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In recent years, many applications are using various forms of deep learning models. Such
methods are usually based on traditional learning paradigms requiring the consistency
of properties among the feature spaces of the training and test data and also the availability
of large amounts of training data, e.g., for performing supervised learning tasks. However,
many real-world data do not adhere to such assumptions. In such situations transfer learn-
ing can provide feasible solutions, e.g., by simultaneously learning from data-rich source
data and data-sparse target data to transfer information for learning a target task. In this
paper, we survey deep transfer learning models with a focus on applications to text data.
First, we review the terminology used in the literature and introduce a new nomenclature
allowing the unequivocal description of a transfer learning model. Second, we introduce a
visual taxonomy of deep learning approaches that provides a systematic structure to the
many diverse models introduced until now. Furthermore, we provide comprehensive infor-
mation about text data that have been used for studying such models because only by the
application of methods to data, performance measures can be estimated and models
assessed.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

**We added comments regrarding the tabels. Please send us an updated proof to check after you made the corrections (we
do not know how to add a comment)**Deep learning models consist of multiple layers which help the model to learn a rep-
resentation or embedding of the data with multiple levels of abstraction [60,48,123]. Machine learning in general, including
deep learning, is based on two main assumptions [12]. First, the training and testing data should be drawn from the same
underlying distribution [32]. Second, training data should be large enough for learning patterns in the data, because it is
known that deep learning models require large quantities of training data to learn latent patterns in the data [118,40].
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Due to the fact that transfer learning provides means to soften both assumptions, this approach is promising for many real-
world applications suffering, e.g., from limited training data. Unfortunately, so far, transfer learning, is still undervalued com-
pared to traditional learning paradigms, e.g., supervised learning. This is especially the case for applications analyzing text
data. For this reason, we survey recent deep transfer learning approaches with a particular focus on applications to text data.
A key idea of transfer learning is to extend the concept of a domain and a task. Specifically, instead of having only one domain
and one task, transfer learning considers a source domain and a target domain and a source task and a target task. From this,
a model is learned by leveraging information provided in the source domain by optimizing the results of the target task. This
is called transfer of knowledge between the source and target and can be realized in a number of different ways. Importantly,
the model is only assessed for the target task while the source task serves merely as an auxiliary evaluation. This extension
allows to systematically accommodate, e.g., differences in feature spaces, label spaces or prediction functions between the
source and the target.

For applications, these formal extensions have beneficial consequences. For instance, while a shift in the distribution
between the training and testing data usually requires the models to be newly rebuilt by using new training data from
the new underlying distribution [56,31] because otherwise the performance of the model suffers [76,87], the above issue
is addressed by approaches from heterogeneous transfer learning. Even more importantly, for the insufficient training data
problem, which is notorious in certain application areas, e.g., medicine, transfer learning is capable of circumventing this,
e.g., by parameter transfer between the source and target model [145]. We would like to note that in general transfer learn-
ing does not refer to one particular approach but rather to a family of (very different) strategies. Hence, there are vast dif-
ferences between transfer learning models and the way they address such problems. Also such strategies depend on the
underlying data and the application domain. For this reason, we focus in this paper on deep transfer learning methods for
analyzing text data.

Despite the fact that there are many deep transfer learning approaches for text applications, so far there is no dedicated
review paper about this domain in the context of transfer learning. Instead, there are a number of review papers about other
aspects of transfer learning. For example, an early review about general forms of transfer learning that has been widely rec-
ognized is the paper by [92]. An update of such a general review has been presented by [130] emphasizing the distinction
between homogeneous and heterogeneous transfer learning. In contrast, the review by [36] focused solely on heterogeneous
transfer learning, while the review by [157] focused on homogeneous transfer learning touching also briefly on deep transfer
learning. A further general review, however, limited to domain adaptation focusing on theoretical considerations, e.g., risk
bounds and PAC (probably approximately correct) learning is from [58]. A similar theoretical review can be found in
[146] also providing information about deep learning approaches. Finally, a non-comprehensive, very brief review of deep
transfer learning methods has been presented in [118]. Neither of the latter three reviews has a focus on text applications.

We would like to highlight that most reviews about applications of transfer learning are for image analysis. For instance,
the paper by [115] discussed transfer learning approaches for various image applications, including image classification, and
action recognition, [94] discussed visual domain adaptation, [42] focused on emotion recognition, and [118] discussed com-
puter vision and image classification. In addition, there are also reviews about transfer learning for further application areas
such as activity recognition [30], reinforcement learning [119] and sentiment classification [3]. However, while the latter is
based on text data, deep transfer learning models are not reviewed. In contrast, the review by [71] provides a brief survey of
deep learning approaches for text data but with a sole focus on sentiment analysis.

In this paper, review deep transfer learning models with a focus on applications to text data. For completeness, we are
also including a review of important definitions and previous classifications of general transfer learning methods. In Sec-
tion 3, we discuss text data frequently used in studies when analyzing deep transfer learning methods. In Section 4, we intro-
duce a visual taxonomy of deep transfer learning models for text applications and in Section 5 we provide a discussion
thereof. This paper finishes with concluding remarks in Section 6.
2. Background of transfer learning

In this section, we provide some background information about transfer learning in general. Section 2.1 describes the
underlying concept of transfer learning and provides examples related to the analysis of text data. Section 2.2 gives impor-
tant definitions needed for transfer learning and discusses various special cases. In Section 2.3, we review previous catego-
rizations of transfer learning, and in Section 2.4 we present a new nomenclature.

2.1. Motivation and underlying concept

Transfer learning is a general machine learning paradigm [136,113] that allows the transferring of knowledge from one
domain (called source domain) to another domain (called target domain) allowing the data in the source and target to be
different [92,109]. One advantage of transfer learning over other learning paradigms, e.g., supervised learning, is that transfer
learning can deal with insufficient training data in the target domain [130] by exploiting information from a different, but
related (source) domain to make predictions of labels of unseen target instances [154]. In general, it is a technique for
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improving a learner, e.g., a classifier, by transferring information between two related domains [36]. Although, it is a chal-
lenge to design a system able to leverage information from one domain or task for another domain or tasks [27], the advan-
tages of transfer learning are numerous. For instance, much less time is needed for training a new model and fewer records
and data are required for the target domain [30]. In contrast to other machine learning algorithms that can learn a new task
without any prior knowledge, transfer learning can ultimately boost predictive performance on a new target task by lever-
aging information gained from solving previous but related (source) tasks [9]. This is especially relevant when there is lim-
ited or no data available for a particular problem, but ample data is available for a related problem.

In this paper our focus is on analyzing text data. For this reason, we provide in the following two examples from this
application domain to visualize the problem. In general, transfer learning finds widespread application in natural language
processing [87]. An example for this is Named Entity Recognition (NER), where the aim is to identify an entity from a text
into semantic types such as location, person, or organization. Among several kinds of data, electronic health records (eHR)
provide informative textual information, because they contains detailed information about patients and their clinical history.
However, getting labeled data is difficult in a clinical context. Also, there are privacy issues, which make it difficult to share
data. In this scenario, it would be beneficial if one would train a classifier with large amounts of eHR data inside a hospital
and then transfer learned information (instead of data) outside the hospital to train another classifier for a related task even
when only a limited amount of data is available.

Another example is sentiment analysis, in which we classify reviews of a product, e.g., a laptop, into positive and negative
sentiments. For such a classification task, one needs to gather many reviews of a product, and then train the classifier on
these reviews. However, the process of labeling data can be extremely costly. In such a situation, one could apply transfer
learning for adapting a classifier, e.g., trained on camera reviews, to classify the reviews about laptops.

In Fig. 1, we show a visualization of the general idea underlying transfer learning. Fig. 1 A shows the conventional setting
of supervised learning where data from a domain is used to learn a model for making predictions as specified by a task. In
contrast, transfer learning extends the concept of a domain and a task. Specifically, instead of having only one domain and
one task, transfer learning distinguishes between a source domain and a target domain and a source task and a target task.
From these a model is learned by leveraging information provided in the source domain and by optimizing the results of the
target task. We would like to highlight that the transfer between the source and the target can be accomplished by a number
of different approaches, as discussed in detail below. For this reason in Fig. 1 B there are two arrows from the source to the
target; one connects the domains whereas the other connects the models. This means, one can either adjust the data or the
model. Below we will formalize these approaches.

2.2. Definitions

In order to obtain a quantitative understanding of transfer learning, we need to review some definitions. The first defi-
nitions are about a domain and a task [92].

Definition 2.1 (Domain). A domain D is a tuple D={ðXÞ; PðXÞ} where X is the set of all instances, X is an instance, i.e., X 2 X,
and PðXÞ the marginal probability distribution over all instances.
Definition 2.2 (Task). Given a domain, D={ðXÞ; PðXÞ}, a task T is given by the tuple T=fY; fgwhereY is the label space and f is
a prediction function, i.e., f : X ! Y.

We would like to remark that the prediction function can not be observed, but the function is learned from training data.
The prediction function assigns a label to a given instance and can be written as conditional probability distribution given by
PðYjXÞ. Thus T can be written as T ¼ fY; PðYjXÞg where X 2 X and Y 2 Y.

To illustrate the above definitions, let’s consider the problem of review classifications where the task is to classify reviews
into positive and negative sentiments. In this situation,X is the space of all word vectors, xi is the ith instance corresponding
to a review, X is a particular review sample,Y is the set of all labels which are positive and negative, Y is a particular label for
particular review, and yi is positive or negative.

Based on the definition of a domain and a task, we can now define transfer learning [92].

Definition 2.3 (Transfer learning). Given a source domain DS, target domain DT , source task TS corresponds to DS and target
task TT corresponds to DT . Transfer learning improves the learning of the predictive function in the target f T using the
information in DS and TS where DS – DT and/or TS – TT .

Based on the general definition of transfer learning, a number of important sub-cases can be distinguished. Since a
domain is given by D={ðXÞ; PðXÞ}, DS – DT implies that either XS – XT or PSðXÞ – PTðXÞ. It is important to highlight that from
XS – XT follows PSðXÞ – PTðXÞ. Hence, both statements are not independent from each other. In contrast, PSðXÞ – PTðXÞ does
not follow XS – XT but also XS ¼ XT is possible. In summary, whenever the source domain differs from the target domain
then they have also a different marginal distribution, however, the converse is not true. In the literature, the case
PSðXÞ– PTðXÞ with PSðYjXÞ ¼ PTðYjXÞ is called covariate shift [94,57].

For instance, in our review classification example above, having two different but related domains could mean that the
word-features may be different (e.g., the text in the source is in a different language from the text in the target), which means
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Fig. 1. Visualization of the conceptual idea of transfer learning. A: Traditional supervised learning model for learning a task. B: For transfer learning one
needs to distinguish between a source domain and target domain, providing two independent sets of data, and a source task and target task. The purpose of
the model learned from the source domain is to enhance the model learned from the target domain and only the performance of this model is of interest.
This asymmetry is emphasized by indicating which task is evaluated.
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that the topics are different. It could also mean that the marginal distribution is different (e.g., the topic in the source is dif-
ferent from the topic in the target, while the language of the two domains is the same).

Likewise, when the learning tasks are different, i.e., TS – TT then this implies that either YS – YT or PSðY jXÞ – PTðY jXÞ.
Similar to the statements above, also these two conditions are not independent from each other. Specifically, from
YS – YT follows that also PSðYjXÞ– PTðY jXÞ holds, however, from PSðY jXÞ – PTðY jXÞ does not follow YS – YT . Another inde-
pendent case is given by different prior distributions of the labels, i.e., PSðYÞ – PTðYÞ. In the literature, the case PSðYÞ– PTðYÞ
with PSðXjYÞ ¼ PTðXjYÞ is called prior shift and PSðYjXÞ– PTðYjXÞ with PSðYÞ ¼ PTðYÞ concept shift [57].

We would like to remark that in the literature the relations discussed above between the different statements are omit-
ted, e.g., [92,130]. Unfortunately, this gives the false impression that those conditions are all independent from each other
forming individual cases. As seen above, this is not the case. In Table 1, we summarize the different cases discussed above
that follow from the main cases DS – DT and TS – TT .

In order to visualize the above cases, we discuss now some application examples thereof. For instance, feature divergence
describes the situation when the marginal probability of the source domain is different from the target domain
PSðXÞ– PTðXÞ.This is also known as feature mismatch or domain mismatch [130]. This issue arises when the words are used
in one domain more than the other. This takes place because words could have a strong relationship with the domain topic. It
may also take place when there are few features shared among the classes. Also, words may have different meanings in the
domains. For instance, words like ‘‘blur,” ‘‘fast,” and ‘‘sharp” are used to describe electronics products, but they don’t express
501



Table 1
A summary of different cases one can distinguish for transfer learning. The provided examples give descriptive instances for the review classification problem.
TL: transfer learning.

Main case Sub-case Description Example

D: DS – DT 1: XS – XT !
PSðXÞ– PT ðXÞ
Heterogeneous TL

The source and the target domain have a
different feature space.

Source domain: Reviews classification about
camera products in Germany language.
Target domain: Reviews classification about
laptops products in English language.

2: PSðXÞ– PT ðXÞ &
XS ¼ XT

Homogeneous TL

The source and the target domain have
different marginal distribution.

Source domain: Reviews classification about Toys
products in English language.
Target domain: Reviews classification about
laptops products in English language.

T: TS – TT 1: YS – YT !
PSðY jXÞ– PT ðY jXÞ

The source and the target domain have
different label space.

Source domain: Has two labels(‘‘Good”, ‘‘Bad”).
Target domain: Has four labels: ‘‘Good”, ‘‘Perfect”,
‘‘Disgusting”, ‘‘Amazing”.

2: PSðY jXÞ– PT ðY jXÞ &
YS ¼ YT

The source and the target domain have
different probability distribution.

Source domain: ‘‘small” means positive label Target
Domain: ‘‘small” means negative label.

3: PðYSÞ– PðYT Þ The labels unbalanced between the
source and target

Source domain: has 20 positive labels.
Target domain: Has 70 positive labels.
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a sensible opinion about books [102]. Another example of a feature mismatch could occur when a word has a negative mean-
ing in one domain but a positive meaning in another. When describing a mobile phone, the word ‘‘tiny” has a positive sen-
timent, but when describing a hotel room, it has a negative sentiment [130]. Another issue may take place when domains
have different feature space XS – XT . Consider that we have reviews of products written in German in the source and the
target contains reviews written in English. Hence, the terms translated from the source document do not exactly represent
the words used in the target. One example is the German word ‘‘betonen,” which Google translator translates into ‘‘empha-
size” in English; however, the target documents use the English word ‘‘highlight” [153]. The difficulty regarding transfer
learning may arise when the distribution of labels in the source and the target are different, or when few labels are available
in one class, which makes learning from existing data difficult. This problem could take place also if there is no label available
in the class of interest in the source.

It is important to highlight that for all transfer learning scenarios above, the source and the target should be related to
each other in some form in order to allow the successful transfer of information, because otherwise negative transfer learn-
ing may take place [108,130]. In general, negative transfer learning means that the information learned from the source
domain has a negative effect on the target task.

For reasons of clarity, we would like to note that transfer learning is similar but different to other forms of learning
including multitask learning. In multi-task learning, there is no significant difference between the domains, and the aim
is to enhance the output of all of them. However, in transfer learning, which involves using source domain to enhance
the output of a target, the target domain is more important than the source [148].
2.3. Categorizations of general transfer learning approaches

So far there is no unique categorization of transfer learning known but different suggestions have been proposed. In the
following, we review three main categorizations which are based on learning paradigms [92], properties of the feature
spaces [130] and solution-based approaches [92,130]. Based on these, we introduce a new nomenclature of transfer learning
that provides a comprehensive categorization.
2.3.1. Transfer learning paradigms
According to [92], transfer learning can be categorized by the way of the learning: inductive learning, transductive learn-

ing, and unsupervised learning.

� In inductive transfer learning, source and the target tasks are different while the source and the target domains may or
may not be different. Furthermore, at least some labeled target domain data are required.

� In transductive transfer learning, the source task and the target task are the same, however, the source domain and target
domain are different from each other. Furthermore, no labeled data are available in the target domain while labeled data
are available in the source domain (for a thorough discussion of transductive transfer learning see [85]).

� In unsupervised transfer learning, the source and target tasks are different but related. Because the focus is on related
unsupervised learning tasks, e.g., clustering or dimension reduction, no labeled data are available in the source and target
domains.

We would like to highlight that in the literature there is no unique terminology about the meaning of unsupervised trans-
fer learning. While in [92] unsupervised transfer learning is the case of having no labeled source domain data and no labeled
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target domain data, in [17] it is assumed that labeled source domain data are available but no labeled data for the target
domain. Yet another notation is used in [30] by distinguishing between supervised or unsupervised and informed or unin-
formed. Specifically, the former relates to the presence or absence of labeled data in the source domain, while the latter
refers to the presence or absence of labeled data in the target domain. Hence, unlabeled source and target domain data is
referred to unsupervised uninformed transfer learning, whereas labeled source and unlabeled target data is supervised unin-
formed transfer learning.

We would also like to highlight that there is a similar confusion in the literature about the term semi-supervised transfer
learning. In [21], semi-supervised transfer learning is the case of having labeled source data and no labeled target data. How-
ever, in [17] semi-supervised transfer learning is the case of having abundant labeled source data and limited labeled target
data. Comparing this terminology with the one for unsupervised transfer learning discussed above one can see that there is
even confusion between these main categories because in [17] having labeled source domain data and no labeled data for the
target domain is called unsupervised transfer learning while the same case is called semi-supervised transfer learning by
[21].
2.3.2. Homogeneous vs heterogeneous transfer learning
In addition to the above categorization one can distinguish homogeneous transfer learning and heterogeneous transfer

learning [130,92]. Homogeneous transfer learning refers to the situation where the source domain and target domain have
the same feature space XS ¼ XT . In contrast, heterogeneous transfer learning refers to the scenario where the source domain
and target domain have a different feature spaces XS – XT . With respect to our indicators given in Table 1 heterogeneous
transfer learning corresponds to the case D1.
2.3.3. Solution-based distinctions
A third possible categorization can be given by distinguishing solution-based approaches that describe ’how to transfer’.

Specifically, according to [92,130] these approaches can be distinguished as follows:

� instance-transfer
� feature-representation transfer
� parameter transfer
� relational-knowledge-transfer

Instance-transfer approaches are based on re-weighting of instances in the source domain to use them directly together
with data from the target domain [21]. That means instance-transfer approaches do not distinguish between training in the
source domain and the target domain but combine those data. In general, instances are weighted such that differences in the
marginal distributions of source and target are minimized. Such approaches can only be used whenXS ¼ XT , hence, they can
only be used for homogeneous transfer learning.

Feature-representation transfer approaches do not require the same feature space for source and target domain. Feature-
based transfer learning methods build a new feature space in either of the following ways. Asymmetric approaches: They
transform the source features to match the target features. Symmetric approaches: They learn a common latent feature
space before transforming both the source and target features into a new feature representation.

The parameter transfer methods may be the most simple and intuitive approaches because they share parameters
between source and target model. This enables a clear understanding of the transfer learning model.

Relational-knowledge-transfer methods transfer information based on a defined relationship between source and target.
2.3.4. Others
Finally, we would like to mention that the paper by [118] proposed a categorization specifically for deep transfer learning.

Their categorization consists of the following four groups:

� instance-based deep transfer learning
� mapping-based deep transfer learning
� network-based deep transfer learning
� adversarial-based deep transfer learning

Instances-based approaches use instances from the source domain with the appropriate weight. Mapping-based deep
transfer learning methods focus on mapping instances from two domains into a new data space of greater similarity.
Network-based deep transfer learning methods work by reusing the pre-trained parameters of the source domain for the
target domain. Adversarial-based approaches find transferable features that are compatible for two domains using adversar-
ial technology.
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As one can see, all four categories have a strong similarity to the solution-based transfer learning approaches discussed in
Section 2.3.3, which have not been suggested for deep learning but general machine learning methods. This indicates that
the above categorization is in fact not limited to deep learning models.

We would like to mention that there are further categorizations of transfer learning, e.g., [157,68]. However, all of these
are similar to the above three main categorizations and do not lead to new systematics.

2.4. Comprehensive nomenclature of transfer learning

From the discussion of the different categorizations above, it becomes clear that none of these is complete but each
addresses a specific aspect or provides a certain perspective on transfer learning. For this reason, in order to obtain a com-
prehensive and unique terminology for the various cases and perspectives one needs a different approaches.

It is important to realize that the three main categorization above are independent from each other. That means each
describes cases that are not covered by the other two categorization. For this reason, we suggest to introduce a nomenclature
of transfer learning that combines the main features of those three categorizations. Specifically, we suggest the following
terminology:
Terminology : ðAÞ:ðBÞ:ðCÞ ð1Þ

with
C ¼ C1ðiÞð Þ � C2ðiÞð Þf gSi ð2Þ

for a multi-step learning procedure with S steps. That means, we suggest a nomenclature that is a combination of the fol-
lowing three components:

� A: probability space-based (depending on the properties of the different feature spaces and label spaces; see Table 1)
� B: solution-based (depending on the realization of the model; see Section 2.3.3)
� C1ðiÞ: source domain data for step i; see Fig. 2)
� C2ðiÞ: target domain data for step i; see Fig. 2)

Here
C ¼ C1ð1Þð Þ � C2ð1Þð Þf gSi ¼ C1ð1Þð Þ � C2ð1Þð Þ; . . . ; C1ðSÞð Þ � C2ðSÞð Þf g ð3Þ

is a set whose components correspond to the pairs C1ðiÞð Þ � C2ðiÞð Þ for each step i characterizing the used data whereas S is
the total number of steps of a learning procedure. We would like to note that for pure types of data a learning paradigm is
entailed.
unlabeled data : Du ¼ fðxiÞgNu
i ! unsupervised learning ð4Þ

labeled data : Ds ¼ fðxi; yiÞgNu
i ! supervised learning ð5Þ

partially labeled data : Dse ¼ Du [ Ds ! semi-supervised learning ð6Þ

That means by specifying the type of data in a learning step, one specified the learning paradigm. Below we will see that

the mixing/selecting of data for different learning steps makes this characterization step-dependent and, hence, a local prop-
erty of a learning procedure. In contrast, we will see that (A) and (B) correspond to global properties of a transfer learning
model.

Let’s discuss the above nomenclature by starting with the data-dependent component. Since transfer learning requires
two different domains, a source domain and a target domain, there are in total 9 different combinations of unlabeled data,
labeled data and partially labeled data, as shown in Fig. 2. For instance, the case for unlabeled source data and labeled target
data is called (unlabeled data)-(labeled data) transfer learning (an example thereof is BERT [37] - see Section 4.3.1), whereas
the case for unlabeled source data and partially labeled target data is called (unlabeled data)-(partially labeled data) transfer
learning. We would like to remark that the situation when labeled source data are available regardless of the type of target
data and PSðXÞ: ¼ PTðXÞ (with XS ¼ XT ) holds, in the literature this is called domain adaptation [131,33] which is a form of
transductive transfer learning [94]. In Fig. 2 domain adaptation is highlighted by the purple oval. Furthermore, the situation
where we have unlabeled source data and labeled target data is in the literature called self-taught learning [106], a form of
inductive transfer learning.

Reviewing the literature one finds that many of the currently used deep transfer learning models are multi-step proce-
dures. That means instead of consisting of one step for learning the parameters of a model the learning is extended over sev-
eral steps. Furthermore, not every step utilizes the same data but selected subsets of the available data. For this reason, in the
above terminology we added information about step i of the model as index. For instance, Stacked Denoising Autoencoders
(SDA) [45]) use in the first step all unlabeled data from the source domain and the target domain, while in the second step a
classifier is trained using only the labeled data from the source domain (detailed about SDA are discussed in Section 4.1.1).
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Fig. 2. Combinations between source domain data (C1) and target domain data (C2) for learning a transfer learning model. Depending on the type of data, a
learning paradigm is entailed for step i of a multi-step learning model. The purple circle highlights the focus of domain adaptation.

S. Bashath, N. Perera, S. Tripathi et al. Information Sciences 585 (2022) 498–528
Importantly, this behavior is not unique to SDA but can be observed through out the literature. However, such multi-step
procedures lead to additional combinations that need to be considered because the data are not used in one specific way
but source and target data can be combined or selected in various different ways for each learning step.

It is important to highlight that a multi-step procedure does no longer allow to conclude, e.g., from given source domain
data to a learning paradigm. The reason for this, as discussed for SDA, is that while the source data may be labeled, these data
do not have to be used in this form but a selection can be made, e.g., ignoring the labels. Of course this would not be sensible
if a model would consist of a one-step procedure because this would limit the amount of information used for the learning of
the model. However, for a multi-step procedure this is not the case because other learning steps can utilize the labeled data.
Hence, multi-step procedures allow the selection and even mixing of data from different domains without losing information
during the learning process. In terms of the notation of a transfer learning model, this complexity is reflected in the combi-
natorial form of our nomenclature, adding an index to the pairs of source and target data used in step i, i.e., C1ðiÞð Þ � C2ðiÞð Þ
(see Eqn. 3). Conceptually, this means the characterization of the used data is a local property of a multi-step learning pro-
cedure because each step i can utilize different (combinations of) data.

In contrast to the characterization of the used data, the characterization of the probability spaces (A) and solution-based
approach (B) are global properties. The reason for this is that the property of the underlying probability spaces cannot be
changed nor effected by the number of learning steps of the model. Also the solution-based approach, e.g., via parameter
transfer, is a global strategy defining how to transfer the knowledge from the source to the target. Overall, the combinations
of (1) data, (2) properties of data and (3) model approaches, for various learning steps of a models lead to a combinatorial
plurality of transfer learning. This underlines that transfer learning is a diverse family of learning models.
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Table 2
An overview of text data used by studies analyzing deep transfer learning. All resources are publicly available.

Data set Domain and Language Description and Reference

Amazon product reviews
[16]

Books, Electronics, Kitchen, DVDs, Videos Consists of about 340,000 text reviews of different Amazon
products. Each review is classified into positive or negative.

English [45,23,2,29,128,67,158,63,129,80,152,143,135,149]
Multi language products

reviews [102]
Books, DVD, Music Contains reviews written in four languages, and each

language has 4000 reviews.
English (EN), German (GE), French (FR), Japanese (JP) [153,133]

Spam mail dataset [15] Public(u), Private(u1), Private(u2), Private(u3) The email spam data contain private inboxes and public
inbox. Each private inbox consists of 1,250 spam and 1,250
non-spam emails, and the public inbox consists of 2,000
spam and 2,000 non-spam emails.

English [73]
20Newsgroup computer(C), record(R), science(S), talk (T) Contains approximately 20,000 news article on several

subcategories.
English [73,29,128,129,25]

SemEval 2015 [99] Restaurant, Laptop Contains 1572 review sentences about restaurant and 1907
review sentences about laptop.

English [138,26]
Camera[54] Camera 3770 camera reviews sentences.

English [138]
Movie1 [93] Movie Includes about 10662 positive and negative reviews about

movies.
English [138]

Movie2 [116] Movie Collections of 9613 positive and negative reviews about
movies

English [138]
Pathology dataset [134] Ductal Carcinoma In- Situ(DCIS), Lobular Carcinoma

In-Situ (LCIS), In- vasive Ductal Carcinoma (IDC),
Atypical Lob- ular Hyperplasia (ALH)

Includes 96.6 k breast pathology reports collected from
three hospitals representing aspects of breast disease.

English [147]
Yelp Restaurants Positive and negative review about overall restaurant.

English [147,26]
Hotel review [125] Value, Room Quality, Check-in Service, Room Service,

Cleanliness
Includes a total of around 200 k reviews collected from
TripAdvisor.

English [147]
Hotel [69] Reviews Positive and negative hotel reviews.

Chinese [24]
BBN[84] Sentiment Contains 1200 sentences from social media posts.

Arabic [24]
AFPBB news Politics, Environment-science-IT, Lifestyle, Sports 52,000 news documents from several categories.

Japanese [86]
Livedoor news Topic news, IT-life-hack, livedoor-homme, sports-

watch
Consists of 3000 livedoor news documents

Japanese [86]
CoNLL [112] Organizations (ORG), Locations (LOC), Persons(PER),

Miscellaneous (MISC)
Named entity recognition dataset includes 220 K news
paper documents.

English, German, Spanish [107]
GermEval [11] News Named entity recognition dataset consists of 450 k tokens

from Wikipedia articles.
German [107]

ONB [89] Historical news Named entity recognition dataset of Austrian newspaper
texts from the Austrian National Library.

German [107]
LFT [89] Historical news Named entity recognition dataset of nwspaper corpus from

Dr. Friedrich Temann Library.
German [107]

Amazon reviews[113] Reviews Electronics Positive and negative reviews collected by
Stanford.

English [113,26]
Yelp review Business Reviews Positive and negative business reviews.

English [113,26]
Chinese medical NER

(CM-NER) [127]
Cardiology, Respiratory, Neurology, Gastroenterology, Named entity recognition corpus contains 1600 de-

identified EHRs of hospital from four different specialties in
four departments.

Chinese [127]
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Table 2 (continued)

Data set Domain and Language Description and Reference

Twitter SemEval 2016
[88]

Review Positive and negative Twitter review.

English [139]
Twitter SemEval 2018 [1] Review Positive and negative twitter review.

English [139,26]
Ren-CECps [103] Anger, Expectation, Anxiety, Joy, Love, Hate, Sorrow,

Surprise
Contains 1487 documents with each sentence labeled by a
sentiment label and 8 emotion labels.

Chinese [139]
Chinese corpus[132] Book, Computer, Hotel Positive and negative reviews

Chinese [80]
Hotel Reviews dataset from Xiecheng website containing 2000 positive

and 2000 negative samples.
Chinese [149]

The notebook [149] Reviews Contains 4000 negative and positive reviews collected from
shopping website.

Chinese [149]
The Weibo [149] Reviews Contains 1 K negative and positive reviews collected from

COAE 2015.
Chinese [149]

Technology product [149] Reviews Contains 8000 negative and positive reviews collected from
COAE 2011.

Chinese [149]
Reuters multilingual

dataset [7]
CCAT, C15, ECAT, E21, GCAT, M11 A cross-lingual data containing 11 000 articles from 6

Reuters news categories.
English, German, French, Spanish, Italian [152]

Imdb Movies Stands for internet movie database consisting of movies
information.

English [113]
Standford Movies Contains 11,855 reviews.

English [113]
MIMIC-III Health records data. Contains data of hospital admission for adult patients

including discharge summaries laboratory measurements,
diagnostic codes, and medications.

English [140,62]
BioASQ3 dataset Biomedical data. Biomedical semantic indexing and question answering.

English [140]
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3. Text data

Due to the fact that for any machine learning or artificial intelligence method, data assume a central role, in this section,
we provide an overview of the text data used for studying deep transfer learning models. Specifically, Table 2 shows a
detailed overview of the studied data. The table gives information about the name of the data set, domain, language, descrip-
tion, and studies that utilized the data for their analysis. It is important to note that the vast majority of the text data (18 out
of 35) are in the English language. The other datasets are in the Chinese (7), German (6), Japanese (3); two datasets are in
French and Spanish and one dataset is in Arabic and Italian. Among the selected articles, the most frequently used data
by 14 studies is the Amazon data set. The Amazon data set was created by [16] and it includes reviews about 22 different
products. However, four products (DVDs, Books, Kitchen, Electronics) were used in the selected studies. Other studies used
publicly available datasets such as Reuters, Yelp review and Twitter SemEval. We would like to highlight that there are four
data sets for named entity recognition (CoNLL, GermEval, ONB, LFT, and CM-NER). Furthermore, MIMIC-III data sets provide
information about electronic Health Records (eHR).
4. Taxonomy of deep transfer learning models

In this section, we present a visual taxonomy of deep transfer learning models for applications to text data. The taxonomy
is shown in Fig. 3. Its main branches are based on the categorization introduced in Section 2.4, i.e., they describe the data of
the source domain (C1). For obtaining the remaining branches, we reviewed the literature and identified the dominating
architectural principles of the neural networks. Those branches contain also information about distributional assumptions
(see A in Section 2.4) and and solution-based approaches (see B in Section 2.4).

Overall, the taxonomy in Fig. 3 is a simplification of our nomenclature introduced in Section 2.4 and a reflection of the
currently employed deep learning models and variations thereof. This enables a comprehensive overview of the contempo-
rary literature. A discussion about the simplification is presented in Section 5.
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Fig. 3. Taxonomy of deep transfer learning for applications to text data. The two main branches of the taxonomy are based on the categorization introduced
in Section 2.4, i.e., they describe the learning paradigm for the data of the source domain (C1). For the characteristics of the target domain (C2) the
availability of labeled data is assumed enabling supervised learning of the target task.
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4.1. Source domain: Labeled data

In this section, we discuss deep transfer learning approaches that are based on labeled data in the source domain, how-
ever the target domain can be labeled and unlabeled both. When both the source and target domains are labeled then such
data is applied for multi-task learning where domain and targets are trained simultaneously. For the second case, when only
source labels are available, models are applied for transfer learning as domain adaptations. Transfer learning based on
labeled source data can be applied for both homogeneous and heterogeneous learning.

In fine-tuning or parameter sharing technique, a network is trained with a large amount of data for learning bias and
weights parameters [118]. These weights can be then transferred to other networks to test or trained another model on sim-
ilar data. Therefore, instead of starting from scratch, the network will use pre-trained weights.Training large models on large
datasets need a lot of computing power [5]. Thus, convergence can be accelerated, and network generalization can be
improved by training new models with pre-trained weights. Such methods are further subdivided into single and hybrid
models. Fig. 4 shows deep transfer learning based on fine tuning. The network is trained with data from the source domain,
and then the parameters are transferred into another network which is trained to predict the labels of the target domain.
4.1.1. Single model
Convolutional neural networks: A solution for feature divergence was proposed by [138] and a neural network model

was build with two separate CNNs to jointly learn hidden feature representations. Convolutional neural networks learned
whether the sentence includes a positive or negative domain sentiment while avoiding prediction for a large number of pivot
features. The model was trained on source labeled data and fine-tuned with small number of labeled target data. In their
analysis, they showed improvements over SCL and mSDA methods. The approach by [133] was proposed to address the
cross-language features challenges by utilizing a parallel corpus. The source classifier was trained to label the parallel corpus,
while the target classifier was trained on the labeled set. The paper by [113] discussed that the content of a neural network’s
embedding layer learned from one dataset can be used for another dataset. They also suggested if labeled data are available
in the target dataset, the parameters can be fine-tuned. If labeled data is scarce, the parameters could be left frozen. A very
deep convolutional neural network (VDCNN) was used in the paper of [86].In the first step, VDNN was trained on the source
dataset. The model then trained on the target data using two ways. The first was to freeze the low layers and share the
parameters of upper layers. The second was to share all layers without fixing any layers. The results showed that sharing
all layers was more effective in performance than sharing part of them.

A deep transfer learning approach presented in the paper by [141] for Ninth Revision of International of Diseases (ICD-9)
by using large number of (MIMIC) as a source dataset. The results indicated that deep transfer learning could improve the
classification performance of the Ninth Revision of International of Diseases (ICD-9) of BioASQ3. Based on multi-layer con-
volutional neural network, [80] introduced transfer learning method based on CNN. The authors constructed a CNN model
for extracting features from the source domain and to share the weights among the source and target domain. To train the
labeled source dataset, the authors used a convolutional neural network with three convolutional layers and save the trained
model structure as well as the weights of layers. When training the target domain dataset, the first three layers remain
unchanged, and only the weights of the fully connected layer are fine-tuned with a small part of the labeled target data.
The model was evaluated on Chinese and English sentiment and obtained comparable performance against several
approaches such as DANN (domain-adversarial neural network) and SCL.

Long Short-Term Memory: In [62], a Long Short-Term Memory (LSTM) network has been extended to transfer learning.
Specifically, a LSTM with 6 layers has been studied containing a token embedding layer, character embedding layer, charac-
ter LSTM layer, token LSTM layer, fully connected layer and a sequence optimization layer. Transfer learning has been real-
ized via parameter transfer that means different combinations of parameter freezing have been studied in a layer-wise
fashion. The models used large source data (from MIMIC) and smaller (but still large) target data (from ib2). In [107], a bidi-
rectional LSTM (BiLSTM) has been studied for named entity recognition. Also here parameter transfer has been used for real-
izing the knowledge transfer.

Capsule network: The model of a Capsule network (CapsNet) has been introduced by [111]. In contrast to CNNs based on
scalar-valued feature extractors, capsule networks use vector-output capsules with dynamic routing, whereas a capsule con-
sists in a group of neurons whose activity vector represents the instantiation parameters of a specific type of entity [52].
While CapsNet has been introduced as a supervised learning model in [135] this model has been extended to transfer learn-
ing. Specifically, in [135] a deep transfer learning model has been introduced called TL-Capsule. The method consists of four
layers: a convolutional layer, a primary capsule layer, a capsule compression layer, and a class capsule layer. The authors
argue that capsule networks are able to capture the intrinsic spatial part-whole relations that constitute domain invariant
knowledge which helps to transfer knowledge from the source to the target domain. TL-Capsule has been studied for three
text classification tasks including cross-domain sentiment classification. As a result they outperformed 14 reference meth-
ods, including SCL [16] and DANN [44] (see below the discussion about Adversarial Neural Networks).

Another transfer learning model based on Capsule networks called TransCap was proposed by [26]. TransCap is based on
an aspect routing approach allowing to generate sentence-level semantic features. Using TransCap, the transfer between
document-level knowledge to aspect-level sentiment classification was studied for several different review classification
tasks.
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Fig. 4. Deep transfer learning based parameter sharing. The shared parameters are highlighted by the same color.
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In Table 3, we show an overview of single models corresponding to the deep transfer learning methods discussed above.
In this table, the name before the arrow describes the source domain and the name after the arrow describes the target
domain. As one can see, most methods have been studied for the Amazon reviews performing sentiment classification. Fur-
thermore, the error measures used for the avaluation are the accuracy, F1-score, precision and recall.

Autoencoder: In general, an Autoencoder consists of two parts [14,121]: An encoder and a decoder. The encoder maps the
input data into a hidden representation, and the decoder tries to reconstruct the input data from the hidden representation.
Formally, the encoder is a function hðxÞ for input xwhereas the decoder function results in a decoding given by rðxÞ ¼ gðhðxÞÞ.
The goal is to minimize the reconstruction error of the input x and the reconstructed input rðxÞ, i.e., lossðx; rðxÞÞ. As one can
see, only unlabeled data are needed to training an Autoencoder. Once an Autoencoder has been trained, one can repeat the
above procedure by stacking further Autoencoders while the corresponding Autoencoders are learned layer-by-layer [121].
The output of the hidden layers are frequently used to initialize either a supervised deep neural network or to feed a classifier
in the form of a profile vector [49]. The latter allows to construct a new classifier with a deep network architecture.

In [45], a deep transfer learning approach based on Stacked Denoising Autoencoder (SDA) has been introduced for per-
forming sentiment classification. For this analysis they used an extension of an Autoencoder called a Denoising Autoencoder
(DAE). In contrast to an Autoencoder, a DAE uses a randomly corrupted instance x0 as input, instead of the uncorrupted input
x, to learn a representation [121]. This makes it more difficult to learn the representation when the hidden layer is larger
than the input layer because ’simply copying the data’ is no longer possible.

The stacking of Denoising Autoencoders works in the same way as for stacking Autoencoders, i.e., the layers are learned in
sequential order. This allows to create deep architectures. For transfer learning with labeled source data and unlabeled target
data all unlabeled data from the source and the target are used for learning the Stacked Denoising Autoencoder. Finally, the
output of the highest encoder layer is utilized as input for a Support Vector Machine (SVM). For training the SVM only the
labeled data from the source are used.

It is important to note that the Stacked Denoising Autoencoders are trained with unlabeled data from the source and the
target domain at the first step [45]. That means these data are combined into a single data set consisting only of unlabeled
data. This step allows the SDA to learn a common invariant latent feature space. The learned features from the final layer are
then used as input for learning the task of the source domain, e.g., for sentiment analysis, using only the labeled data from
the source domain. For domain adaptation, the transfer loss is defined as the difference between the baseline in-domain
error ebðT; TÞ and the transfer error eðS; TÞ. The following equation describes the transfer loss,
tðS; TÞ ¼ eðS; TÞ � ebðT; TÞ: ð7Þ

In Eqn. 7, S and T denote the source and target respectively and eðS; TÞ is the transfer error corresponding to the classi-

fication error of a classifier which is trained for data from the source domain and tested for data from the target domain.
Also the baseline in-domain error ebðT; TÞ is a classification error of a classifier, however trained with labeled data from
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Table 3
Single models for deep transfer learning. The column ’Technique’ describes the used model, ’Reference’ cites paper(s) that studied the model, ’Source ! Target’
provides information about the transferred domain, ’Performance’ gives information about numerical results and ’Application’ indicates the learned task.

Technique Reference Source ! Target Performance Application

Convolution Neural
Network

[138] Movie1! Laptop
Movie1! Restaurant
Movie1! Camera
Camera! Restaurant
Camera! Laptop
Camera! Movie1
Camera! Movie2
Restaurant! Camera

Restaurant! Laptop
Restaurant! Movie1
Restaurant! Movie2
Laptop! Camera
Laptop! Restaurant
Laptop! Movie1
Laptop! Movie2

Accuracy: 78.7% sentiment
classification

[133] EN-Books! FR-Music
EN-Books! FR-DVDs
EN-Books! GE-Music
EN-Books! GE-DVDs
EN-Books! JP-Music
EN-Books! JP-DVDs
EN-DVDs! FR-Music
EN-DVDs! FR-Books
EN-DVDs! GE-Music

EN-DVDs! GE-Books
EN-DVDs! JP-Music
EN-DVDs! JP-Books
EN-Music! FR-DVDs
EN-Music! FR-Books
EN-Music! GE-DVDs
EN-Music! GE-Books
EN-Music! JP-DVDs
EN-Music! JP-Books

Accuracy: 81.08% sentiment
classification

[86] AFABB ! livedoor Precision: 94% Recall: 94% F1: 94% text
categorization

[113] Amazon! Movie YELP
! Movie
IMDb ! Movie
Amazon! Stanford

YELP! Stanford
IMDb! Stanford
Amazon! Movie

Accuracy: 82.72% sentiment
classification

[80] Book ! Hotel
Book ! Computer
Hotel ! Book

Hotel ! Computer
Computer ! Book
Computer ! Hotel

Accuracy: 80.72 % Precision: 81.61
% Recall: 79.29 % F1: 80.42 %

sentiment
classification

[141] BioASQ3 ! MIMIC-III F1: 48.3 % Precision: 37.1 % Recall:
42.0 %

text
categorization

Long Short-Term Memory [62] MIMIC ! i2b2 2014 MIMIC ! i2b2 2016 F1: 97.97% text
categorization

[107] CoNLL! GermEval
CoNLL! LFT
CoNLL! ONB

GermEval! CoNLL
GermEval! LFT
GermEval! ONB

Accuracy: 75.7% named entity
recognition

Capsule Neural Network [135] Reuters single label !
Reuters Multi label

precision: 87.4% text
categorization

[26] Yelp ! SemEval
Amazon ! SemEval

Twitter ! SemEval Accuracy: 76:6% F1: 70:5% sentiment
classification
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the target domain and tested on the target data. Interestingly, it has been found that for a large number of distinct domains,
the mean of transfer loss is not informative [45]. For this reason, two newmetrics have been proposed for measuring domain
adaptation by transfer ratio (Q) and In-domain ratio (I):
Q ¼ 1=n
X

ðS;TÞ

eðS; TÞ
ebðT; TÞ ð8Þ
Here n is number of pairs, i.e., ðS; TÞ where, S– T and
I ¼ 1=m
X

S

eðT; TÞ
ebðT; TÞ : ð9Þ
In Eqn. 9, m is the total number of source domains.
Although it has been shown that this method clearly outperforms other transfer learning methods, such as SCL (Structural

Correspondence Learning) [17], SFA (Spectral Feature Alignment) [91], and MCT (Multi-label Consensus Training) [64], a
major disadvantage of this approach is not to consider the mismatch between the distribution of the source and target
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domain. This can lead to a distribution shift between the source and the target domain resulting in problems for domain
adaptation giving a poor performance of the model [27]. Another disadvantage of the model is its high computational cost
due to its iterative numerical optimization [23].

In Fig. 5, we show the SDA transfer learning model used by [45] from [121] and DAE [122].
In order to improve the above model, in [23] an improved approach consisting of marginalized Stacked Denoising

Autoencoder (mSDA) has been proposed. In this approach, a linear denoiser is used as basic building block allowing random
feature corruptions to be marginalized out. Theoretically, this implies that a model is trained with infinite many corrupted
samples for which even a closed-form solution is presented. Therefore the optimization can be performed in a non-iterative
way allowing to speed-up the training considerably. Application of mSDA for classifying Amazon reviews showed that the
resulting performance is comparable to SDA but much faster.

A method applicable when the feature space of the source and target are different, i.e., XS: ¼ XT , has been introduced in
[153]. The model, called Hybrid Heterogeneous Transfer Learning (HHTL) learns three different mappings: Two homoge-
neous feature mappings from each unlabeled source and unlabeled target data using mSDA. In addition, they learn a hetero-
geneous mapping between these features allowing to cross source and target instances. The latter mapping minimizes the
difference between homogeneous source features and heterogeneous target features. As a classifier, they train a SVM based
on the transformed labeled source data by concatenating also intermediate layers of the homogeneous features. The moti-
vation for the HHTL model was to reduce the bias, e.g., from instance shift or feature mismatch, occurring due to cross-
domain variations [153]. HHTL was evaluated for the Amazon review dataset, where English reviews were used as the
labeled source domain data and three other languages French (FR), German (GE), and Japanese (JP)) were used as the unla-
beled target domain data. Overall, HHTL improved compared to other methods, e.g., mSDA.

For improving mSDA in the case when only unlabeled target data are available, in [29] a regularized version has been
suggested. For avoiding overfitting the authors utilize a method by [43] that regularizes intermediate layers with the pre-
diction task. Comparison with mSDA showed an improved performance for the Amazon review data set.

In Table 4, we summarize deep transfer learning methods based on Autoencoder. The information provided is similar to
Table 3. As one can see, all studies used the Amazon review data. However, the performance varies between the approaches.
We would like to note that all studies applied SDA on sentiment classification. In addition, Autoencoder was applied for news
Fig. 5. (a) Denoising Autoencoder with single layer. (b) Two layers stacked Denoising Autoencoder. (c) Fine-tuning of the deep learning model as discussed
by [122].
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Table 4
Stacked Autoencoder for deep transfer leaning. The column ’Technique’ describes the used model, ’Reference’ cites paper(s) that stududied the model, ’Source!
Target’ provides information about the transferred domain, ’Performance’ gives information about numerical results and ’Application’ indicates the learned
task.

Technique Reference Source ! Target Performance Application

Autoencoder [45] Kitchen ! Books Books ! Kitchen
Kitchen ! Electronics Books ! DVDs
Kitchen ! DVDs Books ! Electronics Transfer error: 21:3% sentiment classification
Electronics ! Books DVDs ! Books
Electronics ! Kitchen DVDs ! Electronics
Electronics ! DVDs DVDs ! Kitchen

[23] Kitchen ! Books Books ! Kitchen
Kitchen ! Electronics Books ! DVDs
Kitchen ! DVDs Books ! Electronics Transfer error: 11:5% sentiment classification
Electronics ! Books DVDs ! Books
Electronics ! Kitchen DVDs ! Electronics
Electronics ! DVDs DVDs ! Kitchen

[153] EN-Books ! FR-Music EN-DVDs ! GE-Books
EN-Books ! FR-DVDs EN-DVDs ! JP-Music
EN-Books ! GE-Music EN-DVDs ! JP-Books
EN-Books ! GE-DVDs EN-Music ! FR-DVDs Accuracy: 74.1% cross-language sentiment

classification
EN-Books ! JP-Music EN-Music ! FR-Books
EN-Books ! JP-DVDs EN-Music ! GE-DVDs
EN-DVDs ! FR-Music EN-Music ! GE-Books
EN-DVDs ! FR-Books EN-Music ! JP-DVDs
EN-DVDs ! GE-Music EN-Music ! JP-Books

[29] Kitchen ! Books Books ! Kitchen
Kitchen ! Electronics Books ! DVDs
Kitchen ! DVDs Books ! Electronics Accuracy: 81.32% sentiment classification
Electronics ! Books DVDs ! Books
Electronics ! Kitchen DVDs ! Electronics
Electronics ! DVDs DVDs ! Kitchen

Extensions of Autoencoder [128] Kitchen ! Books Books ! Kitchen
Kitchen ! Electronics Books ! DVDs
Kitchen ! DVDs Books ! Electronics Accuracy: 67.47% sentiment classification
Electronics ! Books DVDs ! Books
Electronics ! Kitchen DVDs ! Electronics
Electronics ! DVDs DVDs ! Kitchen

Computer ! Recording Recording ! Science
Computer ! Science Recording ! Talk Accuracy: 78.26% text categorization
Computer ! Talk Science ! Talk

[158] Kitchen ! Books Books ! Kitchen
Kitchen ! Electronics Books ! DVDs
Kitchen ! DVDs Books ! Electronics Accuracy: 78.0% sentiment classification
Electronics ! Books DVDs ! Books
Electronics ! Kitchen DVDs ! Electronics
Electronics ! DVDs DVDs ! Kitchen

[151] EN-Reuters ! FR-Reuters EN-Reuters ! It-Music
EN-Reuters ! GE-DVDs EN-Reuters ! SP-DVDs Average accuracy: 79.8% sentiment classification

[74] Kitchen ! Books Books ! Kitchen
Kitchen ! Electronics Books ! DVDs
Kitchen ! DVDs Books ! Electronics Accuracy: 85.99% sentiment classification
Electronics ! Books DVDs ! Books
Electronics ! Kitchen DVDs ! Electronics
Electronics ! DVDs DVDs ! Kitchen

Comp ! Rec Rec ! Sci
Comp ! Sci Rec ! talk Accuracy: 94.55 % text categorization
Comp ! talk Sci ! talk

Public ! User1 User1 ! Public
Public ! User2 User2 ! Public Accuracy: 90.64% spam classification
Public ! User3 User3 ! Public
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categorization and for spam classification. Autoencoder was also proposed to solve cross language features as it was applied
for cross language features classification. The error metrics used by the studies were: accuracy, precision, recall, F1-score and
transfer loss. Transfer loss was only used by two studies.

Adversarial Neural Network: Recently, adversarial learning gained a lot of attention in transfer learning [95,4]. In [44], a
model has been introduced based on adversarial learning. Specifically, the model jointly learns a feature representation and
two discriminative classifiers, one for class label prediction and one for predicting the domain of instances. The underlying
idea is to learn a representation that cannot discriminate between the origin of the instances yet minimizes the risk of the
labeled source data motivated by the domain adaptation theory by [10]. Importantly, for accomplishing this, the model uses
the labeled source data and the unlabeled target data simultaneously. That means all parameters are learned in one step. The
architecture of their model, called Deep-Adversarial Neural Network (DANN), consists of three main components: deep fea-
ture extractor (green), label predictor (blue) and domain classifier (red). Fig. 6 shows an overview of these components.

The DANN consists of two classifiers. The first classifier is called a discriminative classifier which is trained to predict task-
specific class labels. The second classifier is called a domain classifier. This classifier is trained to predict whether an instance
comes from the source domain or the target domain. For the training process, the input maps to the hidden layers. This oper-
ates as feature extractor Gð:; hf Þ. The second component of the network, label predictor Gð:; hyÞ, discriminate class labels using
feature extractor, Gð:; hf Þ, for an efficient domain adaptation the model is trained in an adversarial manner where the
extracted features Gð:; hf Þ of input data from the two domains are trained in such a way that Gð:; hdÞ cannot recognize the
domain of the extracted features.

Applications of DANN to 12 different sentiment classification tasks (based on Amazon reviews) showed that overall the
model achieves good classification accuracy compared to benchmark models. Interestingly, it has been shown that using a
Marginalized Stacked Denoising Autoencoders (mSDA, see Section 4.1.1) as representation learner together with a (shallow)
DANN allows to further improve the performance.

The paper by [24] proposed an adversarial approach for cross-language features challenges. The approach transferres
information learned from rich-source language data to low-source language. The network uses two classifiers: a sentiment
classifier and a language adversarial classifier. Both classifiers use input from a shared feature extractor. This way hidden
representations are learned. The analyses were conducted on English as a rich-resource language and Chinese and Arabic
as low-resource language targets.

We just briefly want to mention that there are also adversarial learning approaches that transfer from more than one
source domain such as the one suggested in the paper of [150].

Table 5 shows analyses of deep transfer learning methods based on adversarial learning. The information provided is sim-
ilar to Table 3. The majority of studies are about sentiment classification of Amazon reviews. Interestingly, all studies used
the accuracy as performance measure.
Fig. 6. Architecture of the Deep-Adversarial Neural Network (DANN). The DANN consists of three main components: deep feature extractor (green), label
predictor (blue) and domain classifier (red).
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Table 5
Adversarial models for deep transfer leaning. The column ’Technique’ describes the used model, ’Reference’ cites paper(s) that studied the model, ’Source !
Target’ provides information about the transferred domain, ’Performance’ gives information about numerical results and ’Application’ indicates the learned
task.

Technique Reference Source ! Target Performance Application

Domain Adversarial Neural
Network

[44] Kitchen ! Books Books ! Kitchen

Kitchen ! Electronics Books ! DVDs
Kitchen ! DVDs Books ! Electronics Accuracy: 82% sentiment

classification
Electronics ! Books DVDs ! Books
Electronics ! Kitchen DVDs ! Electronics
Electronics ! DVDs DVDs ! Kitchen

[24] English ! Chinese Accuracy:
58.7%

sentiment
classification

English ! Arabic Accuracy: 75.6
%

sentiment
classification

[150] (Kitchen + Dvds + Electronics)!
Books
(Kitchen + books + Dvds)!
Electronics
(Kitchen + Electronics + books)!
DVDs

Accuracy:
81.32 %

sentiment
classification

(Electronics + books + Dvds)!
Kitchen

Adversarial Learning [147] Value! Restaurant Cleanliness!
Restaurant

Room! Restaurant Checkin!
Restaurant

Accuracy:
87.3%

sentiment
classification

Service! Restaurant

DCIS! LCIS IDC ! DCIS
DCIS! IDC IDC ! LCIS
DCIS! ALH IDC ! ALH Accuracy: 91.2 Text categorization
LCIS! DCIS ALH ! DCIS
LCIS! IDC ALH ! IDC
LCIS! ALH ALH ! LCIS

[67] Kitchen! Books Books! Kitchen
Kitchen! Electronics Books! DVDs
Kitchen! DVDs Books! Electronics Accuracy:

85.40%
sentiment
classification

Electronics! Books DVDs! Books
Electronics! Kitchen DVDs! Electronics
Electronics! DVDs DVDs! Kitchen

[66] Kitchen! Books Books! Kitchen
Kitchen! Electronics Books! DVDs
Kitchen! DVDs Books! Electronics Accuracy: 86.6

%
sentiment
classification

Electronics! Books DVDs! Books
Electronics! Kitchen DVDs! Electronics
Electronics! DVDs DVDs! Kitchen

S. Bashath, N. Perera, S. Tripathi et al. Information Sciences 585 (2022) 498–528
4.1.2. Hybrid model
In this section, we discuss transfer learning models that either combine different models or utilize an additional mech-

anism to form a new model. Hence, such models are no longer a single model by a hybrid model.
Long Short-Term Memory with label-aware maximum mean discrepancy: The paper by [127] introduced a label-

aware double transfer learning framework (La-DTL) and applied it to Chinese medical Named Entity Recognition. La-DTL
is based on a text representation learned by Bi-LSTM networks and maximum mean discrepancy (MMD). In general,
MMD is a distance measure widely used in machine learning, including transfer learning, to measure the distributional dis-
tance between the source domain and the target domain [47]. Formally, it is a two-sample statistical hypothesis test which
tests the equality of two distributions based on the observed samples. It measures the difference of the mean values of a
smooth function from the samples drawn from the two domains. The authors evaluated the approach on a 10 K corpus col-
lected from a Chinese hospital from four departments: Neurology, Cardiology, Respiratory, Gastroenterology. The proposed
approach combines Bi-LSTM with Conditional Random Fields (CRF) and utilizes a label-aware maximum mean discrepancy
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metric (La-MMD) for sharing feature representations of hidden layers (H) and a L2 constraint on the CRF layers for parameter
transfer. In this model, the input data is converted into a sequence of embedding vectors and sent to the Bi-LSTM to obtain
the contextual information sequentially in both directions. The Bi-LSTM encodes the information into fixed-length two–hid-
den vector layers (H) each for source and target domain. The hidden vector layers are connected with domain constrained
Conditional Random Fields (CRF) layers of the source and target domain. In general, the CRF is a probabilistic modeling
framework that aims to predict the label sequence of input data [59]. The hidden layers of the source and target domain
are optimized by label-aware maximummean discrepancy (La-MMD) to reduce the domain discrepancy for transferable fea-
ture representations. However, the parameter sharing of the CRF layer may not yield optimal results for transfer learning
when the source and target data have too diverse distributions. In such a case, reducing the Kullback–Leibler (KL) divergence
DKLðPSðyjHÞjjPTðyjHÞÞ (y is a sequence of labels, H is a hidden vector sequence) is not manageable. Therefore the shared
parameters of the CRF layers are optimized by reducing the upper bound (L2 constraint) of the KL-divergence. The training
of La-DTL is performed with a mini-batch that includes training data from both domains.

Long Short-Term Memory with attention mechanism: Finally, a number of methods were introduced using LSTM net-
works with an attention mechanism. In general, an attention mechanism maps important features from the input sentence
and assigns higher weights to those features.

An attention mechanism has been effectively applied in various applications such as relation classification [155] and sen-
timent classification [126]. A deep transfer learning model was suggested by [139] to improve the performance of multi-
label emotion classification. The model consisted of two LSTM layers named shared Bi-LSTM and target-specific Bi-LSTM.
The shared Bi-LSTM layer extracts the shared features between source and target for sentiment and emotion classifications.
The target-specific Bi-LSTM extracts the specific emotions which are specific for the emotion classification task. The model
consisted of two base models, which are attention-based Bi-LSTM for the source domain for sentiment classification, another
Bi-LSTM is for the target domain for emotion classification. The attention mechanism added in Bi-LSTM assign weights, as

and at , that pays more attention to general sentiments. The target input layer is connected with the source-domain Bi-
LSTM layer for a shared representation, extracting shared sentiment features for sentiment and emotion classification tasks.
The hidden representation of shared space and the target space assign higher weights to frequently occurring words related
to sentiments and lower weights to less frequent words for emotions. Therefore allowing the model to pay attention to both
emotions and sentiments, the authors proposed a dual attention transfer approach for computing attention-specific weights
(as ¼ f ðhs; zÞs) in a shared space and emotion-specific weights (at ¼ f ðht ; z;asÞ : ht ¼ fh1;h2 . . .hng is a hidden state vector and
z is the summary vector of the final hidden state) in target space by sending attention weights of the shared domain (as) as
inputs to compute attention weights of the target domain. The model’s training is performed by alternating an optimization
approach by using mini-batches of source data and target data that update parameters of the source domain Bi-LSTM section
and all parameters of the whole model alternatively.

Another approach based on an attention mechanism was proposed by [144]. The attention mechanism helped the model
to share sentences and aspects for better transferring information across the domains. The approach consists of two atten-
tion networks, one is used to classify common features, and the other is used to extract information from aspects. Extensive
experiments showed that the model had better performance compared to other methods including DANN and mSDA. The
interactive attention transfer network (IATN) consists of S-net and A-net LSTM networks for sentences and aspects. The
S-net and A-net, first, obtain word and aspect embeddings from a pre-trained model utilized as input to LSTMs, which trans-
forms sentence and aspect embeddings to hidden semantic state layers (hs) and aspect hidden states (ha) for all aspects in a
sentence. In the layer for interactive representation between sentence and aspect, a non-linear pooling method is applied for
reducing the feature space and preserving crucial features. The pooling layer computes sentence pooling (hp

s ) and aspect
pooling (hp

a) vectors. In order to consider the effect of aspects on sentence for representing final sentiment features, the inter-
active word sentence attention weight vector is defined as the function of encoded features of sentences and pooling layer of

aspect layer, i.e., ai ¼ f ðhi
s;h

p
aÞ. Similarly, an aspect attention vector is a function of encoded features of aspects and a pooling

layer of a hidden representation of a sentence, i.e., bi ¼ f ðhi
a;h

p
s Þ. The final sentence and aspect representations are defined as,

Sr ¼
Pnþ1

i¼1 aih
i
s;Ar ¼

Pnþ1
i¼1 bih

i
a. The final layers of IATK are domain classifier and sentiment classifier that are connected by a

shared feature space. The objective function for model training to optimize parameters for individual attention learning con-
tains domain classification loss (negative), sentiment classification loss and optimizes both loss functions simultaneously for
interactive attention learning.

In Table 6, an overview of hybrid models is shown discussed in this section. The information provided is similar to Table 3.
Extensions of Autoencoder: In this section, we discuss models that combine an autoencoder either with other models or

mechanisms. In [128] a Deep Nonlinear Feature Coding (DNFC) model was proposed that has two advantages over the mSDA.
First, it conducts a minimization of domain divergence by using the MaximumMean Discrepancy (MMD) [47] and, second, it
exploits the nonlinearlity of data by kernelization. This is done by adding an mDA encoder at the first layer of DAE (if one
compares with weiss uses two matrix Q1 and Q2, whereas Q2 uses the MMD measure). The learning process measures
the discrepancy between the distribution of the source and the target domain at each layer of the deep feature space and
minimizes the distance of MMD during the learning.

Another hybrid method based on Autoencoders was proposed in [158]. The idea of their approach is to combine Structural
Correspondence Learning (SCL) and Autoencoders. SCL was introduced by [17] for predicting pivot features in the source and
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Table 6
Hybrid models for deep transfer learning. The column ’Technique’ describes the used model, ’Reference’ cites paper(s) that studied the model, ’Source ! Target’
provides information about the transferred domain, ’Performance’ gives information about numerical results and ’Application’ indicates the learned task.

Technique Reference Source ! Target Performance Application

Long Short-Term
Memory with
maximum mean
discrepancy (MMD)

[127] Cardiology! Respiratory Neurology ! Respiratory

Cardiology ! Neurology Neurology ! Cardiology Average
accuracy: 71.15%

entity
recognition

Cardiology ! Gastroenterology Neurology ! Gastroenterology
Respiratory ! Neurology Gastroenterology ! Respiratory
Respiratory ! Cardiology Gastroenterology ! Cardiology
Respiratory ! Gastroenterology Gastroenterology ! Neurology

Long Short-Term
Memory with
attention
mechanism

[139] SemEval 2016 ! SemEval 2018 Accuracy:
58.3% F1: 54.4%

sentiment
classification

[144] Kitchen! Books Books! Kitchen
Kitchen! Electronics Books! DVDs
Kitchen! DVDs Books! Electronics Average

accuracy: 85.9%
sentiment
classification

Electronics! Books DVDs! Books
Electronics! Kitchen DVDs! Electronics
Electronics! DVDs DVDs! Kitchen
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the target domain. The purpose of SCL is to identify similarities between features of different domains by modeling their cor-
relations with pivot features. The pivot features are the main features that commonly occur in the source and target domain
and exhibit importance for a task. SCL works by first obtaining the pivot features and then utilizing them to find common,
low-dimensional features. In contrast, to other methods based on Autoencoders, in [158] Autoencoders do no directly receive
input from the available instances but receive a low dimensional representation of non-pivot features learned by SCL.

The model by [151] is for heterogeneous transfer learning. Specifically, the authors introduce a model called Deep seman-
tic mapping model for Heterogeneous multimedia Transfer Learning (DHTL). For minimizing cross language variations
between domains, DHTL integrates a deep neural network with a canonical correlation analysis (CCA) in each layer. Canon-
ical correlation analysis (CCA) is a common statistical technique for determining maximally correlated linear projections of
two random vectors [8]. CCA is used in DHTL to maximize correlation in order to optimize a commonly correlated features in
the source and target domain. The model consists of several layers-based auto-encoders with CCA to train domain-specific
and representation-shared networks at the same time. First, the network is per-trained on the co-occurrence data using
shared semantic mapping. Then, in backpropagation, the top layer correlation matching between domains is used to fine-
tune the entire network to obtain the unified deep semantic mapping. Experiments show that the proposed model outper-
forms a number of existing models in terms of classification accuracy.

In [73,74], several shortcomings of MMD have been highlighted, including:

1. The kernel-based MMD identifies only a local generalization but is ineffective for global nonlinearities.
2. Predefined kernels are not optimal for maximizing the two-sample matching power of MMD.
3. The scaling of MMD is non-efficient for large data sets.
4. Large domain discrepancy when the model is estimating weights of target features which are not existed in the original

(source) feature representation.

In general, a good representation disentangles the factors of variation between the domains and preserves information
about the data [13]. That means for case 4 that the disentanglement of hidden factors of variation can increase the cross-
domain distribution discrepancy. Hence, invariant factors learned by deep learning model would reduce the domain discrep-
ancy. Overall, this would lead the target error becoming statistically unbounded.

In [74] a generalized framework for domain adaptation has been proposed to jointly learn the transferable representation
and classifer. The model consists of two components, a Transfer Denoising Autoencoder (TDA) and a Transfer Deep Network
(TDN) (see below). Both models utilize a multi-kernel MMD method (MK-MMD), a nonparametric test statistic performing a
two-sample comparison in linear time using a B-test [74], for avoiding the problems of MMD discussed above. This way mul-
tiple TDAs can be stacked to achieve a deep network. Overall, the TDA is used as an unsupervised pre-training step of the
TDN. The TDN is a multilayer perceptron regularized by the MK-MMD on all hidden layers. This performs a supervised
fine-tuning step of the resulting model. Numerical analysis showed that TDN outperformed other state-of-the-art methods
in sentiment classifications, email spam filtering and newsgroup categorization.
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4.2. Source domain: Partially labeled data

In this section, we discuss deep transfer learning approaches that are based on partially labeled data in the source domain,
i.e., the source domain contains labeled and unlabeled data.

4.2.1. Hybrid model
Adversarial learning: In order to tackle cross-aspect and cross-domain adaptation, the study by [147] introduced an

Aspect-augmented Adversarial Network (AAN). ANN consists of five components. The first component is a sentence embed-
ding that uses a CNN to obtain sentence-level vector embeddings by minimizing reconstruction loss. The second component
is relevance prediction, which predicts the relevance of each sentence’s relevance to an aspect by minimizing the error
between labeled relevance and predicted relevance. The third component is document encoding, which generates a docu-
ment feature vector by summarizing each sentence’s relevance score with the sentence embedding. The document feature
vector is connected with the fourth component, the transformation layer. Together with a regularization term the transfor-
mation layer maps the document features to domain invariant features. Finally, the transformation layer is the input to the
last components, the label predictor and domain classifier. The domain classifier is a feed forward network that functions as
the adversary for domain invariance. Overall, a joint objective function is used to learn the parameters of the Aspect-
augmented Adversarial Network by combining the individual optimization functions of the five components, i.e., word
reconstruction, relevance label optimization, transformation layer regularization, source class label loss, and domain adver-
sary minimization.

An attention-based extension of Adversarial networks was proposed by [67]. This study introduced an Adversarial Mem-
ory Network (AMN), which can capture pivots of features shared in the source and target domain. An attention mechanism
discovers important features from the input sentence and assigns higher weights to these features. Attention mechanisms
have been effectively applied in various applications such as relation classification and sentiment classification [126]. The
success behind the attention mechanism is that a low-level position has its importance for a high-level representation
[155]. Overall, the approach in [67] consists of two networks sharing parameters. The first network is used for sentiment
classification and the second network for domain classification. Both networks are trained jointly to select features. Later,
[66] improved the AMN model by using a hierarchical attention network to capture the pivot and non-pivot features.

4.3. Source domain: Unlabeled data

In this section, we discuss deep transfer learning approaches that are based on unlabeled data in the source domain.
In general, unlabeled data imply that unsupervised learning methods need to be used. Compared with labeled data, unla-

beled data provide less information about the underlying distribution from which the data are drawn because the labels are
missing. This translates directly to the learning paradigmmaking unsupervised learning less powerful than supervised learn-
ing. Interestingly, self-supervised learning provides a strategy for softening this restriction [78]. Specifically, self-supervised
learning assigns, based on some rule, labels to the unlabeled data. This allows to employ supervised learning methods for
dealing with unlabeled data. It is clear that not every ’rule’ leads to sensible labels. For instance, methods like BERT and
GPT (see below for details) utilize the sequential character of text data for predicting the ’next word’ in a sentence. This cor-
responds to a masking of tokens [78]. Importantly, self-supervised learning methods still belong to an unsupervised source
domain since the labels are not naturally given.

Self-supervised learning provides two approaches that can be used for the pretraining of a model when only unlabeled
data are given; Generative learning and discriminative learning. In generative learning, a probability distribution of possible
outputs is generated based on the input [83]. For example, when a masked token is given, the model would try to generate all
possible tokens that could fit in the masked position based on the dataset, which can be very time consuming. In contrast, in
descriminative learning, the models learn to distinguish between the created labels or classes of the input [78]. An example
would be learning to generate separate embeddings for each token in the search space.

In this section, hybrid deep transfer learning approaches based on unlabeled source data are discussed. In the following,
we distinguish between two main types of models: LSTM-based and Transformer-based language models which are cur-
rently the dominating models.

4.3.1. Hybrid model
Linguistic Feature Modelling. Currently, there is much interest in building generalized linguistic models that are able to

represent features and grammars of a given natural language. A linguistic model or a language model (LM) is defined as a
probabilistic model that predicts the next token of a given sequence of tokens [46]. This corresponds to learning a conditional
probability distribution corresponding to [78]
pðxijx1:x2; . . . :; xi�1Þ ð10Þ

for a sequence x1; x2; . . . :; xi.
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This is achieved by pretraining a model to predict the next token given a previous sequence of tokens or masked token
given a windowed sequence of tokens. Generally, to pretrain linguistic models, substantially large text corpora is required.
The language model can then be used as the source model for transfer learning in multiple NLP target tasks, with little to no
finetuning.

In general, language models belong to the class of sequential transfer learning (STL), which is a branch of inductive learn-
ing paradigm [110]. Importantly, the models are trained in sequence and separately for the source and target task, hence the
name STL. That means, no mixing or selecting of the data is involved. The aim is to transfer information. i.e., feature repre-
sentations (in ELMo) or parameters (in BERT, GPT, etc.) from the source model to the target model, and thereby enhance the
performance of the target task. In the pretraining stage, a linguistic model is trained in self-supervised manner with copious
amounts of unlabelled data while in the fine-tuning/adaptation stage, the language model is fine-tuned to the target task.

Recurrent Neural Network based models
Recurrent Neural Network (RNN) based language models that transfer parameters or feature representations to a target

tasks were some of the earliest language models used. These models are based on different implementations of RNNs.
ELMo: The ELMo (Embeddings from Language Models) model is a bidirectional language model (bi-LM) based on a 2-

layer bidirectional LSTM [96], introduced by Allen Institute of AI. The model is pretrained with One Billion Words Benchmark
dataset by Google [22]. In contrast to other language models discussed later, ELMo is a feature-representation transfer
model, and as such does not modify any of the pretrained parameters in the fine tuning stage. Instead, internal states of
the two LSTM layers are linearly combined to derive contextual character-wise embeddings for target tokens, and a sec-
ondary neural network is trained with the embeddings to apply for the target task. As a result, ELMo can be either conve-
niently integrated into an existing system for providing character embeddings, or used as the primary model with an
additional layer for fine-tuning [97]. This is possible because, while ELMo produces embeddings, these are different to earlier
text embedding approaches such as word2vec or GloVe, as the ELMo embeddings are extracted from a language model, pre-
trained bidirectionally [96].

ULMFiT: Universal Language Model Fine-Tuning (ULMFiT) is a generalized transfer learning approach proposed by [53].
The model uses averaged stochastic gradient descent weight-dropped LSTMs (AWD-LSTM) [81]. AWD-LSTM is a simple 3-
layer LSTM that uses DropConnect [124], a regularization approach where the neural networks set weights of inputs to zero,
as opposed to dropout where the output activation is set to zero. DropConnect reduce over-fitting by randomizing which
inputs are used within the LSTM units, without disrupting output hidden states. These LSTMs also use Non-monotonically
triggered average stochastic gradient descent (NT-ASGD) as the optimization method. The AWD-LSTM is pretrained in an
unsupervised manner with the WikiText-103 corpus [82] consisting of 28;595 general Wikipedia text articles. The fine-
tuning of the target task is performed in a supervised manner using discriminative fine-tuning and slanted triangular learn-
ing rates. The learning model has been evaluated for sentiment analysis and text classification.

Transfer Learning based Emotion Recognition in Conversations (TL-ERC) [51] is a very recent deep transfer learning
model for emotion mining by considering contextual information. The model uses generative pretraining to build an end-to-
end conversational model that can be fine-tuned to identify emotions in a dialog. This compensates for the scarcity of
labelled data of the task, and achieves better validation results surpassing previous models such as c-LSTM + Att [100], Mem-
net [117] and CMN [50]. Interestingly, this is achieved with significantly less epochs, e.g., compared to DialogueRNN [77].

The base architecture used by TL-ERC is a seq2seq Hierarchical Recurrent Encoder-Decoder (HRED) [114], a classic deep
learning architecture used, e.g., for building dialog models [51]. The source architecture of TL-ERC consists of three sub-
modules: an encoder RNN for encoding the input sentence, a context RNN to model context of the conversation (shared
within the dialog model), and a decoder RNN to output the response to the input sentence. The source context model param-
eters and sentence encodings (HRED and BERT-based - see below) are then transferred to the target task. The target model is
fine-tuned using a small labelled dataset with conversational sentences as input and emotions as labels. The authors high-
light that using BERT-based encodings performs better in the target model compared to HRED encodings. The source task
uses the Cornell movie dialog corpus [35] and the Ubuntu dialog corpus [75] for pretraining and the target task is fine-
tuned for three labelled datasets, namely, IEMOCAP [20] (labelled for anger, happiness, sadness, neutral, excitement, and
frustration, SEMAINE [79] (labelled for valence, arousal, power, and expectancy) and DailyDialog [65] (labelled for anger,
happiness, sadness, surprise, fear, disgust and no-emotion).

Transformer-based models Transformers are sequential transduction models introduced primarily for machine transla-
tion tasks [120]. The underlying architecture uses attention to keep track of long-chain dependencies in text without the
need for using Recurrent Neural Networks. The original Transformer model consists of 6 stacked encoder-decoder blocks
with each encoder and decoder containing a feed-forward neural network (FFNN) and multi-head self-attention mechanism
as illustrated in Fig. 7A and Fig. 7B. This differs from Autoencoder, which contain a single neural network performing both
encoding and decoding. As mentioned above, Transformers were specifically designed for translation tasks requiring a map-
ping between two entirely different feature spaces, e.g., from one language to another. The architecture has since been used
as stacked encoder-decoder pairs, stacked encoders-only and stacked decoders-only configurations, as best applicable for the
intended task. The number of stacked encoder/decoder blocks can vary from N ¼ 12 (BERT architecture) to N ¼ 24 (XLNet
architecture).

BERT: Bidirectional Encoder Representations from Transformers (BERT) is an auto-encoding language model trained
using stacked encoder blocks from Transformers (Fig. 7 A) with a masked language modeling (MLM) to learn embeddings
bidirectionally [37]. The model was introduced by Google and is pretrained on large unsupervised text corpora using two
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Fig. 7. A) Original Transformer-Encoder Block. B) Original Transformer-Decoder Block. C) Modified Transformer-Decoder Block For Generative Pretraining
(GPT). Each block consists of its own feed forward neural network and multi-head attention mechanism. The original transformer by [120] consists of N
stacked encoder-decoder blocks (A-B), whereas BERT consists of N stacked transformer-encoders (A) only. The GPT/GPT-2/GPT-3 models use N stacked
modified transformer-decoders (C) with only masked-multi head attention as opposed to the original transformer-decoder (B), which use two different
atten.tion mechanisms.
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self-supervision tasks: 1) By using MLM which corrupts the input text sequences and attempts to predict the original text
sequence, 2) By attempting to predict the next sentence for a given sequence of words (sentence). The datasets used for
the above pretraining consist of text passages from BooksCorpus with 800 M words [156] and a filtered version of English
Wikipedia with 2500 M words. Training the model with the aforementioned data results in a contextualized embedding
model that can be later used in target tasks fine-tuned with task-specific supervised data. During fine-tuning, the source
model is used with its learned weights, and an additional dense output layer is added to fine-tune the source model for
the target task.

BERT was the first transformer-based language model to be introduced by Google, and was available open source trigger-
ing a mass interest among research communities due to its versatility to be easily adapted to target tasks. There have been
multiple variations of the BERT model published since, including RoBERTa which is a Robust BERT approach introduced by
[72]; mBERT that is a multilingual BERT model by Google [98]; and BioBERT which is a model retrained using PubMed and
PubMed Central corpora adapted specifically to biomedical domain [61].

GPT, GPT-2 and GPT-3: Generative Pre-training (GPT) based language models are a new generation of language models
introduced by OpenAI [104]. In contrast to BERT, which uses transformer-encoders, GPT uses the modified instance of
transformer-decoder introduced by [70] which is illustrated in Fig. 7 C. The first GPT model was pre-trained unidirectionally
using the BookCorpus dataset [156] containing over 7000 unpublished books, by windowing such that each token’s right
sided neighbours are masked (auto-regressive modelling). The pre-training objective is to model the distribution

pðxijxi�w; . . . :; xi�2; xi�1Þ where X ¼ fx1; x2; . . . :; xig is the complete token sequence, xi is the ith token, w is the window size
and Xw ¼ fxi�w; . . . :; xi�2; xi�1; xig are tokens within the window w. Once pretrained the GPT language model can be fine-
tuned for multiple target tasks such as natural language inference, question answering, semantic analysis or classification
by using a labeled target dataset.

The GPT-2 is the next improvement in generative pretraining modelling, using the same decoder architecture as GPT with
adjustments to the normalization [105]. However, the difference between GPT and GPT-2 is in the amount of unsupervised
data used for the initial pretraining of the model. GPT-2 is trained on WebText dataset uniquely composed for GPT-2, con-
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taining over 8 million documents scraped fromweb pages covering a wide variety of subjects. Interestingly, the authors state
that the GPT-2 model requires no fine-tuning to transfer to a target task.

GPT-3 is the latest advancement in generative pretraining based language modelling which has been introduced as a task-
agnostic language model, i.e., a language model that can be used for a multiple number of target tasks and natural language
understanding tasks without the need for fine-tuning, trained with labelled target data [19]. The GPT-3 language model is
pretrained with over 300 billion tokens, using multiple text corpora such as CommonCrawl, Wikipedia, WebText2. Overall,
the model performed outstandingly in several natural language understanding tasks.

Both the GPT-2 and GPT-3 language models by OpenAI have shown impressive capability to model natural languages and
related tasks such as text summarizing, reading comprehension, translation, question answering, natural language inference,
and modelling long-range text dependencies [105,19], paving the way to phenomenal progress in artificially intelligent lan-
guage inference and generation. GPT-3 has even shown promising performance in AI tasks that involve sentence/paragraph
completion, common sense reasoning, news article text generation and several other synthetic and qualitative tasks involv-
ing natural language understanding [19]. For this reason, the GPT-3 model has recently attracted much limelight in the trans-
fer learning in natural language processing community.

Transformer-XL and XLNet: Transformer-XL (Extra Large) was introduced by Google as an improvement to ordinary
transformers introduced earlier in [120], such that much longer contextual dependencies can be modelled for a machine
translation tasks. In order to accomplish this, Transformer-XL uses a recurrence mechanism and a new positional encoding
system that allows the model to represent dependencies 80% longer than RNNs and 450% longer than simple transformers
[34]. The Transformer-XL processes text in fixed segments, similar to transformers, however, the recurrence mechanism pro-
vides hidden information from the two previous segments to the current one, with relational positions.

Based on this new transformer model, a new language model called XLNet is introduced by Google and Carnegie Mellon
University [137]. The authors describe their newmodelling approach as Permutation Language Modelling (PLM), which com-
bines the advantages of masked language modelling (MLM) and generative pretraining (GPT), but counterbalances their
respective drawbacks. Generally, the generative pretraining objective uses auto-regressive modelling which restricts the
ability of a LM to learn deep bidirectional context. Whereas masked language modelling (used in BERT), prohibits the LM
from learning dependencies with respect to the masked/corrupted tokens, leading to a possible pretraining to fine-tuning
discrepancy. To counteract, the PLM approach, XLNet uses all possible permutations of a given token sequence, each time
predicting the next masked token. Since the sequence is permuted multiple times, the learning is bidirectional and no tokens
are permanently masked reducing discrepancies.

The XLnet model is trained using a large set of sub-word tokens with over 30 billion words extracted from Wikipedia,
BooksCorpus, Giga5, ClueWeb, and Common Crawl datasets. The pre-trained XLnet model can be fine-tuned for multiple tar-
get tasks with labeled target data and has shown to achieve superior results, e.g., compared to BERT.

ELECTRA: In contrast to the models discussed above, which use generative self-supervised learning for the pre-training,
ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately), introduced as a collaboration
between Google and Stanford University, uses a discriminative pre-training approach. According to [28], this method
requires substantially less data and computational resources than XLNet and RoBERTa to perform in similar capacity as
the latter models. Analysis showed that when using only 1/4th of the data ELECTRA performs similar to XLNet and RoBERTa
but outperformed both models when using a similar amount of training data. The training approach introduced is called
replaced token detection, where the input sentences are corrupted similar to BERT. However, instead of masking tokens, here
a token is replaced with a new token generated using a small generator network similar to a masked language model (MLM).
The pre-training task focuses on classifying tokens into two classes, i.e., tokens that are replaced and tokens that remain
unchanged.

The general ELECTRA model used for the majority of evaluations is said to have been pre-trained with the same BookCor-
pus and Wikipedia datasets that have been used in BERT pre-training. However, the authors state that for the large ELECTRA
model, pre-training was done using the same datasets as XLNet, which contains over 30 billion tokens [137].

5. Discussion

Despite the fact that research on transfer learning started already in the 1970s [18] becoming interesting for the wider
machine learning community in the early 1990s [101], deep learning approaches for transfer learning with application on
text data is a relatively new field. Among the first publications in this area, is the paper of [142], which used a restricted
Boltzmann machine to discover hierarchical features for document classification. Since then a vast number of publications
appeared making it difficult for obtaining a comprehensive and systematic overview of the field.

An additional issue results from the fact that so far there is no unique terminology used consistently in the literature.
Instead, many different terms and characterization can be found to describe various forms of deep transfer learning models.
For traditional approaches, which are not based on deep learning, the situation is similar. We think this is partially related to
the interdisciplinary nature of the field where individual areas developed their own terminology independently from other
areas. The latter seems also a reflection of a limited communication and exchange of information between the various appli-
cation domains. However, even more severe is the lack of a unique terminology of general (including deep learning) transfer
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learning models. While the review by [92] set the standard for the field, they did not solve this issue. Instead, the paper dis-
cussed different categories of ’What to transfer’, ’How to transfer’ and ’When to transfer’ (see Section 2.3.1, 2.3.3 for a dis-
cussion) providing very useful specifications of general transfer learning. However, these specifications are not sufficient to
give terminological clarity and guidance as can be seen from the confusion in the literature in recent years. Nevertheless,
essentially all reviews that appeared after the paper of [92] either copy their specifications or are heavily derivative thereof
including the paper of [128,157].

We think the root cause for these issues is the combinatorial nature of transfer learning. That means transfer learning is
not a monolithic approach with a limited number of configurations for a limited number of situations but, instead, a diverse
family of models. Due to this diversity, transfer learning defies a simple categorization. Specifically, for transfer learning one
needs to specify (1) the data (for instance labeled source data and labeled target data), (2) properties of the data (for instance
marginal distributions of the source and target) and (3) a model approach (for instance parameter transfer) for learning a
task. Importantly, these three components are not alternatives but each one needs to be specified for a given transfer learn-
ing problem. Hence, defining transfer learning means to specify all combinations thereof. By making simplified assumptions
about the different possible components (e.g., 9 different combinations of data (see Fig. 2), 4 different distributional prop-
erties of the data (see Table 1 different solution-based approaches (see Section 2.3.3) one obtains 144 different transfer
learning categories.

Unfortunately, there is an additional layer of complexity that needs to be considered. While classic machine learning
approaches are typically one-step methods, deep transfer learning models are often multi-step procedures using a mixture
or a selection of source and target data for specific steps (see Section 4.1.1 and [45]). Hence, such multi-step procedures lead
to additional combinations that need to be considered because the data are not used in one specific way but source and tar-
get can be combined or selectively combined in various different ways in each learning step. Overall, this results in many
more categories of transfer learning than 144, which makes it clear why so far no comprehensive terminology exists that
would assign simple names to individual configurations. Also, such a number of categories makes it impractical to visualize
a comprehensive taxonomy, e.g., via a hierarchical tree, because hundreds of nested branches do not provide a simple
overview.

In order to overcome those problems, we suggest a nomenclature (see Section 2.4) that on the one hand maintains the
combinatorial structure of transfer learning and accommodates on the other hand the same time multi-step procedures.
In order to demonstrate the utility of our nomenclature, we show in Fig. 8 two examples. The left figure shows a Stacked
Denoising Autoencoder (see Section 4.1.1 and the paper of [45]). A SDA consists of two-learning steps. For step 1 unlabeled
source and unlabeled target data are used for learning a new feature representation, whereas for step 2 the labeled target
data are used for training the classifier. The figure on the right-hand-side shows BERT [37]. Also, BERT consists of two-
learning steps. In step 1 only the unlabeled source data are used wheres in step 2 only the labeled target data are used
for training the classifier. These two examples demonstrate also that transfer learning does not require to use the source
and target data sequentially, although there are sequential transfer learning methods as discussed in Section 4.3.1 doing
exactly this, but there are also other models that utilize a mixture of the source and target data over multiple steps. Overall,
this leads to a combinatorial plurality making the categorization of transfer learning models a complex task by itself.

For reasons of clarity, we would like to emphasize that the visual taxonomy shown in Fig. 3 is a simplification of our
nomenclature. The reason for this is twofold. First, as discussed above, the total number of possible combinations that define
transfer learning models is very large. Second, not every combination that is theoretically feasible is equally frequent in the
literature. For instance, we are not aware of any transfer learning model that is based on partially labeled source and partially
labeled target data. This implies that many of the possible combinations are either sparsely populated by published articles
or even empty. Hence, even if it would be feasible to visualize all combinations resulting from our nomenclature this would
not be informative with respect to the current literature.

In order to improve the communication among the communities studying transfer learning we suggest that future pub-
lications adopt our nomenclature. This will remove ambiguity and enhance the exchange of crucial information for training
transfer learning models.

Furthermore, in order to enhance future studies about deep transfer learning we provided in this paper also an overview
of text data resources frequently used as benchmark data. From surveying the literature, we observed that most of the
review dataset are publicly available including: Amazon product reviews, Multi-Domain Sentiment Dataset (https://www.
cs.jhu.edu/ mdredze/ datasets/sentiment/index2.html), or crosss language Amazon products (https://webis.de/data/webis-
cls-10.html). Furthermore, data about spam emails (http://www.ecmlpkdd2006. org/challenge.html#download) and News
groups (http://qwone.com/ jason/20Newsgroups/) are available. From Table 2, one can see that the majority of the bench-
mark data used in the literature for studying deep transfer learning models are for product reviews, e.g., about books, cam-
eras and laptops, or restaurants and hotels. It is interesting to note that there are only three datasets related to biomedical
texts (e.g. MIMIC-III).

Regarding the evaluation of the studied models, all have been assessed for a supervised learning task performing a clas-
sification. In case of unlabeled target data, labeled test data have been used sampled from the target domain. Various types of
error measures for classification have been used, including accuracy, F1-score, precision and recall [39], whereas the accu-
racy is the by far most frequently used measure. It is interesting to note that the standard error, estimating the variability of
the mean of an error measure, is rarely reported despite that fact that it provides important information about the effect of
changing training and test data. For this reason, it is not always clear if the reported error measures provide sensible esti-
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Fig. 8. Visualization of the combinatoral plurality offered by transfer learning with respect to the utilization of source and target data over multiple learning
steps of a model. Left: Stacked Denoising Autoencoder (SDA). Right: Bidirectional Encoder Representations from Transformers (BERT). The components of
the nomenclature of each model, i.e., A, B and C, are discussed in Section 2.4.

S. Bashath, N. Perera, S. Tripathi et al. Information Sciences 585 (2022) 498–528
mates of the generalization error of the model [38,90]. Similarly, sample size considerations are rarely addressed and learn-
ing curves are largely neglected [6]. Overall, there is a need for more statistical considerations to demonstrate that the
obtained results are statistically robust.

5.1. Future directions

Based on our discussion above, we identified a number of extensions that could be studied to further enhance our under-
standing of deep transfer learning. First, transfer learning could be studied in a broader range of text applications. For exam-
ple, spam filtering, named entity recognition and part-of-speech (POS) are areas that remain so far understudied. Also more
complex situations could be studied to demonstrate the utility of transfer learning, e.g., fraud detection and social media
applications [41]. A related issue is that existing methods need to be evaluated not only for product reviews but also for
related fields. This could include biological and medical reviews about medications or treatments. For instance, from our dis-
cussion above in Section 4.1 one can see that Autoencoder and Adversarial learning have been always evaluated on the Ama-
zon review datasets. Hence, at this point it is unclear if those methods generalize well to other review topics.

Second, surveying the literature revealed that there is a variety of different ways to learn from source and target data to
establish a deep transfer learning method. Specifically, SDA [45] and BERT [37] are two-step procedures. However, while
BERT uses in the first step only the source data and in the second step only the target data, SDA uses in the first step a mix-
ture of source and target data and in the second step only the labeled source data. In contrast, the adversarial learning model
DANN [44] is a one-step learning method. It is interesting to note that so far neither the number of steps of a learning model
nor the mixing of source and target data for the corresponding steps has been systematically investigated. This is important
because the characteristics of a given data set entails a learning paradigm. Since transfer learning has the freedom to select,
or mix, source and target data over multiple steps the learning paradigm of the corresponding steps can change. Overall, this
makes transfer learning very flexible and it would be interesting to study what combination leads to optimal results.

Third, instead of learning from just one source domain one could extend transfer learning to include several source
domains. Specifically, [55] argued that this should enhance the performance of models because information can be accumu-
lated over a number of different source domains. While there are already a few approaches that accommodate more than one
source domain, e.g., [149,150], such studies correspond to the minority.

Forth, for testing deep transfer learning methods it would be useful if a benchmark database or data repository would
exist providing big text data for a variety of different application domains. This would allow to avoid the time-consuming
and potentially costly process of data collection and data curation. This would also enable the standardized comparison
among different models. Our section about frequently used text data (see Section 3) could provide a starting point for such
an initiative.
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Fifth, further theoretical studies would be helpful to provide a theoretical underpinning for general transfer learning and
for transfer learning in specific situations. This could not only lead to a better foundation but might also inspire the devel-
opment of new models with better practical performance.

6. Conclusion

In this article, we provided a comprehensive review of deep transfer learning models for analyzing text data. Our paper
has three main objectives. First, we review an existing terminology and categorizations of transfer learning. Based on this, we
introduced a new nomenclature allowing the unequivocal description of transfer learning models. Importantly, the nomen-
clature reflects the combinatorial plurality of transfer learning in an implicit form leading to a compact formulation. Second,
we introduced a taxonomy of deep transfer learning models for applications to text data amenable for a visualization. This
taxonomy combines key information expressed by our nomenclature but simplifies the combinatorial plurality offered by
transfer learning in order to enable its practical utility. As a result, the taxonomy provides a comprehensive overview of
the currently studied deep transfer learning models emphasizing architectural principles. Third, we provided an overview
of useful resources of text data that have been used as benchmark data for studying text applications. Finally, we discussed
a number of extensions that could be studied to further enhance our understanding of deep transfer learning.
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