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ABSTRACT

A binary state on a graph means an assignment of binary values to its vertices. A time dependent13

sequence of binary states is referred to as binary dynamics. We describe a method for the classification of14

binary dynamics of digraphs, using particular choices of closed neighbourhoods. Our motivation and15

application comes from neuroscience, where a directed graph is an abstraction of neurons and their16

connections, and where the simplification of large amounts of data is key to any computation. We present17

a topological/graph theoretic method for extracting information out of binary dynamics on a graph, based18

on a selection of a relatively small number of vertices and their neighbourhoods. We consider existing19

and introduce new real-valued functions on closed neighbourhoods, comparing them by their ability to20

accurately classify different binary dynamics. We describe a classification algorithm that uses two21
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parameters and sets up a machine learning pipeline. We demonstrate the effectiveness of the method on22

simulated activity on a digital reconstruction of cortical tissue of a rat, and on a non-biological random23

graph with similar density.24

AUTHOR SUMMARY

We explore the mathematical concept of a closed neighbourhood in a digraph in relation to classifying25

binary dynamics on a digraph, with particular emphasis on dynamics on a neuronal network. Using26

methodology based on selecting neighbourhoods and vectorising them by combinatorial and topological27

parameters, we experimented with a dataset implemented on the Blue Brain Project reconstruction of a28

neocortical column, and on an artificial neural network with random underlying graph implemented on29

NEST simulator. In both cases the outcome was run through a support vector machine algorithm30

reaching classification accuracy of up to 88% for the Blue Brain Project data and up to 81% for the NEST31

data. This work is open to generalisation to other type of networks and the dynamics on them.32

INTRODUCTION

A binary state on a graph means an assignment of binary values to its vertices. A motivating example in33

this article appears in the context of neuroscience. If one encodes the connectivity of a neuronal network34

as a directed graph, then the spikes produced by the neurons at an instant of time is a binary state on the35

encoding graph. Allowing time to vary and recording the spiking patterns of the neurons in the network36

produces an example of a binary dynamics on the encoding graph, namely a one-parameter family of37

binary states on its vertices. A network of neurons that receives external signals and responds to those38

signals thus generates a binary dynamics. Binary dynamics appear in other contexts as well Gleeson39

(2008); Samuelsson and Socolar (2006), but in this paper we use networks of spiking neurons as a40

primary example.41

The signal classification problem, i.e., the task of correctly pairing a signal injected into a neuronal42

network with the response of the network, or in other words, identifying the incoming signal from the43

response, is generally very challenging. This paper proposes a methodology by which this task can be44

approached and provides scenarios in which this methodology is successful.45
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Considering raw binary states on a large graph is generally quite problematic for a number of reasons.46

First, the sheer number of theoretically possible states makes analysing a collection of them a daunting47

task Churchland and Abbott (2016); Fan and Markram (2019). Moreover, natural systems such as48

neuronal networks tend to be very noisy, in the sense that the emerging dynamics from the same stimulus49

may take a rather large variety of forms Cunningham and Yu (2014); Stein, Gossen, and Jones (2005).50

Finally, it is a general working hypothesis in studying network dynamics that the network structure51

affects its function Bargmann and E.Marder (2013); Chambers and MacLean (2016); Curto and Morrison52

(2019); Rubinov and Sporns (2010). This paradigm in neuroscience is often encapsulated by the slogan53

“neurons that fire together tend to wire together”. Hence, when studying dynamics on a neuronal54

network, it makes sense to examine assemblies of vertices, or subgraphs, and the way in which they55

behave as dynamical sub-units, instead of considering individual vertices in the network Babichev, Ji,56

Mémoli, and Dabaghian (2016); Curto and Itskov (2008); Milo et al. (2002).57

In previous studies we considered cliques in a directed graph, with various orientations of the58

connections between nodes, as basic units from which one could extract information about binary59

dynamics Govc, Levi, and Smith (2021); M. W. Reimann et al. (2017). However, the results in these60

papers fell short of suggesting an efficient classifier of binary dynamics (Govc et al., 2021, Sections61

4.1-4.2). Indeed, when we applied the methods of Govc et al. (2021); M. W. Reimann et al. (2017) to the62

main dataset used in this paper, we obtained unsatisfactory classification accuracy. This suggests that in a63

graph that models a natural system cliques may be too small to carry the amount of information required64

for classification of a noisy signal. This motivates us to build our classification strategy on neuron65

assemblies, where the richer structure serves a dual purpose of amalgamating dynamical information and66

regulating the noise inherent in single neurons or cliques.67

The guiding hypothesis of this paper is that a collection of vertex assemblies, forming a subgraph of68

the ambient connectivity graph encoding a network, can be used in classification of binary dynamics on69

the network. A network of spiking neurons is our primary example. Taking this hypothesis as a guideline,70

we introduce a very flexible feature generation methodology that takes as input binary dynamics on a71

digraph G induced on a preselected collection of subgraphs of G, and turns it into a feature vector, which72

can then be used in machine learning classification. The neighbourhood of a vertex v in the graph G,73

namely the subgraph of G that is induced by v and all its neighbours in G, suggests itself naturally as a74
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type of subgraph to be considered in this procedure, and is a central object of study in this paper. Vertex75

neighbourhoods have been studied extensively in graph theory and its applications Kartun-Giles and76

Bianconi (2019). An outline is given below and a full description in Methods.77

The way we apply the method can be summarised as follows. Given a directed graph G we use a78

variety of real valued vertex functions that we refer to as selection parameters and are derived from the79

neighbourhood of each vertex, to create a sorted list of the vertices. With respect to each such parameter,80

we pick the “top performing” vertices and select their neighbourhoods. To that collection of subgraphs81

we apply our feature generation method, which is based again on applying the same parameters to the82

selected neighbourhoods, now in the role of feature parameters. All the parameters we use are invariant83

under isomorphism of directed graphs, i.e. graph properties that remain unchanged when the vertices are84

permuted while leaving their connectivity intact. Therefore we occasionally refer to certain parameters as85

“graph invariants”.86

The choice of parameters is related to measures of network connectivity and architecture. For instance,87

the parameters fcc and tcc (see Table 1) are examples of measures of functional segregation Rubinov and88

Sporns (2010). The parameters we refer to as spectral parameters arise in spectral graph theory Chung89

(2005) and are prevalent in many applications, including in neuroscience. For instance, the paper de90

Lange, de Reus, and van den Heuvel (2014) studies the Laplacian spectrum of the macroscopic91

anatomical neural networks of macaques and cats, and the microscopic network of the C-elegans. The92

topological parameters, such as the Euler characteristic ec and Betti numbers are classical topological93

invariants. In M. W. Reimann et al. (2017) these were used in various ways to extract information on94

structure and function and their interaction in the Blue Brain Project reconstruction on the neocortical95

column. The parameter size is a natural parameter associated to any graph and is closely related to firing96

rate in neuroscience. However, most of the parameters we tested were never examined in a97

neuroscientific context. Our aim was to investigate which parameters may prove useful in classification98

of binary dynamics without making any assumptions about their relevance. It is exactly this approach99

that allowed us to discover that certain spectral parameters perform strongly as selection parameters,100

while others do not. At the same time a newly introduced topological parameter, “normalised Betti101

coefficient” nbc shows strong performance as a feature parameter when tested on neighbourhoods with102

low selection parameter values, but not on high selection values.103
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The primary test of our methods in this paper is done on data generated by the Blue Brain Project that104

was also used in M. Reimann et al. (2021) for signal classification by established neuroscience105

methodology. The data consists of eight families of neuronal stimuli that are injected in a random106

sequence to the digital reconstruction of the neocortical column of a young rat. This reconstructed107

microcircuit consists of approximately 31,000 neurons and 8,000,000 synaptic connections, and is108

capable of receiving neuronal signals and responding to them in a biologically accurate manner Markram109

et al. (2015). We used 60% of the data to train a support vector machine, and the remaining 40% for110

classification. With our methods we are able to achieve classification accuracy of up to 88%.111

In this paper we did not attempt to explain the relevance of any of the mathematical concepts we use to112

neuroscience, as our main aim was to discover and investigate the utility of various concepts. However, in113

M. Reimann et al. (2021) the same dataset is studied by standard techniques of computational114

neuroscience combined with the ideas presented in this paper. In particular, it is shown that an informed115

choice of neighbourhood improves classification accuracy when compared to traditional methods.116

Interestingly, selection of neighbourhoods that improved performance with the technique presented in117

M. Reimann et al. (2021) show reduced performance with the techniques presented in this article, and118

vice versa. In both projects a classification accuracy of nearly 90% was achievable, but with different119

selection parameters (see Results). This suggests that considering vertex neighbourhoods as120

computational units can be beneficial in more than one way.121

To further test our methods in different settings, we used the NEST - Neural Simulation Tool Jordan et122

al. (2019) to generate neuronal networks. This software package simulates network models of spiking123

neurons using simplified neuron models to allow more flexibility and faster processing speed. We created124

a collection of eight families of stimuli, but on random graphs with varying densities, and applied our125

machinery to that dataset. Here again we obtained classification accuracy of up to 81%.126

Important work on (open) vertex neighbourhoods was reported recently in Kartun-Giles and Bianconi127

(2019). Our approach is independent of this work and is different from it in a number of ways. Most128

significantly, we do not study the structure of the entire graph and its dynamical properties by means of129

its full neighbourhood structure. Instead, we aim to infer dynamical properties of the graph from a130

relatively small collection of vertices, selected by certain graph theoretic and topological properties, and131

their neighbourhoods.132
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High resolution figures and supplementary material is available at the Aberdeen Neurotopology Group133

webpage. In particular, we included a comprehensive visualization of spectral graph invariants of the134

Blue Brain Project graph, as well as other types of stochastically generated graphs, animations of some of135

the background work for this project, and a list of links to software implementing the methodology136

described in this paper.137

RESULTS

We start with a brief description of the mathematical formalism used in this article and our approach to138

classification tasks. This is intended to make the section accessible to readers without a strong139

mathematical background. We then proceed by describing our main data source and the setup and140

implementation of our experiments. Following this preparation we present our results, validation141

experiments, and an application of the same techniques in a different setup.142

A brief introduction to the mathematical formalism143

In this article a digraph will always mean a finite collection of vertices (nodes) V and a finite collection144

of oriented edges (arcs) E. Reciprocal edges between a pair of vertices are allowed, but multiple edges in145

the same orientation between a fixed pair of vertices and self-loops are not allowed.146

The fundamental mathematical concept essential for our discussion is that of the neighbourhood of a147

vertex in a digraph; Figure 1. Let G be a digraph, and let v0 be any vertex in G. The neighbours of v0 in G148

are all vertices that are “one step away” from v0, in either direction. The neighbourhood of v0 in G is the149

subgraph of G induced by v0 and all its neighbours, which we denote by NG(v0). The vertex v0 is referred150

to as the centre of its neighbourhood.151

Numerical invariants of digraphs can be found in pure and applied graph theory literature, many of152

those found their uses in theoretical neuroscience (see Rubinov and Sporns (2010) for a good survey).153

Some such invariants are used in this article, and a few are introduced here for the first time (e.g.154

transitive clustering coefficient). Other parameters we used are defined by using topological155

constructions that arise from digraphs. Such constructions are typically invariant under digraph156

isomorphism. Standard tools of algebraic topology can then be used to extract numerical invariants of157

graphs in ways that take emerging higher dimensional structure into account.158

–6–

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn_a_00228/1982663/netn_a_00228.pdf by guest on 21 January 2022

https://homepages.abdn.ac.uk/neurotopology/neighbourhoods


== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Neighbourhood in Dynamic Digraphs

Authors: Author Names

Figure 1. A neighbourhood in a digraph, marked in red, with its centre marked solid colour.

There are many ways in which one can associate a topological space with a digraph. In this article we159

use the directed flag complex. It is a topological space made out of gluing together simplices in different160

dimensions, starting at 0-simplices (points), 1-simplices (edges), 2-simplices (triangles), 3-simplices161

(tetrahedra) etc. The n-simplices in a directed flag complex associated to a digraph are its directed162

(n+ 1)-cliques, namely the ordered subsets of vertices {v0, v1, ..., vn}, such that there is an edge from vi163

to vj for all i < j. Figure 2 shows the directed flag complex associated to a small digraph. The directed164

flag complex was introduced and used for topologically analysing structural and functional properties of165

the Blue Brain Project reconstruction of the neocortical columns of a rat M. W. Reimann et al. (2017).166

The interested reader may find a comprehensive survey of directed flag complexes and other topological167

concepts in the Materials and Methods section of that paper. If v0 is a vertex in G, we denote by TrG(v0)168

the directed flag complex of NG(v0).169

a

b

c

d

e

f

g

h
(c, a), (d, b), (f, h),

(g, e), (a, b, c),

(c, d, e, f)

Figure 2. A digraph (left), the associated directed flag complex as a topological space (centre), and its

maximal cliques of (right).

The classification method170
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We now describe briefly our approach to classification of binary dynamics. For a precise mathematical171

definition of what we mean by binary dynamics see Methods. The task at hand can be described as172

follows. We are given a large set of instantiations of binary dynamics on a fixed digraph G, each of which173

is labelled by a symbol from some relatively small set. The label of each binary dynamic is unique and174

known. The aim is to produce a machine learning compatible topological summary for each binary175

dynamics, so that when the summaries are introduced in a random order, one can train on part of the data176

with known labels and predict the unknown labels of the remaining part.177

Abbreviation Short description

fcc Clustering coefficient (Fagiolo)

tcc Transitive clustering coefficient

ec Euler characteristic

nbc Normalised Betti coefficient

size Number of vertices in the graph

asg Adjacency spectral gap

asr Adjacency spectral radius

blsg Bauer Laplacian spectral gap

blsr Bauer Laplacian spectral radius

clsg Chung Laplacian spectral gap

clsr Chung Laplacian spectral radius

tpsg Transition probability spectral gap

tpsr Transition probability spectral radius

Table 1. A partial list of the selection and feature parameters examined in this project. See

Supplementary Material for additional parameters.

The first step is selection of neighbourhoods. For each vertex v in the digraph G we consider its178

neighbourhood NG(v) and the associated directed flag complex TrG(v). We then compute a variety of179

numerical graph parameters of NG(v) and topological parameters of TrG(v). These parameters are used180

to create a ranked list of vertices in G. We then select for each parameter 50 vertices that obtained the top181
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(or bottom) values with respect to that parameter. We now have a set of 50 neighbourhoods182

corresponding to each parameter. A parameter that is used in this step is referred to as a selection183

parameter, and we denote it by P . A short summary of the main parameters we used with their184

abbreviations is in Table 1. A detailed description of the parameters is given in Methods.185

In the second step we introduce binary dynamics in G. Each instantiation of the dynamics consists of186

several consecutive time bins (in our experiments we used two, but there is no limitation). For each time187

bin we consider the neurons that were active and the subgraph that they induce in each of the188

neighbourhoods we preselected. This gives us, for each selection parameter and each time bin, a set of 50189

subgraphs that correspond to a particular instantiation of binary dynamics on G.190

The third step is vectorising the data, i.e., a computation of the same graph parameters and topological191

parameters for each of the subgraphs resulting from the second step. When we use our parameters in the192

vectorisation process they are referred to as feature parameters, and are denoted by Q. This now gives a193

vector corresponding to each instantiation of the dynamics, and the pair (P,Q) of selection and feature194

parameters.195

The fourth and final step is injecting the data into a support vector machine. In this project we used196

60% of the data for training and the remaining for testing. See Figure 3 for a schematic summary of the197

process.198

subgraph extraction

bin 1 bin 2

numerical featurisation

87%train test

82%train test

83%train test

79%train test

88%train test

cross-validated machine learning

84%

accuracy

Figure 3. A schematic description of the vector summary and classification pipeline.

We note that the method described here is an example of a much more general methodology that is199

described in detail in the Methods section of this article. In particular, the graph and topological200

parameters that we chose to work with are selected from within the abundance of mathematical concepts201
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that arise in graph theory, combinatorics and topology. We do not attempt in this article to associate a202

neuro-scientific meaning to these parameters.203

The data204

Our main source of data is a simulation that was run on a Blue Brain Project reconstruction of the205

microcircuitry of the somatosensory cortex in the brain of a rat Markram et al. (2015). From this model206

we extract the connectivity of the microcircuit in the form of a digraph whose vertices correspond to207

neurons, and with an edge from v to u if there is a synaptic connection from the neuron corresponding to208

v to the one corresponding to u. We denote the Blue Brain Project digraph by G. The digraph consists of209

31,346 vertices and 7,803,528 edges. The connectivity matrix of this specific circuit, as well as 41 other210

instantiations of the reconstruction, is accessible on the Digital Reconstruction of Neocortical211

Microcircuitry.212

The binary dynamics we experimented with consists of eight stimuli families labelled 0-7. For each213

stimulus a random subset (10%) of afferent neurons is activated. The stimuli differ with respect to which214

subset of afferent neurons is activated, where afferents can be shared between stimuli. The probability of215

a given afferent being associated with two given stimuli is 1%. In each stimulation time window one and216

only one stimulus is presented. The stimuli were injected into the circuit in a random sequence of 200217

milliseconds per stimulus, and 557 repeats for each stimulus label. The dataset thus consists of 4456218

binary dynamics functions. The task is to determine the label of that stimulus, i.e. the expected output is219

an integer from 0 to 7. Thus, the chance level performance would be 12.5%. More detail on the source of220

data, biological analysis and an alternative approach to classification of the same data is in M. Reimann et221

al. (2021).222

Setup223

We computed all the graph parameters listed in Table 1, as well as additional parameters listed in224

Supplementary Material, for all neighbourhoods in the digraph (see Supplementary Material - Data and225

Code, for a brief description of computational methods and links to software). We fixed a positive integer226

M , and for each selection parameter P we selected the vertices v1, v2, . . . , vM , whose neighbourhoods227

NG(v1), . . . , NG(vM) obtained the top (or bottom) M values of the parameter P (see Step II) in228
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Methods). We experimented with M = 20, 50, 100 and 200. Here we report on the results we obtained229

for M = 50, which provided the highest classification accuracy. For M = 20 performance was strong as230

well, but for M = 100 and 200 the improvement compared to M = 50 was relatively minor, and not231

worth the additional time and computation needed.232

Vector summaries233

Each binary dynamics in our dataset has time parameter t between 0 and 200 milliseconds. The234

subinterval [0, 60] is where almost all the spiking activity is concentrated across the interval.235

Furthermore, the bulk of the stimulus is injected in the first 10ms. Since we aimed to classify the236

response to the stimulus rather than the stimulus itself, we chose ∆ = [10, 60] and divided that interval237

into two 25ms subintervals, as experimentation showed that these choices provide the highest238

classification accuracy (see Step I) in Methods).239

We denote each instantiation of binary dynamics on G by Bn, for n = 1, . . . , 4456. Each instantiation240

consists of two binary states Bn
1 , B

n
2 , corresponding to the neurons that fired in each of the 25ms241

subintervals. For each selection parameter P , and each of the corresponding neighbourhoods NG(vm),242

m = 1, . . . , 50, we computed the subgraphs Nm,k of NG(vm) induced by the binary state Bn
k , that is, the243

subgraph induced by the neurons that fired in the given interval. This gave us, for each binary dynamics244

Bn and each graph parameter P , a 2× 50 matrix UP
n of subgraphs of G, whose (m, k) entry is Nn

m,k. (see245

Step II) in Methods).246

Finally, for each graph parameter Q (from the same list of parameters) we applied Q to the entries of247

the matrix UP
n to obtain a numerical feature matrix UP,Q

n corresponding to the binary dynamics function248

Bn, the selection parameter P , and the feature parameter Q. The matrix UP,Q
n is a vector summary of the249

binary dynamics Bn. (see Step III) in Methods).250

Classification251

For each pair of graph parameters (P,Q) the vector summaries {UP,Q
n } were fed into a support vector252

machine (SVM) algorithm. Our classification pipeline was implemented in Python using the253

scikit-learn package and the SVC implementation therein. The SVC was initialised with default254

settings and we used a 60/40 train/test split. The kernel used was Radial Basis function. We used255
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one-versus-one approach for multiclass classification. For cross-validation we used standard 5-fold256

cross-validation in scikit-learn. The results are presented in Figure 4.257

Figure 4. Results of 8 stimuli classification experiments. Range of cross-validated accuracy is indicated

by four smaller squares in each square. Left: Classification accuracy selecting the 50 neighbourhoods

with highest parameter value. Right: Classification accuracy selecting the 50 neighbourhoods with lowest

parameter value. Compare with Figure 17.

For each of the selection parameters we tested, we considered both the neighbourhoods that obtained258

the top 50 values and those that obtained the bottom 50 values. In all the experiments, four parameters259

gave markedly better performance when used as feature parameters than all other parameters: Euler260

characteristic (ec), normalised Betti coefficient (nbc), size and Bauer Laplacian spectral radius (blsr). All261

four perform significantly better than other feature parameters when the neighbourhoods were selected262

by bottom value parameters. With respect to top value selection parameters, ec and size, performed well,263

while nbc and blsr were significantly weaker as feature parameters, except when coupled with Chung264

Laplacian spectral gap (clsg). The neighbourhoods selected by top values of selection parameters gave265

best results when the selection parameter was one of the spectral graph invariants, while selecting by266

bottom value of selection parameters, the two types of clustering coefficients (cc and tcc) and Euler267

characteristic (ec) performed best.268
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Interestingly, the two best performing feature parameters, Euler characteristic and size, gave good269

results across all selection parameters, and performed almost equally well, regardless of whether the270

neighbourhoods were selected by top or bottom selection parameter value. This suggests that, at least in271

this particular network, the choice of feature parameter plays a much more important role in classification272

accuracy than any specific selection parameter. On the other hand, examining the rows of the best273

performing feature parameters, in Figure 4, we see a difference of up to 27% (top ec), 40% (top nbc) and274

18% (top size) in classification accuracy, depending on which selection parameter is used, suggesting275

that, within a fixed choice of a feature parameter, the selection parameter may play an important role in276

the capability of the respective neighbourhoods to encode binary dynamics. Note that randomly277

classifying the 8 stimuli gives an accuracy of 12.5%.278

Validation279

In order to validate our methods, we created five experiments, the results of which we then compared to a280

subset of the original tests. In each case we retrained the SVM algorithm and then retested.281

A motivating idea in neuroscience in general, and in this work in particular, is that structure is strongly282

related to function. Our approach, using neighbourhoods sorted by graph parameters and using the same283

graph parameters as feature parameters is proposed in this article as a useful way of discovering284

combinations of parameters that achieve good classification results of binary dynamics. To test the285

validity of this proposal, we challenged our assumptions in five different ways, as described below.286

Random selection. In this simple control experiment we test the significance of the selection parameter287

by comparing the results to a random choice of 50 vertices and performing the same vector summary288

procedure on their neighbourhoods. Twenty iterations of this experiment were performed, and the results289

for each feature parameter were compared to the outcome for the same feature parameter and the290

selection parameter with respect to which this feature parameter performed best. The results are291

described in Figure 5.292

We observe that in almost all cases reported here a choice of neighbourhoods determined by a293

selection parameter outperforms a random choice (in some cases marginally). We also note that in all294

those cases the performance of a choice informed by one of these selection parameters exhibits a more295
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Figure 5. The classification performance based on the neighbourhoods of 50 randomly selected vertices

(blue), compared to the performance of neighbourhoods selected by graph parameters with respect to a

selection of feature parameters (red). Errors bars indicate range over 20 iterations. Labels on the red error

bars indicate the selection parameter that performed best with respect to the indicated feature parameter.

Compare with Figure 16.

consistent behaviour in terms of classification accuracy. This can be seen from the considerably larger296

error bars in the case neighbourhoods are selected at random. On the other hand, for some feature297

parameters a random choice does not seem to be a disadvantage, even compared to the best selection298

parameter with respect to this feature parameter (Figure 16). This suggests that while selection and299

generation of vector summary by objective parameters are advantageous, experimentation is generally300

necessary in order to decide which parameters best fit the classification task.301

Neighbourhood vs. centre. A working hypothesis in this paper is that neighbourhoods carry more302

information about a binary dynamics than individual vertices. We examined for each selection of 50303

neighbourhoods by a graph parameter, as described above, the classification capability of the centres of304

these neighbourhoods. Specifically, this experiment is identical to the original classification experiment,305

except for each selection parameter P the two rows of the corresponding feature matrix have binary306

values, where the j-th entry in row i is set to be 1 if the j-th neuron in the sorted list fired in the i-th time307

bin at least once and 0 otherwise. These feature vectors were then used in the classification task using308

the same train and test methodology. For each of the selection parameters we tested, we considered both309

the top 50 and the bottom 50 neurons in the corresponding sorted list.310
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The results of this experiment were compared with the original experiments, and are shown in Figure311

6. We note that in all cases a very significant drop in performance occurs. Interestingly, some vertices in312

the top 50 of a sorted list show classification accuracy that is far better than random, while the bottom 50313

give performance comparable to random (for example, fcc). In some cases however, the bottom 50314

vertices give better performance than the top 50. This suggests that the selection parameters play a role in315

classification accuracy even before considering the activity in the neighbourhood of a vertex.316

We also note that for almost all top valued selection parameters recorded in Figure 6 and some of the317

bottom valued ones, the classification performance using the centre alone is significantly better than318

random. This observation reinforces the idea that selection parameters inform on the capability of319

neurons to inform on activity.320

Figure 6. Classification results by binary vectors using only the centres of each of the top and bottom 50

neighbourhoods for each parameter. For comparison, the performance for each selection parameter

classified by the highest performing feature parameter is included.

Neighbourhoods vs. arbitrary subgraphs. For each selection parameter we considered the degrees of the321

50 selected centres. For a centre vi of degree di we then selected at random di vertices in the ambient322

graph and considered the subgraph induced by those vertices and the centre vi. We used these 50323

subgraphs in place of the original neighbourhoods. In this way we create for each centre a new subgraph324

with the same vertex count as the original neighbourhoods that is unrelated to the centres in any other325
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controllable way. We extracted feature vectors using these subgraphs for each of the selection parameters326

and repeated the classification experiment. The results were compared to the original results with respect327

to the strongest performing feature parameter. Notice that these are always either ec or size, both of328

which can be applied to an arbitrary digraph, not necessarily a neighbourhood.329

Figure 7. Classification by subgraphs of the same vertex count as the neighbourhoods selected by the

specified selection parameters. The results of classification by the highest performing feature parameters

are above each of the columns.

The results of this experiment were compared with the original experiments, and are shown in Figure330

7. There is a clear drop in performance for all selection parameters except fcc (Fagiolo’s clustering331

coefficient; See Methods). Furthermore, classification using these subgraphs shows considerably larger332

error bars. This suggests that using neighbourhoods with our methodology is advantageous. One333

explanation for this may be the tighter correlation of activity among neurons in a neighbourhood,334

compared to an arbitrary subgraph of the same size in the network, but we did not attempt to verify this335

hypothesis.336

Fake neighbourhoods. In this experiment we considered for each centre its degree and selected at337

random the corresponding number of vertices from the ambient graph. We then modified the adjacency338

matrix of the ambient graph so that the centre is connected to each of the vertices selected in the339

appropriate direction, so as to preserve the centre’s in- and out-degree. Computationally, this amounts to340
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applying a random permutation to the row and the column of each of the centres. The result is a new341

ambient graph, where the old centres are now centres of new neighbourhoods. We extracted feature342

vectors using these “fake neighbourhoods” and repeated the classification experiment. The results were343

compared with the original classification. The outcome is illustrated in Figure 8.344

Figure 8. Classification by “fake neighbourhoods”: Original classification with respect to best

performing feature parameter is given for comparison.

We note that with respect to almost all selection parameters there is a significant drop in performance345

resulting from this modification. The one exception is fcc, where ec as a feature parameter actually346

sometimes gives slightly better results, but with a large error bar. It is interesting that the results are347

similar for some of the parameters to those observed in previous experiment (Figure 7), but quite348

different for others. However, the drop in performance is similar in both cases. We make no hypothesis349

attempting to explain these observations.350

Shuffled activity. In this experiment we applied a random permutation σ of the neuron indices in the351

Blue Brain Project microcircuit, so that neuron σ(i) now receives the spike train (sequence of spikes) of352

neuron i for each stimulus. That is, we precompose the binary dynamics with σ to get a new binary353

dynamics, which still appears in eight varieties, since the operation of permuting the neuron indices is354

bijective. In other words, we can reconstruct the original activity from the shuffled activity by applying355
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the inverse permutation σ−1. The same selection and feature parameters were used and the resulting data356

was used for training and testing. The results are shown in Figure 9.357

Figure 9. Classification of shuffled binary dynamics functions and comparison to the top results for the

original dynamics.

We observe again that there is a significant drop in performance resulting from this shuffling. This is358

quite surprising since the shuffled activity spike train should give eight families of stimuli that carry some359

sort of internal resemblance, and since we retrained and tested with these stimuli, one could expect that360

the classification results will be comparable to those of the original experiments. That not being the case361

suggests that structure and function in the Blue Brain Project reconstruction are indeed tightly related.362

Testing the method on an artificial neuronal network363

To test our methods in a non-biological binary dynamics setting, we conducted a set of experiments with364

the NEST simulator Jordan et al. (2019). The NEST software simulates spiking neuronal network models365

and offers a vast simplification of neuronal networks that are based on the exact morphology of neurons366

(such as the Blue Brain Project reconstructions). It also provides great flexibility in the sense that it367

allows any connectivity graph to be implemented in it and any initial stimulation to be injected into the368

system with the response modulated by various flexible parameters.369

To move as far as possible from a strict biological setup, we generated a number of Erdős–Rényi370

random digraphs on 1000 vertices, which we implemented on NEST. We then created 8 distinct stimuli,371
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Figure 10. Eight types of input stimuli for Erdős–Rényi random digraphs, executed as a single 800

second experiment. Top row: Sequence of stimuli types, 500 of each, and relative strength of input for

each stimulus. Second row: Spiking neurons on a 1000 ms interval from the experiment. Bottom left:

Spiking neurons and length of external input on a 18 ms interval. Third row right: Random selections of

100 vertices from 1000 vertices, acting as receptors of external input. Bottom row right: Distribution of

randomly selected relative strength and input stimulus time offset over the whole experiment.

each enervating a random selection of 100 vertices of the graph. A random sequence of stimuli was then372

created, with each stimulus type repeated 500 times. Our experiment consisted of injecting the sequence373

of stimuli into the simulator, for a duration of 5ms, one every 200 ms, to reduce the influence of one374

stimulus on the next. To introduce some randomness, the start time of each stimulus is randomly selected375
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from the first 10ms , the strength of each stimulus is multiplied by a random number between 1 and 2,376

and background noise is included (using NEST’s noise generator device with strength 3). For each377

200ms interval, the first 10ms were not included in the classification. As a result some of the input may378

be included in the classified data, but never more than 4 ms, and for approximately 60% of the 4000379

stimuli the input is completely excluded from classification. The code used to create these experiments is380

available online, and the experiments are presented visually in Figure 10.381

The spikes from this simulation were then extracted and were run through the same pipeline as the382

Blue Brain Project data. We experimented with graph densities of 0.08, 0.01 and 0.005, and with383

selections of 10, 20, and 50 neighbourhoods. Figure 11 shows the performance by the selection384

parameters from Table 1. Size was used in all cases as a feature parameter. The best performance was385

obtained with 50 neighbourhoods, with graph density of 0.01 in almost all selection parameters. The386

results of experiments with all parameters can be seen in Figure 19.387

Figure 11. Classification of eight random signals on an Erdős–Rényi random digraph on 1000 vertices

and connection probabilities of 8%, 1% and 0.5% and selection of 10, 20, and 50 neighbourhoods,

modelled on a NEST simulator. Selection parameters are the same as in the main example and feature

parameter is always size. Graph G means the BBP graph and its performance with respect to size as

feature parameter is given for comparison. Compare with Figure 19.

Interestingly, the middle graph density of 0.01 consistently performed equally as well or better than388

both the denser 0.08 and less dense 0.005 across all feature parameters, except neighbourhood size (size)389

and adjacency spectral gap (asg). Another interesting observation is that the strongest selection parameter390

in this experiment turns out to be normalised Betti coefficient (nbc), or transitive clustering coefficient391

(tcc), depending on if “strongest” is taken to mean with the highest individual accuracy or with the392
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highest average accuracy from cross-validation, respectively. Both of these selection parameters in the393

Blue Brain Project experiments exhibited rather mediocre performance (see Figure 4, left). This suggests394

that different networks and binary dynamics on them may require experimentation with a collection of395

selection (and feature) parameters, in order to optimise the classification accuracy.396

DISCUSSION

In this paper we examined the concept of a closed neighbourhood in relation to the classification of397

binary dynamics on a digraph. Regardless of what the source of the binary dynamics is, but with the398

assumption that it is given in a time series of labelled instantiations, we ask how can the dynamics be399

read off and classified. In the context of neuroscience, which is our primary motivation for this study, this400

is a question on the boundary between computational neuroscience and machine learning. Our methods401

provide a method of addressing this question.402

We proposed a methodology that will take as input binary dynamics on a digraph and produce a vector403

summary of the dynamics by means of combinatorial and/or topological parameters of a relatively small404

number of neighbourhoods. Using this methodology we experimented with a dataset implemented on the405

Blue Brain Project reconstruction of the neocortical column of a rat, and on an artificial neural network406

with random underlying graph implemented on the NEST simulator. In both cases the vector summaries407

were then run through a support vector machine algorithm that was able to achieve a classification408

accuracy of up to 88% for the Blue Brain Project data and up to 81% for the NEST data.409

We used the same parameters both for selecting neighbourhoods and for the creation of feature vectors.410

We saw that certain spectral graph parameters used as selection parameters perform significantly better411

than more classical parameters such as degree and clustering coefficients. We also observed that the412

parameters that performed best as feature parameters were the simplest ones, namely size and Euler413

characteristic. Comparison to randomly selected neighbourhoods showed that the methodology works414

reasonably well even without selecting the neighbourhoods in an informed way, but that neighbourhoods415

selected in a way informed by graph parameters gives in general a better performance with a much416

smaller error range.417
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Our aim was to demonstrate that certain selections of subgraphs, informed by objective structural418

parameters, carry enough information to allow classification of noisy signals in a network of spiking419

neurons. In this paper the subgraphs selected are closed neighbourhoods, and the selection criteria are our420

chosen selection parameters. We did not however show, or attempted to demonstrate, that the use of421

neighbourhoods as a concept, or graph parameters as a selection mechanism are the best methodology.422

The same techniques could be applied to other subgraph selections and other vectorisation methods,423

which can be analysed by our pipeline with relatively small modifications.424

Another aspect of our ideas that was not exploited at all in this project is the use of more than a single425

graph parameter in the selection procedure. We did show that different parameters are distributed426

differently in the Blue Brain Project graph, and hence one may hypothesise that optimising427

neighbourhood selection by two or more parameters may give improved classification accuracy.428

As our aim was not to obtain the best classification, but rather to provide a good methodology for429

ingesting binary dynamics on a digraph and producing machine learning digestible data stream, we did430

not experiment with other more sophisticated machine learning algorithms. It is conceivable that doing431

so may produce even better classification accuracy than what is achieved here.432

Finally, our approach is closely related to graph neural networks where convolution is performed by433

aggregating information from neighbourhoods, i.e. for every vertex, features are learned from all the434

adjacent vertices. The pipeline presented in this paper also takes as input sequences of neural firings and435

sequences of neuron assemblies which turn the firing patterns into feature values. The interaction of our436

work and the modelling perspectives from graph neural networks and sequence-to-sequence learning437

might thus pose an interesting future research question.438
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METHODS

Mathematical Concepts and Definitions439

We introduce the basic concepts and notation that are used throughout this article. By a digraph we mean440

a finite, directed simple graph, that is, where reciprocal edges between a pair of vertices are allowed, but441

multiple edges in the same orientation between a fixed pair of vertices and self-loops are not allowed.442

Topology is the study of topological spaces - a vast generalisation of geometric objects. In this paper443

we only consider spaces that are built out of simplices. Simplices occur in any dimension n ≥ 0, where a444

0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex a tetrahedron445

and so forth in higher dimensions. Simplices can be glued together to form a topological space. A good446

survey for this material intended primarily for readers with a neuroscience background can be found in447

the Materials and Methods section of M. W. Reimann et al. (2017).448

We now describe a general setup that associates a family of topological objects with a digraph. A449

particular case of this setup is the main object of study in this paper.450

Definition 1. A topological operator on digraphs is an algorithm that associates with a digraph G a451

topological space Γ(G), such that ifH ⊆ G is a subgraph then Γ(H) ⊆ Γ(G) as a closed subspace.452

That is, a topological operator on digraphs is a functor from the category of digraphs and digraph453

inclusions to the category of topological spaces and inclusions. The flag complex of G (ignoring454

orientation), the directed flag complex Lütgehetmann, Govc, Smith, and Levi (2020), and the flag455

tournaplex Govc et al. (2021) are examples of such operators.456

Definition 2. Let G = (V,E) be a digraph, and let v0 ∈ V be any vertex.457

The neighbours of v0 in G are all vertices v0 6= v ∈ V that are incident to v0.458

The open neighbourhood of v0 is the subgraph of G induced by the neighbours of v0 in G. The closed459

neighbourhood of v0 in G is the subgraph induced by the neighbours of v0 and v0 itself.460

We denote the open and closed neighbourhoods of v0 in G by N◦G(v0) and NG(v0) respectively. More461

generally:462
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Figure 12. An open neighbourhood (left) and a closed neighbourhood (right) in a digraph, marked in

red, with its central vertex marked solid colour.

Let S ⊆ V be a subset of vertices. Then N◦G(S) denotes the union of open neighbourhoods of all463

v ∈ S. Similarly NG(S) is the union of all closed neighbourhoods of vertices v ∈ S.464

Notice that if S = {v0, v1}, and v0 and v1 are incident in G, then N◦G(S) = NG(S). In this paper we465

will mostly consider closed neighbourhoods. Neighbourhoods are also used in the paper M. Reimann et466

al. (2021), which is closely related to this article.467

Terminology 1. Let G be a digraph and let S be a subset of vertices in G. Unless explicitly stated468

otherwise, we shall from now on refer to the closed neighbourhood of S in G simply as the neighbourhood469

of S in G. In the case where S contains a single vertex v0, we will refer to v0 as the centre of NG(v0).470

The topological operator we consider in this article is the directed flag complex of a digraph which we471

recall next. See Figure 2 for an example.472

Definition 3. A directed n-clique is a digraph, whose underlying undirected graph is an n-clique, and473

such that the orientation of its edges determines a linear order on its vertices. An ordered simplicial474

complex is a collection X of finite ordered sets that is closed under subsets. The n-simplices of an475

ordered simplicial complex X are the sets of cardinality n+ 1. If G is a digraph, then the directed flag476

complex associated to G is the ordered simplicial complex whose n-simplices are the directed477

(n+ 1)-cliques in G. We denote the directed flag complex of a digraph G by |G|.478

Encoding binary dynamics on neighbourhoods479

We now describe our approach to classification of binary dynamics on a graph in general terms.480
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Definition 4. Let G = (V,E) be a graph (directed or undirected). A binary state on G is a function481

β : V → {0, 1}. Equivalently, a binary state on G is a partition of V into two disjoint subsets that482

correspond to β−1(0) and β−1(1), or alternatively as a choice of an element of the power set P(V ) of V .483

A binary dynamics on G is a function B : R≥0 → P(V ) that satisfies the following condition:484

There is a partition of R≥0 into finitely many half open intervals {[ai, bi)}Pi=1 for some P ≥ 1, such485

that B is constant on [ai, bi), for all i = 1, . . . , P .486

Activity in a network of neurons, both natural and artificial, is a canonical example of a binary487

dynamics on a directed network.488

Setup. The task we address in this section is a general classification methodology for binary dynamics489

functions. Namely, suppose one is given490

a set of binary dynamics functions {Bi | i ≥ 1} on a fixed ambient graph G,491

a set of labels L = {L1, L2, . . . , Ln}, and492

a labelling function L : {Bi | i ≥ 1} → L.493

In addition, we operate under the assumption that functions labeled by the same label are variants of494

the same event (without specifying what the event is, or in what way its variants are similar). The aim is495

to produce a topological summary for each Bi in a way that will make the outcome applicable to standard496

machine learning algorithms. We next describe our proposed mechanism.497

Creation of vector summary Fix a graph G and a real-valued graph parameter Q, that is, a real-valued498

function taking digraphs as input and whose values are invariant under graph isomorphisms. Suppose that499

a set of labeled binary dynamics functions {Bn}Nn=1 on G is given. Select an M -tuple (H1,H2, . . . ,HM)500

of subgraphs of G, for some fixed positive integer M .501

Fix a time interval and divide it into time bins. In each bin, record the vertex set that showed the value502

1, that is, was active at some point during that time bin. For each 1 ≤ m ≤M , restrict that set toHm and503

record the subgraph induced by the active vertices. Apply Q to obtain a numerical M -tuple, and504
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concatenate the vectors into a long vector, which encodes all time bins corresponding to the given505

dynamics.506

We now describe the procedure more accurately in three steps.507

I) Interval partition uniformising. Fix an interval I = [a, b] ⊂ R≥0 and a positive integer K. Let

∆ = b−a
K

. For 1 ≤ k ≤ K, let Ik denote the sub-interval

Ik
def
= [a+ (k − 1)∆, a+ k∆] ⊆ [a, b].

II) Subgraph extraction. For 1 ≤ n ≤ N and each 1 ≤ m ≤M , let βn
m,k denote the binary state onHm

defined by

βn
m,k

def
= {v ∈ Hm | ∃t ∈ Ik, such that v ∈ Bn(t)}.

LetHn
m,k ⊆ Hm be the subgraph induced by all vertices in the set βn

m,k. We refer toHn
m,k as the508

active subgraph ofHm with respect to the binary dynamics function Bn.509

III) Numerical featurisation. For each 1 ≤ n ≤ N , let qnm,k denote the value of Q applied toHn
m,k. Let510

F n denote the M ×K matrix corresponding to the binary dynamics function Bn, that is511

(F n)m,k = qnm,k.512

For use in standard machine learning technology such as support vector machines, we turn the output513

of the procedure into a single vector by column concatenation. The output of this procedure is what we514

refer to as a vector summary of the collection {Bn}Nn=1 (Figure 3). It allows great flexibility as its515

outcome depends on a number of important choices:516

the ambient graph G,517

the selection procedure of subgraphs,518

the interval I and the binning factor K, and519

the graph parameter Q.520

All these choices may be critical to the task of classifying binary dynamics functions, as our use case521

shows, and have to be determined by experimentation with the data.522

Selection and feature parameters523
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In this section we describe the graph parameters used in this article. Some of these parameters are well524

known in the literature. All of them are invariant under digraph isomorphism. The parameters presented525

in this section are the primary parameters used for both selection and generation of vector summaries.526

We chose these particular parameters either because of their prevalence in the literature, or for their527

strong performance as either selection or feature parameters in classification tasks. Other parameters we528

examined are mentioned in Supplementary Materials.529

Throughout this section, we let G = (V,E) denote a locally finite digraph (that is, such that every530

vertex is of finite degree). For k ≥ 1 and v0 ∈ V , we let Sk(v0) denote the number of directed531

(k + 1)-cliques that contain v0. In particular S1(v0) = deg(v0).532

Clustering coefficients. In Watts and Strogatz (1998) Watts and Strogatz introduced an invariant for533

undirected graphs they called clustering coefficient. For each vertex v0 in the graph G, one considers the534

quotient of the number tv0 of triangles in G that contain v0 as a vertex by the number
(
deg(v0)

2

)
of triangles535

in the complete graph on v0 and its neighbourhood in G. The clustering coefficient of G is then defined as536

the average across all v0 ∈ G of that number. Clustering coefficients are used in applied graph theory as537

measures of segregation Rubinov and Sporns (2010).538

Clustering coefficient for digraphs. The Watts–Strogatz clustering coefficient was generalised by Fagiolo

Fagiolo (2007) to the case of directed graphs. Fagiolo considers for a vertex v0 every possible 3-clique

that contains v0, and then identifies pairs of them according to the role played by v0, as a source, a sink,

or an intermediate vertex (see Figure 13, (A), (B) and (C)). Fagiolo also considers cyclical triangles at v0

and identifies the two possible cases of such triangles (see Figure 13, (D)). The Fagiolo clustering

coefficient at v0 is thus the quotient of the number of equivalence classes of directed triangles at v0,

denoted by ~tv0 , by the number of such classes in the complete graph on v0 and all its neighbours in G.

Thus, if v0 is the i-th vertex in G with respect to some fixed ordering on the vertices, and A = (ai,j) is the

adjacency matrix for G, then

~tv0
def
=

1

2

∑
j,k

(ai,j + aj,i)(ai,k + ak,i)(aj,k + ak,j),
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and the clustering coefficient at v0 is defined by

CF (v0)
def
=

~tv0
deg(v0)(deg(v0)− 1)− 2

∑
j ai,jaj,i

.

Transitive clustering coefficient A directed 3-clique is also known in the literature as a transitive539

3-tournament. Our variation on the clustering coefficient, the transitive clustering coefficient of a vertex540

v0 in a digraph G, is the quotient of the number of directed 3-cliques in G that contain v0 as a vertex by541

the number of theoretically possible such 3-cliques.542

Let ind(v0) and oud(v0) denote the in-degree and out-degree of v0. Let Iv0 , Ov0 and Rv0 denote the

number of in-neighbours (that are not out-neighbours), out-neighbours (that are not in-neighbours) and

reciprocal neighbours of v0, respectively. Notice that

ind(v0) = Iv0 +Rv0 and oud(v0) = Ov0 +Rv0 . (1)

We introduce our variation on Fagiolo’s clustering coefficient.543

Definition 5. Define the transitive clustering coefficient at v0 by

CT (v0)
def
=

S2(v0)

deg(v0)(deg(v0)− 1)− (ind(v0)oud(v0) +Rv0)
.

544

A justification for the denominator in the definition is needed and is the content of the Lemma 1 in545

Supplementary Materials.546

Let A = (ai,j) denote the adjacency matrix for G with respect to some fixed ordering on its vertices.

Then for each vertex v0 ∈ G that is the i-th vertex in this ordering, S2(v0) can be computed by the formula

S2(v0) =
∑
j,k

(ai,j + aj,i)(ai,k + ak,i)(aj,k + ak,j)− ai,jaj,kak,i = 2~tv0 −
∑
j,k

ai,jaj,kak,i. (2)

Euler characteristic and normalised Betti coefficient. The Betti numbers of the various topological547

constructions one can associate to a digraph have been shown in many works to give information about548

structure and function in a graph. A particular example, using Blue Brain Project data is M. W. Reimann549

et al. (2017).550
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v0

v1 v2

v0

v1 v2

∼
(A)

v0

v1 v2

v0

v1 v2

∼
(B)

v0

v1 v2

v0

v1 v2

∼
(C)

v0

v1 v2

v0

v1 v2

∼
(D)

Figure 13. Eight possible directed triangles on the same three vertices. The pairs correspond to the

identifications made by Fagiolo, with changes denoted by dotted edges. In the definition of the transitive

clustering coefficient, the triangles in (A), (B) and (C) are counted individually, and those in (D) are

ignored.

Euler characteristic. The Euler characteristic of a complex is possibly the oldest and most useful

topological parameter, and has been proven to be useful to theory and applications. In the setup of a

directed flag complex (or any finite semi-simplicial set) the Euler characteristic is given as the alternating

sum of simplex counts across all dimensions:

EC(X)
def
=
∑
n≥0

(−1)n|Xn|,

where |Xn| is the number of n-simplices in X . Alternatively, the Euler characteristic can be defined

using the homology of X by

EC(X)
def
=
∑
n≥0

(−1)n dimF(Hn(X,F)),

where F is any field of coefficients. The Euler characteristic is a homotopy invariant, and can take551

positive or negative values according to the dominance of odd- or even-dimensional cells in the complex552

in question.553

Normalised Betti coefficient. The normalised Betti coefficient is based on a similar idea to the Euler554

characteristic. It is invariant under graph isomorphism, but is not a homotopy invariant. Also, unlike the555
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Euler characteristic, it is not independent of the chosen field of coefficients. We view the normalised Betti556

coefficient as a measure of how “efficient” a digraph is in generating homology, without reference to any557

particular dimension, but with giving increasing weight to higher dimensional Betti numbers.558

Let G be a digraph, and for each k ≥ 0, let sk(G) denote the number of k-simplices in the directed flag559

complex |G|. Fix some field F. By the Betti number βi of G we mean the dimension of the homology560

vector space Hi(|G|,F).561

Definition 6. Let G be a locally finite digraph. Define the normalised Betti coefficient of G to be

B(G)
def
=

∞∑
i=0

(i+ 1)βi(G)

si(G)
.

Normalised Betti coefficients can be defined by any linear combination of Betti numbers, and also in a562

much more general context (simplicial posets), which we did not explore. Both the Euler characteristic563

and the normalised Betti coefficients are invariants of digraphs, and to use them as vertex functions we564

consider their value on the neighbourhood of a vertex.565

Size (vertex count). The size of a digraph can be interpreted in a number of ways. One standard way to566

do so is for a fixed simplicial object associated to a digraph, one counts the number of simplices in each567

dimension. This will typically produce a vector of positive integers, the (euclidean) size of which one can568

consider as the size of the digraph. Alternatively, the simplex count in any dimension can also be569

considered as a measure of size. In this article we interpret size as the number of vertices in the digraph.570

Thus by size of a vertex v0 ∈ G we mean the vertex count in NG(v0). When working with binary states on571

a digraph, neighbourhood size means the number of vertices that obtain the value 1 in NG(v0).572

Spectral invariants. The spectrum of a (real valued) square matrix or a linear operator A is the573

collection of its eigenvalues. Spectral graph theory is the study of spectra of matrices associated to574

graphs. It is a well developed part of combinatorial graph theory and one that finds many applications in575

network theory, computer science, chemistry and many other subjects (See a collection of web links on576

Applications of Spectral Graph Theory). The various versions of the Laplacian matrix associated to a577
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graph plays a particularly important role. An interesting work relating neuroscience and the Laplacian578

spectrum is de Lange et al. (2014).579

The spectral gap is generally defined as the difference between the two largest moduli of eigenvalues580

of A. In some situations, for instance in the case of the Laplacian matrix, the spectral gap is defined to be581

the smallest modulus of nonzero eigenvalues. Given a matrix and its spectrum, either number can be582

computed. As a standard in this article spectral gaps are considered as the first type described above,583

except for the Chung Laplacian spectrum, where the spectral gap is defined to be the value of the minimal584

nonzero eigenvalue. However, in several cases we considered both options. To emphasise which option is585

taken we decorated the parameter codes from Table 1 with a subscript “high” (referring to the difference586

between the two largest moduli) or “low” (referring to the smallest modulus of a nonzero eigenvalue).587

For example, Figures 7, 8, 9 have blslow as a parameter, indicating the lowest nonzero value in the Bauer588

Laplacian spectrum (that is, the minimal nonzero eigenvalue of the Bauer Laplacian matrix). Another589

variant of the standard concepts of spectra is what we call the reversed spectral gap (Definitions 7 and 9).590

Yet another common invariant we considered is the spectral radius which is the largest eigenvalue591

modulus of the matrix in question. We consider here four matrices associated to digraphs: the adjacency592

matrix, the transition probability matrix, the Chung Laplacian and the Bauer Laplacian, with details to593

follow.594

The adjacency and transition probability matrices. Let G = (V,E) be a weighted directed graph with

weights wu,v on the edge (u, v) in G, where wu,v = 0 if (u, v) is not an edge in G. Let WG = (wu,v) denote

the weighted adjacency matrix of G. Let oud(u) denote the out-degree of a vertex u. The transition

probability matrix for G is defined, up to an ordering of the vertex set V , to be the matrix PG , with

PG
def
= D−1out(G) ·WG, (3)

where D−1out(G) is the diagonal matrix with the reciprocal out-degree 1/out(u) as the (u, u) entry, if595

out(u) 6= 0, else the (u, u) entry is 0.596

Definition 7. Let G be a digraph with adjacency matrix AG and transition probability matrix PG . The597

adjacency spectral gap and the transition probability spectral gap of G are defined in each case to be the598

difference between the two largest moduli of its eigenvalues.599
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If we replace in the definition of PG the matrix Dout(G) by Din(G) of in-degrees, we obtain a variant of600

the transition probability matrix, which we denote by P rev
G , and its spectral gap is referred to as the601

reversed transition probability spectral gap.602

For our specific application we considered the ordinary (as opposed to weighted) adjacency matrix,603

namely where all weights wu,v are binary. We considered as parameters the spectral radius of the604

adjacency and transition probability matrices.605

The Chung Laplacian. Chung defined the directed Laplacian for a weighted directed graph in Chung606

(2005). The Perron–Frobenius theorem Horn and Johnson (1990) states that any real valued irreducible607

square matrix M with non-negative entries admits a unique eigenvector, all of whose entries are positive.608

The eigenvalue for this eigenvector is routinely denoted by ρ, and it is an upper bound for any other609

eigenvalue of M .610

If G is strongly connected (that is, when there is a directed path between any two vertices in G), then its611

transition probability matrix is irreducible, and hence satisfies the conditions of the Perron–Frobenius612

theorem. Thus PG has an eigenvector, all of whose entries are positive. The Perron vector is such an613

eigenvector φ that is normalised in the sense that
∑

v∈V φ(v) = 1. Let Φ denote the diagonal matrix with614

the v-th diagonal entry given by φ(v), and let P denote the transition probability matrix PG .615

Definition 8. Let G be a strongly connected digraph. The Chung Laplacian matrix for G is defined by

L def
= I − Φ

1
2PΦ−

1
2 + Φ−

1
2P ∗Φ

1
2

2
, (4)

where P ∗ denotes the Hermitian transpose of a matrix P . The Chung Laplacian spectral gap λ for a616

digraph G is defined to be the smallest nonzero eigenvalue of the Laplacian matrix.617

The Chung Laplacian spectral gap λ of a strongly connected digraph G is related to the spectrum of its

transition probability matrix P by (Chung, 2005, Theorem 4.3), which states that the inequalities

min
i 6=0
{1− |ρi|} ≤ λ ≤ min

i 6=0
{1− Re(ρi)} (5)
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hold, where the minima are taken over all eigenvalues of P . The theory in Chung (2005) applies for618

strongly connected graphs and we therefore defined the Laplacian spectral gap of a neighbourhood to be619

that of its largest strongly connected component.620

We use the spectral gap of the Chung Laplacian for the largest strongly connected component of a621

neighbourhood as a selection parameter. When used as a feature parameter we consider the spectral gap622

of the largest strongly connected component of the active subgraph of the neighbourhood. We also use623

the spectral radius of the Chung Laplacian, both as selection and feature parameter.624

The Bauer Laplacian. The requirement that G is strongly connected is a nontrivial restriction, but it is

required in order to guarantee that the eigenvalues are real. An alternative definition of a Laplacian

matrix for directed graphs that does not require strong connectivity was introduced in Bauer (2012). Let

C(V ) denote the vector space of complex valued functions on V . The Bauer Laplacian for G is the

transformation ∆G : C(V )→ C(V ) defined by

∆G(f)(v)
def
=

f(v)− 1
ind(v)

Σvwv,uf(u), if ind(v) 6= 0,

0, otherwise.
(6)

If ind(v) 6= 0 for all v ∈ V , then ∆G corresponds to the matrix ∆G = I −D−1in (G) ·WG , where D−1in (G)625

is defined analogously to D−1out(G) in Definition 7, and WG is the weighted adjacency matrix. In our case626

W is again taken to be the ordinary binary adjacency matrix.627

Definition 9. The Bauer Laplacian spectral gap is the difference between the two largest moduli of628

eigenvalues in the spectrum.629

We also considered the spectral radius of the Bauer Laplacian. Both are used as selection as well as630

feature parameters. If we replace in the definition Din(G) by Dout(G) we obtain a matrix ∆rev
G , whose631

spectral gap we refer to as the reversed Bauer Laplacian spectral gap.632
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SUPPLEMENTARY MATERIAL

Lemma 1. Let G be a digraph and let v0 ∈ G be a vertex. Then the number of possible directed 3-cliques

containing v0 is given by

deg(v0)(deg(v0)− 1)− (ind(v0)oud(v0) +Rv0). (7)

Proof. The set of in-neighbours of v0 give rise to 2
(
Iv0
2

)
= Iv0(Iv0 − 1) directed 3-cliques containing v0.

Similarly the out-neighbours of v0 give rise to Ov0(Ov0 − 1) directed 3-cliques containing v0. A choice of

each gives an extra Iv0Ov0 directed 3-cliques. Next, each reciprocal neighbour together with either an

in-neighbour or an out-neighbour gives rise to three directed 3-cliques at v0. The total number of those is

3Rv0(Iv0 +Ov0). Finally, pairs of reciprocal neighbours give rise to six directed 3-cliques at v0, and the

total number of those is 6
(
Rv0
2

)
= 3Rv0(Rv0 − 1). Let P(v0) denote the total number of transitive

3-tournaments that can be formed by v0 and its neighbours. Summing up we have

P(v0) = Iv0(Iv0 − 1) +Ov0(Ov0 − 1) + Iv0Ov0 + 3Rv0(Iv0 +Ov0) + 3Rv0(Rv0 − 1)

= (Iv0 −Ov0)
2 + 3(Iv0Ov0 +Rv0Iv0 +Rv0Ov0 +R2

v0
)− (3Rv0 + Iv0 +Ov0)

= (ind(v0)− oud(v0))
2 + 3ind(v0)oud(v0)− (ind(v0) + oud(v0))−Rv0

= (ind(v0) + oud(v0))
2 − ind(v0)oud(v0)− deg(v0)−Rv0

= deg(v0)(deg(v0)− 1)− (ind(v0)oud(v0) +Rv0)

as claimed.700

Size, distribution and structure of neighbourhoods in a sample digraph701

We compare neighbourhoods in a sample digraph sorted by the parameters listed in Table 1 in terms of702

some structural features. The digraph G we use is the connectivity graph of the Blue Brain Project703

reconstruction of the cortical microcircuitry in a young rat brain Markram et al. (2015). The data we used704

is available at Project (2019). Our classification experiments are done on the same microcircuit. We also705

applied the same measurements to other collections of digraphs and obtained different results. Since our706

aim is primarily to examine possible relationship between structure and function, we do not report those707

results here. These extended results are presented at Aberdeen Neurotopology Group webpage.708
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We considered the top 50 vertices in the graph sorted by the parameters listed in Table 1. For each709

parameter we computed the size in terms of number of vertices in each neighbourhood and the pairwise710

intersections, again in terms of the number of vertices in each intersection. In Table 14 we report the711

minimum, maximum and average of these numbers among the 50 neighbourhoods with highest value for712

each parameter. We also computed the first six Betti numbers of each neighbourhood and report the713

average of these numbers for each parameter. Finally, we considered the union of neighbourhoods in714

decreasing order, sorted by each parameter, and computed the number of centres required for their715

neighbourhoods to cover 90% of the neurons in entire microcircuit (that is, 28,310 neurons).716

We notice that the top 50 centres with respect to the last six parameters listed in Table 14 tend to717

generate neighbourhoods of size close or below the average, with relatively very small intersection. This718

correlates well with their capacity as selection parameters in our experiments (see Figure 4). However,719

the two types of clustering coefficients, fcc and tcc, also generate small top neighbourhoods with small720

intersection, but are not exceptional as selection parameters.721

We also examined the distribution of values for each parameter across the entire graph. The outcome is722

given in Figure 15, which visually justifies considering neighbourhoods with both highest and lowest723

parameter values. We did not find a correlation between the distribution of parameter values and their724

performance as selection or feature parameters.725

We are therefore led to the conclusion that the performance of graph parameters as selection and/or726

feature parameters cannot be explained by the structural features we examined. This compares well with727

the conclusion drawn in M. Reimann et al. (2021), in which similar experiments using the same dataset728

but with a different methodology yield results that cannot be explained by structural features such as size729

and mutual intersection.730
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Parameter size intersection size Betti numbers 90% cover

min max avg min max avg β0 β1 β2 β3 β4 β5 centre count

fcc 3 181 87.9 0 22 0.8 1 11 55 6 0 0 1591

tcc 3 170 86.2 0 22 0.6 1 10 49 5 0 0 1280

ec 1184 1633 1456.3 30 241 132.0 1 288 13237 2463 21 0 204

nbc 2 1184 589.9 0 132 21.6 1 142 3047 634 11 1 555

size 1417 1633 1509.7 44 241 130.3 1 287 11734 2310 19 0 179

asg 945 1604 1257.0 19 226 116.3 1 190 10362 3108 43 0 270

asr 1120 1622 1406.9 42 241 146.9 1 243 12603 3127 38 0 249

blsg 20 1344 555.2 0 96 12.9 1 111 1444 162 1 0 239

blsr 79 974 398.3 0 67 7.4 1 63 431 56 0 0 318

clsg 8 98 40.8 0 5 0.2 1 0 0 0 0 0 560

clsr 69 814 229.3 0 35 2.9 1 28 81 7 0 0 1297

tpsg 8 939 368.8 0 65 7.5 1 62 1077 131 1 0 445

tpsr 84 1166 524.4 0 98 11.3 1 101 1105 167 1 0 209

all vertices 2 1633 492.9 0 241 9.9 1 94 1032 146 1 0 212

Figure 14. Size, pairwise intersections, average Betti numbers for the top 50 neighbourhoods of each

parameter, and 90% coverage of the graph by neighbourhoods of highest valued centres, by each

parameter. The last row is the same among all vertices, with the last entry on the right giving the average

number required for 90% coverage over 50 random permutations.
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Figure 15. Distribution of parameter values across the entire Blue Brain Project microcircuit. The

numbers on the right are minimum to maximum values. The values on the x-axis are the relative

parameter values, rescaled from 0 to 1. Compare with Figure 18

The coverage capability of neighbourhoods sorted by various graph and topological parameters is731

related to another graph theoretic concept. Let G be a digraph. If S is the entire vertex set of G, then732

NG(S) = G, but the converse is not true, as S may be much smaller than the full vertex set and still733

satisfy this condition. Subsets of vertices whose neighbourhoods are the entire graph are well studied in734

graph theory (Chartrand, Lesniak, & Zhang, 2016, Section 12.4).735

Definition 10. Let G be a finite digraph with vertex set V . A subset S ⊆ V is a dominating set if736

NG(S) = G. The minimum cardinality of a dominating set for G is called the domination number and is737

denoted by γ(G). A dominating set of cardinality γ(G) is said to be a minimum dominating set.738

Computing a minimal dominating set is known to be an NP hard problem Knuth (1974), though there739

exist good approximation algorithms. A good summary of the problem and common approaches appears740

in Li, Potru, and Shahrokhi (2020). In Table 14 we present, among other computations, the size of741

neighbourhoods and the number of neighbourhood from a sorted list that it takes to cover 90% of the742

Blue Brain Project microcircuit. Depending on the selection parameter used, the results are quite743
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different. This suggests that a choice of neighbourhoods informed by certain vertex parameters may give744

ways of producing more efficient approximation algorithms for the domination number of graphs.745

Further Graph parameters746

We describe here further graph and topological parameters we examined.747

Degrees For each vertex v in a graph G, its (total) degree deg(v) is the number of vertices in the open748

neighbourhood of v. The in- and out-degree of v, denoted ind(v) and oud(v) respectively, mean the749

number of in- and out-neighbours of v respectively. These invariants were examined as graph parameters750

in our classification algorithm and were found inefficient, except in the case of size, which is very closely751

related to degree and turns out to be the strongest feature parameter we found.752

Reciprocal degree By the reciprocal degree of a vertex v we mean the number of neighbours that are753

both in-neighbours and out-neighbours. We used reciprocal degree in this work in two ways. The sum of754

all reciprocal degrees in a neighbourhood (abbreviated rc), and the reciprocal degree of the centre755

(rc-centre).756

Density coefficients Every (k + 1)-clique contains k + 1 k-cliques. But no number of k-cliques in a757

graph is guaranteed to form any (k + 1)-cliques. The density coefficient is a ratio of the number of758

(k + 1)-cliques by that of k-cliques, normalised in its ambient graph.759

Definition 11. Let G be a digraph with n vertices. For k ≥ 2 define the k-th density coefficient of G at v0

by the formula

Dk(v0)
def
=

k

(k + 1)(n− k)
· Sk(v0)

Sk−1(v0)
.

760

The factor k/(k + 1)(n− k) normalises the invariant, so that Dk(v0) = 1 for every 1 < k < n if v0 is a761

vertex in G that is a complete digraph on n vertices. This is explained in the next lemma.762
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Lemma 2. For each pair of natural numbers 0 < k < n, any digraph G on n vertices, and any vertex v0

in it,
Sk(v0)

Sk−1(v0)
≤ (k + 1)(n− k)

k

with equality obtained if and only if G is a complete digraph on n vertices.763

Proof. We prove the statement by a double counting argument closely following the one given in (Jukna,

2011, Section 10.4). Let U be the set of all pairs (τ, σ) where σ is a directed (k + 1)-clique containing v0

and τ ⊆ σ is a directed k-clique containing v0. Then one can count the number of elements of U in two

ways. First, the number of k-sub-cliques τ of a fixed (k+ 1)-clique σ containing v0 is exactly k, therefore

|U | = kSk(v0).

On the other hand, a fixed k-clique τ is a subclique of at most (n− k)(k + 1) distinct (k + 1)-cliques σ,

because there are (n− k) different choices for a vertex that together with τ will form a k + 1 clique, and

once a vertex was chosen there are (k + 1) distinct orientations on the extra k edges, so that the outcome

is a directed (k + 1)-clique. Therefore,

|U | ≤ (n− k)(k + 1)Sk−1(v0).

Comparing the two expressions, we have:

kSk(v0) ≤ (n− k)(k + 1)Sk−1(v0),

which, upon reordering gives the claimed upper bound. Computing the ratio for a complete digraph on n764

vertices shows that this upper bound is sharp.765

We remark that, while we use the density coefficients as vertex parameters, one can define a global

density coefficient on a digraph G with vertex set V by

Dk(G)
def
=

1

|V |
∑
v∈V

Dk(v).

By Lemma 2, for any 2 ≤ k ≤ |V | − 1, Dk(G) = 1 if and only if G is a complete digraph on V . Since766

any digraph on V is a subgraph of the complete digraph on V , Dk(G) provides a set of numerical767

invariants for digraphs, parameterised by dimension (size of clique), which measure a notion of size of768
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the digraph in comparison to the complete digraph on the same vertex set. In our specific application,769

density coefficients did not prove efficient as selection or feature parameters.770

Digraph filtrations771

Definition 12. Let G = (V,E) be a digraph, and let Γ be a topological operator on digraphs. For a

vertex v ∈ V , let ΓG(v) denote Γ(NG(v)). If S ⊆ V is any subset, let

ΓG(S)
def
= Γ(NG(S)) =

⋃
v∈S

ΓG(v).

Topological operators on digraphs respect inclusions, by definition, and therefore transform a digraph772

that is filtered by subgraphs into a space that is filtered by closed subspaces.773

Definition 13. Let G = (V,E) be a digraph and let Γ be a topological operator on digraphs. Fix a linear

ordering ω : v1 < v2 < · · · < vM on V , where |V | = M . For any integer n ≥ 0, let

Sω
n = {v ∈ V | v ≥ vM−n}. Define a filtration F ω

n (Γ(G)) ⊆ F ω
n+1(Γ(G)) ⊆ · · · ⊆ Γ(G) by

F ω
n (Γ(G))

def
= ΓG(S

ω
n ).

The subspace F ω
n (Γ(G)) will be referred to as the n-th ω-filtration layer of Γ(G).774

From a data analysis point of view filtering Γ(G), as proposed in Definition 13, can be applied in775

several ways. In particular, persistent homology Carlsson (2009) can be used to extract information from776

the topology in a way that is sensitive to the ordering chosen. As the orderings can be induced from777

various vertex functions, the filtrations enable probing into the effect these vertex functions have on the778

subspace topology. In other words, such filtrations give ways of building Γ(G) as an increasing union of779

subspaces, and different choices of orderings may result in totally different sequences of subspaces. In780

this article we used graph and topological parameters to determine the ordering on vertices. We also781

considered only the top (or bottom) of the ordered lists of vertices, and hence studied only the bottom782

layers of the resulting filtrations.783

Data and code784

The data used is available at https://doi.org/10.5281/zenodo.4290212. The entire785

analysis code can be obtained from https://github.com/JasonPSmith/TriDy. The code for786
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the NEST experiments is available at https://github.com/jlazovskis/neurotop-nest/.787

The computations for this paper were done using the Maxwell HPC cluster at the University of Aberdeen.788

To ensure the calculations were computed in a reasonable time frame we used a combination of789

parallelisation and publicly available packages with efficient algorithms. In particular, the structural790

parameters of each neighbourhood can be computed independently, so were done simultaneously across791

multiple nodes and cores. To compute many of the parameters standard python packages were sufficient,792

such as numpy, scipy and networkx. However, for the more computationally intensive topological793

parameters we used variations of the Flagser software Lütgehetmann et al. (2020).794
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ABSTRACT

A binary state on a graph means an assignment of binary values to its vertices. A time dependent12

sequence of binary states is referred to as binary dynamics. We describe a method for the classification of13

binary dynamics of digraphs, using particular choices of closed neighbourhoods. Our motivation and14

application comes from neuroscience, where a directed graph is an abstraction of neurons and their15

connections, and where the simplification of large amounts of data is key to any computation. We present16

a topological/graph theoretic method for extracting information out of binary dynamics on a graph, based17

on a selection of a relatively small number of vertices and their neighbourhoods. We consider existing18

and introduce new real-valued functions on closed neighbourhoods, comparing them by their ability to19

accurately classify different binary dynamics. We describe a classification algorithm that uses two20

parameters and sets up a machine learning pipeline. We demonstrate the effectiveness of the method on21
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simulated activity on a digital reconstruction of cortical tissue of a rat, and on a non-biological random22

graph with similar density.23

AUTHOR SUMMARY

We explore the mathematical concept of a closed neighbourhood in a digraph in relation to classifying24

binary dynamics on a digraph, with particular emphasis on dynamics on a neuronal network. Using25

methodology based on selecting neighbourhoods and vectorising them by combinatorial and topological26

parameters, we experimented with a dataset implemented on the Blue Brain Project reconstruction of a27

neocortical column, and on an artificial neuronal network with random underlying graph implemented on28

NEST simulator. In both cases the outcome was run through a support vector machine algorithm29

reaching classification accuracy of up to 88% for the Blue Brain Project data and up to 81% for the NEST30

data. This work is open to generalisation to other type of networks and the dynamics on them.31

INTRODUCTION

A binary state on a graph means an assignment of binary values to its vertices. A motivating example in32

this article appears in the context of neuroscience. If one encodes the connectivity of a neuronal network33

as a directed graph, then the spikes produced by the neurons at an instant of time is a binary state on the34

encoding graph. Allowing time to vary and recording the spiking patterns of the neurons in the network35

produces an example of a binary dynamics on the encoding graph, namely a one-parameter family of36

binary states on its vertices. A network of neurons that receives external signals and responds to those37

signals thus generates a binary dynamics. Binary dynamics appear in other contexts as well Gleeson38

(2008); Samuelsson and Socolar (2006), but in this paper we use networks of spiking neurons as a39

primary example.40

The signal classification problem, i.e., the task of correctly pairing a signal injected into a neuronal41

network with the response of the network, or in other words, identifying the incoming signal from the42

response, is generally very challenging. This paper proposes a methodology by which this task can be43

approached and provides scenarios in which this methodology is successful.44
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Considering raw binary states on a large graph is generally quite problematic for a number of reasons.45

First, the sheer number of theoretically possible states makes analysing a collection of them a daunting46

task Churchland and Abbott (2016); Fan and Markram (2019). Moreover, natural systems such as47

neuronal networks tend to be very noisy, in the sense that the emerging dynamics from the same stimulus48

may take a rather large variety of forms Cunningham and Yu (2014); Stein, Gossen, and Jones (2005).49

Finally, it is a general working hypothesis in studying network dynamics that the network structure50

affects its function Bargmann and E.Marder (2013); Chambers and MacLean (2016); Curto and Morrison51

(2019); Rubinov and Sporns (2010). This paradigm in neuroscience is often encapsulated by the slogan52

“neurons that fire together tend to wire together”. Hence, when studying dynamics on a neuronal53

network, it makes sense to examine assemblies of vertices, or subgraphs, and the way in which they54

behave as dynamical sub-units, instead of considering individual vertices in the network Babichev, Ji,55

Mémoli, and Dabaghian (2016); Curto and Itskov (2008); Milo et al. (2002).56

In previous studies we considered cliques in a directed graph, with various orientations of the57

connections between nodes, as basic units from which one could extract information about binary58

dynamics Govc, Levi, and Smith (2021); M. W. Reimann et al. (2017). However, the results in these59

papers fell short of suggesting an efficient classifier of binary dynamics (Govc et al., 2021, Sections60

4.1-4.2). Indeed, when we applied the methods of Govc et al. (2021); M. W. Reimann et al. (2017) to the61

main dataset used in this paper, we obtained unsatisfactory classification accuracy. This suggests that in a62

graph that models a natural system cliques may be too small to carry the amount of information required63

for classification of a noisy signal. This motivates us to build our classification strategy on neuron64

assemblies, where the richer structure serves a dual purpose of amalgamating dynamical information and65

regulating the noise inherent in single neurons or cliques.66

The guiding hypothesis of this paper is that a collection of vertex assemblies, forming a subgraph of the67

ambient connectivity graph encoding a network, can be used in classification of binary dynamics on the68

network. A network of spiking neurons is our primary example. Taking this hypothesis as a guideline, we69

introduce a very flexible feature generation methodology that takes as input binary dynamics on a70

digraph G induced on a preselected collection of subgraphs of G, and turns it into a feature vector, which71

can then be used in machine learning classification. The neighbourhood of a vertex v in the graph G,72

namely the subgraph of G that is induced by v and all its neighbours in G, suggests itself naturally as a73
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type of subgraph to be considered in this procedure, and is a central object of study in this paper. Vertex74

neighbourhoods have been studied extensively in graph theory and its applications Kartun-Giles and75

Bianconi (2019). An outline is given below and a full description in Methods.76

The way we apply the method can be summarised as follows. Given a directed graph G we use a variety77

of real valued vertex functions that we refer to as selection parameters and are derived from the78

neighbourhood of each vertex, to create a sorted list of the vertices. With respect to each such parameter,79

we pick the “top performing” vertices and select their neighbourhoods. To that collection of subgraphs80

we apply our feature generation method, which is based again on applying the same parameters to the81

selected neighbourhoods, now in the role of feature parameters. All the parameters we use are invariant82

under isomorphism of directed graphs, i.e. graph properties that remain unchanged when the vertices are83

permuted while leaving their connectivity intact. Therefore we occasionally refer to certain parameters as84

“graph invariants”.85

The choice of parameters is related to measures of network connectivity and architecture. For instance,86

the parameters fcc and tcc (see Table 1) are examples of measures of functional segregation Rubinov and87

Sporns (2010). The parameters we refer to as spectral parameters arise in spectral graph theory Chung88

(2005) and are prevalent in many applications, including in neuroscience. For instance, the paper de89

Lange, de Reus, and van den Heuvel (2014) studies the Laplacian spectrum of the macroscopic90

anatomical neuronal networks of macaques and cats, and the microscopic network of the C. elegans. The91

topological parameters, such as the Euler characteristic ec and Betti numbers are classical topological92

invariants. In M. W. Reimann et al. (2017) these were used in various ways to extract information on93

structure and function and their interaction in the Blue Brain Project reconstruction on the neocortical94

column. The parameter size is a natural parameter associated to any graph and is closely related to firing95

rate in neuroscience. However, most of the parameters we tested were never examined in a96

neuroscientific context. Our aim was to investigate which parameters may prove useful in classification97

of binary dynamics without making any assumptions about their relevance. It is exactly this approach98

that allowed us to discover that certain spectral parameters perform strongly as selection parameters,99

while others do not. At the same time a newly introduced topological parameter, “normalised Betti100

coefficient” nbc shows strong performance as a feature parameter when tested on neighbourhoods with101

low selection parameter values, but not on high selection values.102
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The primary test of our methods in this paper is done on data generated by the Blue Brain Project that103

was also used in M. Reimann et al. (2021) for signal classification by established neuroscience104

methodology. The data consists of eight families of neuronal stimuli that are injected in a random105

sequence to the digital reconstruction of the neocortical column of a young rat. This reconstructed106

microcircuit consists of approximately 31,000 neurons and 8,000,000 synaptic connections, and is107

capable of receiving neuronal signals and responding to them in a biologically accurate manner Markram108

et al. (2015). We used 60% of the data to train a support vector machine, and the remaining 40% for109

classification. With our methods we are able to achieve classification accuracy of up to 88%.110

In this paper we did not attempt to explain the relevance of any of the mathematical concepts we use to111

neuroscience, as our main aim was to discover and investigate the utility of various concepts. However, in112

M. Reimann et al. (2021) the same dataset is studied by standard techniques of computational113

neuroscience combined with the ideas presented in this paper. In particular, it is shown that an informed114

choice of neighbourhood improves classification accuracy when compared to traditional methods.115

Interestingly, selection of neighbourhoods that improved performance with the technique presented in116

M. Reimann et al. (2021) show reduced performance with the techniques presented in this article, and117

vice versa. In both projects a classification accuracy of nearly 90% was achievable, but with different118

selection parameters (see Results). This suggests that considering vertex neighbourhoods as119

computational units can be beneficial in more than one way.120

To further test our methods in different settings, we used the NEST - Neural Simulation Tool Jordan et al.121

(2019) to generate neuronal networks. This software package simulates network models of spiking122

neurons using simplified neuron models to allow more flexibility and faster processing speed. We created123

a collection of eight families of stimuli, but on random graphs with varying densities, and applied our124

machinery to that dataset. Here again we obtained classification accuracy of up to 81%.125

Important work on (open) vertex neighbourhoods was reported recently in Kartun-Giles and Bianconi126

(2019). Our approach is independent of this work and is different from it in a number of ways. Most127

significantly, we do not study the structure of the entire graph and its dynamical properties by means of128

its full neighbourhood structure. Instead, we aim to infer dynamical properties of the graph from a129

relatively small collection of vertices, selected by certain graph theoretic and topological properties, and130

their neighbourhoods.131
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High resolution figures and supplementary material is available at the Aberdeen Neurotopology Group132

webpage. In particular, we included a comprehensive visualization of spectral graph invariants of the133

Blue Brain Project graph, as well as other types of stochastically generated graphs, animations of some of134

the background work for this project, and a list of links to software implementing the methodology135

described in this paper.136

RESULTS

We start with a brief description of the mathematical formalism used in this article and our approach to137

classification tasks. This is intended to make the section accessible to readers without a strong138

mathematical background. We then proceed by describing our main data source and the setup and139

implementation of our experiments. Following this preparation we present our results, validation140

experiments, and an application of the same techniques in a different setup.141

A brief introduction to the mathematical formalism142

In this article a digraph will always mean a finite collection of vertices (nodes) V and a finite collection143

of oriented edges (arcs) E. Reciprocal edges between a pair of vertices are allowed, but multiple edges in144

the same orientation between a fixed pair of vertices and self-loops are not allowed.145

The fundamental mathematical concept essential for our discussion is that of the neighbourhood of a146

vertex in a digraph; Figure 1. Let G be a digraph, and let v0 be any vertex in G. The neighbours of v0 in G147

are all vertices that are “one step away” from v0, in either direction. The neighbourhood of v0 in G is the148

subgraph of G induced by v0 and all its neighbours, which we denote by NG(v0). The vertex v0 is referred149

to as the centre of its neighbourhood.150

Numerical invariants of digraphs can be found in pure and applied graph theory literature, many of those151

found their uses in theoretical neuroscience (see Rubinov and Sporns (2010) for a good survey). Some152

such invariants are used in this article, and a few are introduced here for the first time (e.g. transitive153

clustering coefficient). Other parameters we used are defined by using topological constructions that arise154

from digraphs. Such constructions are typically invariant under digraph isomorphism. Standard tools of155

algebraic topology can then be used to extract numerical invariants of graphs in ways that take emerging156

higher dimensional structure into account.157
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Figure 1. A neighbourhood in a digraph, marked in red, with its centre marked solid colour.

There are many ways in which one can associate a topological space with a digraph. In this article we use158

the directed flag complex. It is a topological space made out of gluing together simplices in different159

dimensions, starting at 0-simplices (points), 1-simplices (edges), 2-simplices (triangles), 3-simplices160

(tetrahedra) etc. The n-simplices in a directed flag complex associated to a digraph are its directed161

(n+ 1)-cliques, namely the ordered subsets of vertices {v0, v1, ..., vn}, such that there is an edge from vi162

to vj for all i < j. Figure 2 shows the directed flag complex associated to a small digraph. The directed163

flag complex was introduced and used for topologically analysing structural and functional properties of164

the Blue Brain Project reconstruction of the neocortical columns of a rat M. W. Reimann et al. (2017).165

The interested reader may find a comprehensive survey of directed flag complexes and other topological166

concepts in the Materials and Methods section of that paper. If v0 is a vertex in G, we denote by TrG(v0)167

the directed flag complex of NG(v0).168

a

b

c

d

e

f

g

h
(c, a), (d, b), (f, h),

(g, e), (a, b, c),

(c, d, e, f)

Figure 2. A digraph (left), the associated directed flag complex as a topological space (centre), and its

maximal cliques (right).

The classification method169
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We now describe briefly our approach to classification of binary dynamics. For a precise mathematical170

definition of what we mean by binary dynamics see Methods. The task at hand can be described as171

follows. We are given a large set of instantiations of binary dynamics on a fixed digraph G, each of which172

is labelled by a symbol from some relatively small set. The label of each binary dynamic is unique and173

known. The aim is to produce a machine learning compatible topological summary for each binary174

dynamics, so that when the summaries are introduced in a random order, one can train on part of the data175

with known labels and predict the unknown labels of the remaining part.176

Abbreviation Short description

fcc Clustering coefficient (Fagiolo)

tcc Transitive clustering coefficient

ec Euler characteristic

nbc Normalised Betti coefficient

size Number of vertices in the graph

asg Adjacency spectral gap

asr Adjacency spectral radius

blsg Bauer Laplacian spectral gap

blsr Bauer Laplacian spectral radius

clsg Chung Laplacian spectral gap

clsr Chung Laplacian spectral radius

tpsg Transition probability spectral gap

tpsr Transition probability spectral radius

Table 1. A partial list of the selection and feature parameters examined in this project. See

Supplementary Material Table S1 for additional parameters.

The first step is selection of neighbourhoods. For each vertex v in the digraph G we consider its177

neighbourhood NG(v) and the associated directed flag complex TrG(v). We then compute a variety of178

numerical graph parameters of NG(v) and topological parameters of TrG(v). These parameters are used179

to create a ranked list of vertices in G. We then select for each parameter 50 vertices that obtained the top180
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(or bottom) values with respect to that parameter. We now have a set of 50 neighbourhoods181

corresponding to each parameter. A parameter that is used in this step is referred to as a selection182

parameter, and we denote it by P . A short summary of the main parameters we used with their183

abbreviations is in Table 1. A detailed description of the parameters is given in Methods.184

In the second step we introduce binary dynamics in G. Each instantiation of the dynamics consists of185

several consecutive time bins (in our experiments we used two, but there is no limitation). For each time186

bin we consider the neurons that were active and the subgraph that they induce in each of the187

neighbourhoods we preselected. This gives us, for each selection parameter and each time bin, a set of 50188

subgraphs that correspond to a particular instantiation of binary dynamics on G.189

The third step is vectorising the data, i.e., a computation of the same graph parameters and topological190

parameters for each of the subgraphs resulting from the second step. When we use our parameters in the191

vectorisation process they are referred to as feature parameters, and are denoted by Q. This now gives a192

vector corresponding to each instantiation of the dynamics, and the pair (P,Q) of selection and feature193

parameters.194

The fourth and final step is injecting the data into a support vector machine. In this project we used 60%195

of the data for training and the remaining for testing. See Figure 3 for a schematic summary of the196

process.197

subgraph extraction

bin 1 bin 2

numerical featurisation

87%train test

82%train test

83%train test

79%train test

88%train test

cross-validated machine learning

84%

accuracy

Figure 3. A schematic description of the vector summary and classification pipeline.

We note that the method described here is an example of a much more general methodology that is198

described in detail in the Methods section of this article. In particular, the graph and topological199

parameters that we chose to work with are selected from within the abundance of mathematical concepts200
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that arise in graph theory, combinatorics and topology. We do not attempt in this article to associate a201

neuroscientific meaning to these parameters.202

The data203

Our main source of data is a simulation that was run on a Blue Brain Project reconstruction of the204

microcircuitry of the somatosensory cortex in the brain of a rat Markram et al. (2015). From this model205

we extract the connectivity of the microcircuit in the form of a digraph whose vertices correspond to206

neurons, and with an edge from v to u if there is a synaptic connection from the neuron corresponding to207

v to the one corresponding to u. We denote the Blue Brain Project digraph by G. The digraph consists of208

31,346 vertices and 7,803,528 edges. The connectivity matrix of this specific circuit, as well as 41 other209

instantiations of the reconstruction, is accessible on the Digital Reconstruction of Neocortical210

Microcircuitry.211

The binary dynamics we experimented with consists of eight stimuli families labelled 0-7. For each212

stimulus a random subset (10%) of afferent neurons is activated. The stimuli differ with respect to which213

subset of afferent neurons is activated, where afferents can be shared between stimuli. The probability of214

a given afferent being associated with two given stimuli is 1%. In each stimulation time window one and215

only one stimulus is presented. The stimuli were injected into the circuit in a random sequence of 200216

milliseconds per stimulus, and 557 repeats for each stimulus label. The dataset thus consists of 4456217

binary dynamics functions. The task is to determine the label of that stimulus, i.e. the expected output is218

an integer from 0 to 7. Thus, the chance level performance would be 12.5%. More detail on the source of219

data, biological analysis and an alternative approach to classification of the same data is in M. Reimann et220

al. (2021).221

Setup222

We computed all the graph parameters listed in Table 1, as well as additional parameters listed in223

Supplementary Material, for all neighbourhoods in the digraph (see Supplementary Material - Data and224

Code, for a brief description of computational methods and links to software). We fixed a positive integer225

M , and for each selection parameter P we selected the vertices v1, v2, . . . , vM , whose neighbourhoods226

NG(v1), . . . , NG(vM) obtained the top (or bottom) M values of the parameter P (see Step II) in227
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Methods). We experimented with M = 20, 50, 100 and 200. Here we report on the results we obtained228

for M = 50, which provided the highest classification accuracy. For M = 20 performance was strong as229

well, but for M = 100 and 200 the improvement compared to M = 50 was relatively minor, and not230

worth the additional time and computation needed.231

Vector summaries232

Each binary dynamics in our dataset has time parameter t between 0 and 200 milliseconds. The233

subinterval [0, 60] is where almost all the spiking activity is concentrated across the interval.234

Furthermore, the bulk of the stimulus is injected in the first 10ms. Since we aimed to classify the235

response to the stimulus rather than the stimulus itself, we chose ∆ = [10, 60] and divided that interval236

into two 25ms subintervals, as experimentation showed that these choices provide the highest237

classification accuracy (see Step I) in Methods).238

We denote each instantiation of binary dynamics on G by Bn, for n = 1, . . . , 4456. Each instantiation239

consists of two binary states Bn
1 , B

n
2 , corresponding to the neurons that fired in each of the 25ms240

subintervals. For each selection parameter P , and each of the corresponding neighbourhoods NG(vm),241

m = 1, . . . , 50, we computed the subgraphs Nm,k of NG(vm) induced by the binary state Bn
k , that is, the242

subgraph induced by the neurons that fired in the given interval. This gave us, for each binary dynamics243

Bn and each graph parameter P , a 2× 50 matrix UP
n of subgraphs of G, whose (m, k) entry is Nn

m,k. (see244

Step II) in Methods).245

Finally, for each graph parameter Q (from the same list of parameters) we applied Q to the entries of the246

matrix UP
n to obtain a numerical feature matrix UP,Q

n corresponding to the binary dynamics function Bn,247

the selection parameter P , and the feature parameter Q. The matrix UP,Q
n is a vector summary of the248

binary dynamics Bn. (see Step III) in Methods).249

Classification250

For each pair of graph parameters (P,Q) the vector summaries {UP,Q
n } were fed into a support vector251

machine (SVM) algorithm. Our classification pipeline was implemented in Python using the252

scikit-learn package and the SVC implementation therein. The SVC was initialised with default253

settings and we used a 60/40 train/test split. The kernel used was Radial Basis function. We used254
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one-versus-one approach for multiclass classification. For cross-validation we used standard 5-fold255

cross-validation in scikit-learn. The results are presented in Figure 4.256

Figure 4. Results of 8 stimuli classification experiments. Range of cross-validated accuracy is indicated

by four smaller squares in each square. Left: Classification accuracy selecting the 50 neighbourhoods

with highest parameter value. Right: Classification accuracy selecting the 50 neighbourhoods with lowest

parameter value. Compare with Supplementary Figure S3.

For each of the selection parameters we tested, we considered both the neighbourhoods that obtained the257

top 50 values and those that obtained the bottom 50 values. In all the experiments, four parameters gave258

markedly better performance when used as feature parameters than all other parameters: Euler259

characteristic (ec), normalised Betti coefficient (nbc), size and Bauer Laplacian spectral radius (blsr). All260

four perform significantly better than other feature parameters when the neighbourhoods were selected261

by bottom value parameters. With respect to top value selection parameters, ec and size, performed well,262

while nbc and blsr were significantly weaker as feature parameters, except when coupled with Chung263

Laplacian spectral gap (clsg). The neighbourhoods selected by top values of selection parameters gave264

best results when the selection parameter was one of the spectral graph invariants, while selecting by265

bottom value of selection parameters, the two types of clustering coefficients (cc and tcc) and Euler266

characteristic (ec) performed best.267
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Interestingly, the two best performing feature parameters, Euler characteristic and size, gave good results268

across all selection parameters, and performed almost equally well, regardless of whether the269

neighbourhoods were selected by top or bottom selection parameter value. This suggests that, at least in270

this particular network, the choice of feature parameter plays a much more important role in classification271

accuracy than any specific selection parameter. On the other hand, examining the rows of the best272

performing feature parameters, in Figure 4, we see a difference of up to 27% (top ec), 40% (top nbc) and273

18% (top size) in classification accuracy, depending on which selection parameter is used, suggesting274

that, within a fixed choice of a feature parameter, the selection parameter may play an important role in275

the capability of the respective neighbourhoods to encode binary dynamics. Note that randomly276

classifying the 8 stimuli gives an accuracy of 12.5%.277

Validation278

In order to validate our methods, we created five experiments, the results of which we then compared to a279

subset of the original tests. In each case we retrained the SVM algorithm and then retested.280

A motivating idea in neuroscience in general, and in this work in particular, is that structure is strongly281

related to function. Our approach, using neighbourhoods sorted by graph parameters and using the same282

graph parameters as feature parameters is proposed in this article as a useful way of discovering283

combinations of parameters that achieve good classification results of binary dynamics. To test the284

validity of this proposal, we challenged our assumptions in five different ways, as described below.285

Random selection. In this simple control experiment we test the significance of the selection parameter286

by comparing the results to a random choice of 50 vertices and performing the same vector summary287

procedure on their neighbourhoods. Twenty iterations of this experiment were performed, and the results288

for each feature parameter were compared to the outcome for the same feature parameter and the289

selection parameter with respect to which this feature parameter performed best. The results are290

described in Figure 5.291

We observe that in almost all cases reported here a choice of neighbourhoods determined by a selection292

parameter outperforms a random choice (in some cases marginally). We also note that in all those cases293

the performance of a choice informed by one of these selection parameters exhibits a more consistent294
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Figure 5. The classification performance based on the neighbourhoods of 50 randomly selected vertices

(blue), compared to the performance of neighbourhoods selected by graph parameters with respect to a

selection of feature parameters (red). Errors bars indicate range over 20 iterations. Labels on the red error

bars indicate the selection parameter that performed best with respect to the indicated feature parameter.

Compare with Supplementary Figure S2.

behaviour in terms of classification accuracy. This can be seen from the considerably larger error bars in295

the case neighbourhoods are selected at random. On the other hand, for some feature parameters a296

random choice does not seem to be a disadvantage, even compared to the best selection parameter with297

respect to this feature parameter (Supplementary Figure S3). This suggests that while selection and298

generation of vector summary by objective parameters are advantageous, experimentation is generally299

necessary in order to decide which parameters best fit the classification task.300

Neighbourhood vs. centre. A working hypothesis in this paper is that neighbourhoods carry more301

information about a binary dynamics than individual vertices. We examined for each selection of 50302

neighbourhoods by a graph parameter, as described above, the classification capability of the centres of303

these neighbourhoods. Specifically, this experiment is identical to the original classification experiment,304

except for each selection parameter P the two rows of the corresponding feature matrix have binary305

values, where the j-th entry in row i is set to be 1 if the j-th neuron in the sorted list fired in the i-th time306

bin at least once and 0 otherwise. These feature vectors were then used in the classification task using307
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the same train and test methodology. For each of the selection parameters we tested, we considered both308

the top 50 and the bottom 50 neurons in the corresponding sorted list.309

The results of this experiment were compared with the original experiments, and are shown in Figure 6.310

We note that in all cases a very significant drop in performance occurs. Interestingly, some vertices in the311

top 50 of a sorted list show classification accuracy that is far better than random, while the bottom 50 give312

performance comparable to random (for example, fcc). In some cases however, the bottom 50 vertices313

give better performance than the top 50. This suggests that the selection parameters play a role in314

classification accuracy even before considering the activity in the neighbourhood of a vertex.315

We also note that for almost all top valued selection parameters recorded in Figure 6 and some of the316

bottom valued ones, the classification performance using the centre alone is significantly better than317

random. This observation reinforces the idea that selection parameters inform on the capability of318

neurons to inform on activity.319

Figure 6. Classification results by binary vectors using only the centres of each of the top and bottom 50

neighbourhoods for each parameter. For comparison, the performance for each selection parameter

classified by the highest performing feature parameter is included.

Neighbourhoods vs. arbitrary subgraphs. For each selection parameter we considered the degrees of the320

50 selected centres. For a centre vi of degree di we then selected at random di vertices in the ambient321

graph and considered the subgraph induced by those vertices and the centre vi. We used these 50322
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subgraphs in place of the original neighbourhoods. In this way we create for each centre a new subgraph323

with the same vertex count as the original neighbourhoods that is unrelated to the centres in any other324

controllable way. We extracted feature vectors using these subgraphs for each of the selection parameters325

and repeated the classification experiment. The results were compared to the original results with respect326

to the strongest performing feature parameter. Notice that these are always either ec or size, both of327

which can be applied to an arbitrary digraph, not necessarily a neighbourhood.328

Figure 7. Classification by subgraphs of the same vertex count as the neighbourhoods selected by the

specified selection parameters. The results of classification by the highest performing feature parameters

are above each of the columns.

The results of this experiment were compared with the original experiments, and are shown in Figure 7.329

There is a clear drop in performance for all selection parameters except fcc (Fagiolo’s clustering330

coefficient; See Methods). Furthermore, classification using these subgraphs shows considerably larger331

error bars. This suggests that using neighbourhoods with our methodology is advantageous. One332

explanation for this may be the tighter correlation of activity among neurons in a neighbourhood,333

compared to an arbitrary subgraph of the same size in the network, but we did not attempt to verify this334

hypothesis.335

Fake neighbourhoods. In this experiment we considered for each centre its degree and selected at336

random the corresponding number of vertices from the ambient graph. We then modified the adjacency337
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matrix of the ambient graph so that the centre is connected to each of the vertices selected in the338

appropriate direction, so as to preserve the centre’s in- and out-degree. Computationally, this amounts to339

applying a random permutation to the row and the column of each of the centres. The result is a new340

ambient graph, where the old centres are now centres of new neighbourhoods. We extracted feature341

vectors using these “fake neighbourhoods” and repeated the classification experiment. The results were342

compared with the original classification. The outcome is illustrated in Figure 8.343

Figure 8. Classification by “fake neighbourhoods”: Original classification with respect to best

performing feature parameter is given for comparison.

We note that with respect to almost all selection parameters there is a significant drop in performance344

resulting from this modification. The one exception is fcc, where ec as a feature parameter actually345

sometimes gives slightly better results, but with a large error bar. It is interesting that the results are346

similar for some of the parameters to those observed in previous experiment (Figure 7), but quite347

different for others. However, the drop in performance is similar in both cases. We make no hypothesis348

attempting to explain these observations.349

Shuffled activity. In this experiment we applied a random permutation σ of the neuron indices in the350

Blue Brain Project microcircuit, so that neuron σ(i) now receives the spike train (sequence of spikes) of351

neuron i for each stimulus. That is, we precompose the binary dynamics with σ to get a new binary352

dynamics, which still appears in eight varieties, since the operation of permuting the neuron indices is353
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bijective. In other words, we can reconstruct the original activity from the shuffled activity by applying354

the inverse permutation σ−1. The same selection and feature parameters were used and the resulting data355

was used for training and testing. The results are shown in Figure 9.356

Figure 9. Classification of shuffled binary dynamics functions and comparison to the top results for the

original dynamics.

We observe again that there is a significant drop in performance resulting from this shuffling. This is357

quite surprising since the shuffled activity spike train should give eight families of stimuli that carry some358

sort of internal resemblance, and since we retrained and tested with these stimuli, one could expect that359

the classification results will be comparable to those of the original experiments. That not being the case360

suggests that structure and function in the Blue Brain Project reconstruction are indeed tightly related.361

Testing the method on an artificial neuronal network362

To test our methods in a non-biological binary dynamics setting, we conducted a set of experiments with363

the NEST simulator Jordan et al. (2019). The NEST software simulates spiking neuronal network models364

and offers a vast simplification of neuronal networks that are based on the exact morphology of neurons365

(such as the Blue Brain Project reconstructions). It also provides great flexibility in the sense that it366

allows any connectivity graph to be implemented in it and any initial stimulation to be injected into the367

system with the response modulated by various flexible parameters.368
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Figure 10. Eight types of input stimuli for Erdős–Rényi random digraphs, executed as a single 800

second experiment. Top row: Sequence of stimuli types, 500 of each, and relative strength of input for

each stimulus. Second row: Spiking neurons on a 1000 ms interval from the experiment. Bottom left:

Spiking neurons and length of external input on a 18 ms interval. Third row right: Random selections of

100 vertices from 1000 vertices, acting as receptors of external input. Bottom row right: Distribution of

randomly selected relative strength and input stimulus time offset over the whole experiment.

To move as far as possible from a strict biological setup, we generated a number of Erdős–Rényi random369

digraphs on 1000 vertices, which we implemented on NEST. We then created 8 distinct stimuli, each370

enervating a random selection of 100 vertices of the graph. A random sequence of stimuli was then371

created, with each stimulus type repeated 500 times. Our experiment consisted of injecting the sequence372
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of stimuli into the simulator, for a duration of 5ms, one every 200 ms, to reduce the influence of one373

stimulus on the next. To introduce some randomness, the start time of each stimulus is randomly selected374

from the first 10ms , the strength of each stimulus is multiplied by a random number between 1 and 2,375

and background noise is included (using NEST’s noise generator device with strength 3). For each376

200ms interval, the first 10ms were not included in the classification. As a result some of the input may377

be included in the classified data, but never more than 4 ms, and for approximately 60% of the 4000378

stimuli the input is completely excluded from classification. The code used to create these experiments is379

available online, and the experiments are presented visually in Figure 10.380

The spikes from this simulation were then extracted and were run through the same pipeline as the Blue381

Brain Project data. We experimented with graph densities of 0.08, 0.01 and 0.005, and with selections of382

10, 20, and 50 neighbourhoods. Figure 11 shows the performance by the selection parameters from Table383

1. Size was used in all cases as a feature parameter. The best performance was obtained with 50384

neighbourhoods, with graph density of 0.01 in almost all selection parameters. The results of experiments385

with all parameters can be seen in Supplementary Figure S5.386

Figure 11. Classification of eight random signals on an Erdős–Rényi random digraph on 1000 vertices

and connection probabilities of 8%, 1% and 0.5% and selection of 10, 20, and 50 neighbourhoods,

modelled on a NEST simulator. Selection parameters are the same as in the main example and feature

parameter is always size. Graph G means the BBP graph and its performance with respect to size as

feature parameter is given for comparison. Compare with Supplementary Figure S5.

Interestingly, the middle graph density of 0.01 consistently performed equally as well or better than both387

the denser 0.08 and less dense 0.005 across all feature parameters, except neighbourhood size (size) and388

adjacency spectral gap (asg). Another interesting observation is that the strongest selection parameter in389
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this experiment turns out to be normalised Betti coefficient (nbc), or transitive clustering coefficient (tcc),390

depending on if “strongest” is taken to mean with the highest individual accuracy or with the highest391

average accuracy from cross-validation, respectively. Both of these selection parameters in the Blue392

Brain Project experiments exhibited rather mediocre performance (see Figure 4, left). This suggests that393

different networks and binary dynamics on them may require experimentation with a collection of394

selection (and feature) parameters, in order to optimise the classification accuracy.395

DISCUSSION

In this paper we examined the concept of a closed neighbourhood in relation to the classification of396

binary dynamics on a digraph. Regardless of what the source of the binary dynamics is, but with the397

assumption that it is given in a time series of labelled instantiations, we ask how can the dynamics be398

read off and classified. In the context of neuroscience, which is our primary motivation for this study, this399

is a question on the boundary between computational neuroscience and machine learning. Our methods400

provide a method of addressing this question.401

We proposed a methodology that will take as input binary dynamics on a digraph and produce a vector402

summary of the dynamics by means of combinatorial and/or topological parameters of a relatively small403

number of neighbourhoods. Using this methodology we experimented with a dataset implemented on the404

Blue Brain Project reconstruction of the neocortical column of a rat, and on an artificial neuronal network405

with random underlying graph implemented on the NEST simulator. In both cases the vector summaries406

were then run through a support vector machine algorithm that was able to achieve a classification407

accuracy of up to 88% for the Blue Brain Project data and up to 81% for the NEST data.408

We used the same parameters both for selecting neighbourhoods and for the creation of feature vectors.409

We saw that certain spectral graph parameters used as selection parameters perform significantly better410

than more classical parameters such as degree and clustering coefficients. We also observed that the411

parameters that performed best as feature parameters were the simplest ones, namely size and Euler412

characteristic. Comparison to randomly selected neighbourhoods showed that the methodology works413

reasonably well even without selecting the neighbourhoods in an informed way, but that neighbourhoods414

selected in a way informed by graph parameters gives in general a better performance with a much415

smaller error range.416
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Our aim was to demonstrate that certain selections of subgraphs, informed by objective structural417

parameters, carry enough information to allow classification of noisy signals in a network of spiking418

neurons. In this paper the subgraphs selected are closed neighbourhoods, and the selection criteria are our419

chosen selection parameters. We did not however show, or attempted to demonstrate, that the use of420

neighbourhoods as a concept, or graph parameters as a selection mechanism are the best methodology.421

The same techniques could be applied to other subgraph selections and other vectorisation methods,422

which can be analysed by our pipeline with relatively small modifications.423

Another aspect of our ideas that was not exploited at all in this project is the use of more than a single424

graph parameter in the selection procedure. We did show that different parameters are distributed425

differently in the Blue Brain Project graph, and hence one may hypothesise that optimising426

neighbourhood selection by two or more parameters may give improved classification accuracy.427

As our aim was not to obtain the best classification, but rather to provide a good methodology for428

ingesting binary dynamics on a digraph and producing machine learning digestible data stream, we did429

not experiment with other more sophisticated machine learning algorithms. It is conceivable that doing430

so may produce even better classification accuracy than what is achieved here.431

Finally, our approach is closely related to graph neural networks where convolution is performed by432

aggregating information from neighbourhoods, i.e. for every vertex, features are learned from all the433

adjacent vertices. The pipeline presented in this paper also takes as input sequences of neuronal firings434

and sequences of neuron assemblies which turn the firing patterns into feature values. The interaction of435

our work and the modelling perspectives from graph neural networks and sequence-to-sequence learning436

might thus pose an interesting future research question.437
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METHODS

Mathematical Concepts and Definitions438

We introduce the basic concepts and notation that are used throughout this article. By a digraph we mean439

a finite, directed simple graph, that is, where reciprocal edges between a pair of vertices are allowed, but440

multiple edges in the same orientation between a fixed pair of vertices and self-loops are not allowed.441

Topology is the study of topological spaces - a vast generalisation of geometric objects. In this paper we442

only consider spaces that are built out of simplices. Simplices occur in any dimension n ≥ 0, where a443

0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex a tetrahedron444

and so forth in higher dimensions. Simplices can be glued together to form a topological space. A good445

survey for this material intended primarily for readers with a neuroscience background can be found in446

the Materials and Methods section of M. W. Reimann et al. (2017).447

We now describe a general setup that associates a family of topological objects with a digraph. A448

particular case of this setup is the main object of study in this paper.449

Definition 1. A topological operator on digraphs is an algorithm that associates with a digraph G a450

topological space Γ(G), such that ifH ⊆ G is a subgraph then Γ(H) ⊆ Γ(G) is a closed subspace.451

That is, a topological operator on digraphs is a functor from the category of digraphs and digraph452

inclusions to the category of topological spaces and inclusions. The flag complex of G (ignoring453

orientation), the directed flag complex Lütgehetmann, Govc, Smith, and Levi (2020), and the flag454

tournaplex Govc et al. (2021) are examples of such operators.455

Definition 2. Let G = (V,E) be a digraph, and let v0 ∈ V be any vertex.456

The neighbours of v0 in G are all vertices v0 6= v ∈ V that are incident to v0.457

The open neighbourhood of v0 is the subgraph of G induced by the neighbours of v0 in G. The closed458

neighbourhood of v0 in G is the subgraph induced by the neighbours of v0 and v0 itself.459

We denote the open and closed neighbourhoods of v0 in G by N◦G(v0) and NG(v0) respectively. More460

generally:461
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Figure 12. An open neighbourhood (left) and a closed neighbourhood (right) in a digraph, marked in

red, with its central vertex marked solid colour.

Let S ⊆ V be a subset of vertices. Then N◦G(S) denotes the union of open neighbourhoods of all462

v ∈ S. Similarly NG(S) is the union of all closed neighbourhoods of vertices v ∈ S.463

Notice that if S = {v0, v1}, and v0 and v1 are incident in G, then N◦G(S) = NG(S). In this paper we will464

mostly consider closed neighbourhoods. Neighbourhoods are also used in the paper M. Reimann et al.465

(2021), which is closely related to this article.466

Terminology 1. Let G be a digraph and let S be a subset of vertices in G. Unless explicitly stated467

otherwise, we shall from now on refer to the closed neighbourhood of S in G simply as the neighbourhood468

of S in G. In the case where S contains a single vertex v0, we will refer to v0 as the centre of NG(v0).469

The topological operator we consider in this article is the directed flag complex of a digraph which we470

recall next. See Figure 2 for an example.471

Definition 3. A directed n-clique is a digraph, whose underlying undirected graph is an n-clique, and472

such that the orientation of its edges determines a linear order on its vertices. An ordered simplicial473

complex is a collection X of finite ordered sets that is closed under subsets. The n-simplices of an474

ordered simplicial complex X are the sets of cardinality n+ 1. If G is a digraph, then the directed flag475

complex associated to G is the ordered simplicial complex whose n-simplices are the directed476

(n+ 1)-cliques in G. We denote the directed flag complex of a digraph G by |G|.477

Encoding binary dynamics on neighbourhoods478

We now describe our approach to classification of binary dynamics on a graph in general terms.479
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Definition 4. Let G = (V,E) be a graph (directed or undirected). A binary state on G is a function480

β : V → {0, 1}. Equivalently, a binary state on G is a partition of V into two disjoint subsets that481

correspond to β−1(0) and β−1(1), or alternatively as a choice of an element of the power set P(V ) of V .482

A binary dynamics on G is a function B : R≥0 → P(V ) that satisfies the following condition:483

There is a partition of R≥0 into finitely many half open intervals {[ai, bi)}Pi=1 for some P ≥ 1, such484

that B is constant on [ai, bi), for all i = 1, . . . , P .485

Activity in a network of neurons, both natural and artificial, is a canonical example of a binary dynamics486

on a directed network.487

Setup. The task we address in this section is a general classification methodology for binary dynamics488

functions. Namely, suppose one is given489

a set of binary dynamics functions {Bi | i ≥ 1} on a fixed ambient graph G,490

a set of labels L = {L1, L2, . . . , Ln}, and491

a labelling function L : {Bi | i ≥ 1} → L.492

In addition, we operate under the assumption that functions labeled by the same label are variants of the493

same event (without specifying what the event is, or in what way its variants are similar). The aim is to494

produce a topological summary for each Bi in a way that will make the outcome applicable to standard495

machine learning algorithms. We next describe our proposed mechanism.496

Creation of vector summary Fix a graph G and a real-valued graph parameter Q, that is, a real-valued497

function taking digraphs as input and whose values are invariant under graph isomorphisms. Suppose that498

a set of labeled binary dynamics functions {Bn}Nn=1 on G is given. Select an M -tuple (H1,H2, . . . ,HM)499

of subgraphs of G, for some fixed positive integer M .500

Fix a time interval and divide it into time bins. In each bin, record the vertex set that showed the value 1,501

that is, was active at some point during that time bin. For each 1 ≤ m ≤M , restrict that set toHm and502

record the subgraph induced by the active vertices. Apply Q to obtain a numerical M -tuple, and503
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concatenate the vectors into a long vector, which encodes all time bins corresponding to the given504

dynamics.505

We now describe the procedure more accurately in three steps.506

I) Interval partition uniformising. Fix an interval I = [a, b] ⊂ R≥0 and a positive integer K. Let

∆ = b−a
K

. For 1 ≤ k ≤ K, let Ik denote the sub-interval

Ik
def
= [a+ (k − 1)∆, a+ k∆] ⊆ [a, b].

II) Subgraph extraction. For 1 ≤ n ≤ N and each 1 ≤ m ≤M , let βn
m,k denote the binary state onHm

defined by

βn
m,k

def
= {v ∈ Hm | ∃t ∈ Ik, such that v ∈ Bn(t)}.

LetHn
m,k ⊆ Hm be the subgraph induced by all vertices in the set βn

m,k. We refer toHn
m,k as the507

active subgraph ofHm with respect to the binary dynamics function Bn.508

III) Numerical featurisation. For each 1 ≤ n ≤ N , let qnm,k denote the value of Q applied toHn
m,k. Let509

F n denote the M ×K matrix corresponding to the binary dynamics function Bn, that is510

(F n)m,k = qnm,k.511

For use in standard machine learning technology such as support vector machines, we turn the output of512

the procedure into a single vector by column concatenation. The output of this procedure is what we refer513

to as a vector summary of the collection {Bn}Nn=1 (Figure 3). It allows great flexibility as its outcome514

depends on a number of important choices:515

the ambient graph G,516

the selection procedure of subgraphs,517

the interval I and the binning factor K, and518

the graph parameter Q.519

All these choices may be critical to the task of classifying binary dynamics functions, as our use case520

shows, and have to be determined by experimentation with the data.521

Selection and feature parameters522
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In this section we describe the graph parameters used in this article. Some of these parameters are well523

known in the literature. All of them are invariant under digraph isomorphism. The parameters presented524

in this section are the primary parameters used for both selection and generation of vector summaries.525

We chose these particular parameters either because of their prevalence in the literature, or for their526

strong performance as either selection or feature parameters in classification tasks. Other parameters we527

examined are mentioned in Supplementary Materials.528

Throughout this section, we let G = (V,E) denote a locally finite digraph (that is, such that every vertex529

is of finite degree). For k ≥ 1 and v0 ∈ V , we let Sk(v0) denote the number of directed (k + 1)-cliques530

that contain v0. In particular S1(v0) = deg(v0).531

Clustering coefficients. In Watts and Strogatz (1998) Watts and Strogatz introduced an invariant for532

undirected graphs they called clustering coefficient. For each vertex v0 in the graph G, one considers the533

quotient of the number tv0 of triangles in G that contain v0 as a vertex by the number
(
deg(v0)

2

)
of triangles534

in the complete graph on v0 and its neighbourhood in G. The clustering coefficient of G is then defined as535

the average across all v0 ∈ G of that number. Clustering coefficients are used in applied graph theory as536

measures of segregation Rubinov and Sporns (2010).537

Clustering coefficient for digraphs. The Watts–Strogatz clustering coefficient was generalised by Fagiolo

Fagiolo (2007) to the case of directed graphs. Fagiolo considers for a vertex v0 every possible 3-clique

that contains v0, and then identifies pairs of them according to the role played by v0, as a source, a sink,

or an intermediate vertex (see Figure 13, (A), (B) and (C)). Fagiolo also considers cyclical triangles at v0

and identifies the two possible cases of such triangles (see Figure 13, (D)). The Fagiolo clustering

coefficient at v0 is thus the quotient of the number of equivalence classes of directed triangles at v0,

denoted by ~tv0 , by the number of such classes in the complete graph on v0 and all its neighbours in G.

Thus, if v0 is the i-th vertex in G with respect to some fixed ordering on the vertices, and A = (ai,j) is the

adjacency matrix for G, then

~tv0
def
=

1

2

∑
j,k

(ai,j + aj,i)(ai,k + ak,i)(aj,k + ak,j),
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and the clustering coefficient at v0 is defined by

CF (v0)
def
=

~tv0
deg(v0)(deg(v0)− 1)− 2

∑
j ai,jaj,i

.

Transitive clustering coefficient A directed 3-clique is also known in the literature as a transitive538

3-tournament. Our variation on the clustering coefficient, the transitive clustering coefficient of a vertex539

v0 in a digraph G, is the quotient of the number of directed 3-cliques in G that contain v0 as a vertex by540

the number of theoretically possible such 3-cliques.541

Let ind(v0) and oud(v0) denote the in-degree and out-degree of v0. Let Iv0 , Ov0 and Rv0 denote the

number of in-neighbours (that are not out-neighbours), out-neighbours (that are not in-neighbours) and

reciprocal neighbours of v0, respectively. Notice that

ind(v0) = Iv0 +Rv0 and oud(v0) = Ov0 +Rv0 . (1)

We introduce our variation on Fagiolo’s clustering coefficient.542

Definition 5. Define the transitive clustering coefficient at v0 by

CT (v0)
def
=

S2(v0)

deg(v0)(deg(v0)− 1)− (ind(v0)oud(v0) +Rv0)
.

543

A justification for the denominator in the definition is needed and is the content of the Lemma 1 in544

Supplementary Materials.545

Let A = (ai,j) denote the adjacency matrix for G with respect to some fixed ordering on its vertices. Then

for each vertex v0 ∈ G that is the i-th vertex in this ordering, S2(v0) can be computed by the formula

S2(v0) =
∑
j,k

(ai,j + aj,i)(ai,k + ak,i)(aj,k + ak,j)− ai,jaj,kak,i = 2~tv0 −
∑
j,k

ai,jaj,kak,i. (2)

Euler characteristic and normalised Betti coefficient. The Betti numbers of the various topological546

constructions one can associate to a digraph have been shown in many works to give information about547

structure and function in a graph. A particular example, using Blue Brain Project data is M. W. Reimann548

et al. (2017).549

–28–

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn_a_00228/1982663/netn_a_00228.pdf by guest on 21 January 2022



== D R A F T ==

/ Title: Neighbourhood in Dynamic Digraphs

Authors: Author Names

v0

v1 v2

v0

v1 v2

∼
(A)

v0

v1 v2

v0

v1 v2

∼
(B)

v0

v1 v2

v0

v1 v2

∼
(C)

v0

v1 v2

v0

v1 v2

∼
(D)

Figure 13. Eight possible directed triangles on the same three vertices. The pairs correspond to the

identifications made by Fagiolo, with changes denoted by dotted edges. In the definition of the transitive

clustering coefficient, the triangles in (A), (B) and (C) are counted individually, and those in (D) are

ignored.

Euler characteristic. The Euler characteristic of a complex is possibly the oldest and most useful

topological parameter, and has been proven to be useful to theory and applications. In the setup of a

directed flag complex (or any finite semi-simplicial set) the Euler characteristic is given as the alternating

sum of simplex counts across all dimensions:

EC(X)
def
=
∑
n≥0

(−1)n|Xn|,

where |Xn| is the number of n-simplices in X . Alternatively, the Euler characteristic can be defined

using the homology of X by

EC(X)
def
=
∑
n≥0

(−1)n dimF(Hn(X,F)),

where F is any field of coefficients. The Euler characteristic is a homotopy invariant, and can take550

positive or negative values according to the dominance of odd- or even-dimensional cells in the complex551

in question.552

Normalised Betti coefficient. The normalised Betti coefficient is based on a similar idea to the Euler553

characteristic. It is invariant under graph isomorphism, but is not a homotopy invariant. Also, unlike the554
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Euler characteristic, it is not independent of the chosen field of coefficients. We view the normalised Betti555

coefficient as a measure of how “efficient” a digraph is in generating homology, without reference to any556

particular dimension, but with giving increasing weight to higher dimensional Betti numbers.557

Let G be a digraph, and for each k ≥ 0, let sk(G) denote the number of k-simplices in the directed flag558

complex |G|. Fix some field F. By the Betti number βi of G we mean the dimension of the homology559

vector space Hi(|G|,F).560

Definition 6. Let G be a locally finite digraph. Define the normalised Betti coefficient of G to be

B(G)
def
=

∞∑
i=0

(i+ 1)βi(G)

si(G)
.

Normalised Betti coefficients can be defined by any linear combination of Betti numbers, and also in a561

much more general context (simplicial posets), which we did not explore. Both the Euler characteristic562

and the normalised Betti coefficients are invariants of digraphs, and to use them as vertex functions we563

consider their value on the neighbourhood of a vertex.564

Size (vertex count). The size of a digraph can be interpreted in a number of ways. One standard way to565

do so is for a fixed simplicial object associated to a digraph, one counts the number of simplices in each566

dimension. This will typically produce a vector of positive integers, the (euclidean) size of which one can567

consider as the size of the digraph. Alternatively, the simplex count in any dimension can also be568

considered as a measure of size. In this article we interpret size as the number of vertices in the digraph.569

Thus by size of a vertex v0 ∈ G we mean the vertex count in NG(v0). When working with binary states on570

a digraph, neighbourhood size means the number of vertices that obtain the value 1 in NG(v0).571

Spectral invariants. The spectrum of a (real valued) square matrix or a linear operator A is the572

collection of its eigenvalues. Spectral graph theory is the study of spectra of matrices associated to573

graphs. It is a well developed part of combinatorial graph theory and one that finds many applications in574

network theory, computer science, chemistry and many other subjects (See a collection of web links on575

Applications of Spectral Graph Theory). The various versions of the Laplacian matrix associated to a576
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graph plays a particularly important role. An interesting work relating neuroscience and the Laplacian577

spectrum is de Lange et al. (2014).578

The spectral gap is generally defined as the difference between the two largest moduli of eigenvalues of579

A. In some situations, for instance in the case of the Laplacian matrix, the spectral gap is defined to be580

the smallest modulus of nonzero eigenvalues. Given a matrix and its spectrum, either number can be581

computed. As a standard in this article spectral gaps are considered as the first type described above,582

except for the Chung Laplacian spectrum, where the spectral gap is defined to be the value of the minimal583

nonzero eigenvalue. However, in several cases we considered both options. To emphasise which option is584

taken we decorated the parameter codes from Table 1 with a subscript “high” (referring to the difference585

between the two largest moduli) or “low” (referring to the smallest modulus of a nonzero eigenvalue).586

For example, Figures 7, 8, 9 have blslow as a parameter, indicating the lowest nonzero value in the Bauer587

Laplacian spectrum (that is, the minimal nonzero eigenvalue of the Bauer Laplacian matrix). Another588

variant of the standard concepts of spectra is what we call the reversed spectral gap (Definitions 7 and 9).589

Yet another common invariant we considered is the spectral radius which is the largest eigenvalue590

modulus of the matrix in question. We consider here four matrices associated to digraphs: the adjacency591

matrix, the transition probability matrix, the Chung Laplacian and the Bauer Laplacian, with details to592

follow.593

The adjacency and transition probability matrices. Let G = (V,E) be a weighted directed graph with

weights wu,v on the edge (u, v) in G, where wu,v = 0 if (u, v) is not an edge in G. Let WG = (wu,v) denote

the weighted adjacency matrix of G. Let oud(u) denote the out-degree of a vertex u. The transition

probability matrix for G is defined, up to an ordering of the vertex set V , to be the matrix PG , with

PG
def
= D−1out(G) ·WG, (3)

where D−1out(G) is the diagonal matrix with the reciprocal out-degree 1/out(u) as the (u, u) entry, if594

out(u) 6= 0, else the (u, u) entry is 0.595

Definition 7. Let G be a digraph with adjacency matrix AG and transition probability matrix PG . The596

adjacency spectral gap and the transition probability spectral gap of G are defined in each case to be the597

difference between the two largest moduli of its eigenvalues.598
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If we replace in the definition of PG the matrix Dout(G) by Din(G) of in-degrees, we obtain a variant of599

the transition probability matrix, which we denote by P rev
G , and its spectral gap is referred to as the600

reversed transition probability spectral gap.601

For our specific application we considered the ordinary (as opposed to weighted) adjacency matrix,602

namely where all weights wu,v are binary. We considered as parameters the spectral radius of the603

adjacency and transition probability matrices.604

The Chung Laplacian. Chung defined the directed Laplacian for a weighted directed graph in Chung605

(2005). The Perron–Frobenius theorem Horn and Johnson (1990) states that any real valued irreducible606

square matrix M with non-negative entries admits a unique eigenvector, all of whose entries are positive.607

The eigenvalue for this eigenvector is routinely denoted by ρ, and it is an upper bound for any other608

eigenvalue of M .609

If G is strongly connected (that is, when there is a directed path between any two vertices in G), then its610

transition probability matrix is irreducible, and hence satisfies the conditions of the Perron–Frobenius611

theorem. Thus PG has an eigenvector, all of whose entries are positive. The Perron vector is such an612

eigenvector φ that is normalised in the sense that
∑

v∈V φ(v) = 1. Let Φ denote the diagonal matrix with613

the v-th diagonal entry given by φ(v), and let P denote the transition probability matrix PG .614

Definition 8. Let G be a strongly connected digraph. The Chung Laplacian matrix for G is defined by

L def
= I − Φ

1
2PΦ−

1
2 + Φ−

1
2P ∗Φ

1
2

2
, (4)

where P ∗ denotes the Hermitian transpose of a matrix P . The Chung Laplacian spectral gap λ for a615

digraph G is defined to be the smallest nonzero eigenvalue of the Laplacian matrix.616

The Chung Laplacian spectral gap λ of a strongly connected digraph G is related to the spectrum of its

transition probability matrix P by (Chung, 2005, Theorem 4.3), which states that the inequalities

min
i 6=0
{1− |ρi|} ≤ λ ≤ min

i 6=0
{1− Re(ρi)} (5)
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hold, where the minima are taken over all eigenvalues of P . The theory in Chung (2005) applies for617

strongly connected graphs and we therefore defined the Laplacian spectral gap of a neighbourhood to be618

that of its largest strongly connected component.619

We use the spectral gap of the Chung Laplacian for the largest strongly connected component of a620

neighbourhood as a selection parameter. When used as a feature parameter we consider the spectral gap621

of the largest strongly connected component of the active subgraph of the neighbourhood. We also use622

the spectral radius of the Chung Laplacian, both as selection and feature parameter.623

The Bauer Laplacian. The requirement that G is strongly connected is a nontrivial restriction, but it is

required in order to guarantee that the eigenvalues are real. An alternative definition of a Laplacian

matrix for directed graphs that does not require strong connectivity was introduced in Bauer (2012). Let

C(V ) denote the vector space of complex valued functions on V . The Bauer Laplacian for G is the

transformation ∆G : C(V )→ C(V ) defined by

∆G(f)(v)
def
=

f(v)− 1
ind(v)

Σvwv,uf(u), if ind(v) 6= 0,

0, otherwise.
(6)

If ind(v) 6= 0 for all v ∈ V , then ∆G corresponds to the matrix ∆G = I −D−1in (G) ·WG , where D−1in (G) is624

defined analogously to D−1out(G) in Definition 7, and WG is the weighted adjacency matrix. In our case W625

is again taken to be the ordinary binary adjacency matrix.626

Definition 9. The Bauer Laplacian spectral gap is the difference between the two largest moduli of627

eigenvalues in the spectrum.628

We also considered the spectral radius of the Bauer Laplacian. Both are used as selection as well as629

feature parameters. If we replace in the definition Din(G) by Dout(G) we obtain a matrix ∆rev
G , whose630

spectral gap we refer to as the reversed Bauer Laplacian spectral gap.631
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We explore the mathematical concept of a closed neighbourhood in a digraph in 
relation to classifying binary dynamics on a digraph, with particular emphasis on 
dynamics on a neuronal network.  Using methodology based on selecting 
neighbourhoods and vectorising them by combinatorial and topological parameters, 
we experimented with a dataset implemented on the Blue Brain Project 
reconstruction of a neocortical column, and on an artificial neural network with 
random underlying graph implemented on NEST simulator. In both cases the 
outcome was run through a support vector machine algorithm reaching classification 
accuracy of up to 88% for the Blue Brain Project data and up to 81% for the NEST 
data. This work is open to generalisation to other type of networks and the dynamics 
on them. 
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