ci(�, �) is satisfied. The variables � refer to the successor state 
which must satisfy � , therefore, the subprogram for � depends on � . Notably, only 
one copy of �S,� is required.

• To satisfy AX� , all b possible successor states should satisfy � , and so we take the 
union of all Ci(�, �i) and of b copies of �S,� , each depending on one of the successor 
state variables �i.

Note that the size of �S,� may grow exponentially due to b repetitions of �S,� in 
�S,AX� (�) ; for � = AXk� , the size of �S,� is O(k ⋅ bk ⋅ |S|) . The same estimate works in 
the general case for the temporal bound k of � . On the other hand, when � contains no 
AX operator, the size of �S,� remains polynomial O(k ⋅ b ⋅ |S|).

We can prove that �S,� is as intended.

Lemma 3 Given a NANES S  , a formula � ∈ bCTL
ℝ≤ and a state s in MS  , the following 

are equivalent:

1. s ⊧ 𝜑.
2. There exists an assignment � to vars(�S,�(�)) such that � ⊧ 𝜋S,𝜑(�) and s = �(�).

Proof Let s be a state in MS  . We prove the statement by induction on the structure of � . 
Clearly, the thesis holds when � is an atomic proposition.

Suppose that the thesis holds for �1 and �2 . Consider the following cases:

there exists �1 s.t. �1 ⊧ 𝜋S,𝜑1
(�) , �1(�) = 1 and s = �1(�) , or there exists �2 s.t. �2 ⊧ 𝜋S,𝜑2

(�) , 
�1(�) = 0 and s = �2(�) ⇔

there exists � s.t. � ⊧ 𝜋S,𝜑1∨𝜑2
(�) , and s = �(�).

there exists �1 s.t. �1 ⊧ 𝜋S,𝜑1
(�) and s = �1(�) , and there exists �2 s.t. �2 ⊧ 𝜋S,𝜑2

(�) and 
s = �2(�) ⇔

vars(�S,�1 (�))∩vars(�S,�2 (�))=�

𝜑 =𝜑1 ∨ 𝜑2. Then

s ⊧ 𝜑1 ∨ 𝜑2 ⇔

s ⊧ 𝜑1 or s ⊧ 𝜑2 ⇔

𝜑 =𝜑1 ∧ 𝜑2. Then

s ⊧ 𝜑1 ∧ 𝜑2 ⇔

s ⊧ 𝜑1 and s ⊧ 𝜑2 ⇔

�1 ∪ �2 ⊧ 𝜋S,𝜑1
(�) ∪ 𝜋S,𝜑2

(�).



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 18 of 36

there exists a successor s′ of s in MS  s.t. s′ ⊧ 𝜑1 ⇔
there exists i ∈ {1,… , k} and an assignment �i such that �i(�i) = 1 , �i(�j) = 0 for j ≠ i , 

�i ⊧ Ci(�, �) , �i(�) = s and �i(�) = s� , and there exists an assignment �′ s.t. �� ⊧ 𝜋S,𝜑1
(�) and 

��(�) = s� ⇔
there exists � s.t. � ⊧ 𝜋S,EX𝜑1

(�) and �(�) = s.

for every successor si of s in MS  it holds that si ⊧ 𝜑1 , i = 1,… , k , ⇔
for every successor si of s in MS  it holds that there exists �i s.t. �i ⊧ 𝜋S,𝜑1

(�i) and 
�i(�i) = si , i = 1,… , k , ⇔

there exists � s.t. � ⊧ 𝜋S,AX𝜑1
(�) and �(�) = s.   ◻

Finally, we are ready to devise a procedure that solves the verification problem by 
checking feasibility of the monolithic MILP encoding for the negation of the property to 
be verified together with a restriction to the initial states of S  , �S,���(¬�)∧�I

 . The idea here 
is to look for a proof that the property is not satisfied by a state s ∈ I . A feasible solu-
tion to �S,���(¬�)∧�I

 then provides such a proof in the form of a counter-example. Con-
versely, infeasibility implies that no counter-example could be found, and so the property 
is satisfied.

The procedure is given by Algorithm 1. Recall that strict inequalities are not supported 
in the MILP solver. Note that by our assumption the set I of initial states is closed and 
expressible as a set of linear constraints. Therefore, we can represent I by a Boolean for-
mula from bCTL

ℝ≤ (i.e., a formula without temporal operators). For instance, the hyper-
rectangle [l1, u1] ×⋯ × [lm, um] is represented by the formula

Further note that we only pass ¬� (the negation of the specification) to the encoding in 
negation normal form (NNF). In this process, negation is eliminated by pushing it down 
and through the atoms resulting in all strict inequalities of atoms of the original specifica-
tion � being converted to non-strict inequalities. Therefore, �� = ���(¬�) ∧ �I is a for-
mula from bCTL

ℝ≤ , so �S,�′ is well-defined and can be processed by an MILP solver.
Soundness and completeness of the verification procedure relies on Lemma  3 and is 

shown by the following.

Theorem 2 Given a NANES S  and a formula 𝜑 ∈ bCTL
ℝ< , Algorithm 1 returns False iff 

S ̸⊧ 𝜑.

Proof Suppose that Algorithm 1 returns False. It follows that �S,¬�∧�I
(�) is feasible, and 

there exists an assignment � to vars(�S,¬�∧�I
(�)) such that � ⊧ 𝜋S,¬𝜑∧𝜑I

(�) . Take s = �(�) . 
Since �I is a Boolean formula (without temporal operators), it is straightforward to see that 
s ∈ I . Therefore s is a state in MS  , and by Lemma 3 we have that s ⊧ 𝜑I and s ⊧ ¬𝜑 . It fol-
lows that s ̸⊧ 𝜑 , and consequently, S ̸⊧ 𝜑 . Conversely, if there exists s ∈ I such that s ̸⊧ 𝜑 , 
we obtain that there is an assignment satisfying �S,¬�∧�I

(�) , and therefore Algorithm  1 
returns False.   ◻

𝜑 =EX𝜑1. Then

s ⊧ EX𝜑1 ⇔

𝜑 =AX𝜑1. Then

s ⊧ AX𝜑1 ⇔

(1) ≥ l1 ∧ (1) ≤ u1 ∧⋯ ∧ (m) ≥ lm ∧ (m) ≤ um.



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 19 of 36     6 

5.2.2  Compositional encoding

Observe that due to its handling of disjunctions, the previously introduced monolithic 
encoding �S,� might result in excessively large programs whose feasibility is a computa-
tionally expensive task. We now propose a different encoding that instead of delegating 
disjunction to the MILP solver (the �1 ∨ �2 and EX� cases) creates a separate program for 
each disjunct, whose feasibility results can be combined to solve the verification problem. 
More specifically, for a formula � , we define a set �S,� of MILP programs with the prop-
erty that there exists a state s in MS  such that s ⊧ 𝜑 iff at least one of the programs in �S,� 
is feasible.

Below, given a set C of linear constraints, we write [C] to denote the respective MILP 
program. Given sets A = {[A1],… , [Ap]} and B = {[B1],… , [Bq]} of MILP programs, we 
write A × B to denote the product of A and B computed as {[Ai ∪ Bj]

||i = 1, .., p, j = 1, .., q}.

Definition 12 Given a NANES S  and a formula � ∈ bCTL
ℝ≤ , their compositional MILP 

encoding �S,� is defined as the set of MILP programs �S,�(�) , where � is a tuple of fresh 
state variables, and �S,�(�) is built inductively using the rules in Fig. 7.

Following the monolithic encoding in Fig. 6, in Fig. 7 C�(�) is the linear constraint cor-
responding to the atomic proposition � defined over � . We use the same convention regard-
ing the state and auxiliary variables of subprograms. In �S,� every program � represents 
one of the encodings of �.

• For disjunction we take the union of the two sets of encodings.

Fig. 7  Compositional encoding �S,� for � ∈ bCTL
ℝ≤



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 20 of 36

• Every encoding of �1 ∧ �2 consists of an encoding of �1 and of an encoding of �2 , 
therefore we take the product of the two sets.

• Every encoding of EX� is an encoding of � extended with the constraints Ci(�, �) for 
a single i.

• Every encoding of AX� consists of b (possibly different) encodings of � extended 
with the constraints Ci(�, �i) for i = 1,… , b.

The set �S,� grows exponentially with the temporal depth of � ; however each program 
in the set can be smaller than the monolithic MILP �S,�.

Similarly to Lemma 3 we can prove that �S,� is as intended.

Lemma 4 Given a NANES S  , a formula � ∈ bCTL
ℝ≤ and a state s in MS  , the following 

are equivalent:

1. s ⊧ 𝜑.
2. There is a MILP �(�) ∈ �S,�(�) and an assignment � to vars(�(�)) such that s = �(�) 

and � ⊧ 𝜋(�).

Proof Let s be a state in MS  . We prove the statement by induction on the structure of �.
Suppose that the thesis holds for �1 and �2 . Consider the following cases:

there exist �(�) ∈ �S,�1
(�) and an assignment �1 such that �1 ⊧ 𝜋(�) and s = �1(�) , or 

there exist �(�) ∈ �S,�2
(�) and an assignment �2 such that �2 ⊧ 𝜋(�) and s = �2(�) ⇔

there exist �(�) ∈ �S,�1
(�) ∪�S,�2

(�) and an assignment a such that � ⊧ 𝜋(�) and 
�(�) = s ⇔

there exist �(�) ∈ �S,�1∨�2
(�) and an assignment � such that � ⊧ 𝜋(�) and �(�) = s.

there exist �1(�) ∈ �S,�1
(�) and an assignment �1 such that �1 ⊧ 𝜋1(�) and s = �1(�) , 

and there exist �2(�) ∈ �S,�2
(�) and an assignment �2 such that �2 ⊧ 𝜋2(�) and s = �2(�) 

⇔vars(�1(�))∩vars(�2(�))=�

there exist �1(�) ∈ �S,�1
(�) and an assignment �1 , �2(�) ∈ �S,�2

(�) and an assignment 
�2 such that �1 ∪ �2 ⊧ 𝜋1(�) ∪ 𝜋2(�) and s = �1(�) = �2(�) ⇔

there exists an assignment � and �(�) ∈ �S,�1∧�2
 such that � ⊧ 𝜋(�) and s = �(�).

there exists a successor s′ of s in MS  such that s′ ⊧ 𝜑1 ⇔

𝜑 =𝜑1 ∨ 𝜑2. Then

s ⊧ 𝜑1 ∨ 𝜑2 ⇔

s ⊧ 𝜑1 or s ⊧ 𝜑2 ⇔

𝜑 =𝜑1 ∧ 𝜑2. Then

s ⊧ 𝜑1 ∧ 𝜑2 ⇔

s ⊧ 𝜑1 and s ⊧ 𝜑2 ⇔

𝜑 =EX𝜑1. Then

s ⊧ EX𝜑1 ⇔



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 21 of 36     6 

there exists i ∈ {1,… , k} and an assignment �i such that �i(�i) = 1 , �i(�j) = 0 for j ≠ i , 
�i ⊧ Ci(�, �) , �i(�) = s and �i(�) = s� , and there exist �(�) ∈ �S,�1

 and an assignment �′ 
such that �� ⊧ 𝜋(�) and ��(�) = s� ⇔

there exist �(�) ∈ �S,EX�1
 and an assignment � such that � ⊧ 𝜋(�) and �(�) = s.

for every successor si of s in MS  it holds that si ⊧ 𝜑1 ⇔
for each i = 1,… , k , it holds that there exists an assignment �i such that �i ⊧ Ci(�, �i) , 

�i(�) = s , �i(�i) = si , and there exist �i(��) ∈ �S,�1
 and an assignment �′

i
 such that 

��
i
⊧ 𝜋i(�i) and ��

i
(�i) = si 

⇔

vars(�i(�i)) ∩ vars(�j(�j)) = �

vars(Ci(�, �i)) ∩ vars(Cj(�, �j)) = �

vars(Ci(�, �i)) ∩ vars(�i(�i)) = �j
vars(Ci(�, �i)) ∩ vars(�j(�j)) = �

there exist �(�) ∈ �S,AX�1
 and an assignment � such that � ⊧ 𝜋(�) and �(�) = s .   ◻

We now devise a compositional verification procedure that searches for a feasible MILP 
in the set of MILPs generated by the compositional encoding. Similarly to the monolithic 
procedure, we pass the negation of the property to be verified together with a restriction 
to the initial states of S  to the compositional encoding. If all problems in �S,���(¬�)∧�I

 
are infeasible, no initial state s ∈ I and no possible evolution of the system from s could 
be found that would make ¬� true; therefore, the property is satisfied and the procedure 
returns True. However, if at least one of the programs has a solution, from the solution we 
can extract the counterexample for the specification in question, so the procedure returns 
False. The procedure is presented in Algorithm 2.

Since the feasibility checks of the generated programs can be executed independently 
of each other, they naturally lend themselves to parallelisation. The compositional proce-
dure can thus be particularly efficient at finding bugs that can be reached within a few 
steps along some of the paths from the initial states. This has parallels with bounded model 
checking [12] since, once a bug has been detected, the whole procedure can be terminated. 
As we will see in the next section, this is particularly useful when verifying bounded safety.

𝜑 =AX𝜑1. Then

s ⊧ AX𝜑1 ⇔



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 22 of 36

6  Computational complexity of the verification problem

In this section we study the complexity of the verification problem for bCTL
ℝ< . The upper 

bound follows from the monolithic verification procedure and the lower bound can be 
obtained by reduction from the validity problem of QBF.

Theorem 3 Verifying NANES against bCTL
ℝ< is in coNExpTimE and pSpacE-hard in com-

bined complexity.

Proof The coNExpTimE upper bound follows from the fact the MILP program in Algo-
rithm 1 takes exponential time to construct and is of exponential size, and that infeasibility 
of MILP is a coNP-complete problem.

The pSpacE lower bound can be shown by adapting the lower bound proof in [34]. The 
idea is to represent the full binary tree of variable assignments in the temporal model of 
NANES and then to use a bCTL

ℝ<-specification to check validity of the QBF.
Let � be a QBF of the form �1x1 …�mxm� , where � is in 3CNF. We now construct a 

NANES S = ((Act, prot), (S, tE), I) and a bCTL
ℝ<-specification � such that S ⊧ 𝜓 iff � is 

valid.
Let n be the number of clauses in �.

• the state space S ⊆ ℝ
m+1 is [−1, 1]m × [−1, n] , where in a state (a1,… , am+1) , ai , i ≤ m , 

encodes an assignment to the variable xi with -1 being the value not yet set, and 0 and 1 
being False and Truth respectively, and am+1 holds the number of satisfied clauses in � 
under the given assignment, or -1 if the assignment has not been set yet.

• the set Act ⊆ ℝ
m+1 of actions is {(b1,… , bm+1)

||∃i, bj ≠ 0 iff j = i and bi = 1 if i ≤ m}
• the transition function tE,

– given a state (v1,… , vm+1) and an action (0,… , 1,… , 0) with 1 at position i ≤ m , 
returns two states: (v1,… , vi−1, 0, vi+1,… , vm+1) and (v1,… , vi−1, 1, vi+1,… , vm+1);

– given a state (v1,… , vm, vm+1) and an action (0,… , 0, v) returns state (v1,… , vm, v).

• the neural agent performs two different tasks depending on the input. Let 
(a1,… , am+1) ∈ S . If at least one of a1,… , am is −1 , the network returns the vector 
(0,… , 1,… , 0) with 1 at position i where i is the minimal index with ai = −1 . Other-



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 23 of 36     6 

wise, the network computes the value of � for the assignment given by a1,… , am . N 
is defined in detail below.

• I consists of one initial state (−1,… ,−1) , and
• the specification property Q is defined as �1X1 … �mX

1
(
(m + 1) = n

)
 , where �i = A if 

�i = ∀ , �i = E if �i = ∃.

One can show that the agent’s protocol function and the environment transition function 
are PWL. It is straightforward to see that S  and � are as required. Observe that pSpacE-
hardness holds already for a single initial state, i.e., when I is a singleton set.

We show how to construct the agent’s neural network N. We do so by defining a number 
of gadgets that will constitute N.

• The undefined gadget, given a node ai ∈ {−1, 0, 1} outputs a node bi that is 1 if 
ai = −1 (i.e., the value of variable Xi is not set), and 0 otherwise.  

• The i first undefined gadget, which given nodes b1,… , bm ∈ {0, 1} outputs a node ci 
that is 1 if bi = 1 and for 1 ≤ j < i , bj = 0 , and 0 otherwise.  

• The SAT gadget evaluates � for the assignment provided by the values of a1,… , am , 
and outputs a node y (see [34] for details). If the assignment is valid (i.e., all ai are 
from {0, 1} , the value of y is n iff it is a satisfying assignment.  



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 24 of 36

• We are going to output y but only if all ai s, 1 ≤ i ≤ m , have been assigned a value, 
and hence ci s are all 0. Otherwise, the value of y will be discarded with the help of 
the following evaluation result gadget.  

To conclude with N, the output nodes of N are c1,… , cm, c . We can schematically depict 
N as follows:  

  ◻

We also show that the complexity of the verification problem is reduced to coNP for 
the bounded safety fragment of bCTL

ℝ<.

Corollary 2 Verifying NANES against bounded safety properties is coNP-complete in com-
bined complexity.

Proof The upper bound follows from the fact that we can check whether a property 
� = AGksafe is not satisfied by S  by guessing an initial state s and a path � of length k 
originating from s, and by verifying that 𝜌(i) ̸⊧ safe for some i = 1,… , k . If such an initial 
state s exists, then there exists an initial state s′ with the same properties of polynomial 
size. This follows from the encoding into MILP and the fact that if a MILP instance is fea-
sible, there is a solution of polynomial size.

The lower bound can be adapted from the NP lower bound of the satisfiability problem 
of neural networks properties [34], and holds already for one-step formulae.   ◻



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 25 of 36     6 

7  Implementation and experiments

We have implemented the verification procedures described in the previous section in an 
open source toolkit called VENmaS [54]. The tool takes as input a bCTL

ℝ< specification 
� and a NANES  S  . The top-level call to the tool returns ���� if � is satisfied by S  , and 
returns ����� if � is not satisfied at some initial state of S  . In the latter case, a trace in the 
form of state-action pairs is produced, giving an example run of the system which failed to 
satisfy the specification.

The user provides a parameter to determine whether the monolithic or compositional 
procedure with parallel or sequential execution is to be used. For monolithic verification 
VENmaS follows Algorithm  1. For compositional verification VENmaS performs the 
computation in line 7 of Algorithm 2 in a splitting process that adds subprograms to a jobs 
queue. The computation in line 9 is performed asynchronously across a specified number 
of worker processes (executing on the same machine) retrieving tasks from the jobs queue: 
one worker process under sequential execution and multiple worker processes under par-
allel execution (the default in the implementation is 8). The main process finishes either 
when a MILP query terminates with a feasible solution (i.e., a counter-example), or all the 
jobs return infeasible results, or no result is returned within a given time limit.

In order to produce stronger MILP formulations, both in the case of monolithic and 
compositional encodings, we compute lower and upper bounds for all state and action 
variables. These are computed by propagating through the networks the bounds of the 
input states given by I using symbolic interval propagation.2 The bounds are used in the 
Big-M encoding of the ReLU nodes (see Sect.  3.2). For other kind of constraints (e.g., 
those expressing the transition function), the bounds are propagated using standard interval 
arithmetic. The bounds of the EX successor state variables are taken as the widest bounds 
among all possible b successors.

We observe that the compositional encoding in Fig. 7 requires computing the whole set 
�S,� in memory, before the individual jobs can become available to the worker processes. 
This presents several drawbacks. First, it requires exponential memory and can be infea-
sible for large networks and big values of temporal depth. Second, the workers are idle at 
the beginning of the process. Therefore, for the experiments below, we have implemented 
and used a version of the compositional encoding that accepts the fragment of bCTL

ℝ≤ that 
consists of (arbitrary) disjunctions, conjunctions over atomic propositions, and the exis-
tential path quantifier EX. The compositional encoding computes the programs in �S,� 
and adds them to the jobs queue one by one in a depth-first fashion. The worker processes 
then can start to solve verification queries as soon as individual jobs become available. If a 
counter-example has been detected in one of the first jobs, the whole verification procedure 
can terminate without computing all subproblems. Additionally, we integrated a further 
optimisation whereby we may discard particular jobs by examining the bounds of the state 
variables when encoding an atomic proposition: if the bounds (e.g., x1 ∈ [−116,−112] ) 
contradict the atomic formula (e.g, (1) ≥ −100 ), then the whole MILP instance is trivially 
infeasible and no verification job is created. Finally, disjunction of atomic propositions is 

2 Symbolic interval propagation [55] computes the bounds by keeping track of symbolic lower and upper 
bound equations for each intermediate layer of the network obtained through combination of symbolic 
interval analysis and linear relaxation of the ReLU constraints. The equations depend on the input layer and 
thus may be used to capture implicit relationship between nodes of intermediate layers, resulting in reason-
ably tight bounds that can be computed effectively.



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 26 of 36

handled as in the monolithic case; this limits the blow-up on the number of MILPs gener-
ated whilst not hindering the efficiency of the verification procedure.

The tool is implemented in Python and uses Gurobi ver. 9.1[23] as a back-end to solve 
the generated MILP problems. To evaluate our tool, we performed experiments on a 
machine equipped with an Intel Core i7-7700K CPU @ 4.20GHz with 16GB of RAM, 
running Ubuntu 20.04, kernel version 5.8.

We now describe the experimental results obtained on two scenarios.

7.1  FrozenLake scenario

We started by validating VENmaS on the FrozENLakE scenario from Example 1 against 
the specifications reported in Example 3. We considered the grid world as in Fig. 4: there 
are two holes – tiles �3 and �7 , tile �1 is the initial state, and tile �9 is the goal.

We trained the agent’s neural network using an actor-critic approach [51]. Each training 
episode ends when the agent reaches the goal or falls in a hole. A reward of 1 is received if 
the agent reaches the goal, otherwise no reward is given. So, the agent is trained to maxim-
ise the chance of reaching the goal, including avoiding the holes. The resulting network is 
a ReLU-FFNN with 2 hidden layers both consisting of 32 neurons, 9 inputs and 4 outputs. 
The environment transition function was implemented using appropriate MILP constraints.

To evaluate how apt the agent was at realising safe and successful runs, we verified 
the FrozENLakE system S� � against the specifications �k

����
 and �k

����
 previously defined in 

Example 3, stating, respectively, that all k-bounded runs are safe and all k-bounded runs 
are safe and successful. To derive more optimal encodings, the specifications were equiva-
lently formulated to minimise the number of AX operators:

The experiments showed that the agent was always able to avoid holes, hence to realise safe 
runs; however the agent was shown to be unable to ensure that the goal was reached in a 
given number of time steps.

Table 1 reports the time (in seconds) taken to resolve the specifications �k
����

 and �k
����

 
for k ∈ {1,… , 10} for each of the execution modes. The results for the monolithic proce-
dure are denoted moNoLiThic, and the results for the compositional procedure with paral-
lel and sequential execution are denoted comp-par and comp-SEq, respectively. All cases 
use a fixed timeout of one hour. Here we see that the compositional procedure, regardless 
of the execution mode, was very efficient both at finding counter-examples to �k

����
 and at 

proving that �k
����

 is satisfied. There was no difference between the sequential and paral-
lel executions when verifying �k

����
 because all jobs have been discarded by the splitting 

process.
The monolithic procedure also managed to locate counter-examples quickly. As for 

proving safety, it was significantly slower than the compositional procedure for k ≥ 6 . 
The main reason for this is that it produced very loose MILP formulations due to over-
approximated bounds. Note that in this scenario we start from a single state; so for every 
program in the compositional encoding we are able to compute each next state exactly. 
However, in the monolithic procedure we are forced to over-approximate the bounds of the 

�k
����

=AX(�� ∧ AX(�� ∧⋯ (�� ∧ AX��)))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k AX’s

,

�k
����

=AX(�� ∧ AX(�� ∧⋯ (�� ∧ AX�����������)))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k AX’s

,



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 27 of 36     6 

state variables � when encoding EX� since we do not know in advance which of the b suc-
cessors they refer to. This difficulty is further exacerbated by the discrete nature of the state 
space in this scenario. To see this, assume that we are in the state �5 , the chosen direction 
is down, and � has exact bounds (0, 0, 0, 0, 1, 0, 0, 0, 0). Then the possible successors are 
�8 , �4 and �6 , and the bounds become very large: the upper bounds of the state variables � 
become (0, 0, 0, 1, 0, 1, 0, 1, 0) and the lower bounds all zeros. These bounds are further 
loosened as they are propagated through the network resulting in MILP formulations that 
are hard to solve.

7.2  The aircraft collision avoidance system VerticalCAS

For the second set of experiments, we consider a scenario involving two aircraft, the own-
ship and the intruder, where the ownship is equipped with a collision avoidance system 
VerticalCAS [32]. The intruder is assumed to follow a constant horizontal trajectory. Every 
second VerticalCAS issues vertical climbrate advisories to the ownship pilot. This is to 
avoid a near mid-air collision (NMAC), a region where the ownship and intruder are sepa-
rated by less than 100ft vertically and 500ft horizontally. The possible advisories are: 

(1) COC: Clear Of Conflict.
(2) DNC: Do Not Climb.
(3) DND: Do Not Descend.
(4) DES1500: Descend at least 1500 ft/s.
(5) CL1500: Climb at least 1500 ft/s.
(6) SDES1500: Strengthen Descent to at least 1500 ft/s.
(7) SCL1500: Strengthen Climb to at least 1500 ft/s.
(8) SDES2500: Strengthen Descent to at least 2500 ft/s.
(9) SCL2500: Strengthen Climb to at least 2500 ft/s.

The advisories instruct the pilot to accelerate until the vertical climbrate of the ownship 
complies with the advisory. For some advisories, e.g. DND, the pilot can choose any accel-
eration in [ g

4
,
g

3
] , where g represents the gravitational constant 32.2 ft/s2 . In what follows, 

Table 1  Verification times for 
the L  properties �k

����
 and �k

����
 

for different values of k on the 
FrozENLakE scenario encoded as 
a NANES

Italicized cells indicate a False result, otherwise a True result. A 
hyphen ‘–’ represents a one hour timeout

k moNoLiThic comp-SEq comp-par

�k

����
�k

����
�k

����
�k

����
�k

����
�k

����

1 0.04 0.04 0.03 0.06 0.04 0.07
2 0.07 0.08 0.04 0.09 0.07 0.12
3 0.53 0.24 0.14 0.17 0.12 0.24
4 1.67 0.58 0.18 0.25 0.19 0.30
5 9.50 0.97 0.41 0.26 0.43 0.35
6 241.41 2.75 1.16 0.29 1.16 0.35
7 915.34 8.61 3.37 0.32 3.41 0.38
8 3476.08 8.70 10.33 0.35 10.30 0.42
9 – 5.29 32.50 0.36 32.68 0.46
10 – 30.97 111.22 0.38 112.87 0.46



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 28 of 36

with slight abuse of notation, we refer to advisories using both their human readable and 
the corresponding numeric notation.

We hereafter denote by [m] the set {1,… ,m} . Consider the set 
S���� = [−3000, 3000] × [−2500, 2500] × [0, 40] × [9] . A tuple (h, ḣ0, 𝜏, adv) ∈ S���� 
describes an ownship–intruder encounter, where: 

1) h (ft) is the intruder altitude relative to ownship.
2) ḣ0 (ft/s) is the ownship vertical climbrate.
2) � (s) is the time to loss of horizontal separation.
4) adv is the previous advisory issued by VerticalCAS.

Figure 8 illustrates the vertical geometry of the encounter, which is given by h and ḣ0 , and 
the time � until the ownship (black) and intruder (red) are no longer horizontally separated.

The VerticalCAS system is composed of nine ReLU-FFNNs 
F =

{(
fi ∶ ℝ

3 → ℝ
9
)
∶ i ∈ [9]

}
 , one for each advisory, with three inputs (h, ḣ0, 𝜏) , five 

fully-connected hidden layers of 20 units each, and nine outputs representing the score of 
each possible advisory.

7.2.1  NANES encoding and specification

We now formalise the VErTicaLcaS scenario as a NANES S���� = (Ag����,E����, I����) . We 
model VerticalCAS as the neural agent Ag���� = (Act����, prot����) with the set of actions 
Act���� = [9] and the protocol function producing an action corresponding to the highest-
scoring advisory formally defined as prot����(s) = argmax (�����(������(s), s)) , where for a 
state s = (h, ḣ0, 𝜏, adv) ∈ S����:

• 𝗌𝖾𝗅𝖾𝖼𝗍 ∶ S𝗏𝖼𝖺𝗌 → F selects the neural network corresponding to the previous advisory 
adv , ������(s) = fadv;

• 𝖺𝗉𝗉𝗅𝗒 ∶ F ×ℝ
4 → ℝ

9 computes the output of a neural network for a given state, 
�����(f , s) = f (h, ḣ0, 𝜏),

• argmax ∶ ℝ
9 → [9] returns the index of the score with highest value from a neural net-

work’s output.

Since each of the above functions and the ReLU-FFNNs are PWL, the composition prot is 
also PWL.

We model the ownship pilot’s non-deterministic behaviour in the environment of S���� , 
defined as E���� = (S����, tE����

) . Thus, the environment transition function tE����
 “chooses” an 

Fig. 8  VerticalCAS encounter geometry



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 29 of 36     6 

acceleration and determines the next state of the environment through the state transition 
dynamics.

The acceleration chosen by the pilot depends on the issued advisory adv′ and the current 
vertical climbrate ḣ0 of the ownship. We bound the number of possible successor states of 
tE����

 by 3, that is b = 3 , so the set of next possible accelerations is Accḣ0
adv�

= {ḧ
(1)

0
, ḧ

(2)

0
, ḧ

(3)

0
} 

defined as follows. If the current vertical climbrate ḣ0 of the ownship is compliant with 
the advisory, the pilot maintains a constant climbrate, i.e., ḧ(i)

0
= 0 for i ∈ [b] . Otherwise, 

the pilot chooses acceleration from the continuous interval defined for each advisory. We 
discretise the set of possible accelerations into b equally spaced cells, so for instance, 
Acc

ḣ0
DND

= {
g

4
,
7g

24
,
g

3
}.

Given the current state s ∈ S���� , the issued advisory adv� = prot����(s) , and the set of 
next possible accelerations Accḣ0

adv�
= {ḧ

(i)

0
∶ i ∈ [b]} , we define each of the transition func-

tions t1,… , tb for tE����
 as:

where �� = 1 and i ∈ [b] . Thus, each ti simulates a possible choice of acceleration by the 
pilot and computes the next state by taking into account the state transition dynamics.

The set I���� of initial states is defined as

where Ḣ0 = {−19.5 − 3k||k = 0,… , 8} ∪ {−39,−39.5,−40} the set of all initial climbrates. 
This is a potentially risky encounter with the intruder initially below the ownship, but with 
the ownship descending towards the intruder.

We are interested in checking whether by following the advisories issued by Vertical-
CAS and independently of the acceleration chosen by the pilot, the ownship can manage 
to stay outside of the unsafe region ( |h| ≤ 100 ), entering which may potentially lead to an 
NMAC for small values of � . So we consider the safety specifications

for various values of k. Recall that the term (1) represents the first component of the state s 
and so refers to h, the intruder altitude relative to ownship. Thus, the formula �k states that 
in every evolution of the system starting from every initial state in I���� after k time steps 
the absolute value of vertical separation is greater than 100 ft.

7.2.2  Implementation and experiments

Our implementation of VerticalCAS system aims to compute tightest possible bounds for 
all states and intermediate variables in an effort to produce efficient MILP encodings.

We implemented the agent as a combination of custom MILP constraints and of NN 
MILP encodings. Note that in the worst case we need to choose between 9 networks to 
compute the action (next advisory), requiring 9 additional binary variables (similarly 
to encoding EX) and the constraints for each of the 9 networks. We keep the number 
of MILP constraints as low as possible, by avoiding to include the encodings of the 
networks fadv for advisory values that lie outside of the current bounds of the (previous) 

ti

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣

h

ḣ0
𝜏
adv

⎤⎥⎥⎥⎦
, adv�

⎞⎟⎟⎟⎠
=

⎡⎢⎢⎢⎣

h − ḣ0𝛥𝜏 − 0.5ḧ
(i)

0
𝛥𝜏2

ḣ0 + ḧ
(i)

0
𝛥𝜏

𝜏 − 𝛥𝜏
adv�

⎤⎥⎥⎥⎦
,

[ − 133,−129] × Ḣ0 × {25} × {COC},

𝜑k = AXk ((1) > 100 ∨ (1) < −100)



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 30 of 36

advisory variable. For instance, if these bounds identify advisory as being COC (i.e., 
lower and upper bounds are 1), then only the encoding of f1 is included. This also ena-
bles computing tighter bounds for the new advisory.

The environment is implemented via a set of custom MILP constraints. Given a new 
advisory by the agent, we need to choose the acceleration depending on 9 possible val-
ues of the advisory. Again, we compute tight acceleration bounds by considering the 
bounds of the new advisory. In particular, when the latter are exact (i.e., the exact value 
of the advisory is known), the former are exact as well. Tight acceleration bounds allow 
for computing tight bounds for the next state, and so on.

We verified the VerticalCAS system S���� against the specifications �k for various 
values of k. The experiments showed that for high values of descent rate the ownship 
enters the unsafe region for a number of steps, eventually managing to recover. As the 
descent rate decreases, the time spent in the unsafe region decreases, until for the low-
est value of −19.5 where the ownship remains safe for the entire period. For instance, 
the trace produced by VENmaS for ḣ0 = −22.5 and k = 3 shows that the agent issues 
the advisory CL1500 at each time step, thereby causing the pilot to accelerate at g

4
ft/

s2 so as to climb to avoid collision with the intruder. The descent rate was not reduced 
quickly enough to avoid the unsafe state (h, ḣ0, 𝜏, adv) = (−97.725, 1.65, 22, CL1500) 
being reached by the third timestep.

Table  2 reports the performance of the tool in terms of time (in seconds) taken to 
resolve the specification �k for k ∈ {1,… , 10} with initial climbrates ḣ0 ∈ Ḣ0 for each of 
the execution modes. For all cases we use a fixed timeout of one hour. Here we see that the 
monolithic procedure is the most performant method, both for proving safety and for find-
ing counter-examples. We attribute this to the fact that, unlike in the FrozENLakE scenario, 
here it was possible to compute tight bounds for the state variables even after 10 time steps, 
resulting in tight MILP formulations whose (in)feasibility can be solved efficiently by a 
MILP solver. The compositional procedure was penalised as it had to construct an expo-
nential number of programs and analyse each of them for the configurations where the 
property was satisfied. As before, there is no difference between sequential and parallel 
executions when all created subproblems have been discarded early.

We have also identified several more challenging configurations that are likely to 
lie close to the boundary between the safe and unsafe initial positions, such as for 
ḣ0 ∈ {−39,−39.5,−40,−40.5} for k ∈ {9, 10} . Because of the uncertainty, the bounds 
become looser. As a result, not all problems are discarded during the compositional encod-
ing and the workers are assigned MILP problems; in this case the parallel execution is 
approximately twice as fast as the sequential execution. Instead, the monolithic procedure 
required more branch and bound iterations to find a feasible assignment or to rule out its 
existence. Among these initial states we also found few cases where compositional proce-
dure was more efficient than the monolithic one ( ḣ0 = −39 , k = 9 ; ḣ0 = −39.5 , k = 10 ; and 
ḣ0 = −40.5 , k = 9).

Lastly, we note that we used double-precision floating point numbers for representing 
real values. Gurobi, the back-end MILP solver that we used, uses a default tolerance of 
10−6 , representing the amount of numerical error allowed on a constraint while still con-
sidering it “satisfied”. We relied on Gurobi for dealing with any further numerical issues. 
Finally, note that the encoding here presented is more efficient than [3], which does not 
compute variable bounds for their MILP encoding.

In terms of comparisons, we are unable to present an evaluation with other tools 
because, as far as we are aware, no other tool supports branching models and CTL specifi-
cations as we do here.



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 31 of 36     6 

Ta
bl

e 
2 

 V
er

ifi
ca

tio
n 

tim
es

 fo
r a

 V
er

tic
al

CA
S 

sy
ste

m
 a

ga
in

st 
th

e 
pr

op
er

ty
 �

k
 fo

r d
iff

er
en

t v
al

ue
s o

f k
 a

nd
 ḣ

0

m
o
N
o
Li
Th

ic

ḣ
0

−
19

.5
−

22
.5

−
25

.5
−

28
.5

−
31

.5
−

34
.5

−
37

.5
−

39
.0

−
39

.5
−

40
.0

−
40

.5
−

43
.5

�
1

0.
05

0.
06

0.
04

0.
05

0.
04

0.
05

0.
05

0.
04

0.
04

0.
06

0.
05

0.
06

�
2

0.
10

0.
10

0.
12

0.
10

0.
10

0.
10

0.
11

0.
11

0.
10

0.
11

0.
10

0.
11

�
3

0.
12

0.
13

0.
13

0.
13

0.
13

0.
13

0.
13

0.
13

0.
14

0.
12

0.
13

0.
13

�
4

0.
14

0.
14

0.
15

0.
15

0.
15

0.
15

0.
15

0.
15

0.
15

0.
15

0.
16

0.
15

�
5

0.
16

0.
16

0.
19

0.
17

0.
18

0.
17

0.
17

0.
18

0.
18

0.
17

0.
18

0.
18

�
6

0.
18

0.
18

0.
18

0.
19

0.
20

0.
23

0.
20

0.
20

0.
20

0.
19

0.
19

0.
22

�
7

0.
19

0.
21

0.
19

0.
20

0.
19

0.
26

0.
25

0.
25

0.
24

0.
24

0.
28

0.
46

�
8

0.
22

0.
22

0.
25

0.
25

0.
22

0.
23

0.
39

0.
51

0.
50

0.
97

0.
99

1.
21

�
9

0.
27

0.
24

0.
45

0.
47

0.
23

0.
24

0.
75

22
7.

91
65

.4
2

12
2.

29
59

.2
8

8.
37

�
1
0

0.
48

0.
36

0.
62

1.
95

0.
26

0.
26

2.
66

67
.7

9
13

02
.1

2
17

61
.4

3
15

52
.4

8
–

c
o
m
p-
SE

q

ḣ
0

−
19

.5
−

22
.5

−
25

.5
−

28
.5

−
31

.5
−

34
.5

−
37

.5
−

39
.0

−
39

.5
−

40
.0

−
40

.5
−

43
.5

�
1

0.
04

0.
03

0.
04

0.
04

0.
04

0.
08

0.
08

0.
07

0.
08

0.
08

0.
08

0.
07

�
2

0.
10

0.
10

0.
23

0.
23

0.
23

0.
23

0.
22

0.
23

0.
22

0.
22

0.
23

0.
23

�
3

0.
13

0.
25

0.
25

0.
27

0.
25

0.
25

0.
25

0.
26

0.
25

0.
25

0.
27

0.
29

�
4

0.
26

0.
25

0.
28

0.
28

0.
28

0.
29

0.
29

0.
31

0.
28

0.
28

0.
29

0.
29

�
5

0.
58

0.
58

0.
58

0.
32

0.
33

0.
32

0.
32

0.
33

0.
32

0.
32

0.
32

0.
32

�
6

1.
63

1.
72

1.
64

1.
64

0.
37

0.
38

0.
37

0.
36

0.
35

0.
35

0.
38

0.
38

�
7

4.
76

4.
75

4.
76

4.
78

4.
75

0.
40

0.
38

0.
38

0.
38

0.
38

0.
38

0.
40

�
8

14
.6

7
14

.8
2

14
.7

3
14

.8
8

14
.7

0
14

.7
3

0.
45

0.
42

0.
44

0.
44

0.
42

0.
43

�
9

47
.5

1
47

.5
1

47
.3

6
48

.6
8

47
.4

4
47

.6
3

48
.0

0
17

0.
23

29
5.

32
46

3.
64

0.
50

0.
46

�
1
0

16
9.

57
16

9.
76

16
9.

93
16

9.
48

16
9.

24
16

9.
67

17
8.

62
98

7.
33

18
54

.9
7

31
83

.6
2

–
–

c
o
m
p-
pa

r

ḣ
0

−
19

.5
−

22
.5

−
25

.5
−

28
.5

−
31

.5
−

34
.5

−
37

.5
−

39
.0

−
39

.5
−

40
.0

−
40

.5
−

43
.5



 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 32 of 36

Ta
bl

e 
2 

 (c
on

tin
ue

d)

�
1

0.
05

0.
06

0.
05

0.
07

0.
06

0.
08

0.
08

0.
09

0.
09

0.
09

0.
10

0.
11

�
2

0.
12

0.
11

0.
29

0.
32

0.
32

0.
34

0.
31

0.
33

0.
30

0.
29

0.
31

0.
30

�
3

0.
15

0.
28

0.
31

0.
31

0.
34

0.
33

0.
31

0.
31

0.
29

0.
33

0.
39

0.
32

�
4

0.
27

0.
27

0.
35

0.
34

0.
41

0.
41

0.
35

0.
38

0.
36

0.
38

0.
39

0.
45

�
5

0.
60

0.
64

0.
60

0.
43

0.
34

0.
40

0.
36

0.
43

0.
38

0.
42

0.
47

0.
35

�
6

1.
67

1.
66

1.
67

1.
78

0.
48

0.
38

0.
41

0.
49

0.
43

0.
38

0.
40

0.
51

�
7

4.
84

4.
79

4.
73

4.
80

4.
80

0.
46

0.
51

0.
45

0.
53

0.
43

0.
41

0.
51

�
8

14
.7

1
14

.7
5

14
.8

3
14

.6
8

14
.7

6
14

.7
9

0.
48

0.
44

0.
45

0.
49

0.
46

0.
45

�
9

47
.8

1
47

.2
2

47
.4

5
47

.4
1

47
.3

2
47

.6
7

48
.5

0
97

.9
9

15
3.

44
25

5.
59

0.
47

0.
48

�
1
0

17
1.

53
17

1.
06

17
5.

13
17

1.
55

17
0.

89
17

2.
91

18
0.

81
56

3.
37

11
09

.4
2

21
67

.4
4

34
35

.2
9

–

Ita
lic

iz
ed

 c
el

ls
 in

di
ca

te
 a

 F
a
l
s
e

 re
su

lt,
 o

th
er

w
is

e 
a 
T
r
u
e

 re
su

lt.
 W

e 
us

e 
da

sh
es

 ‘–
’ t

o 
in

di
ca

te
 a

 o
ne

 h
ou

r t
im

eo
ut



Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 33 of 36     6 

8  Conclusions

As we argued in Sect.  1, forthcoming autonomous systems will make greater use of 
machine learning methods; therefore there is an urgent need to develop techniques aimed 
at providing guarantees on the resulting behaviour of such systems. While the benefits of 
formal methods have long been recognised, and they have found large adoption in safety-
critical systems as well as in industrial-scale software, there have been few efforts to intro-
duce verification techniques for systems driven by neural networks.

In this paper we defined a system composed of a neural agent driven by deep feed-
forward neural networks interacting with a non-deterministic environment. The resulting 
system displays branching evolutions. We defined and studied the resulting verification 
problem. While the problem is undecidable for full reachability, we isolated a fragment of 
the temporal language and showed that its corresponding verification problem is in coN-
ExpTimE. We developed and reported on a toolkit which includes a novel parallel algorithm 
to verify temporal properties of the complex environment defined in the VerticalCAS sce-
nario. As demonstrated, while the parallel algorithm remains complete, it offers consid-
erable advantages over its sequential counterpart when searching for counterexamples to 
bounded safety specifications in concrete examples.

In future work we plan to tackle scalability issues by developing alternative encodings 
to the ones here presented.

Acknowledgements This work was partly funded by DARPA under the Assured Autonomy programme 
(FA8750-18-C-0095). Alessio Lomuscio is supported by a Royal Academy of Engineering Chair in Emerg-
ing Technologies.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Akintunde, M., Botoeva, E., Kouvaros, P., & Lomuscio, A. (2020). Formal verification of neural agents 
in non-deterministic environments. In Proceedings of the 19th international conference on autono-
mous agents and multi-agent systems (AAMAS20) (pp. 25–33). IFAAMAS.

 2. Akintunde, M., Kevorchian, A., Lomuscio, A., & Pirovano, E. (2019). Verification of RNN-based neu-
ral agent-environment systems. In Proceedings of the 33rd AAAI conference on artificial intelligence 
(AAAI19) (pp. 6006–6013). AAAI Press.

 3. Akintunde, M., Lomuscio, A., Maganti, L., & Pirovano, E. (2018). Reachability analysis for neural 
agent-environment systems. In Proceedings of the 16th international conference on principles of 
knowledge representation and reasoning (KR18) (pp. 184–193). AAAI Press.

 4. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., & Vielma, J. (2020). Strong mixed-integer 
programming formulations for trained neural networks. Mathematical Programming pp. 1–37.

 5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., & Criminisi, A. (2016). Meas-
uring neural net robustness with constraints. In Proceedings of the 30th international conference on 
neural information processing systems (NIPS16) (pp. 2613–2621).

http://creativecommons.org/licenses/by/4.0/


 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 34 of 36

 6. Battern, B., Kouvaros, P., Lomuscio, A., & Y. Zheng. (2021). Efficient neural network verification via 
layer-based semidefinite relaxations and linear cuts. In Proceedings of the 30th international joint con-
ference on artificial intelligence (IJCAI21). To Appear. ijcai.org.

 7. Biere, A., Cimatti, A., Clarke, E., Strichman, O., & Zhu, Y. (2003). Bounded model checking. In 
Highly dependable software. Advances in computers (Vol. 58). Academic Press. Pre-print.

 8. Bordini, R., Fisher, M., Visser, W., & Wooldridge, M. (2006). Verifying multi-agent programs by 
model checking. Autonomous Agents and Multi-Agent Systems, 12(2), 239–256.

 9. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., & Misener, R. (2020). Efficient verification 
of neural networks via dependency analysis. In Proceedings of the 34th AAAI conference on artificial 
intelligence (AAAI20) (pp. 3291–3299). AAAI Press.

 10. Bunel, R., Lu, J., Turkaslan, I., Kohli, P., Torr, P., & Mudigonda, P. (2020). Branch and bound for 
piecewise linear neural network verification. Journal of Machine Learning Research, 21(42), 1–39.

 11. Cheng, C., Nührenberg, G., & Ruess, H. (2017). Maximum resilience of artificial neural networks. 
In International symposium on automated technology for verification and analysis (ATVA17) (pp. 
251–268). Springer.

 12. Clarke, E., Biere, A., Raimi, R., & Zhu, Y. (2001). Bounded model checking using satisfiability 
solving. Formal Methods in System Design, 19(1), 7–34.

 13. Clarke, E., Grumberg, O., & Peled, D. (1999). Model checking. The MIT Press.
 14. Doan, T., Yao, Y., Alechina, N., & Logan, B. (2014). Verifying heterogeneous multi-agent pro-

grams. In Proceedings of the 13th international conference on autonomous agents and multi-agent 
systems (AAMAS14) (pp. 149–156).

 15. Dutta, S., Chen, X., & Sankaranarayanan, S. (2019). Reachability analysis for neural feedback sys-
tems using regressive polynomial rule inference. In Proceedings of the 22nd ACM international 
conference on hybrid systems: Computation and control (HSCC19) (pp. 157–168). ACM.

 16. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., & Kohli, P. (2018). A dual approach to scalable 
verification of deep networks. arXiv preprint arXiv: 1803. 06567.

 17. Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural networks. In Pro-
ceedings of the 15th international symposium on automated technology for verification and analy-
sis (ATVA17). Lecture notes in computer science (Vol. 10482, pp. 269–286). Springer.

 18. Emerson, E., Mok, A., Sistla, A., & Srinivasan, J. (1992). Quantitative temporal reasoning. Real-
Time Systems, 4(4), 331–352.

 19. Fagin, R., Halpern, J., Moses, Y., & Vardi, M. (1995). Reasoning about knowledge. MIT Press.
 20. Gammie, P., & van der Meyden, R. (2004). MCK: Model checking the logic of knowledge. In Pro-

ceedings of 16th international conference on computer aided verification (CAV04). Lecture notes in 
computer science (Vol. 3114, pp. 479–483). Springer.

 21. Goodfellow, A., Bengio, Y., & Courville, A. (2016). Deep learning (Vol. 1). Cambridge: MIT 
press.

 22. Griva, I., Nash, S., & Sofer, A. (2009). Linear and nonlinear optimization (Vol. 108). Siam.
 23. Gu, Z., Rothberg, E., & Bixby, R. (2020). Gurobi optimizer reference manual. http:// www. gurobi. com
 24. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2019). A survey 

of methods for explaining black box models. ACM Computing Surveys, 51(5), 93:1-93:42.
 25. Haykin, S. (1999). Neural networks: A comprehensive foundation. Prentice Hall.
 26. Henriksen, P., & Lomuscio, A. (2020). Efficient neural network verification via adaptive refinement 

and adversarial search. In Proceedings of the 24th European conference on artificial intelligence 
(ECAI20) (pp. 2513–2520). IOS Press.

 27. Henriksen, P., & Lomuscio, A. (2021). DEEPSPLIT: An efficient splitting method for neural net-
work verification via indirect effect analysis. In Proceedings of the 30th international joint confer-
ence on artificial intelligence (IJCAI21). To Appear. ijcai.org.

 28. Huang, C., Fan, J., Li, W., Chen, X., & Zhu, Q. (2019). ReachNN: Reachability analysis of neural-
network controlled systems. ACM Transactions on Embedded Computing Systems (TECS), 18(106), 
1–22.

 29. Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M., & Yi, X. (2020). A sur-
vey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack 
and defence, and interpretability. Computer Science Reviews, 37, 100270.

 30. Hunt, K., Sbarbaro, D., Zbikowski, R., & Gawthrop, P. (1992). Neural networks for control sys-
tems: A survey. Automatica, 28(6), 1083–1112.

 31. Ivanov, R., Weimer, J., Alur, R., Pappas, G., & Lee, I. (2019). Verisig: Verifying safety properties 
of hybrid systems with neural network controllers. In Proceedings of the 22nd ACM international 
conference on hybrid systems: Computation and control (HSCC19) (pp. 169–178).

http://arxiv.org/abs/1803.06567
http://www.gurobi.com


Autonomous Agents and Multi-Agent Systems            (2022) 36:6  

1 3

Page 35 of 36     6 

 32. Julian, K., & Kochenderfer, M. (2019). A reachability method for verifying dynamical systems with 
deep neural network controllers. arXiv preprint arXiv: 1903. 00520.

 33. Julian, K., Lopez, J., Brush, J., Owen, M., & Kochenderfer, M. (2016). Policy compression for 
aircraft collision avoidance systems. In Proceedings of the 35th digital avionics systems conference 
(DASC16) (pp. 1–10).

 34. Katz, G., Barrett, C., Dill, D., Julian, K., & Kochenderfer, M. (2017). Reluplex: An efficient SMT 
solver for verifying deep neural networks. In Proceedings of the 29th international conference on 
computer aided verification (CAV17). Lecture notes in computer science (Vol. 10426, pp. 97–117). 
Springer.

 35. Kouvaros, P., & Lomuscio, A. (2016). Parameterised verification for multi-agent systems. Artificial 
Intelligence, 234, 152–189.

 36. Kouvaros, P., & Lomuscio, A. (2018). Formal verification of cnn-based perception systems. arXiv pre-
print arXiv: 1811. 11373.

 37. Kouvaros, P., & Lomuscio, A. (2021). Towards scalable complete verification of relu neural networks 
via dependency-based branching. In Proceedings of the 30th international joint conference on artifi-
cial intelligence (IJCAI21). To Appear. ijcai.org.

 38. Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional 
neural networks. In Proceedings of the 25th international conference on neural information processing 
systems (NIPS12) (pp. 1097–1105). Curran Associates, Inc.

 39. Liu, C., Arnon, T., Lazaru, C., Barrett, C., & Kochenderfer, M. (2019). Algorithms for verifying deep 
neural networks. arXiv preprint arXiv: 1903. 06758.

 40. Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward relu neural 
networks. arXiv: 1706. 07351.

 41. Lomuscio, A., Qu, H., & Raimondi, F. (2017). MCMAS: A model checker for the verification of multi-
agent systems. Software Tools for Technology Transfer, 19(1), 9–30.

 42. Maes, P. (1993). Modeling adaptive autonomous agents. Artificial Life, 1(1–2), 135–162.
 43. Nair, V., & Hinton, G. (2010). Rectified linear units improve restricted Boltzmann machines. In 

Proceedings of the 27th international conference on machine learning (ICML10) (pp. 807–814). 
Omnipress.

 44. Narodytska, N. (2018). Formal analysis of deep binarized neural networks. In Proceedings of the 27th 
international joint conference on artificial intelligence, (IJCAI18) (pp. 5692–5696).

 45. OpenAI: Frozenlake-v0. https:// gym. openai. com/ envs/ Froze nLake- v0/ (2019).
 46. Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial optimization: Algorithms and omplexity. 

Prentice-Hall Inc.
 47. Penczek, W., & Lomuscio, A. (2003). Verifying epistemic properties of multi-agent systems via 

bounded model checking. Fundamenta Informaticae, 55(2), 167–185.
 48. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time 

object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition 
(CVPR16) (pp. 779–788).

 49. Siegelmann, H., & Sontag, E. (1995). On the computational power of neural nets. Journal of Computer 
and System Sciences, 50(1), 132–150.

 50. Singh, G., Gehr, T., Püschel, M., & Vechev, P. (2019). An abstract domain for certifying neural net-
works. In ACM on programming languages (Vol. 3, pp. 1–30). ACM Press.

 51. Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. MIT Press.
 52. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2014). 

Intriguing properties of neural networks. In Proceedings of the 2nd international conference on learn-
ing representations (ICLR14).

 53. Tjeng, V., Xiao, K., & Tedrake, R. (2019). Evaluating robustness of neural networks with mixed inte-
ger programming. In Proceedings of the 7th international conference on learning representations 
(ICLR19).

 54. VENMAS: VErification of Neural Multi-Agent Systems. https:// vas. doc. ic. ac. uk/ softw are/ neural 
(2020).

 55. Wang, S., Pei, K., Whitehouse, J., Yang, J., & Jana, S. (2018). Efficient formal safety analysis of neural 
networks. In Advances in neural information processing systems (NeurIPS18) (pp. 6367–6377).

 56. Winston, W. (1987). Operations research: Applications and algorithms. Duxbury Press.
 57. Xiang, W., H., Rosenfeld, J., & Johnson, T. (2018). Reachable set estimation and safety verification for 

piecewise linear systems with neural network controllers. In 2018 Annual American control conference 
(ACC) (pp. 1574–1579). AACC.

http://arxiv.org/abs/1903.00520
http://arxiv.org/abs/1811.11373
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1706.07351
https://gym.openai.com/envs/FrozenLake-v0/
https://vas.doc.ic.ac.uk/software/neural


 Autonomous Agents and Multi-Agent Systems            (2022) 36:6 

1 3

    6  Page 36 of 36

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


