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Abstract 

Bridges are critical infrastructures, and effective maintenance is critical to keep them 

in a good condition, which includes inspection, condition evaluation, decision-making, 

and rehabilitation. Bridge rehabilitation, where most resources are spent, to-a-large-

extent determines the success of the bridge maintenance. However, it is challenging to 

manage bridge rehabilitation projects due to the complex constraints involved (e.g., 

various materials, equipment, and drawings). Constraint management approaches, e.g., 

Advanced Working Packaging (AWP), are good at managing complex constraints by 

defining and managing work packages with different granularities. Work packages 

group constraint entities affecting one another (e.g., tasks and resources) and minimise 

work interruption and delay by ensuring all constraints are removed before work. In 

bridge rehabilitation projects, a work package for replacing deck pavement can include 

materials (e.g., asphalt), labour, paving machines, and drawings (e.g., the original and 

new pavement designs). 

AWP includes constraint modelling, monitoring and analysis, and removal. Constraint 

modelling is a prerequisite of AWP, which creates work packages, identifies constraint 

entities, establishes relations among entities and packages, and form knowledge bases 

(KBs). Constraint modelling requires timely extracting constraint entities and relations 

from texts. However, this is manually performed in practice, which cannot meet the 

demands of AWP. Some studies to-some-extent automate the process. However, they 

focus on entity extraction and largely ignore relation extraction. State-of-the-art deep 

learning (DL) models (e.g., Knowledge Representation Learning (KRL)) models can 

extract relations. Such models are designed for general knowledge (e.g., Jobs-founder-

Apple). They do not use domain knowledge (e.g., domain classes and relations among 

the classes) that can restrict data semantics (e.g., by disambiguation) and reduce data 

demands for training, making them impractical to be applied in bridge projects. 

Efficient information integration is another prerequisite of AWP. Current approaches 

rely on relational databases which cannot effectively model interconnections among 

constraint entities (i.e., entity-relation-entity triples). Emerging graph databases (e.g., 

ontologies) are good at handling unstructured triples. However, ontologies in the area 

focus on static information (e.g., geometries) but cannot handle dynamic constraint 

information (e.g., tasks/procedures, constraints, their attributes), as their underlying 

syntax does not support required computation, e.g., traversing, iteration, and temporal 



 

 

computation. Besides, most KBs are incomplete, which can be measured by the 

existence and correctness of searched information. This can damage AWP functions 

while the reasons include 1) it is very difficult to extract all information from texts, 

either manually or automatically, and 2) project documents may not cover all needed 

information themselves. 

AWP and KB-based management have been applied in buildings and energy projects. 

However, bridge rehabilitation has unique challenges. First, there are different types 

of constraints, including underwater task devices, special materials (e.g., cables), and 

social constraints (e.g., traffic). Second, many participants are scattered in the design, 

construction, maintenance, and rehabilitation stage. Thus, additional efforts must be 

made to extract and integrate information, e.g., defining different domain classes and 

reasoning rules. Third, applications of information techniques do not cover managing 

bridge rehabilitation projects which still rely on manual management methods. Thus, 

similar to the bridge information modelling (BrIM) is a specialisation of building 

information modelling (BIM), novel methods are needed to modify and apply AWP 

and information management approaches in bridge rehabilitation projects, which can 

bring the most significant benefits and improvements. 

This research develops a novel information extraction and integration approach for 

implementing AWP in bridge rehabilitation projects. It includes three components: 1) 

A hybrid DL model to extract constraint information from documents, where a bi-

directional long-short-term memory and conditional random field (Bi-LSTM-CRF) 

model extracts constraint entities and a KRL model identifies relations (i.e., triples). 

Domain classes of entities are identified, while their representing vectors are stacked 

in the model to increase performance. The hybrid information extraction (IE) model 

reaches 0.936 and 0.891 F1 scores when extracting entities and relations respectively. 

Considering domain classes can increase relation extraction F1 score by 6.63%. The 

time for AWP constraint modelling is reduced to 1/29 of manual modelling. 2) Bridge 

rehabilitation management ontologies (BRMO), i.e., project KBs, which is built by 

comprehensively collecting domain knowledge. Its novelty lies in the combination of 

logic rules and an application programming interface to address syntax limitations in 

ontologies. The KBs can integrate static and dynamic constraint information for AWP 

management functions, e.g., evaluating task progress, constraint statuses, and project 

participants’ performance. The BRMO reduces information searching time to 1/50 of 



 

 

 

manual searching. 3) A knowledge base completion (KBC) model to predict missing 

information in KBs, which includes a data enriching module, a graph neural network 

(GNN) encoder, and a convolutional neural network (CNN) decoder. The enriching 

module adopts logic reasoning to increase data semantics. The encoder learns vectors 

of entities and relations using enriched data, and the decoder predicts missing triples. 

Domain-specific information (i.e., classes and working contexts of entities) are used 

in the encoder and decoder, respectively. The model reaches 0.844 hit@1. Enriching 

data and adding domain classes and working contexts gain 0.112, 0.277, and 0.129 

additional hit@1, respectively. Besides, the model reduces the time for checking and 

completing KBs to 1/6-1/40 of manual methods while gaining higher accuracies. 

The theoretical contribution is twofold. First, the BRMO overcomes syntax limitations 

in ontologies, enabling integration, updating, and searching of dynamic information in 

AWP KBs. Second, the research improves IE and KBC models by proposing ways to 

utilise domain information in DL models, which increases model performance. This 

research also has practical implications. First, the hybrid IE model partially automates 

constraint modelling, releasing engineers from intensive work. Second, the research 

expands the coverage of ontologies in the industry to bridge rehabilitation. Thus, the 

ontological KBs become a practical platform for different participants, which handle 

constraint information of both building construction and bridge rehabilitation while 

supporting management functions. Third, the KBC model can enrich KBs and further 

facilitate information searching and management. The approach improves practicality 

and usefulness of AWP with improved information extraction and integration. Much 

time for modelling and information searching can be saved, and more attention can be 

paid to constraint monitoring and removal thus contributing to project success. 
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Chapter 1: Introduction 

1.1 Background 

Bridges are critical infrastructures because they are links in transportation networks. 

Bridges are expected to serve about 50-100 years. However, the speed of bridge aging 

is increasing due to various reasons, e.g., the growing traffic volumes, high vehicle 

loading, and harsh environments (Lounis, 2007). Aging can make bridge structures 

deficient and unsafe, which has become a challenge in many countries. For instance, 

the average age of a bridge in the U.S. is 43 years, and 13% of them are structurally 

deficient (ASCE, 2017). In the UK, more than 2,000 bridges are not suitable to carry 

the heaviest vehicles and thus require major rehabilitation (WTW, 2018). Accordingly, 

governments around the world must make huge investments in bridge maintenance. 

For example, the Australian government has invested 480 million dollars for bridge 

renewal, with an ongoing commitment of $60 million/year (Infrastructure, 2018), and 

the U.S. government has raised 20.5 billion to repair highway bridges (OCIA, 2015). 

Bridge maintenance includes four stages: inspection, condition evaluation, decision-

making, rehabilitation (Wu et al., 2020a). In the digital era, the value of information is 

recognised, and it is found that 75% of the participants involved in bridge projects 

believe that information is the key to successful bridge maintenance (Woldesenbet, 

2014). Many studies employ information and communication technologies (ICTs) to 

assist bridge maintenance, e.g., sensor-based real-time structure health monitoring as 

well as accurate structure condition evaluation and optimal maintenance decision-

making based on advanced algorithms (Woldesenbet, 2014). In addition, bridge 

maintenance can involve many stakeholders who use isolated databases, which can 

result in the ‘data island’ problem. To address the problem, existing efforts are 

expanding and refining data schemas (e.g., mark-up languages and the industrial 
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foundation class (IFC) schema) to better integrate bridge data. Bridge Management 

System (BMS) and Bridge Information Modelling (BrIM), an extension of Building 

Information Modelling (BIM), have also been adopted to facilitate data storage and 

sharing. Those studies are referred to as data-driven bridge maintenance (DDBM) 

studies In this research (Sabatino et al., 2016).  

Most maintenance resources are spent in the rehabilitation stage. Thus, the success of 

bridge rehabilitation projects largely determines the success of bridge maintenance 

programs (Wu et al., 2020a). However, it is difficult to manage bridge rehabilitation 

projects. First, bridge rehabilitation often faces complex constraints. Constraints are 

things that can prevent work from being smoothly executed, e.g., labour, materials, 

equipment, and permits. Work can be delayed or rework can happen if constraints are 

not timely removed (Şimşit et al., 2014). Bridge rehabilitation can encounter different 

and usually more constraints than conventional vertical building projects (especially 

when rehabilitation is performed on large river-crosses). Bridge rehabilitation needs 

more special resources (e.g., cables and equipment for underwater tasks) in addition 

to common resources (e.g., concrete, steel, and mechanical, electrical, and plumbing 

systems) in building projects. Some resources may need to be procured remotely from 

other counties where delays are more likely to happen (Wang, 2018). Second, bridge 

rehabilitation has more participants from different backgrounds, e.g., specialised 

suppliers, inspection teams, original and maintenance design teams, and external 

authorities (e.g., transportation department (DoTs) and municipal bureaus) which 

grant permits (e.g., the traffic control and water protection permits). The complex 

network of participants requires more efficient information integration and exchange 

for management (Woldesenbet, 2014). Thus, the approaches to extract, integrate, and 

analyse information must be modified to accommodate the differences, e.g., defining 

different domain classes and reasoning rules according to specific relations among 

constraints and participants. Third, despite the increasing number of DDBM studies, 

one gap is that most DDBM studies are restricted to pre-rehabilitation stages (i.e., 

inspection, condition evaluation, decision-making) of bridge maintenance. This can 

cause poor information management in that stage and affect the effectiveness of 

management methods. Finally, to ensure smooth traffic, bridge rehabilitation projects 

usually have tight schedules, making constraint management challenging, since any 

delay of constraint removal can cause project delay and more congestion. As such, 
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improving the management in bridge rehabilitation projects with ICTs can not only 

increase project profits by avoiding work interruptions but also bring social benefits, 

e.g., minimizing congestion. 

Several modern constraint management approaches, e.g., Last Planner System (LPS), 

Workface Planning (WFP), and Advanced Working Packaging (AWP) can be applied 

to better manage constraints in bridge rehabilitation projects. The principle of these 

approaches is to ensure all constraints are removed before starting work. AWP gains 

increasing popularity recently, as it covers constraints in both the construction stage 

and early project stages. It has been recognised that AWP can significantly improve 

project quality, productivity, and predictability (Halala & Fayek, 2019). AWP has 

three steps: constraint modelling, constraint monitoring and analysis, and constraint 

removal. During constraint modelling, AWP breaks down the construction work into 

small manageable packages, identifies constraint entities (i.e., constraints, constraints’ 

attributes, and tasks/procedures), and models relations among the entities (CII, 2013a, 

2013b, 2020). For instance, ‘water-reducing agent’ and ‘concrete’ are two entities, and 

there is likely a constraining relation between them, i.e., ‘water reducing agent 

constrains concrete’ if the two entities appear in consecutive texts in one document 

(e.g., a working plan or technical specification), because water reducing agent can 

affect the performance of concrete. A work package cannot be released until all 

constraints linked to it are removed. These entities and relations form numerous entity-

relation-entity triples, and many triples form a large graph which is a project 

knowledge base (KB). The KB enables various management functions in AWP, e.g., 

information searching and decision-making using graph analysis (e.g., finding critical 

constraints and tasks) (Fayek & Peng, 2013). In other words, these triples describe 

complex interconnections among constraint entities and are bottom-level components 

for implementing AWP. 

Nevertheless, to realise all three steps (constraint modelling, monitoring/analysis, and 

removal), AWP should satisfy two prerequisites: efficient constraint modelling and 

information integration. AWP modelling can be required weekly, whereas constraint 

information often varies when a project proceeds. Thus, constraint information must 

be quickly extracted, modelled, and updated. Unfortunately, current AWP modelling 

is manually performed, where all entities and triples are extracted by humans. Besides, 

different stakeholders are supposed to remove different constraints by collaboration 
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and communication in bridge rehabilitation projects. Efficient information integration 

should allow them to access and exchange information in AWP graphs (i.e., KBs). 

Hence, advanced information collection and integration methods should be proposed 

to support the functions, which belong to the field of information management. 

Information management in bridge maintenance projects has four critical steps: data 

collection and conversion, information integration and sharing, information analysis 

(to obtain certain assessing criteria), and decision-making (Venkatraman, 1997). 

Figure 1-1 shows the steps and their relationships (steps that this research focuses on 

are highlighted using bold borders). These steps have been significantly improved by 

existing DDBM studies. 

 

Figure 1-1 Information management steps 

The first step gathers raw data and converts data into information that is useful for 

AWP (Wu et al., 2020a). There are two data types in the architecture, engineering, and 

construction (AEC) industry, i.e., structured data of components (e.g., geometries of a 

bridge pier) and environment (e.g., temperature and humidity) and unstructured data 

(e.g., texts in working plans and standards). Structure data can be conveniently stored 

in tables (e.g., rows and columns), which are collected through manual inspection and 

monitoring devices (e.g., non-destruction techniques (NDTs) and sensors). On the 

other hand, unstructured text data can be extracted by information extraction (IE) 

approaches that identify valuable information from free-written texts by extracting 
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entities and setting-up relations among entities (i.e., relation extraction). Although the 

term ‘relation extraction’ is widely used in studies, it is entity-relation-entity triples 

that are extracted. As such, the terms ‘relation extraction’ and ‘triple extraction’ are 

used interchangeably and mean the same concept in this thesis. 

In the industry, the current focus is on collecting structured data. Many studies are 

conducted to develop advanced sensors, sensor networks (SN), and NDTs. Given the 

development of Natural Language Processing (NLP) methods, an increasing number 

of studies begin to develop text IE approaches for extracting entities and relations 

among the entities. However, these approaches are inadequate and do not satisfy the 

demands of AWP, as they cannot extract both entities and relations. Instead, current 

studies focus on entity extraction and ignore relation extraction (especially semantic-

rich ones). Semantic-rich relations indicate that a relation between entities contains 

specific meanings in the AWP domain, e.g., ‘asphalt-has-attribute-500m2’. This is 

opposed to simple relations (e.g., ‘related-to’ or ‘similar-to’). Extracting semantic-rich 

relations is challenging, as 1) it requires accurate entity extraction as a pre-requisite, 

where relation extraction relies on recognizing valid triples from candidate triples 

formed by extracted entities; 2) it should handle ambiguity and noise of entities, where 

entities with different names imply the same relation, e.g., the entities ‘asphalt’ and 

‘paving material’ are the same constraint and they both have a ‘has-attribute’ relation 

with the attribute ‘500m2’; 3) it is difficult to collect enough training data if ML/DL 

models are used for the task (Jiang et al., 2020).  

In addition, current IE in the industry depends on complex rules which extract 

information when the rules are matched in texts. Developing rules manually is very 

time-consuming. More importantly, rules are only applicable to certain data, once the 

data is changed, the performance can drop drastically. In recent years, a few machine 

learning (ML) models, e.g., the Hidden Markov Model (HMM) and Conditional 

Random Field (CRF) model, and deep learning (DL) models, e.g., the bi-direction 

long-short term memory and conditional random field (Bi-LSTM-CRF) model, are 

proposed for entity extraction and are applied in several scenarios, e.g., extracting 

structure conditions in bridge inspection reports (Liu & El-Gohary, 2017a) and task 

dependencies in quality codes (Zhong et al., 2020b). DL models are found to be more 

accurate and practical, as 1) they can capture richer semantic features hidden in texts 

than ML models (e.g., CRF), thus gaining better extraction performance, and 2) they 



 

 

 

 

6 

do not require manually designed features but can extract features automatically, 

largely reducing the training time and difficulty (Murphy, 2012). As for relation 

extraction, most studies in the industry use rule matching. However, such methods 

either can only extract relations with simple semantics or heavily rely on handcrafted 

rules, making them subjective and impractical (Chi et al., 2019; Le & David, 2017; 

Wu et al., 2020b). On the contrary, state-of-the-art knowledge representation learning 

(KRL) models use DL structures (e.g., the convolutional neural network (CNN) and 

LSTM structure) which can capture triple features and extract semantic-rich relations. 

However, they are designed for general world knowledge (e.g., ‘Tolkien-occupation-

writer’), which require millions of entities and billions of triples for model training 

(Zhang et al., 2018b). They do not cover enough training data for AWP modelling in 

bridge rehabilitation, while not utilising domain knowledge in the construction sector 

to restrict data semantics and reduce training data demand. In addition, the industry 

lacks suitable ways to incorporate domain knowledge in DL models. Therefore, the 

models cannot reach high performance if being directly used for AWP modelling. 

As for information integration and storage, most databases in the sector are relational 

databases that employ data tables and take table columns as keys. To store data of 

different types, many tables must be developed and linked using keys. Relational 

databases are very good at integrating structured data. However, entities and triples 

extracted from texts are unstructured data. Although there is a word ‘relational’ in the 

name, relational databases are not good at storing interconnections among entities 

(Medhi & Baruah, 2017). The word ‘relational’ refers to relating columns in a table, 

not relating data in different tables. The relationships among columns exist to support 

database operations, which is different from relations among entities (e.g., constraint 

entities). Hence, text data are often stored in .txt or .csv files in practice, making their 

retrieval and analysis difficult (Wu et al., 2020b).  

The emerging technology, graph databases, can effectively handle data that involve 

many mutual relationships. Graph databases can be flexibly updated while knowledge 

facts (e.g., triples) are retrieved in real-time using specialised queries (Vukotic et al., 

2014). Therefore, graph databases can implement AWP KBs and address the data 

integration issue. Typical graph databases include ontologies based on the resource 

description framework (RDF) and labelled property graph (LPG) databases (e.g., 

Neo4j). Ontologies can model triples and support semantic reasoning, which are used 
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to manage various construction information, e.g., geometries (Niknam & Karshenas, 

2017), structure conditions (Ren et al., 2019), and structure defects (Park et al., 2013). 

Ontologies need more computer memory while do not support complex operations, 

such as iteration, enumeration, and temporal computation. For instance, identifying 

the constraint with the most severe removal delay requires traversing all constraints, 

comparing their removal progress, and returning the maximum value. Furthermore, 

constraint information can regularly change, which requires the above process to be 

repeatedly performed to update the ontologies. The computation and updating can be 

easily realised through object-oriented programming languages (e.g., Java), which 

however is very difficult (if not impossible) to be realised in ontologies due to the 

limitations of underlying syntax (i.e., Ontology Web Language (OWL)). In contrast, 

LPG databases are lighter thus can manage big data, however, the reasoning capacity 

is weak (Gong et al., 2018). Reasoning is important for management (e.g., finding 

potentially delayed work). Thus, ontologies are the better tool to integrate constraint 

information, but the gap of managing dynamic information needs to be bridged. 

Another challenge for using graph-based KBs is that most KBs are incomplete. The 

main reason is that a project contains numerous constraint entities, and it is extremely 

difficult to extract all information (entities and relations) using existing IE methods. 

For one thing, manual extraction is inefficient and error-prone when human engineers 

lose focus. For another, although there are automated IE approaches (such as the one 

proposed in Section 3.4), they still make mistakes, e.g., missing triples or extracting 

irrelevant triples (Dettmers et al., 2017). Manually checking and completing KBs are 

impractical, and the industry lacks a computationally efficient method for knowledge 

base completion (KBC) and updating. However, it is difficult to realise automated 

KBC methods, as they (often adopting DL models) must effectively capture not only 

information in separated nodes/edges but also features and patterns of linkage and 

paths among all nodes and edges in KBs (Ji et al., 2020). 

The last two steps of information management are information analysis and decision-

making. Information analysis applies quantitative and qualitative methods to analyse 

information and obtain assessing criteria for decision-making. For instance, engineers 

employ mechanical models to compute or predict bridge structure condition ratings 

based on damage information (e.g., crack area and length); and project managers 

identify critical tasks and constraints by investigating the interconnections in AWP 
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graphs. Decision-making makes final judgments based on information analysis results 

(e.g., the assessing criteria). For instance, a buffer can be assigned to tasks whose 

constraints are not timely removed, while more attention can be paid to the delayed 

constraints to closely monitor their removal. 

1.2 Problem statement 

Given the growing number of constraints and complexity of bridge rehabilitation, the 

importance of constraint management should be recognised. Constraint management 

approaches, e.g., AWP, have been successfully adopted in different complex projects, 

e.g., maintenance and construction of natural and liquid natural gas (LNG) plants and 

modular buildings (Li et al., 2019; Wang et al., 2016). Case studies of such projects 

have shown that AWP is very effective, especially for projects with tight schedules 

and multiple participants (CII, 2020). Hence, AWP can contribute to the success of 

bridge rehabilitation projects.  

However, in practice, there are two challenges for implementing AWP while fully 

reaping its benefits. First, efficient constraint modelling is a prerequisite of AWP, 

which requires timely extracting constraint entities and relations from documents. 

Unfortunately, due to the lack of IE methods that can extract both constraint entities 

and semantic-rich relations, information extraction and modelling are still manually 

performed and cannot meet the demands of AWP. Second, due to the poor ability to 

handle unstructured and dynamic project information using mainstream relational 

databases, constraint information cannot be effectively integrated and reused, which 

largely damages AWP management functions. Detailed problems of current AWP and 

IE in construction projects are summarised below. 

1.2.1 Inadequate research attention for managing bridge rehabilitation 
projects 

Bridge rehabilitation consumes most maintenance funding and resources, which is 

complex owing to a large number of constraints, multiple participants, and tight 

schedules. Implementing modern constraint management methods such as AWP can 

contribute to the success of such projects. However, studies of bridge rehabilitation 

concentrate on engineering techniques and approaches, while few efforts are made to 

improve the management aspect in such projects. On the other hand, implementing 

AWP must handle intensive information exchange among multiple project-level and 
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external participants (e.g., DoTs), which makes effective information management 

necessary. However, DDBM studies are restricted to the pre-rehabilitation stages of 

bridge maintenance, namely, collecting structured data, analysing information while 

computing assessing criteria, and optimising decision-making. This can be proved by 

the distribution of DDBM studies in Figure 1-2, which covers 485 peer-reviewed 

articles (Wu et al., 2020a). Poor information management can hinder the effectiveness 

of AWP and hinder project success. 

 

Figure 1-2 Distribution of existing DDBM studies (please note one study can cover 

one or more topics) 

1.2.2 Inefficient AWP modelling 
Developing AWP graphs through constraint modelling is the prerequisite of AWP. 

However, the current AWP relies on manually extracting constraints and establishing 

relations by reviewing documents and consulting project teams. Although engineers 

can perform constraint modelling based on their experience, it is very time-consuming 

and cannot meet the demands of AWP. The AWP in practical projects is iterative and 

repetitive, where constraint modelling can be required weekly (Li et al., 2019). Thus, 

manual modelling can result in very short windows for constraint monitoring and 

removal (Fayek & Peng, 2013). In construction projects, constraint information is 

buried in different types of documents (e.g., bill of quantities, working plans, and 

meeting records), which can worsen the situation (Wang et al., 2016). In addition, 

constraints commonly come from many backgrounds (e.g., mechanical, chemical, and 

engineering). As such, it is difficult for engineers (especially inexperienced ones) to 

identify all constraints and relations from the large volume of text data. Experienced 
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engineers can also make unpredictable mistakes when setting up complex relations, as 

a human easily loses concentration during the modelling task (Stallkamp et al., 2012). 

1.2.3 Inefficient text information extraction 
As mentioned, compared to extracting structured data, there are fewer efforts for 

extracting text data with NLP. This can make AWP modelling difficult, as constraint 

information (mainly constraint entities and semantic-rich relations among the entities) 

is usually buried in texts, e.g., working plans, meeting records, manuals, standards, 

and specifications (Hamdi, 2013; Wu et al., 2020b). Nevertheless, text data extraction 

is different from collecting component and environment data, and Table 2-1 lists the 

challenges, existing methods, and open issues. 

Table 1-1 A summary of text data extraction in the construction industry 

Text IE challenges 
Existing 
solutions 

Issues remaining open 

1) Useful entities are hidden in 
texts. For instance, in a working 
plan, constraint entities are 
buried in irrelevant contents, 
such as the local policies and 
team organisations. 

• Rule-based 
matching 

• ML models 
(e.g., CRF 
and HMM) 

• Rules are often inflexible and 
difficult to be generalised to 
different projects 

• ML models require manually 
designed features, which is 
inefficient and impractical for 
AWP in real projects 

• ML models cannot gain high 
entity extraction performance due 
to their inability to handle noisy 
data 

2) Entities can be ambiguous, as 
text documents are often written 
freely, and different expressions 
can be used for the same entity. 

3) Relation extraction is difficult, 
as it requires extracting entities 
while interpreting dependencies 
among as well as specific and 
ambiguous meanings of 
entities. 

4) Relations can be implicit. For 
example, in the sentence ‘the 
supervisor checks safety belts 
of workers’, there is an implicit 
‘constrains’ relation between 
‘safe belts’ and ‘workers’ as 
workers cannot start work until 
safety belts are provided. 
Current studies rely on hand-
crafted rules, 

• Rule-based 
matching 

• KRL models 

• Rule-based relation extraction is 
inefficient and subjective, which 
is restricted to simple-semantic 
relations, e.g., the existence of 
relations and synonyms 

• Existing KRL models cannot gain 
high performance if being directly 
used in AWP. They are designed 
for general KBs, which require 
enormous training data. They do 
not consider domain knowledge 
(e.g., entity classes) which can 
restrict data semantics so that the 
model is unlikely to be distracted 
by ambiguous entity names, thus 
reducing data demand. The reason 
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Text IE challenges 
Existing 
solutions 

Issues remaining open 

is that no effective methods exist 
that can integrate such domain 
knowledge into KRL for AWP. 

• There are inadequate triples about 
AWP for training KRL models. 

1.2.4 Inefficient unstructured information integration 
Information in bridge rehabilitation projects comes from multiple sources (e.g., file 

systems) which can be isolated. Hence, after being extracted, there should be suitable 

digital bases to integrate the information. AWP requires constraint information that 

takes the form of entity-relation-entity triples. Thus, the databases for AWP should 

serve as project KBs that can integrate, search for, and exchange such triple data. 

However, information integration approaches in the industry are again inadequate in 

the following aspects. 

1.2.4.1 Lack of suitable project knowledge bases 
Constraint triples are critical for AWP modelling but cannot be efficiently integrated 

into conventional relational databases for structured data. When unstructured triples 

are stored in a relational database, much more tables should be developed compared 

to that of storing structured data. Specifically, a triple can need two data tables and one 

key, while a data table only contains one data entry, which is very inefficient and 

requires much more computer memory. The drawbacks of relational databases are 

more evident during updating. For instance, when one wants to add a node (i.e., a 

constraint entity), multiple relations must be established between the added node and 

existing ones. As such, he/she must search for multiple tables to add keys. Moreover, 

data tables cannot intuitively represent links among entities, which makes information 

searching inefficient (Vukotic et al., 2014). On the other hand, graph databases are the 

more suitable tool for integrating constraint information. A graph database can be 

regarded as a project KB, where a relation between two entities is stored using only 

one triple, and data updating can be realised by simply adding, deleting, and modifying 

triples. Besides, graph KBs are highly intuitive information management tools, as 

information can be conveniently searched by navigating among nodes and edges. 

AWP graphs have many triples which can change when the project proceeds. Thus, 

graph KBs (e.g., ontologies used in this research) are the better option to integrate 

constraint information. Unfortunately, ontologies in the AEC industry do not model 
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knowledge for AWP and bridge rehabilitation due to the lack of DDBM studies in the 

stage. Besides, most of them can only handle information of static objects and facts 

(Niknam & Karshenas, 2017; Zhang et al., 2015). In real-world projects, the change 

of one piece of information (e.g., the delay of removing one constraint) can cause the 

change of other information (e.g., task progress). Failing to capture such change can 

cause missing or erroneous information when information searching and affect AWP 

effectiveness. However, due to syntax limitations, current ontologies do not support 

important functions for handling such dynamic project information, e.g., traversing, 

iteration, and temporal computation. 

1.2.4.2 Incomplete knowledge bases 
Even information can be extracted and integrated into ontological KBs, the KBs are 

often incomplete, i.e., some constraint triples are missing. Incomplete KBs can hinder 

downstream management functions such as information searching and graph-based 

decision-making, e.g., identifying key constraints or constraints that can be delayed by 

analysing the topology (i.e., relations among and neighbourhoods of entities) of KBs. 

Given the large and complex AWP graphs in real-world projects, manually checking 

and completing KBs is impractical, and the industry lacks a computationally efficient 

method for automated KBC. In the field of computer science, some KBC models can 

predict missing triples based on features of KBs’ topology (Velickovic et al., 2017). 

However, similar to KRL models, KBC models cannot be directly used because 1) 

they are designed for completing general KBs (e.g., Wikipedia), and model training 

requires enormous data, making it impractical for practical project management, 2) 

they ignore the value of domain knowledge which can improve model performance 

and reduce training data demand by restricting data semantics, and 3) the industry 

lacks an effective mechanism to incorporate domain knowledge to improve general 

KBC models. 

1.3 Scope and aim/objectives 

To address the above issues, this research aims to develop an information extraction 

and integration approach which can develop complete KBs for bridge rehabilitation 

projects based on automatically extracted constraint entities and relations using novel 

ontologies and DL models. The approach can improve the implementation of AWP in 

bridge rehabilitation projects (especially concrete-reinforced bridges). The research 
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focuses on concrete-reinforced bridges because such bridges (e.g., cable-stayed and 

suspension bridges) are the most common bridge type (Wu et al., 2020a). To achieve 

the aim, four objectives are established. 

Objective 1: To investigate topics, trends, and limitations of information management 

in bridge maintenance projects, implementation of AWP in the AEC industry, and 

information extraction and integration approaches. 

The number of studies of bridge maintenance and information extraction/integration 

is large. Thus, a critical review will be conducted in the two areas. The articles will be 

collected from the Web of Science database. In contrast, package-based constraint 

management (i.e., WFP and AWP) is not well-studied currently. First, articles will be 

collected by searching the Web of Science database. Then, standards and case reports 

will be collected from online databases of the Construction Industry Institute (CII) and 

Constructions Owners Association of Alberta (COAA), the initiators and main 

implementors of AWP. 

Objective 2: To develop a novel deep-learning-based information extraction model to 

automate AWP constraint modelling by extracting constraint entities and relations 

from text documents. 

This thesis will propose a hybrid DL model, which applies a bi-directional long-short 

term memory and conditional random field (Bi-LSTM-CRF) model to extract entities 

and a knowledge representation learning (KRL) model to extract relations among the 

entities. As such, the hybrid model can simultaneously extract entities and semantic-

rich relations, a significant IE challenge in the industry. Given bridge rehabilitation 

projects have specific constraints, the thesis will review manuals, standards, and case 

reports of both conventional building construction and concrete-reinforced bridge 

rehabilitation projects and then identify typical constraint types (i.e., domain classes) 

of bridge rehabilitation. A focus group will be organised to refine the initial findings. 

Constraint types provide important domain knowledge, based on which the capacity 

and performance of the KRL model can be improved. 

Objective 3: To develop ontological knowledge bases to integrate the constraint 

information in bridge rehabilitation projects. 

The thesis will develop bridge rehabilitation management ontologies (called BRMO) 

to integrate constraint information (i.e., information extracted by the hybrid model 
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proposed in Objective 2). The ontological knowledge bases (KBs) will be developed 

based on standard guidelines and domain knowledge collected in Objective 2. In 

addition, reasoning rules and a specialised Application Programming Interface (API) 

will be combined to overcome syntax limitations in conventional ontologies so that 

the ontological KBs can manage dynamic constraint information in ongoing projects. 

Objective 4: To develop a novel knowledge base completion (KBC) model to 

automatically identity missing triples in AWP KBs. 

To address the incompleteness problem in AWP graphs (i.e., the ontological KBs 

created in Objective 3), this thesis will develop a novel KBC model which consists of 

a data enriching module and an encoder-decoder structure. The relations for AWP 

modelling can have different levels of detail, which form hierarchies. To gain high 

relation extraction performance, the KRL model developed in Objective 3 can only 

extract top-level relations with abstract semantics (e.g., ‘person constrains task_1’). 

However, more detailed relation types can express rich semantics and are important 

for training the KBC model, as KBC models predict missing triples by interpreting 

semantic information expressed in entities and relations. For instance, the ‘constrains’ 

relation in above example can be divided into ‘works-in’ and ‘supervises’ according 

to domain classes of the entities. As such, the data enriching module uses reasoning 

rules to convert simple triples to semantic-rich ones, e.g., ‘crew_1 works-in task_1’. 

This helps the model better distinguish data and improves performance. In KBs for 

AWP, a node is a project entity that has a neighbourhood consisting of several nodes 

linked to the central one. All nodes and relations are represented by numerical vectors 

(called embeddings). The encoder of the KBC model computes new embeddings for 

each node by interpreting and integrating semantic information of all neighbour nodes 

and relations with the graph-based neural network (GNN). Then, the decoder predicts 

missing triples as follows: 1) takes new embeddings as inputs, 2) for each node in the 

KBs, identifies nodes to which it does not have relations, 3) traverses those nodes and 

pre-defined relations, forming candidate triples, 4) compute a validation score for each 

triple using a CNN structure similar to the KRL model, 5) establishes validate triples 

in the KBs. The KBC model is improved by adding domain information. Specifically, 

domain classes and working contexts of constraint entities are identified and utilised 

in the encoder and decoder, respectively (see Section 3.6 for more details). 
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1.4 Significance 

It is difficult to manage concrete-reinforced bridge rehabilitation projects, thus, the 

projects are suitable for applying AWP and information management approaches. 

Unfortunately, information extraction and integration methods in the AEC industry 

cannot support effective constraint modelling and information integration, which can 

hinder AWP functions and project success. This research addresses these issues by 

developing an information management approach, where DL models are applied to 

automatically extract entities and relations, ontological KBs are created to integrate 

extracted information, and a KBC model is proposed to identify missing information 

and enrich the KBs. Accordingly, there are three main contributions. 

(1) Improving current information extraction and knowledge base completion 

models  

This research contributes to the knowledge body by proposing a novel hybrid DL 

model to extract unstructured constraint information and a KBC model to enrich 

project KBs. Previous AEC studies focus on entity extraction, whereas extracting 

semantic-rich relations is not well studied (Wu et al., 2021a; Wu et al., 2020a, 2021b). 

Besides, project KBs (i.e., AWP graphs) are often incomplete. The hybrid DL model 

can extract both entities and semantic-rich relations, and the proposed KBC model can 

automatically complete AWP KBs by identifying missing triples. These approaches 

are an early exploration in the industry. Furthermore, instead of simply using mature 

DL models, the research has computational novelty. It proposes ways to integrate 

domain knowledge into the structures of KRL and KBC models. Domain classes are 

stacked in the input end of the KRL model (more details are provided in Section 3.4), 

while both classes and working contexts of constraint entities are added in the 

neighbourhood of nodes to provide richer information for the GNN encoder (more 

details are provided in Section 3.6). The proposed ways are validated in experiments, 

and the results show that the performance of triple extraction (the KRL model) and 

missing triple prediction (the KBC model) is significantly increased when domain 

knowledge is added. This addresses the previously mentioned challenges of applying 

DL models designed for general knowledge. Thus, state-of-the-art KRL and KBC 

models can be enhanced by the research and become suitable for AWP. 

(2) Improving information integration in bridge rehabilitation projects 
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The proposed Information integration approach has both theoretical and practical 

significance. Previous information integration efforts in the industry largely ignore 

unstructured information hidden in texts, which for AWP, refers to constraint triples. 

The lack of such integrated approaches can largely damage the value of IE tools and 

the usefulness of AWP, as extracted triples cannot be effectively integrated to build 

KBs and support management functions (e.g., information searching, reasoning, and 

decision-making). This research proposes ontological KBs (i.e., BRMO) to handle 

constraint triples for AWP. The BRMO is built based on a comprehensive collection 

of knowledge from relevant documents and experts in the bridge rehabilitation area 

while following standard procedures. Thus, it expands the scope of ontologies in the 

industry (focusing on buildings) to bridge rehabilitation. Unlike existing ontological 

KBs that are mainly applied to store static information (e.g., geometries and historical 

facts) (Niknam & Karshenas, 2017; Park et al., 2013; Ren et al., 2019). The novelty of 

BRMO lies in its ability to handle dynamic constraint information for AWP through 

combining reasoning rules and a specialised API to overcome syntax limitations in 

conventional ontologies. The BRMO can manage constraint information in ongoing 

projects and enables effective information searching, complex computation, dynamic 

updating, and semantic reasoning. Experiments and case scenarios have been used to 

prove the information capacity of BRMO (the details are provided in Section 5.4). 

With BRMO, project participants can effectively retrieve constraint information to 

perform essential management functions which can facilitate constraint monitoring 

and removal, i.e., the evaluation of project progress, constraint statuses, and project 

participants’ performance (Wu et al., 2020b). 

(3) Improving the management aspect of bridge rehabilitation projects and 

implementation of AWP by automatic constraint modelling 

This research makes a practical contribution by providing an automatic constraint 

modelling tool for implementing AWP in bridge rehabilitation projects. AWP is an 

effective tool to manage bridge rehabilitation projects which usually have complex 

constraints. However, AWP is currently inefficient because its prerequisite, constraint 

modelling, still relies on manually extracting constraint information from texts. AWP 

modelling involves complex and semantic rich relations which cannot be extracted by 

current IE methods in the industry. This research proposes an information extraction 

and integration approach to largely automate constraint modelling, where a Bi-LSTM-
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CRF model and a KRL model are combined to extract constraint information. All the 

information is integrated into ontological KBs, while the proposed KBC model can 

identify missing triples and enrich the KBs automatically and continuously. Given 

much constraint information of bridge rehabilitation is buried in text documents of 

different backgrounds, the proposed approach can significantly reduce the time for 

identifying and modelling constraints, checking and completing project KBs, and 

searching for relevant information. Thus, much time can be saved for downstream 

constraint monitoring, analysis, and removal, which makes AWP implementation in 

bridge rehabilitation projects more practical (details can be found in the experiments 

introduced in Section 4.5.3 and Section 6.3.3). The proposed approach also helps 

engineers (especially those lack experience) to understand interconnections among 

constraints and facilitate decision-making (details can be found in the experiments 

introduced in Sections 5.4.1-5.4.3). 

1.5 Thesis structure 

This thesis has seven chapters which are summarised below and in Figure 1-3. 

Chapter 1 describes the background, research problems, aim and objectives of this 

thesis, as well as the thesis structure. 

Chapter 2 summarises the literature on bridge maintenance, constraint management 

in the AEC industry, and information extraction and integration approaches (i.e., 

working mechanisms and applications of IE approaches, ontological KBs, and KBC 

models). 

Chapter 3 introduces the research methodology. It outlines the research philosophy 

that underpins research methods first. Then, the chapter introduces the method for 

developing the hybrid IE model for entity and triple extraction, the method for 

constructing the ontological KBs, and the method for developing the KBC model. 

Chapter 4 develops a hybrid IE model for constraint information extraction and 

automatic AWP constraint modelling. The model includes a Bi-LSTM-CRF model 

that extracts constraint entities (i.e., constraints, their attributes, and tasks) and a KRL 

model that identifies valid triples (i.e., relations) among entities. Domain classes are 

added to the model structure to improve performance. Detailed experiment results are 

summarised to compare the hybrid IE model with classical ML models in terms of 
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entity extraction while showing the effect of using domain information in the model 

structure for extracting semantic-rich relations. 

Chapter 5 constructs ontological KBs to integrate extracted constraint entities and 

relations (i.e., entity-relation-entity triples). The development of the ontologies relies 

on a widely adopted guideline and comprehensive collection of domain knowledge. 

Meanwhile, semantic rules and a specialised API are applied to enable the ontologies 

to support constraint information searching, complex information computation and 

updating, as well as implicit information reasoning. 

Chapter 6 develops a KBC model to identify missing triples in ontological KBs. The 

model consists of a data enriching module to improve data semantics, a GNN-based 

encoder to compute new embeddings for KB entities, and a CNN-based decoder to 

predict missing triples using the embeddings. Domain information (i.e., classes and 

working contexts) is utilised to improve model performance. Experiment results are 

investigated to demonstrate the model performance and effect of utilising domain 

information. 

Chapter 7 concludes important findings in the thesis, highlights contributions and 

implications, discusses limitations in this research, and suggests future studies. 
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Figure 1-3 Thesis structure

Chapter 2: Literature review 

2.1 Bridge maintenance 

This section summarises the main stages of bridge maintenance, reviews efforts of 

applying information technologies for managing bridge maintenance projects (i.e., the 

DDBM studies), and explains the reason that bridge rehabilitation is selected as the 

implementation context of the proposed information management approach. 
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2.1.1 Bridge maintenance in different stages 
2.1.1.1 Inspection 
In this stage, data of bridge statuses are monitored and collected. Bridge inspection is 

an iterative process and can have different requirements subject to inspection details. 

Routine visual inspection should be performed periodically, while in-depth inspection 

and damage inspection are performed when suspicious damage is identified during a 

routine inspection or when damage happens, respectively (MLIT, 2015). For in-depth 

inspection, element-wise inspection is implemented by an increasing number of DoTs 

around the world, which will inspect each bridge element (e.g., a component and a 

group of components) (AASHTO, 2010). In addition, ad-hoc inspection is often 

performed after unusual events (e.g., earthquake or flood) (NCHRP, 2007). 

2.1.1.2 Condition evaluation 

Damage can happen suddenly, e.g., being damaged by a heavy vehicle, and gradually, 

e.g., being damaged by corrosion and repetitive loading. Damage can take various 

forms relying on materials meanwhile can happen on the surface of or inside bridge 

components. Common damage types include steel bar corrosion, cracks on concrete 

and steel, as well as concrete spalling, stain, honeycomb, and delamination (Gul et al., 

2015; Turkan et al., 2018). 

Condition evaluation estimates condition indexes of bridge components, considering 

different damage types and severity. A condition index can take many forms. The 

simplest index is a binary index, which indicates if damage happens or if the structure 

is out of service. The discrete rating (e.g., 0-9) is the most common index, where a 

lower number indicates more severe damage. Some bridge components (e.g., critical 

components) can need more sophisticated evaluation than discrete ratings. As such, 

more complex numerical indexes can be applied, such as 1) the failure probability 

which reflects the probability that gradual deterioration of a component exceeds its 

limit, 2) reliability which reflects the probability that a component does not fail before 

a specific time, 3) severability which reflects if the bridge can serve users normally, 

considering both structure safety and configurations (Thompson, 2012), and 4) 

durability which reflects the capability of a bridge component in terms of resisting 

deterioration (Anoop et al., 2012).  
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2.1.1.3 Decision-making 

In this stage, maintenance decisions are made based on condition evaluation results, 

i.e., the condition indexes. The decision can include whether, when, and what tasks 

should be taken to restore a bridge, which can be divided into bridge-level and 

network-level decisions.  

Bridge-level decisions determine bridge components and maintenance tasks that will 

be performed on the components. The aims of decision-making include 1) minimising 

life-cycle maintenance costs and delay of maintenance tasks before the failure of 

components, and 2) maximising structure conditions (Kabir et al., 2014). Decisions 

are made by assigning maintenance tasks to bridge components according to structure 

conditions and costs (including the costs for maintenance tasks and the social costs 

caused by structure failures, such as congestion and human life loss) (Sabatino et al., 

2016). The importance of components can be further considered to ensure that critical 

components are treated first (Bolar et al., 2014). Network-level decision-making needs 

to prioritise multiple bridges in the transportation network and then schedule 

maintenance tasks for them. Goals for such decisions include minimising the overall 

costs and delay of maintaining all bridges and maximising the performance of the 

entire network, e.g., reducing total travelling time and distance as well as increasing 

network connectivity (Bocchini & Frangopol, 2013; Frangopol & Bocchini, 2012). 

2.1.1.4 Rehabilitation 

In this stage, restoration actions are performed following the decisions made. In this 

research, rehabilitation includes hazard treating, reinforcement, and replacement. 

Hazard treating fixes different types of damage. Reinforcement increases the load-

carrying capacity of the bridge structure by adding materials or components, e.g., 

external prestressing. Replacement substitutes those severely damaged components. 

Rehabilitation tasks can be preventive or essential. Preventive rehabilitation tasks are 

scheduled regularly before structure failure. Preventive tasks can be proactive and 

reactive, which are performed before and after damage happens, respectively. On the 

other hand, essential rehabilitation tasks are carried out after structure failure, where 

the failed components are replaced or repaired completely (Okasha & Frangopol, 

2010). Current research on bridge rehabilitation focuses on improving engineering 

approaches and techniques. For instance, many studies intend to propose or improve 

engineering techniques of rehabilitation, such as the confinement technique that 
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restores concrete components after an earthquake (Ma et al., 2017) and the grouted 

splice sleeve that repairs damaged pre-cast concrete columns (Parks et al., 2016). 

Second, some studies invent or apply materials for rehabilitation tasks. For instance, 

carbon fibre reinforced polymer is used to repair concrete corrosion (Xie & Hu, 2013), 

and ultra-high-performance fibre reinforced concrete is applied to strength bridge 

decks (Bastien-Masse & Bruhwiler, 2014). Finally, there are also some studies aiming 

to improve the working procedures of bridge rehabilitation. For instance, Phares and 

Cronin (2015) proposed the accelerated bridge construction approach to reduce 

rehabilitation duration. 

2.1.2 Information management in bridge maintenance 
As introduced, information management includes four important steps: data collection 

and conversion, information integration, information analysis, and decision-making. 

Accordingly, many DDBM studies are conducted to improve these steps, which can 

in turn improve the four bridge maintenance stages. 

2.1.2.1 Data collection 
DDBM studies that fall in this aspect focus on improving bridge inspection by 

collecting data of bridge components and the surrounding environment in a real-time 

manner. These studies rely on applying SN (both wired and wireless) and NDTs. SN 

can accommodate various types of sensors (e.g., strain gauges, accelerators, global 

position system (GPS), thermometers, temperature/humidity meters, and weigh-in-

motion systems), which can continuously collect data whereas no inspectors need to 

be sent onsite. On the other hand, NDTs (e.g., terrestrial laser scanner, light detection 

and ranging, infrared cameras, underwater sonars, and ground penetration radar) can 

accurately detect surface and sub-surface damage. Both SN and NDTs can perform 

bridge inspection without closing the bridge and disturbing the traffic. Some modern 

NDTs, e.g., unmanned aerial vehicles (UAV), can collect data at blind points which 

are difficult for human inspectors to reach (TxDOT, 2020).  

There are also studies extracting text data from bridge maintenance documents. IE 

methods proposed in those studies are often applied to inspection reports thus can 

improve condition evaluation. For instance, Liu and El-Gohary (2017a) extracted 

bridge components and their condition ratings from inspection reports. The same 

researchers proposed the IE approaches 1) to identify dependency paths of sentences 

in inspection reports (Liu & El-Gohary, 2017b) and 2) to extract bridge component 
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deficiencies, deficiency causes, and maintenance actions through an ontology-based 

sequence labelling method (Liu & El-Gohary, 2016). However, as mentioned, these 

IE methods can only extract entities rather than semantic-rich relations. Thus, they 

cannot be used for automating AWP modelling that relies on both constraint entities 

and relations. 

2.1.2.2 Information integration 

Information integration aims to solve the ‘data island’ problem. Current studies of 

information integration for bridge maintenance focus on expanding data schemas and 

developing collaboration platforms. The most widely studied schema is the eXtensible 

mark-up language (XML). XML can describe structured and unstructured data in a 

standard and interoperable way and can be extended to specific tasks (Zhu et al., 2020). 

For instance, Jeong et al. (2016) developed the sensorML schema to improve sensor 

data storage, and Jeong et al. (2017) applied the openBrIM schema to record bridge 

conditions in inspection reports. In the last decade, Industrial Foundation Class (IFC) 

which is developed for vertical buildings, has been borrowed in the bridge sector. 

Many efforts are made to extend the IFC schema for bridges. Current IFC can encode 

various bridge maintenance information (e.g., bridge alignments, geometries, and 

structure conditions) while can be converted to XML (ifcXML) (Huthwohl et al., 2018; 

Zhang et al., 2016). Data encoded by a data schema must be stored in databases for 

retrieval and exchange. Most databases for bridge maintenance are relational databases, 

e.g., Oracle and DB2. To manage the massive bridge data collected by various ICTs, 

some studies adopt distributed databases, where separated databases are used to handle 

different data formats (Miyamoto & Asano, 2017; Zhang et al., 2016). Other studies 

employ NoSQL (Not Only Structured Query Language) databases, e.g., MongoDB 

and Apache Cassandra, which have better scalability when handling big data (Jeong 

et al., 2017, 2019). However, current work for developing data schemas and databases 

focus on structured data (e.g., geometries and sensor readings) but cannot effectively 

handle unstructured data (e.g., knowledge in texts) (Morgenthal et al., 2019). As such, 

a few studies implement graph databases (especially ontologies) (Costin et al., 2018; 

Wu et al., 2020a). For instance, Liu and El-Gohary (2017a) built the BridgeOnto to 

increase the efficiency of searching for maintenance history in BMS; Wu et al. (2020a) 

created an ontology to manage constraints in bridge rehabilitation projects. The DoTs 

in Netherland adopted an ontology-based management system to integrate asset data 
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and disambiguate information among participants (Luiten et al., 2018; NRA, 2018). 

However, as mentioned in Chapter one, the ontologies do not cover knowledge of 

bridge rehabilitation and cannot handle dynamic constraint information, which limit 

their usefulness in AWP for bridge rehabilitation. 

To better enable collaboration among participants, many information collaboration 

platforms are developed to provide easy-to-use user interfaces for all participants to 

access data in the databases without the knowledge of database operation (Kuckartz & 

Collier, 2016). Many collaboration platforms also encapsulate the functions of 

information analysis and decision-making. In bridge maintenance, a BMS is the most 

common type of collaboration platform. In a BMS, separated modules are created for 

different functions, such as damage estimation, decision-making, and visualisation, 

meanwhile, the data needs, levels of detail, and data flows are defined among the 

modules to enable data exchange within the BMS (Feltrin et al., 2010). Typical BMS 

examples include the PONTIS, BRIDGIT, and BrM (Hawk & Small, 1998). The J-

BMS developed by Japan DoTs, which could integrate real-time monitoring data and 

support decision-making using an expert system, is also widely recognised (Miyamoto 

& Asano, 2018). Moreover, BIM and geographic information system (GIS) have also 

been adopted for managing bridge maintenance projects, where BIM is referred as 

BrIM. For instance, Shire et al. (2017) built a BrIM platform to model, store, and 

visualise modal information of cables in cable-stayed bridges; and Javadnejad et al. 

(2017) developed a GIS system to handle multi-layer image information for damage 

detection. Nevertheless, the bottom-level databases are the basis of collaboration 

platforms, whereas the above efforts are built upon normal relational databases which 

are only good at managing structured data.  

2.1.2.3 Information analysis and decision-making 
As for structure condition evaluation, binary and discrete indexes can be estimated by 

mapping the severity of damage to different ratings (e.g., severe damage is mapped to 

a low rating). Such simple indexes are automatically estimated using certain programs 

(e.g., expert systems), where the mapping rules are developed based on engineers’ 

experience and guidelines (Miyamoto & Asano, 2018). On the other hand, more 

complex indexes (e.g., reliability and failure probability) are often estimated using 

mechanical models, e.g., the Paris law for fatigue damage and Fick’s second law for 

corrosion, whereas statistical distributions (e.g., the Weibull and Gamma distribution) 
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are applied to handle uncertainties of variables in these models (van Noortwijk & 

Frangopol, 2004). Many studies aim to improve condition evaluation, and mainstream 

methods include 1) investigating the relations between bridge conditions and more 

affecting factors, e.g., environmental factors and various maintenance tasks, and 2) 

improving the mechanical models by modifying equations (e.g., embedding newly 

discovered factor-structure relations in previous equations) or applying more 

sophisticated statistical distributions (Sabatino et al., 2016). Finally, ML models and 

genetic algorithms (GA) are also increasingly applied to estimate condition indexes, 

which can either directly predict condition indexes based on damage information or 

predict key parameters for mechanical models (Wu et al., 2020a). 

When it comes to decision-making, bridge maintenance goals are often contradictory 

(e.g., reducing costs and improving structure conditions). Therefore, many DDBM 

studies regard decision-making as a multi-objective optimisation problem. A common 

solution is to integrate multiple objective functions into a single index using weighted 

summing (e.g., sustainability) for decision-making (Lounis & McAllister, 2016). 

Besides, many optimisation techniques, e.g., grid searching (Gong & Frangopol, 2020), 

decision-tree and event tree (Orcesi & Frangopol, 2011), linear, and dynamic 

programming (Liu & Madanat, 2015), GA algorithms (Okasha & Frangopol, 2009), 

and DL models (Wei et al., 2020), can be applied to find optimal decisions. 

To this end, two limitations of existing bridge maintenance studies are summarised. 

From the perspective of bridge maintenance steps, current studies focus on the three 

pre-rehabilitation stages (i.e., inspection, condition evaluation, and decision-making). 

Although managing bridge rehabilitation projects can be challenging owing to the 

complex constraints, strict schedule requirements, and scattered information caused 

by the involvement of multiple project parties, few studies address the management 

aspect of bridge rehabilitation. From an information management perspective, ICTs 

have great potential to improve bridge maintenance. However, DDBM studies are 

limited to the pre-rehabilitation stages and collection of structured data, information 

analysis, and decision-making. Research efforts for extracting and integrating data 

from unstructured texts are inadequate. Meanwhile, modern constraint management 

approaches (e.g., AWP) can assist in managing bridge rehabilitation projects (more 

details are introduced in the next section), but they require effective extraction and 

integration of constraint information so that engineers can timely remove constraints 
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or adjust working plans to handle unremoved constraints. Such constraint information 

1) takes the form of triples hence is unstructured, 2) can be scattered in documents in 

different project stages. Therefore, such information cannot be managed by current 

information management approaches in the industry. Despite that SWT approaches, 

e.g., ontologies, are gradually applied for bridge maintenance, for one thing, they do 

not cover domain knowledge of bridge rehabilitation thus cannot be directly applied. 

For another, ontologies in the sector focus on static information (e.g., geometries of 

components). Due to syntax limitations in terms of performing complex computation 

and dynamic updating, e.g., iteration, enumeration, and temporal computation, it is 

difficult for them to handle dynamic constraint information in ongoing projects. 

This research proposes a hybrid IE approach for unstructured information extraction 

and develops an enhanced ontological knowledge base for integrating constraint 

information. The approach can to-some-extent address the information management 

problem and facilitate research and applications of modern constraint management 

approaches (e.g., AWP) in bridge rehabilitation projects which are selected as the 

context to implement and demonstrate the proposed approach. 

2.2 Constraint management and AWP 

2.2.1 Constraint definition 
A constraint has different definitions in different sectors. For instance, in mathematic 

research, a constraint is a condition that a solution of an optimisation problem must 

satisfy; in the information theory, a constraint reflects the degree of statistical 

dependence among variables; studies of classical mechanics regard constraints as 

relationships between coordinates and momenta; and business managers believe that 

constraints are anything that prevents a system from achieving its objectives (Watson 

et al., 2007). The key concept of constraints in this research is derived from the lean 

concept. There are three dominant definitions of constraints in the AEC industry, 

which are based on three main constraint management approaches, i.e., LPS, WFP, 

and AWP, respectively. In LPS, a constraint is defined as anything that stands in the 

way of a task being executable or sound (LCI, 2007). In WFP, constraints are things 

that a foreman or supervisor needs to execute onsite construction work (Fayek & Peng, 

2013). In AWP, constraints are any prerequisite items that can prevent or delay the 

smooth execution of work (CII, 2013a). The three definitions share similar meanings. 
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Given this research focuses on AWP, constraints are defined as anything that prevents 

work packages from being successfully or smoothly executed in the construction field. 

2.2.2 Constraint classification 
In the AEC industry, there is currently no standard classification of constraints, and 

many informal classifications exist. For instance, Ballard (2000) grouped constraints 

into eight types in LPS: information, preceding work, labour, space, material, funds, 

equipment, and external factors. Choo et al. (1998) defined six constraint types: 

contracts, engineering items, materials, human resources, equipment, and prerequisite 

tasks. Dawood and Sriprasert (2006) developed four classes of constraints: physical 

constraints (e.g., space, safety, technologies, and environment), contract constraints 

(e.g., progress, costs, and quality), resource constraints (i.e., availability, continuity, 

capacity, and perfection); and information constraints (e.g. accuracy and clarity). Chua 

et al. (2003) proposed three constraint types: precedence constraints that decide the 

starting/ending and sequences of work, resource constraints (e.g., materials, labour, 

and equipment), and information constraints (i.e., the information needed in tasks, e.g., 

shop drawings, specifications, and approvals).  

The above studies may not cover all constraint types (e.g., weather and authority 

permits are not included in the study of (Choo et al., 1998; Chua et al., 2003)). Besides, 

some studies do not have well-structured hierarchies to organise constraints, e.g., the 

hierarchies can be vague or ambiguous (Dawood & Sriprasert, 2006). On the other 

hand, WFP and AWP break down construction work into different types of work 

packages, identify constraint entities of packages, and propose clear and flexible 

hierarchies to organise packages and constraints. WFP adopts three package types with 

an increasing level of detail: construction work areas (e.g., high-level sequences of 

areas to be built), construction work packages (mid-level tasks and constraints), and 

field installation packages (bottom-level procedures and constraints). AWP also has 

three package types, i.e., construction work packages (CWP) (e.g., the general logic 

of construction work), engineering work packages (EWP) (engineering requirements), 

and installation work packages (IWP) which are backlogs that one crew can finish in 

a safe, measurable, and efficient manner (CII, 2013a, 2020). A CWP can include 

multiple EWPs and is the basis to develop IWPs. CWP and EWP can constrain the 

release of IWP, while IWPs can constrain one another (Halala, 2018). Based on the 

ideas of AWP, Wang et al. (2016) proposed a constraint management framework for 
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maintenance projects of LNG plants, including three constraint types: engineering 

constraints (e.g., drawings and permits), supply chain constraints (i.e., resources that 

must be procured and delivered offsite), and site constraints (e.g., labour, temporary 

facilities, weather, and preceding tasks). Each type can be divided into more detailed 

types so that constraints at different levels can be organised in hierarchies. Results in 

that research can serve as an effective approach to identify and organise constraints. 

Specifically, when the general work sequence (i.e., CWP) is determined, engineering 

constraints and site constraints can be organised using EWP and IWP, respectively. 

Figure 2-1 presents a simple example of AWP graph which only includes one work 

package of each type. 

 
Figure 2-1 An example of AWP graph 

2.2.3 Constraint management steps 
Constraint management approaches, such as LPS, WFP, and AWP, aim to ensure all 

constraints of a construction task are removed before the task is carried out. There are 

three constraint management steps: constraint identification and modelling, constraint 

monitoring and analysis, and constraint removal (LCI, 2007; Wang, 2018). 

(1) Constraint identification and modelling 

Constraint identification discovers constraints and organises them in well-defined 

hierarchies. LPS identifies constraints in look-ahead plans which usually cover 3-12 

weeks of work. Package-based approaches (e.g., WFP and AWP) first develop work 

packages and then identify constraints of each package. Work packages can also be 
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constraints, as constraints in one package can affect constraints in other packages, and 

packages should be released in a sequence. Constraint modelling aims to understand 

and describe the relations among constraints. Seven types of relations are investigated: 

1) Relations among constraints, e.g., the delayed removal of a constraint (e.g., safety 

belts) can delay the removal of another constraint (e.g., labour). 2) Relations between 

constraints and tasks/procedures. 3) Relations between constraints and attributes (e.g., 

the amount and price of material constraints). 4) Work dependencies, including the 

task or procedure sequences and ‘part-of’ relations between tasks and procedures. 

Specifically, a bridge rehabilitation task can consist of several procedures which can 

be adopted in other projects. For instance, a deck paving task includes paving and 

rolling procedures, while rolling and paving are common procedures in road projects. 

5) Relations that connect constraints and tasks/procedures to packages. 6) Relations 

among work packages (e.g., the releasing sequences and hierarchies of packages). 7) 

Relations between tasks/procedures/constraints and participants of the project (e.g., 

contractors and suppliers) who are responsible for removing constraints or managing 

tasks/procedures. The last three types of relations are only considered in WFP and 

AWP (Wang et al., 2016). 

In package-based approaches (e.g., WFP and AWP). Constraint modelling produces a 

graph that captures interconnections among constraints. The graph works as a graph 

database (i.e., a KB), where critical information (e.g., the required amount of material 

constraints and removal progress of certain constraints) can be timely retrieved by 

graph queries and navigation. Constraint entities are described using nodes and are 

connected using the seven types of relations introduced before. Then, each node can 

be linked to its original data source out of the AWP graph (e.g., a drawing and a 3D 

model), regardless of the original data format. Therefore, an AWP graph provides a 

format neutral approach for information searching and retrieval, which can to-some-

extent link the scattered information in bridge maintenance projects thus addressing 

the ‘data island’ problem (Halala, 2018; Hamdi, 2013).  

(2) Constraint monitoring and analysis 

Constraint monitoring tracks constraint statuses (e.g., if the removal of a constraint is 

delayed). There are two main types of monitoring in literature: monitoring resources 

(e.g., tracking material delivery) and monitoring task progress (e.g., if preceding tasks 

are delayed). Both monitoring tasks can be finished manually, which however can be 
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time-consuming and subjective, and the suboptimal results can affect management 

decision-making. Therefore, many ICTs are adopted to assist constraint monitoring. 

For tracking resource constraints, sensing technologies are extensively applied, such 

as barcode, Radio Frequency Identification (RFID), Bluetooth, Ultra-wide Bandwidth, 

wireless local area network, and GPS. The technologies have unique strengths and 

weaknesses. For instance, GPS is only applicable in an outdoor environment but can 

track targets in a medium- and long-range area. Other technologies, e.g., RFID and 

barcode are cheap and easy to use, however, they can only work in a restricted area 

and can be affected by the line-of-sight problem and environmental factors, e.g., the 

presence of metal that can affect the reading of radio waves. Thus, the technologies 

can be combined to supplement each other. Sensing technologies have been used in 

many projects to track the location and availability of resources in real-time (Wang, 

2018; Wang et al., 2016). Meanwhile, laser scanning (e.g., LiDAR) and 

photogrammetry are emerging technologies to track task progress by quickly 

generating 3D models of construction products (e.g., building structures) and 

comparing as-built models with as-plan models (Turkan et al., 2018). Such image-

based technologies are less applied compared to sensing technologies owing to the 

expensive investment in devices, strict requirements about environmental factors (e.g., 

light), and long time for training monitoring personnel (Puri & Turkan, 2020).  

Studies of constraint analysis can be divided into three groups: mathematical analysis, 

pull-driven constraint analysis, as well as network (graph) based constraint analysis. 

Mathematical models focus on estimating the impact of constraints on a project, e.g., 

work progress, costs, task dependencies, and resources. Typical mathematical models 

include the Critical Path Method (Ottesen & Martin, 2019), Program Evaluation and 

Review Technique (Karabulut, 2017), and Line of Balance (Damci et al., 2013). Many 

studies regard constraint analysis as a multi-objective optimisation problem. Thus, 

linear/non-linear programming, configuration space optimisation, and GA algorithms 

are applied to reach a balance between constraints  (Al Haj & El-Sayegh, 2015; Koo 

et al., 2015; Li et al., 2020). However, mathematical models cannot effectively handle 

constraints that are difficult to be quantitatively modelled, such as work quality and 

detailed requirement descriptions. In addition, mathematical models cannot describe 

hierarchies and complex interconnections among constraints.  
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Pull-driven methods intend to satisfy customer demands by producing the finished 

construction products as optimally as possible in terms of time, costs, quality. Pull-

driven constraint management is extensively applied in practical LPS owing to its 

simplicity. In many cases, a spreadsheet is a popular tool for pull-driven methods, 

which records constraints for each task in a list (Nieto-Morote & Ruz-Vila, 2012). 

Most constraint types can be covered by pull-driven methods. However, the method 

(i.e., the list) is still too simple. It only models constraints in a tree structure (i.e., a 

look-head plan severs as the root node which has many tasks, and each task is 

connected to several constraints as bottom-level leaf-nodes) whereas cannot capture 

the interconnections among constraints (LCI, 2007). Finally, recent studies begin to 

manage constraints in a network or graph which can capture and analyse the complex 

constraint interconnections. In the AEC industry, two typical graph analysis methods 

are the Social Network Analysis (SNA) and Dynamic Network Analysis (DNA). 

SNA is an effective and simple approach to characterise the structures and topology 

of a graph using certain indicators, e.g., betweenness, centrality and density (Streeter 

& Gillespie, 1993). SNA studies in the sector mainly investigate the roles of and 

relationships among participants. Some studies identify important participants and 

distinguish the networks formed by different participants (Wong et al., 2010). Other 

studies aim to optimise information and knowledge sharing among participants, such 

as analysing whether information can be effectively shared based on the connectivity 

of the network and identifying critical factors that affect collaboration (Farshchi & 

Brown, 2011). DNA to-some-extent covers SNA, however, is more sophisticated. 

Specifically, DNA can model different types of nodes (entities), relations, properties 

of nodes, and changes of the network over time. Thus, DNA can be used to analyse 

various types of network, such as social network (e.g., people to people), knowledge 

network (e.g., people to knowledge and resources), attendance network (e.g., people 

to events and tasks), information network (e.g., information sources to information 

sources), membership network (e.g., people to organisations), network of needs (e.g., 

resources to events/tasks), organisational capability (e.g., resources to organisations), 

temporal network (e.g., sequences of events/tasks), institutional support (e.g., events 

and tasks to organisations), and inter-organisational network (e.g., organisations to 

organisations). Compared to SNA, DNA is the more suitable tool for package-based 

constraint management, as it can capture all types of relations used in constraint 
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management. Thus, in some studies, DNA is adopted to develop the AWP graph and 

identify constraints having a large impact on projects (Wang, 2018; Wang et al., 2016).  

(3) Constraint removal 

A constraint can be regarded as removed when all constraints connected to it are 

removed. Hence, constraint removal depends on the results of constraint monitoring 

(i.e., current statuses of constraints) and is performed hierarchically. At the most 

general level, constraint removal concerns the main construction areas and sequences 

of construction. Meanwhile, key constraints (e.g., important engineering deliverables, 

general resource requirements, and long-head constraints that must be transported 

from remote areas) are determined and confirmed, whereas commitments of their 

removal are obtained from corresponding main participants (e.g., the owner, general 

contractors, and main design company). At the second level, all project participants 

(i.e., the main participants and specific suppliers, sub-contractors, and authorities) 

should be involved to identify new, more detailed, and short-ahead constraints based 

on the general plans and general constraint removal progress, identify issues, and make 

more detailed commitments. At the third level, detailed work assignments (e.g., IWPs 

in AWP) are developed for onsite tasks. Detailed constraint removal plans are created 

through collaboration with the site foremen. In this stage, it is critical to monitor the 

onsite progress of work and constraint removal and then provide timely feedback to 

engineers and managers of any delay. In addition, it is helpful to summarise issues and 

develop best practices to continuously improve constraint management in following 

tasks and projects (Wang et al., 2016). 

Constraint removal should be performed periodically, where the frequency depends 

on the removal stage and project type. For example, the frequency can be quarterly 

(for large projects) or monthly (for smaller projects) at the early stage (the general 

level), which can be changed to weekly at the construction stage (the detailed levels). 

At any stage, different actions should be performed if a delay of constraint removal 

happens, e.g., adding a buffer to tasks/procedures and changing material usage (Wang 

et al., 2020). Finally, it is important to have a quantitative indicator to reflect constraint 

removal progress, so that engineers can easily compare actual constraint statuses with 

the plans. One option is to define a constraint maturity index that can range from 0-1. 

For instance, as a constraint, an EWP can be constrained by ten constraints, and 

removing each of them increases the maturity index of the EWP by 0.1. The increasing 
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amount of the index can be adjusted based on the importance of specific constraints. 

When the index reaches 1, the EWP can be regarded as removed (Wang, 2018). 

Compared to other modern constraint management methods such as LPS and WFP, 

AWP is more complete. It covers both the construction stage and initial stages (e.g., 

design and procurement) hence can better control a project in its lifecycle and align 

more project participants responsible for different stages to remove constraints with 

joint efforts before starting work (CII, 2013b). Hence, this research adopts AWP to 

manage bridge rehabilitation projects while proposing novel IE methods to improve 

AWP. Based on the above review, it can be argued that current studies of AWP are 

restricted to the theory of constraints and work packages as well as the steps of 

constraint monitoring and removal (with the help of ICTs). However, as stated in 

Section 1.2.2, constraint modelling is still manually performed, which is inefficient 

and cannot meet the demands of practical AWP. As such, it is necessary to realise 

automatic constraint modelling to fully reap the benefits of AWP. 

Automatic constraint modelling heavily relies on automatically extracting constraint 

information from documents. However, existing studies in this field are either not 

necessarily related to AWP or are restricted to certain types of constraints, such as 

quality (Zhang & El-Gohary, 2016), work dependencies (Zhong et al., 2020b), and 

spatial links (i.e., spatial constraints) of components (Xu & Cai, 2020). Some tools can 

model constraint entities and relations, e.g., BIM, Enterprise Resource Planning (ERP), 

and Supply Chain Management (SCM). However, ERP and SCM are applied at the 

organisational level and are difficult to cover bottom-level constraint entities (Spathis 

& Constantinides, 2003; Wei et al., 2005). These tools can manage information of 

separated constraint entities and relations between constraints and tasks/procedures 

(i.e., which constraints affect which tasks/procedures). However, they cannot capture 

complex interconnections among constraints (e.g., which constraints are affected by 

other constraints) (Gupta & Boyd, 2008). Moreover, initial information in the tools is 

still manually identified and inserted. 

2.3 Information extraction in construction projects 

IE tasks mainly concern entity and relation extraction, which can be realised by rule-

based and ML-based approaches. This section introduces theories and/or background 

knowledge of logic and machine learning and reviews their applications for IE tasks. 
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2.3.1 Logic rules and reasoning 

Logic is the foundation to represent knowledge, and the most common type of logic is 

the predicate logic (i.e., first-order logic (FoL)). Logic holds some distinct features: 

• Logic provides a high-level language where knowledge can be expressed 

transparently.  

• Logic features formal semantics therefore can assign unambiguous meanings of 

statements. Meanwhile, logic language can be well-understood by a human. 

• There exist proof systems that can derive logic consequences syntactically from a 

set of premises. As such, one can trace the proof process that leads to a logical 

consequence. In this case, logic can provide explanations for answers, which is 

very important for knowledge acquisition and enrichment (Antoniou & Van 

Harmelen, 2012).  

Logic is a well-studied area, and there is a family of logic languages. Some logic 

languages, e.g., high-order logic, can express very complex facts. However, there is a 

trade-off between the expressive power and computational complexity of logic. The 

more expressive the language, the more computation power it takes to infer results 

while in some cases the results cannot be derived or proofed (Shi et al., 2005). In the 

IE domain, the extensively adopted logic is the Horn logic, a subset of predicate logic 

and has sound proof systems. The Horn logic derives from the Horn clause which is 

defined as a disjunction of literals with at most one positive. An example of the Horn 

clause is demonstrated in Eq. 2-1, where !!, !"…$ are called atomic formulas. In 

most cases, an atomic formula can be unary, binary, or a constant. Unary atoms only 

involve one variable (e.g., ‘Material(x)’, indicating the variable x belongs to the class 

‘Material’). Binary atoms involve two variables to indicate the relationship between 

them, e.g., ‘removes(supplier_1, concrete_mixture)’. Constants are static numbers or 

attributes, e.g., the number of days by which a task is delayed. 

A Horn clause with exactly one positive literal is a definite clause, a definite clause 

with no negative literals is called a unit clause, and a unit clause without variables is 

called a fact. Besides, a Horn clause without a positive literal is called a goal clause 

(Gupta, 1999). The Horn logic is the implication form of the Horn clause, which is 

designed for logical programming and reasoning. A typical Horn logic is shown in Eq. 

2-2, where the left part of the arrow is called rule body while the right part is called 
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rule head. From a deductive perspective, the reasoning process is interpreted as ‘if-

then’, namely, if !!…!# are known to be true, then B is also true.  

¬!! ∨ ¬!"⋯∨ ¬!# ∨ $    Eq. 2-1 

!! ∧ !"…∧ !# → $    Eq. 2-2 

2.3.2 Rule-based entity and relation extraction 

Rules for information extraction are constructed based on syntactic and semantic 

features. Syntactic features concern the syntax of a language, and syntactic features 

can include frequency features (e.g., the word/phrase frequency, inverse document 

frequency, and bag of words), tokens of words/characters, part-of-speech tags, and 

phrase-structure grammars. On the other hand, semantic features concern the meanings 

of words/characters, while the meanings can change in different domains. As such, 

constructing semantic features usually requires domain knowledge of the intended 

applications (Le et al., 2020; Zhang & El-Gohary, 2016). For instance, to extract 

quality checking codes, a common rule using only syntactic features is: ‘if a noun is 

followed by a modal verb and a basic verb, the sentence is a clause whereas the noun 

is extracted as the subject of the clause’ (Zhang & El-Gohary, 2016). When semantic 

features are included, more information can be utilised, such as extracting the types of 

the clause subject (e.g., a component or a task) and then enriching the rule with the 

types. Rules can also be employed to extract relations. For instance, Le and David 

(2017) extracted domain terms of highway projects and created a terminology by 

setting-up synonymy and hypernym relations among them. Liu and El-Gohary (2017b) 

and Liu and El-Gohary (2016) extracted dependency paths of sentences in bridge 

inspection reports based on computing the similarity of sentence-level configurations 

and part-of-speech tags. The proposed relation extractor can link bridge deficiencies 

to maintenance actions. Wu et al. (2021b) extracted constraint relations using rules 

defined based on domain ontologies and experts’ opinions, where constraint entities 

can be automatically connected if a relation has been defined between their classes in 

ontologies. Rule-based approaches can achieve high accuracy. However, developing 

rules needs much time and effort. In addition, rules suffer from subjectivity as most 

rules are manually developed by researchers. Finally, most rule-based approaches can 

only achieve good performance in a limited domain, because their ability of matching 

entities and relations heavily relies on the features of the domain where the rules are 

derived (Zhong et al., 2020a). 
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2.3.3 Foundation of machine learning 

The working mechanism of logic rules is transparent because 1) rules are explicitly 

defined by a human (e.g., domain experts), and 2) every step of rule reasoning can be 

traced to obtain explanations (Gupta, 1999). In contrast, ML models, including DL 

models that gain much attention recently, are regarded as black boxes. They take in 

training data (i.e., inputs and labelled outputs) and learn the rules (or called functions) 

by themselves. The rules are represented by numerical parameters in the models (e.g., 

parameters for dependent variables in logistic regression) (Shrestha & Mahmood, 

2019). In literature, the computational learning theory concerns quantifying learning 

problems using formal mathematical methods. The computational learning theory is 

recognised as a basis of ML models, where the most discussed areas are the probably 

approximately correct (PAC) learning and Vapnik–Chervonenkis (VC) dimension 

(Murphy, 2012).  

PAC learning relies on two critical hypotheses: 1) some functions can map data to 

correct results, and 2) sub-optimal functions will be found according to predictions 

they make on unseen data (i.e., based on the generalisation errors in the testing dataset). 

Hence, a model which has the most or a large number of correct predictions in the 

testing data is adopted to approximate the unknown functions. In other words, instead 

of finding the best functions, ML seeks to find those probably good ones. The PAC 

learning is a process to estimate ML model parameters, where the most common 

approach is called forward-backward propagation (Figure 2-2). For each input data, 

the process: 1) makes predictions by passing the data through the model using current 

parameters, where activation functions (e.g., Relu, Sigmoid, and tanh) are adopted to 

generate non-linearity; 2) compares the predictions with true labels and computes the 

difference (i.e., loss) using a pre-defined loss function (e.g., the mean-square error 

function for linear ML models); 3) applies the chain rule to compute the so-called 

‘gradients’ of model parameters as the partial derivatives of the loss function and all 

components which involve model parameters; and 4) updates the model by subtracting 

the gradients multiplied with a learning rate from the original parameters, which is 

controlled by an optimisation function. The propagation process can be performed 

many times, and one epoch is completed when all training data are processed for one 

time (Bolucu et al., 2019). 
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The VC dimension aims to quantify the complexity of an ML model based on the 

number of distinct data entities which can be discriminated completely by the model. 

For instance, given three points in a 2D plane, each of which has a label 0 or 1, they 

can be correctly distinguished using straight lines, where the lines are the model. In 

contrast, there are situations that the simple line model cannot correctly split the points, 

for instance, if four points are placed at the four corners of a square in the same 2D 

plane. In that case, a curve model can be needed. A large VC dimension indicates that 

an ML model is flexible, although it can come at the cost of overfitting (i.e., it can be 

difficult to generalise the model to unseen data) (Goodfellow et al., 2016). Thus, an 

ML model is considered efficient when it has a balanced VC dimension and can learn 

proper functions (i.e., rules) in polynomial time. 

 
Figure 2-2 Forward and backward propagation 

Although the PAC learning and VC dimension to-some-extent uncover the learning 

process and working mechanism in ML models with simple structures. It is recognised 

that ML/DL models still more or less lack interpretability. DL models are very 

complex, as they are commonly formed by stacking simple ML structures (e.g., NN, 

CNN, and LSTM), and emerged phenomena can happen, which cannot be explained 

by aggregating the results of simple structures. Hence, more theoretical research is 

needed to better interpret ML and DL models (Goodfellow et al., 2016). 

2.3.4 ML-based entity and relation extraction 

(1) ML-based entity extraction 

Entity extraction in essence is a named entity recognition (NER) task, which assigns 

tags (e.g., constraint and task) to words/characters in texts. Most NER approaches 

apply supervised ML models, e.g., the HMM and CRF model. These models rely on 

syntactic and semantic features. ML-based entity extraction is in its infancy in the 
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construction sector. Several distinct studies include: Le and David (2017) used a 

minimal-supervised ML model to extract transportation entities and recognise if two 

entities are related; Liu and El-Gohary (2017a) combined a CRF model and ontologies 

to extract defects and conditions of bridge structures in inspection reports. Chi et al. 

(2019) applied a semi-supervised model to retrieve topics and detect hierarchical 

relations among these topics from seismic reports. Conventional ML models require 

manually constructing and tuning features, which is subjective and time-consuming. 

On the other hand, text mining methods can be applied to pre-process text data and 

generate syntactic features for downstream training (Le & David, 2017). Moreover, in 

a recent study, Zhong et al. (2020b) applied a DL model to extract tasks and their 

dependencies from quality checking standards, where the Bi-LSTM model was used 

to extract features. Although these models can extract entities, it is constraint triples 

that form AWP KBs, which are not well studied. 

(2) ML-based relation (triple) extraction 

State-of-the-art relation or triple extraction models include dependency-based models 

and KRL models (Zhou et al., 2018). Dependency-based models take sentences as 

inputs, obtain the dependency structure (a tree-structure) of words through syntactic 

parsing, then treat the words as nodes and dependency paths as edges. These models 

apply sequence models (e.g., LSTM) and graph-based models (e.g., graph-based NN) 

to extract and aggregate features of words and their neighbourhood. The aggregated 

features represent the connections among words hence can be fed into downstream 

ML classifiers to recognise relations in the input sentences (Yin et al., 2018; Zhou et 

al., 2018). 

Dependency-based models can train entity and relation extraction simultaneously. 

However, they need to perform syntactic parsing which is error-prone. Errors in the 

parsing process can be propagated to downstream relation extraction and damage 

model performance (Peng et al., 2017). Besides, dependency-based models usually 

require the words representing the relations to be explicitly mentioned in texts (Miwa 

& Bansal, 2016; Zhang et al., 2018a). However, given project documents are freely 

written, it is common that knowledge triples are expressed by head and tail entities 

only while the relations remain implicit. For instance, in the sentence ‘supervisors 

must check safety belts of workers’, there is an implicit ‘constrains’ relation between 

‘safe belts’ and ‘workers’, as workers cannot start work until safety belts are in place. 
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As such, applying dependency-based models to extract triples for AWP can cause 

many errors and is not adopted in this research. 

KRL models are trained on independent triples therefore can extract triples without 

sentence parsing and explicit mentions of words. KRL models learn to assign a score 

to a candidate triple (h, r, t) to classify it as valid or invalid (Nguyen, 2020). KRL 

models can be divided into translation models and neural network (NN) models. 

Translation models train embeddings to represent triple elements. These models 

assume that a relation r can transfer the head entity so that it has a similar embedding 

to the tail entity, i.e., h + r ≈ t for valid triples (Bordes et al., 2013). The assumption 

draws upon the word embedding translation theory proposed in the word2vce model 

(Rong, 2014). Specifically, when words are represented by low-dimensional dense 

embeddings, they feature linear properties so that word analogies can often be solved 

with vector arithmetic, e.g., *+,-.........⃗ − 12,.........⃗ + 4512,...............⃗ ≈ 7899,............⃗ . Therefore, translation 

models can be regarded as the extension of the theory from words to triples. 

The first translation model is called TransE (i.e., translating embeddings) (Bordes et 

al., 2013). Since then, many translation models have been developed to extract more 

complex relations (e.g., many-to-many relations), such as the TransH (i.e., translating 

embeddings in hyperplanes) (Wang et al., 2014) and TransR model (i.e., translating 

embeddings in the space of relation elements) (Lin et al., 2015). Instead of using real-

valued embeddings, a few translation models use complex embeddings to represent 

triple elements (Trouillon et al., 2016). In these models, a relation is defined as a 

rotation from the head entity to the tail entity in the complex space. Translation models 

can achieve good accuracy despite simple structures. Besides, embeddings produced 

by translation models can be fed into more sophisticated models (e.g., deep NN models) 

as initial inputs (Nguyen, 2020). 

NN models often concatenate embeddings of triple elements as a matrix and then take 

it as the input. For instance, a triple (h, r, t) can be represented as a 3-column matrix, 

and each column refers to the embedding of one triple element (Dettmers et al., 2017; 

Nguyen et al., 2018). The matrix is fed into a multi-layer NN structure to compute a 

score of the input triple (Nguyen, 2020). Some studies apply bilinear tensors to replace 

linear neurons in conventional NN layers (Shi & Weninger, 2017). Popular feature 

extraction methods (e.g., CNN) have been employed to capture triple features. For 

instance, the ConvE (i.e., convolutional triple embeddings) and ConvKB model (i.e., 
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convolutional KBs) adopt the classic 2D CNN to scan the input matrix (Dettmers et 

al., 2017; Nguyen et al., 2018). On the other hand, Vashishth et al. (2019) applied a 

circular CNN to extract triple features; and Nguyen et al. (2019) improved ConvKB 

by stacking a capsule network layer on top of the convolution layer.  

However, most KRL models have a limitation, i.e., they do not consider entities that 

do not exist in the original KBs where the models are trained. Hence, a KRL model 

does not have trained embeddings for out-of-KBs entities to accurately extract triples 

containing them (Nguyen et al., 2018; Nguyen et al., 2019). Recent studies propose to 

retrain the model whenever out-of-KBs entities appear or estimate their embeddings 

using additional information (e.g., text descriptions) or complex graph-based DL 

models. These methods require much training time and computation power, which is 

impractical to be used for AWP modelling (Bi et al., 2020; Zhao et al., 2020). However, 

most KRL models still work well in practice, as they are designed for online general 

world knowledge searching (e.g., ‘Jobs founder Apple’). Such knowledge is rather 

static, and the models are often trained on large and general databases (e.g., DBpedia 

and Freebase) containing billions of triples. Hence, these models can to-some-extent 

ignore out-of-KBs entities given their low possibility of appearing (Zhang et al., 

2018b). 

Based on the review, it can be concluded that classical rule-based matching, classical 

ML-based models, and DL models have been applied to extract entities and relations 

in construction documents. Most of these approaches can only extract entities of 

certain types (e.g., quality criteria and construction tasks). However, AWP modelling 

can involve more types of constraints from different disciplines (e.g., design, supply 

chain, site management, and external authorities) and project stages. Therefore, more 

capable models should be developed. Moreover, few efforts in the AEC industry 

address triple extraction, which can only identify relations with very basic semantics 

(Chi et al., 2019; Le & David, 2017). AWP involves relations with complex and rich 

semantics, which cannot be handled by current IE methods. KRL models can extract 

semantic-rich relations, but they cannot be directly applied for AWP modelling. For 

one thing, most KRL models are trained on general KBs. Unlike static and general 

knowledge in such KBs, constraint information is domain-specific and can regularly 

change. Thus, existing KBs cannot provide training data for constraint information 

extraction. The lack of domain-specific triple data also means that out-of-KB entities 
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can commonly appear. Hence, applying KRL models for AWP modelling requires a 

method to generate training data while handling out-of-KBs entities. Current KRL 

models also do not utilise domain-specific information in construction projects (e.g., 

type/class of constraints) therefore cannot achieve high accuracy when processing 

construction documents. 

2.4 Project information integration in ontological knowledge bases 

The ontologies and LPG database are both typical tools to store unstructured triple 

data. As mentioned, this research adopts ontologies to build project KBs to reap the 

advantages of the reasoning capacity of ontologies. On the other hand, a KBC model 

is developed in this research to continuously enrich the KBs. This section introduces 

1) theories and relevant concepts of ontologies and 2) the graph theory for developing 

the KBC model. Existing studies of ontologies in the AEC industry and state-of-the-

art KBC approaches are also reviewed. 

2.4.1 Ontological databases 

2.4.1.1 Ontologies 

(1) Definition of ontologies 

An ontology is defined as an explicit and formal specification of a conceptualization. 

This definition is different from the philosophy concept mentioned in Section 3.1 and 

has specific technical meanings in the sector of computer science and the semantic 

web. Ontologies intend to provide an unambiguous understanding of knowledge by 

mapping different descriptions of things into standard, formal, and interconnected 

concepts in ontologies (Gruber, 1995).  

In general, ontologies formally describe a domain of discourse and typically include a 

finite list of conceptual terms (i.e., classes) in the domain and relations among them. 

A class can have multiple instances (i.e., entities). In the AEC domain, typical classes 

can include tasks, materials, equipment, people, and documents. The most common 

type of relation is the hierarchy of classes (i.e., the subclass relation). A hierarchical 

relation specifies a class C to be a subclass of another class :$ if every instance in C 

is also included in :$. In ontologies, an instance can belong to more than one class. 

Ontologies also include other typical relations, such as properties (relations defined 

among instances) (e.g., ‘supervisor reviews drawings’) and disjointness statements 

(e.g., the class ‘Material’ and ‘People’ are disjoint, i.e., there is no instance belonging 
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to the two classes simultaneously) (Antoniou & Van Harmelen, 2012). An ontology 

consists of two main parts: the terminology part (TBox) and assertion part (ABox). 

The TBox includes all classes and relations among classes, and the ABox includes 

assertional knowledge (i.e., ground facts) of instances (instance names and relations 

among instances). Finally, ontologies follow the open-world assumption (OWA), 

namely, one cannot suppose that a thing does not exist in an ontology unless this is 

explicitly specified (Shi et al., 2005). 

Developing ontologies requires certain languages. Modern ontologies are developed 

based on the RDF data model. RDF applies unique resource links (URLs) and the 

‘turtle’ language to identify and describe things using subject-relation-object triples 

(elements in a triple are expressed by URL). To increase the expressiveness of RDF, 

RDF schema (RDFs) has been developed to describe rich semantics, e.g., subclasses 

and domain and range restrictions of subjects/objects. In recent years, the Ontology 

Web Language (OWL) is extensively applied for building ontologies, which is an 

extension of RDFs and can support even more complex semantics, e.g., existence and 

universal quantification (Hitzler et al., 2009). 

(2) Logic rules in ontologies 

Logic rules, which have been reviewed in Section 2.3.1, are important supporting 

techniques for ontologies. These rules are widely used to uncover implicit knowledge 

in ontologies and make them explicit. Rules are developed at the class level, whereas 

instances of ontological classes will populate the rules after inheriting the classes. Thus, 

the rule box (RBox) can be created as another component of the terminology part of 

an ontology. The essence of ontologies is to provide precise and unambiguous 

information, and the system needs to prove these properties. Therefore, logic rules in 

ontologies should have a sound proof system meanwhile holding a balance between 

expressiveness and complexity. In general, ontologies apply two types of logic: 

description logic (DL) and Horn logic (Hitzler et al., 2009). 

Horn logic has been introduced before. As for DL, it is closely related to ontologies 

and consists of the DL for TBox and DL for ABox. The syntax (e.g., the binary and 

unary atomic formulas) of ABox DL coincides with FoL (or the Horn logic). On the 

other hand, TBox DL is derived from the set theory and does not involve variables. 

An example of TBox DL is illustrated in Eq. 2-3, which implies a subclass relation, 
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i.e., anything that is a ‘Concrete’ is also a ‘Material’. The FoL translation is shown in 

Eq. 2-4. A specific feature of DL is that the basic classes (concepts) can be combined 

into more sophisticated classes by Boolean operators and quantification over relations. 

Eq. 2-5 provides an example which states that the tasks with delayed constraints can 

also be delayed. Both DL and Horn logic are subsets of the predicate logic but are 

orthogonal (neither of them is a subset of the other). In other words, some knowledge 

facts can be expressed using DL which however are impossible to be expressed using 

the Horn logic and vice versa. For instance, Horn logic rules cannot (in the general 

case) express the negation of classes, union information, or existential quantification 

(e.g., constraints that at least have a planned removal date). However, DL and Horn 

logic can be to-some-extent combined into complex rules to express rich semantics 

which are not supported by the original OWL syntax. For instance, each component 

!!, !"…!# in the Horn logic can be expressed using DL axioms (logic statements are 

called axioms in ontologies). 

The logic language realising the combination is the Semantic Web Rule Language 

(SWRL). Besides, the SPARQL query, which is designed for extracting information 

from ontologies, can be embedded in SWRL to turn it into a powerful language, the 

Semantic Query-enhanced Rule Language (SQWRL) (Fudholi et al., 2009; Wu et al., 

2020b). The SWRL and SQWRL have become the mainstream languages to develop 

logic rules for ontology applications, which are adopted in this research as well. An 

example of the SQWRL rule is demonstrated in Eq. 2-6, which can identify the delayed 

constraints based on their removal progress while extracting these constraints by the 

‘select’ query.  

:5,;<9=9 ⊑ ?2=9<@2A    Eq. 2-3 

∀C[:5,;<9=9(C) → ?2=9<@2A(C)]    Eq. 2-4 

∃@I_;5,I=<2@,9K_LM. O9A2M9K_:5,I=<2@,= ⊑ P2I*_Q5=9,=@2A_O9A2M  Eq. 2-5 

:5,I=<2@,=(? ;)	⋀	(ℎ2I_<915V2A_K9A2M	I519	CIK: @,=9-9<[≥ 0])(? ;)	 

→ @I_=@19AM_<915V9K(? ;, =<89)	⋀	I74<A: I9A9;=(? ;)    Eq. 2-6 

2.4.1.2 Ontological KBs and applications 
Ontologies developed in the AEC sector aim to solve engineering problems hence 

belong to domain ontologies. Thus, all ontologies mentioned in the following contents 
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are domain ontologies. An ontological KB is a graph database that is built based on 

domain ontologies and includes nodes (i.e., the classes and instances that represent 

domain entities) and relations that specify the attributes of and connections among the 

entities. Many studies of ontological KBs have been conducted in the AEC sector, 

which focus on vertical buildings and bridge inspection and evaluation. The studies 

could be divided into three groups: 1) general knowledge modelling, 2) information 

sharing, and 3) reasoning and conformance checking. 

The first group summarises general domain knowledge, which is often independent of 

application contexts thus can serve as a basis for developing specific ontologies. For 

instance, there are a few general ontologies that formalise the knowledge for building 

and infrastructure construction, covering essential concepts like processes, products, 

and stakeholders (El-Diraby, 2013; El-Gohary & El-Diraby, 2010). Studies in the 

second and third groups are context-dependent. Studies related to information sharing 

focus on building semantic relations among information sources and using queries 

(e.g., SPARQL) to extract information. In this way, one can not only find information 

that matches keywords textually but semantically related information as well. For 

instance, a bridge beam can be semantically linked to its design drawings. Hence, 

when searching for information of the beam, information of the design drawings can 

be easily identified and retrieved by navigating the semantic link between the two 

ontological instances. A data link can also be set up following the semantic link, and 

then accessing the drawings can be realised by directly querying the ontology rather 

than manually searching the designer’s database (Wang, 2018). The third group of 

studies is related to reasoning and conformance checking. In these studies, reasoning 

rules are often expressed by formal logic, e.g., SWRL and SQWRL (Ren et al., 2019). 

Thus, if an entity (e.g., a building component) has certain attributes or is related to 

other entities through certain relations, the logic rules can derive implicit knowledge 

regarding the entity. For instance, Zhang et al. (2015) embedded safety rules in an 

ontology to identify building elements and areas violating the safety rules, considering 

geometries and topological relations among these elements. Ren et al. (2019) grouped 

semantically related bridge components and then embedded condition evaluation rules 

to compute structure conditions of bridge components and the entire bridge. 

Ontologies can be object or process-oriented. The former is based on taxonomies of 

objects, such as building components like walls and windows; the latter is based on 
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the sequences and constraints of construction tasks (Dong et al., 2011). The object-

oriented ontology is the dominant form partially because of the existence of many 

taxonomies that such ontologies can draw upon, e.g., the UNIFORMA for building 

components (Niknam & Karshenas, 2017). Object-oriented ontologies are mainly 

employed to manage static information in documents (e.g., inspection reports) and 

information systems (e.g., BIM and BMS) (Liu & El-Gohary, 2017a), including the 

material properties and geometries (Niknam & Karshenas, 2017), defects (Park et al., 

2013), quantities and costs (Liu et al., 2016), risks (Zhang et al., 2015), and structure 

conditions (Ren et al., 2019). Some studies are developing simple process-oriented 

ontologies which often serve as auxiliary parts to integrate information of work 

progress. For instance, Dong et al. (2011) developed an ontology to monitor project 

progress using simple qualitative metrics (e.g., not started, behind schedule, and ahead 

of schedule). Zhang et al. (2015) employed an ontology to model the activities of 

masonry work, which could search for risk information. Wang (2018) created an 

ontology to store constraint information in energy plant projects. 

2.4.2 Knowledge base completion models 
2.4.2.1 Graph definition and the related theory 

A graph can be denoted by G = (V, E), where V is the set of nodes (or called vertices) 

and E is the set of edges (or called relations). An edge e = {u, v} has two endpoints u 

and v, which are joined (i.e., linked) by e. In this case, u is a neighbour of v. In other 

words, the two nodes are adjacent. Thus, data taking the form ‘node-edge-node’ are 

triples. An edge can be directed or undirected, and a graph is directed if all edges are 

directed or undirected if all edges are undirected. Besides, the degree of a node v, 

denoted by d(v), is defined as the number of edges linked to v (Ji et al., 2020). 

Observing a graph is an intuitive way to understand the interconnections among data 

entities. However, to quantitatively analyse graph data, a graph should be represented 

mathematically. Accordingly, there are some algebra representations for graphs that 

are widely adopted in existing literature, which are introduced below (Ji et al., 2020; 

Zhang et al., 2018b). 

• Adjacency matrix: for a graph G = (V, E) that has n nodes, it can be described 

by an adjacency matrix Z ∈ ℝ#×# which indicates if any two nodes are connected 

by any edge (see Eq. 2-7). 
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    Eq. 2-7 

• Degree matrix: for a graph G = (V, E), it has a degree matrix e ∈ ℝ#×# which is 

a diagonal matrix and reflects the degree of each node in G (see Eq. 2-8). 

O&& = K(V&)    Eq. 2-8 

• Laplacian matrix: for a graph G = (V, E) that has n nodes, if all edges in G are 

undirected, then the Laplacian matrix g ∈ ℝ#×# of G can be computed using the 

adjacency and degree matrix (see Eq. 2-9), while the matrix L is defined by Eq. 

2-10. 

h = O − !    Eq. 2-9 

h&,( i
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    Eq. 2-10 

Current KBC models are built based on the above basic definitions and concepts. 

Similar to the IE task, a KBC task can also be realised by rule-based and ML-based 

approaches. In addition, state-of-the-art ML models for KBC tasks can be further 

divided into triple-based and GNN-based models. 

2.4.2.2 Rule-based KBC  
Rule-based KBC constructs logic rules to infer missing triples using existing ones in a 

KB. The rules take the form of Horn logic, for instance, the rule ‘(manager manages 

foreman), (foreman manages crew) ⇒ (manager manages crew)’ implies the 

constraining relation between ‘manager and ‘crew’ (i.e., the rule head) according to 

triples at the left side (i.e., rule body) of ⇒. The logic rules can compactly and 

intuitively encode knowledge facts, which are widely applied for reasoning in early 

studies of KBs, e.g., those related to expert systems (Ren et al., 2019). However, as 

mentioned in Section 2.3.2. handcrafted rules can be subjective and incorrect (Qu & 

Tang, 2019; Yang et al., 2014; Yang et al., 2017). As such, some studies adopt the 

Markov logic network to transform rules into a graph and then apply Markov models 

to handle the uncertainty during reasoning (Zhang et al., 2020). On the other hand, 

reasoning is a sequence (i.e., multiple steps) of applying rules. Therefore, instead of 

manually developing rules, some studies use reinforcement learning (Lin et al., 2018) 

or sequential models (e.g., the LSTM model and gated recurrent network (GRU)) 
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(Yang et al., 2017) to mine rules automatically using information in KBs. However, 

when it comes to predicting missing triples, the capacity of rule-based methods can be 

further limited, as many triples cannot be discovered by rules (Qu & Tang, 2019). 

2.4.2.3 Triple-based KBC 

The KRL models reviewed in Section 2.3.4 can extract triples from texts, thus, they 

can also be trained to complete KBs which in essence are formed by triples. To avoid 

redundancy, such models are not introduced again in this section. Despite the wide 

application of triple-based models for KBC, they suffer a distinct limitation, i.e., they 

only consider independent triples. Hence, the models can neither capture structure 

features (i.e., topology) of KBs nor leverage logic rules to infer information (Nathani 

et al., 2019; Velickovic et al., 2017). 

2.4.2.4 GNN-based KBC 

Most traditional ML models are designed for structured data. For instance, in image 

processing tasks, each image is structured in 2D or 3D tensors, whereas CNN filters 

can operate on each pixel node and scan information from its neighbourhood which 

has a fixed size and order of pixel nodes. However, nodes in a KB have different 

neighbourhood sizes and there is no order of nodes. Thus, conventional CNN filters 

cannot be directly applied to such unstructured data. On the other hand, the distinct 

advantage of graph-based models is that they enable CNN to extract features of KB 

data (Zhang et al., 2018b). 

There are two main types of GNN in literature: spectral models and spatial models. 

The key difference relies on the way they process graphs before extracting features 

using relevant tools (e.g., CNN). In spectral models, the graph Laplacian matrix is 

generated first. Then, eigen-decomposition of the graph is performed based on the 

matrix, which projects the graph into the Fourier domain and enables CNN operations 

(Kazemi et al., 2020). Spectral models are more adopted in early studies. The models 

must perform eigen-decomposition which requires additional computation power. In 

addition, they depend on the graph’s Laplacian matrix, which means a model trained 

on a specific graph could not be applied to another graph with different structures. In 

contrast, spatial models avoid the decomposition process and can directly apply CNN 

to a node’s neighbourhood. They also do not require the Laplacian matrix hence are 

more flexible (Ji et al., 2020). Thus, the spatial GNN is adopted in this research, and 

the term GNN refers to spatial models in the following contents.  
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Figure 2-3 The overall process of GNN-based graph encoding 

Spatial GNN generally relies on an iterative computation process, and each iteration 

has three activities: sampling, aggregation, and updating. The overall process is shown 

in Figure 2-3. Sampling selects nodes in each node’s neighbourhood. For instance, a 

one-hop neighbourhood includes nodes inward and outward connected to the central 

node. Aggregation extracts and aggregates information (e.g., embeddings) from nodes 

in the neighbourhood of the central node for which a new embedding is computed 

using the aggregated information. Finally, updating replaces the previous embedding 

with the newly computed one (Hamilton et al., 2017). Different GNN models are 

proposed to improve the activities. For example, the attention mechanism and various 

statistical sampling methods can refine the neighbourhood generation by sampling 

critical nodes rather than taking all nodes for computation (Zhang et al., 2020). There 

are also multiple ways to aggregate node embeddings, e.g., summing, averaging, and 

pooling. Recent studies use the LSTM and GRU model to aggregate information 

(Hamilton et al., 2017; Schlichtkrull et al., 2018). When it comes to updating, 

additional information, such as numerical features (e.g., the coordinates of nodes 

representing physical locations), textual descriptions of nodes, and original input 

embeddings, can be added to incorporate more information for model training 

(Srivastava et al., 2014; Zhang et al., 2018b). Some studies combine logic rules and 

ML models. A common approach is to run logic rules to infer triples and adopt ML 

models to predict entities when the rules encounter missing information in rule bodies 

or heads (Qu & Tang, 2019; Zhang et al., 2020). However, similar to the KRL models, 

existing KBC models do not utilise specific knowledge in the AEC domain, which can 

largely affect their capacity when completing AWP graphs. 
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Chapter 3: Research methodology 

In this chapter, the research methodology is introduced, which includes four sections 

for the four objectives summarised in Section 1.3. First, in Section 3.1, the research 

philosophy is introduced. The overall research design and mapping between research 

methods and objectives are demonstrated in Section 3.2. Section 3.3 – Section 3.6 

introduce the research methods for realising Objective 1-4, respectively. Section 3.7 

summarises this chapter. 

3.1 Research philosophy 

Paradigms are roots and stances of researches and can be defined as several basic 

beliefs that guide how things are understood or done by him/her during research 

(Killam, 2013). According to Guba and Lincoln (1994), paradigms are “basic belief 

systems based on ontological, epistemological, and methodological assumptions”. 

These elements are interdependent under a paradigm, and different types of research 

are guided by different paradigms (Wilson, 2001). Thus, knowing the philosophical 

beliefs behind is essential for research. 

(1) Ontology 

Ontology is a theory of being or existence, dealing with the nature of reality (Aliyu et 

al., 2015). Ontology concerns what exists, what it looks like, what units make it up 

and how these units or things interact. There are two contrasting types of ontologies, 

namely, realism and relativism. Realists believe there is only one reality that can be 

discovered and objectively measured by different observers and researchers. On the 

contrary, relativists believe that the ‘truth’ relies on people who are observing, hence, 

multiple realities can be constructed based on individual opinions and experience, 

while each of them is true to the observer or researcher (Killam, 2013). The ontology 

discussed here is different from the ontologies developed for integrating information 

in this research, which is a technical concept in the computer science field (Studer et 

al., 1998). 

(2) Epistemology 

Epistemology is a theory about knowledge and the relationships between researchers 

and things that are researched. In other words, epistemology concerns how knowledge 

can be acquired (Aliyu et al., 2015). There are contrasting epistemological positions 
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of researchers, i.e., objectivism and subjectivism, which are determined by the 

ontology of researchers (Wilson, 2001). Objectivism is based on realism. As such, a 

realist will apply objective methods to observe things and discover the only be ‘truth’ 

that exists independently from researchers. However, a relativist who believes in 

relativism will interpret facts using his/her opinions, experience, and feelings, because 

they think the truth varies from different people and contexts.  

(3) Methodology 

Methodology refers to ways to systematically discover knowledge and is driven by 

ontology and epistemology (Killam, 2013). Based on objectivism or subjectivism a 

researcher believes, main research methodologies include deductive and inductive 

methodologies and quantitative and qualitative methodologies (Aliyu et al., 2015).  

• Deductive and inductive research 

The two methodologies refer to research logic, which concerns the role of the current 

knowledge body and the way to utilise data collection and subsequent data analysis 

methods. The logic of deductive research is based on objectivism, which proposes a 

hypothesis using current knowledge then tests the hypothesis by data collection and 

analysis (often quantitative). In contrast, the logic of inductive research is based on 

subjectivism. Inductive research first performs data collection and analysis to obtain 

findings (often qualitative), where the existing knowledge can be applied to inform 

data analysis when researchers see appropriate (Simon, 1996). 

• Qualitative and quantitative research 

The quantitative methodology follows objectivism thus prefers quantitative inquiry 

with measurable methods such as controlled experiments to minimise bias. Results of 

quantitative research are viewed as generalisable and replicable. Research adopting 

quantitative methods usually aims to test theories deductively through quantified and 

objective explanations. The qualitative methodology follows subjectivism and favours 

qualitative methods which can adequately consider interactions between reality and 

researchers and explain phenomena from viewpoints of participants, e.g., in-depth 

interview and focus group study. Qualitative methods are discovery-oriented, hence, 

research results are less concerned with generalisability and replicability. Qualitative 

research is commonly applied to suggest possible relationships, effects and dynamic 

processes (Gelo et al., 2008). 
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Since both methodologies have weaknesses while they can supplement each other, 

they can be adopted in a mixed manner (i.e., concurrently or subsequently) to gain 

more reliable research results. 

(4) Axiology 

Axiology mainly considers ethical issues, which is a theory on the nature, types and 

standards of value and value judgments, especially in morality (Wilson, 2001). 

Based on different beliefs in the key components of paradigm, different paradigms 

emerge, and four dominant ones are positivism, post-positivism, critical theory and 

constructivism. Positivism is the most conventional paradigm and strictly follows 

realism (Koschmann, 1996). Constructivism is the contrasting paradigm to positivism 

and is fully based on relativism. Post-positivism and critical theory are in-between, 

which are closer to positivism and constructivism, respectively. Different paradigms 

do not necessarily work in isolation; they may work together (Killam, 2013). 

This research aims to improve information extraction and integration to automate 

AWP and then verifies the proposed approaches in bridge rehabilitation projects. The 

DL models (i.e., the Bi-LSTM-CRF, KRL, and KBC model) are all quantitative 

models. Besides, the research proposes the hypothesis that adding domain information 

can improve the performance of DL models, which should be tested in experiments. 

Thus, the research is closer to deductive and quantitative research and is based on 

objectivism epistemology and realism ontology. Meanwhile, subjective knowledge of 

domain experts is also utilised to develop the ontological KBs and label training data 

of DL models. Thus, it can be argued that the research is a mixed study and belongs to 

the post-positivism paradigm. 

3.2 Overview of the proposed method 

The overview of adopted research methods is illustrated in Figure 3-1. Each method 

can be adopted to realise one or more objectives. The mapping between methods and 

objectives are also shown in the figure. As shown in the left part of Figure 3-1, the 

proposed information management approach has three key parts, where the outputs of 

the previous part are taken as the input of the subsequent part. The first part refers to 

the information extraction model developed in Objective 2, where the inputs are text 

sentences and the outputs are constraint entities and relations (i.e., triples). The second 

part corresponds to the ontological KBs developed in Objective 3, which integrate the 



 

 

 

 

52 

automatically extracted entities and relations. The third part refers to the KBC model 

developed in Objective 4, where the inputs are ontological KBs (including all the 

triples and graph topology), and the outputs are those identified triples which do not 

exist in the original KBs.
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Figure 3-1 Overall research design 
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3.3 Literature review method (Objective 1) 

A literature review is the research method to summarise previous efforts and identify 

gaps. In this research, the review was conducted following the strategy proposed by 

Thome et al. (2016), which are introduced below. 

3.3.1 Step-1 scope determination 

Given the research aim and objectives, the review scope includes three aspects: 1) 

information management in bridge maintenance (i.e., DDBM studies), 2) constraint 

management approaches in the AEC industry, and 3) current information extraction 

and integration approaches. To cover state-of-the-art literature, the review of the first 

two aspects focuses on the AEC industry, while the review of the last aspect further 

covers efforts in both the AEC and NLP domains.  

3.3.2 Step-2 data collection 

The next step is to determine the databases and keywords for searching for review 

materials. The Web of Science database was selected due to its wide coverage and 

recognised quality (Bradley et al., 2016). Given the small number of academic articles 

of WFP and AWP, the databases of the CII and COAA were also searched, and 

standards, reports, and case reports were collected to provide more information. The 

advanced searching function was applied in the Web of Science database to increase 

the coverage of articles. The keywords used for restricting the topics in the advanced 

searching are as follows: 

• DDBM studies: The query is based on the key information management steps: 

(bridge*) AND (data NEAR/5 manage* OR information NEAR/5 manage* OR 

data NEAR/2 collect* OR information NEAR/2 shar* OR data NEAR/2 exchang* 

OR decision* OR decision* NEAR/2 make* OR optimi* OR multi* NEAR/2 

object* OR multi* NEAR/2 criter*) AND (planning* OR monitoring* OR 

maintenance* OR inspect* OR repair* OR rehabilitat*).  

• Studies of constraint management: the query can cover mainstream advanced 

constraint management methods in the AEC industry: (construction NEAR/2 

project*) AND (constraint NEAR/2 manage* OR work NEAR/2 face NEAR/2 

plan* OR work NAER/2 packag* OR last NEAR/2 plan* OR advanced NEAR/2 

work NEAR/2 packag*). 
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• State-of-the-art information extraction and integration: The query is based on 

purposes of information extraction and integration in this research: (information 

NEAR/3 extract* OR data NAER/3 extract* OR ontolog* OR knowledge NAER/2 

base* NEAR/2 complet* OR knowledge NAER/2 graph* NEAR/2 complet*) AND 

(construction NEAR/2 project*). 

The queries consider words with similar meanings, e.g., information and data, as well 

as common variations and combinations of words, e.g., the term exchang* can include 

exchange and exchanging, while the term NEAR/n can specify the number of words 

between two terms. 

Using the above keywords, the search returned 1052 documents, where 766, 35, and 

251 of them are related to DDBM studies, constraint management in the industry, and 

information extraction and integration, respectively. The initially collected documents 

were filtered. For academic articles, only peer-reviewed journal articles were retained 

to ensure quality. Besides, the abstract (or executive summary) and keywords of each 

document were screened to ensure that they could comply with the review scope. As 

a result, 737 documents were left for reviewing, where 485, 135, and 117 of them fall 

in the three above-mentioned aspects, respectively. The 737 documents include 56 and 

40 non-academic documents related to AWP and WFP, respectively. 

3.3.3 Step-3 content analysis 

The in-depth review was conducted using content analysis, an extensively recognised 

method for investigating texts in a document. To conduct content analysis, the texts 

were broken down by coding. Specifically, general categories were first established to 

roughly group the texts, then detailed codes were proposed to further classify the texts 

in each category. Finally, the concepts, themes, and patterns and trends in the domain 

of interest were extracted by interpreting the coded texts (Elo & Kyngäs, 2010). The 

categories and codes for content analysis are listed in Table 3-1. 

Table 3-1 Categories and codes for content analysis 

Categories Codes 
Bridge 

maintenance 
(1) inspection, (2) condition evaluation, (3) decision-making, (4) repair and 
rehabilitation  

DDBM studies 
(1) sensor-based data collection, (2) NDT-based data collection (3) maintenance 
information analysis, (4) maintenance decision-making, (5) information 
integration and sharing 
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Categories Codes 
Constraint 

management 
(1) constraint identification and constraint modelling, (2) constraint monitoring 
and analysis, (3) constraint removal 

Information 
extraction 

(1) rule-based entity extraction approaches, (2) rule-based relation extraction 
approaches, (3) ML-based entity extraction models, (4) ML-based relation 
extraction models 

Information 
integration 

(1) data formats and schemas, (2) relational databases, (3) graph databases 
(ontological KBs), (4) collaboration platforms, (5) rule-based KBC approaches, (6) 
triple-based KBC models, (7) GNN-based KBC models 

The review addresses the questions that guide the research: 1) by reviewing bridge 

maintenance and DDBM studies, one can understand what ICTs have been applied in 

which bridge maintenance stage, and which stages can still be improved using what 

ICTs? 2) by reviewing modern constraint management approaches, one can understand 

what are the critical steps and advantages/disadvantages of AWP, and what hinders 

the implementation of AWP? 3) by reviewing information extraction and integration 

approaches, one can understand what are the mainstream IE methods (for entity and 

relation extraction) and information integration methods in the AEC area, can they 

meet the demands of practical AWP modelling, what are the state-of-the-art 

approaches in the literature, and can they be directly applied for AWP modelling? 

3.4 Information extraction model design (Objective 2) 

Constraint information extraction is achieved by a hybrid DL model. Specifically, the 

Bi-LSTM-CRF and CNN-based KRL models are developed for entity and relation 

extraction, respectively. The Bi-LSTM model extract entities, then the KRL model 

extract entity-relation-entity triples by identifying valid triples among candidate triples 

generated using the extracted entities.  

3.4.1 Bi-LSTM-CRF model (Step 2-1) 

3.4.1.1 Data inputs and outputs 

The proposed Bi-LSTM-CRF model is used to extract constraint entities, including a 

Bi-LSTM model at the bottom layer and a CRF layer at the top layer. A Bi-LSTM-

CRF model takes sentences as inputs and extracts entities by tagging words in the 

sentences. A sentence is a sequence of words/characters, i.e., ! = (!!, !"…!#). The 

tagging process assigns a tag to each word/character and produces '( = ('(!, '("…'(#). 

The proposed model concerns four entity tags, i.e., CONS, TP, AT, and O, indicating 

if the word is a constraint, a task or procedure, an attribute, or an irrelevant entity, 

respectively. It should be noted that the advanced DL model, bidirectional encoder 
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representations transformer (BERT), is proposed by Google recently and can reach 

better performances than more traditional models (e.g., LSTM) in many NLP tasks, 

e.g., machine translation, sentiment analysis, and NER. However, BERT is a heavy 

model consisting of over 20 building blocks, and each includes at least three neural 

network components and 10 attention heads (similar to filters in CNN). Thus, training 

a BERT model is extremely data-demanding (Vaswani et al., 2017). An alternative is 

transfer learning, i.e., using most parameters pre-trained by Google while fine-tuning 

the rest at the output end of the model. However, application research for the AEC 

industry should concern more on how much a proposed approach can increase the 

management efficiency and the practicality of the approach, rather than the small 

amount of accuracy improvement. Transfer learning of BERT still takes much time 

and computation power, making it impractical for project teams. More importantly, 

the original BERT model does not support relation extraction, hence, it can only be 

used to extract constraint entities. As shown in Section 4.3, the proposed Bi-LSTM-

CRF model can already achieve 93% F1 when extracting entities, which is sufficient 

for constraint management. Thus, it is not cost-effective to implement a BERT model 

which cannot bring significant improvements for the entire proposed information 

management approach. 

Nevertheless, two types of entities, i.e., the work packages and project participants, 

cannot be extracted by the proposed model. The number of training samples is small, 

as most documents that the researchers can access do not explicitly mention work 

packages (CII, 2013a, 2013b, 2020). The documents only have a few mentions of 

participants, as participant entities appear more frequently in contracts that are difficult 

to collect. Fortunately, the number of the two types of entities in a project KB is much 

less than that of constraints, attributes, and tasks/procedures, making it still practical 

to insert such information manually. Hence, in the experiments, the participant and 

work package entities were inserted manually. 

3.4.1.2 Overall design of the entity extraction model (RM3.1) 
DL models can only recognise numbers. Thus, each word/character must be converted 

to a numerical vector (either a one-hot vector or word embedding, see Section 4.2.1 

for details) to be fed into the entity extraction model. However, sentences can have 

long dependencies between two words, e.g., two semantically related words can be 

separated by multiple irrelevant words. Hence, applying traditional DL models (e.g., 
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recurrent networks) to capture text features is often challenging and can result in 

gradient exploding and vanishing when passing information in a long sentence. In 

contrast, owing to the three gates introduced below, the Bi-LSTM model can extract 

text features effectively meanwhile minimising the possibility of gradient vanishing 

and exploding (Hochreiter & Schmidhuber, 1997; Miwa & Bansal, 2016). However, 

the Bi-LSTM model can ignore the features of entity tags. As such, it can make some 

simple mistakes, e.g., tagging two consecutive words/characters as the beginning word 

or character of an entity at the same time. On the contrary, the CRF model is good at 

capturing such tag features, as it is designed to predict the entire sequence of tags of 

an input sentence. Therefore, a common practice is to stack a CRF layer on top of a 

Bi-LSTM model (Baker et al., 2019). In this case, the tags predicted by the Bi-LSTM 

model are fed into the CRF layer where the predictions are refined and outputted. The 

detailed model design is introduced in Section 4.2. 

3.4.1.3 DL model experiments (RM6.1) 
(1) Experiment data collection, pre-processing, and labelling 

To verify the Bi-LSTM-CRF model, the experiment data (i.e., text sentences) were 

extracted from various documents, e.g., manuals, standards, technical specifications, 

working plans, case reports, and meeting records of both conventional construction 

and concrete-reinforced bridge rehabilitation projects. All the documents were pre-

processed, including text normalisation and sentence splitting. The raw documents 

contained many tables, figures, and formulas. Text normalisation removed figures and 

formulas and then converted tables to sentences by extracting the texts in table cells. 

Irrelevant texts (e.g., the organisation structure of a project) were also removed. Then, 

sentence splitting recognised different sentences based on typical boundaries (e.g., 

periods), which produced sentences suitable for data labelling. Data labelling for the 

model should concern two things, i.e., the level of labelling and types of tags. The four 

entity tags can work as word-level tags, and another two character-level tags (i.e., B 

and I) can be used to indicate if a character is at the beginning or intermediate place of 

a word (Zhong et al., 2020a). Therefore, all sentences were labelled by supplementary 

usage of the six tags (see Figure 4-2 as an example). 

(2) Training, validation, and testing protocols  
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Different metrics should be selected to evaluate different DL models. A Bi-LSTM-

CRF model aims to classify if a word/character is an entity of interest (i.e., binary 

classification) and then assign a tag to the word/character (e.g., a constraint, task or 

procedure, or attribute), which is a multi-classification task. Thus, in experiments, the 

Bi-LSTM-CRF model used three common metrics for classification tasks: precision 

(Pr), recall (Re), and F1 score (F1), which can be computed by Eq. 3-1 - 3.3, where β 

is the weight between Pr and Re (Goodfellow et al., 2016). 

)* =
$%	

$'(%'	
 Eq. 3-1 

+, =
$%

$'(%)
 Eq. 3-2 

-1 =
(+!(!)×'×.
+!×'(.

        Eq. 3-3 

(3) Data splitting and experiment process 

Experiments of DL models should generally include training, validation, and testing. 

The raw dataset should be divided into the training, validation, and testing datasets. In 

experiments, the model should be trained and evaluated using the training dataset to 

ensure the model can be trained (i.e., the model loss can decrease over time and 

become stable when the model converges). Then, the validation dataset should be 

employed to fine-tune the model and increase its performance. The main purpose is to 

obtain optimal hyper-parameters (more details are introduced below). The model can 

be finally tested in the testing dataset. The model never encounters data in the testing 

set, hence, the performance can objectively reflect the model capacity (Baker et al., 

2019). The general proportion between the three datasets can be 7:2:1 if the number 

of training samples is small (e.g., less than 100000), otherwise, more data can be 

allocated to the training dataset (Shrestha & Mahmood, 2019). Given the data volume 

is not large in this research, 9:1 data splitting was adopted in all model experiments, 

i.e., 10% data for testing and 90% data for training and k-fold cross-validation (more 

details are introduced below). 

It should be noted that in the experiments, the proposed Bi-LSTM-CRF model was 

compared with several classical ML models in terms of extracting constraint entities. 

All the models took the same inputs and went through the same training and tuning 

procedures. Their performance metrics were compared in the testing set to reflect if 

the Bi-LSTM-CRF model could outperform the classical ML models. 



 

 

 

 

60 

(4) Model hyper-parameter tuning methods 

Hyper-parameters can affect DL model performance and efficiency, which can be 

divided into two groups. The first group of hyper-parameters mainly affects loss 

computation, such as the choice of activation and loss functions. Hyper-parameters in 

the second group affect the updating of model parameters, such as the learning rate 

and optimisation functions. Besides, training data are usually separated into batches 

while the model takes one batch at a time. The batch size and the number of epochs 

are also hyper-parameters because they affect training time and computation power 

(Goodfellow et al., 2016). Hyper-parameters cannot be trained but should be tuned 

manually to suit the input data and model structure. For each hyper-parameter, a list 

of values is created (e.g., 0.001, 0.01, 0.1 for the learning rate). The lists form a discrete 

space of hyper-parameters, and a combination of hyper-parameters is a point in that 

space. During tunning, different combinations are selected through grid-searching or 

random searching. Grid-searching can find the best hyper-parameters, as it can cover 

all combinations. However, the strategy can require much time and computation power 

thus is suitable when the number of hyper-parameters is small. In contrast, random 

searching selects some points in that space using statistical sampling. Despite that 

random searching can miss the optimal combination, it can save much time and still 

return a rather optimal set of hyper-parameters with properly designed sampling. This 

strategy is more applied when the model contains many hyper-parameters. The grid-

searching strategy was employed in experiments of this research given the relatively 

small number of hyper-parameters (Probst et al., 2019). 

For each selected combination of hyper-parameters, the model should be evaluated in 

the validation set. In the experiments, five-fold cross-validation was adopted. Except 

for 10% data in the testing set, 20% of the remaining data were randomly sampled as 

the validation set, roughly complying with the 7:2:1 proportion. The hyper-parameters 

gaining the best average performance in the five validation sets were chosen as the 

optimal hyperparameters. In this way, the model could encounter more data during 

training and validation (Shrestha & Mahmood, 2019). The hyper-parameters for the 

Bi-LSTM-CRF model and the tuning results are introduced in Section 4.3.1. 

3.4.2 Focus group for domain knowledge collection (Step 2-2 & RM2) 

A focus group is a topic-based, in-depth group interview method. It intends to obtain 

data from a purposely selected group of individuals (called participants) rather than a 
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sample of a broader population. Participants of a focus group should have similar 

socio-characteristics and adequate experience on certain topics of a study. Thus, the 

participants are often domain experts (O. Nyumba et al., 2018). A focus group can 

discover and integrate the opinions of different participants. Therefore, it is a useful 

qualitative tool to gain an in-depth understanding of and solutions to the problems 

without common agreement. Besides, a focus group can save much time and costs 

compared to conducting a large-scale survey and individual interview (Ho, 2006). 

In the AEC industry, the focus group method has been adopted to investigate various 

topics, such as the stressors of construction staff (Leung & Chan, 2012), factors that 

affect public engagement in early project stages (Leung et al., 2014), risks in high-rise 

building projects (Kim et al., 2016). In addition, Wang (2018) applied the method to 

identify constraints in maintenance projects of LNG plants. As mentioned, domain 

knowledge (e.g., detailed constraint types) is important for DL models to reach high 

performance. The tasks/procedures and constraints in bridge rehabilitation projects can 

be different from those in other projects, and complex relations exist among project 

entities. Currently, there is no common understanding of such topics. As such, a focus 

group was conducted to identify typical classes of constraints and tasks/procedures, 

organise them in hierarchies (called domain taxonomies), and identify main relations 

and relation hierarchies for AWP modelling. 

The results of the focus group can assist in realising not only Objective 2 but also 

Objectives 3-4. Specifically, the hybrid IE model (Objective 2) and KBC model 

(Objective 4) require domain class hierarchies to improve the model structures, and 

the KBC model additionally requires domain relation hierarchies to enrich input data 

semantics (see Section 4.4 and Section 6.2 for more details). On the other hand, the 

ontological KBs (Objective 3) require both class and relation hierarchies to build the 

skeleton (i.e., the TBox) of ontologies (see Section 5.2 for more details). 

3.4.2.1 Focus group topic determination 
The focus group topic covers domain classes of constraint entities and main relations 

in concrete-reinforced bridge rehabilitation projects. Four types of constraint entities 

are considered: constraints, constraints’ attributes, tasks/procedures, and participants 

of a project. Tasks/procedures are also constraints, e.g., preceding tasks can constrain 

succeeding tasks. However, to comply with common sense and minimise confusion 

during focus group discussion, tasks/procedures are separated from other constraints 
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in this research. The first task of the focus group is to identify domain classes of 

constraint entities and build hierarchies of the classes. On the other hand, seven 

common types of relations for AWP are covered: 1) relations of the form ‘constraint 

entity constrains constraint entity’ (c2c), 2) relations of the form ‘constraint entity 

constrains task/procedure’ (c2t), 3) relations of the form ‘constraint entity has-attribute 

attribute’ (c2a), 4) dependencies of tasks or procedures (t2t), 5) relations between 

constraint entities and work packages (c2p), 6) relations organising packages in 

sequences/hierarchies (p2p), and 7) relations between constraints/tasks/procedures and 

project participants (ct2pp). 

It should be noted that the t2t and p2p (releasing sequences) relations often have 

unambiguous meanings. For instance, the relations is-succeeded-by, is-preceded-by, 

and proceed-concurrently can model task/procedure dependencies in most projects 

while can be well understood by all participants. Besides, the c2p and p2p (package 

hierarchies) relations are straightforward, which can be modelled by ‘is-constraint-of’ 

and ‘sub-package-of’, respectively. On the contrary, the c2c, c2a, c2t, and ct2pp 

relations often do not have common expressions. Different names can be used to 

describe the same relation. It is very important to obtain unique and unambiguous 

descriptions and definitions of relations when integrating information in ontologies. 

Hence, this is another task in the focus group. Relations can contain simple or rich 

semantics. For example, c2a relations can all be modelled by ‘has-attribute’ or can be 

divided into more detailed relations (e.g., ‘has-geometry’ and ‘has-price’). Thus, 

relations can form hierarchies which are important for developing the ontologies 

(Chapter 5) and the KBC model (Chapter 6). The relation hierarchies are an important 

topic of the focus group as well. 

Accordingly, the topic of the focus group could be divided into three sub-topics: the 

development of hierarchies of classes of constraint entities, main relations for AWP 

modelling and their descriptions, and development of relation hierarchies. 

3.4.2.2 Focus group participants 
In the next step, the number of participants and their selection criteria should be 

determined. It is suggested that a focus group of 5-12 participants can keep a balance 

between depth and breadth of data collection (El-Sabek & McCabe, 2018). Hence, this 

research invited ten domain experts who were selected based on the following criteria: 

1) they should have rich work experience (i.e., more than 8 years) of bridge 
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maintenance, 2) they should be involved in at least one bridge major rehabilitation 

project in the last five years, 3) they should come from different backgrounds to cover 

more project stages and represent the views of different participants. Table 3-2 lists 

the profile of the ten participants. The group involves project-level participants (e.g., 

the owner, contractor, designer, maintenance team, and supply company) as well as 

external participants which mainly refer to relevant authorities such as DoTs and 

municipal bureaus. Thus, it can be argued that the experts can provide comprehensive 

and useful advice on the topics of interest. 

Table 3-2 Profile of domain experts in the focus group 

 Organisation Years of 
experience Area of expertise 

1 Southwest Jiaotong 

University 

8 Applications of ICTs in infrastructure 

projects 2 8 

3 10 Bridge hazards treating 

4 Qingzheng Road Ltd. 11 Bridge inspection 

5 13 Bridge design and construction 

6 
Bureau of Public Roads of 

Chengdu 

15 

Bridge maintenance scheduling 7 10 

8 11 

9 Chongqing University 

Industrial Technology 

Research Institute 

10 

Project planning and management 
10 10 

3.4.2.3 Focus group data collection and analysis 
The focus group lasted 120 minutes including three stages. In the first stage (25 

minutes), the moderator (i.e., the researcher) introduced the purpose, topic and sub-

topics, and ground rules of discussion, such as the equal status of each participant, 

allowance to provide suggestions and doubts, and confidentiality of the discussion 

results. These rules could help the participants stay relaxed, making the discussion 

proceed naturally, maximising the will of sharing ideas, and facilitating the collection 

of in-depth domain knowledge (Ho, 2006). 

For each sub-topic, the researcher prepared initial results, e.g., the lists of typical 

classes of constraint entities and preliminary hierarchies. These initial results were 

obtained by reviewing 11 bridge rehabilitation manuals and 52 bridge maintenance 

reports in China, North America, and Australia because these countries have a large 

number of bridges as well as rich experience of bridge maintenance (Frangopol & 

Bocchini, 2012). In the second stage (60 minutes), hard copies of the initial results 

were presented to the experts who were then asked to provide advice on adding, 

deleting, and modifying classes and expanding or narrowing down hierarchies (i.e., 
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increasing or reducing the levels in the initial hierarchies). Experts’ advice was written 

down in the hardcopies. Any participant can raise questions and concerns about the 

initial results. Free discussion among the researcher and participants was encouraged 

and moderated by the researcher, where any participant could express opinions about 

questions raised by other participants. In the last stage (40 minutes), the researcher 

summarised the findings in the previous discussion and collected the views from all 

participants. When contradictory views appeared, the researcher asked for opinions 

from all experts to achieve an agreement. 

Three ways were adopted to collect data in the focus group. First, the hardcopies were 

collected, which recorded specific ideas of each expert. Second, the researcher used 

memories to quickly capture important quotes and ideas of each speaker during free 

discussion. Such notes could significantly help the researcher to summarise the ideas 

of different experts and gain an overall understanding. Finally, an audio recorder was 

adopted to record the 120 minutes’ focus group, which were translated into texts and 

saved in .doc files (O. Nyumba et al., 2018). The initial classes of constraint entities, 

relation descriptions, and hierarchies of classes and relations were refined based on 

summarising all data obtained in the focus group. 

3.4.3 KRL model (Step 2-3) 

The KRL model is responsible for extracting relations (i.e., triples) among constraint 

entities. The model includes four key parts, i.e., a class mapping module, a synonym 

mapping module, a TransE initialisation model, and a CNN-based KRL model. 

3.4.3.1 Data inputs and outputs 

A KRL model often takes pairs of entities as inputs and then extracts valid triples as 

outputs. Candidate triples can be formed by establishing different types of relations 

between an entity pair. As mentioned, the research concerns seven relation types for 

AWP modelling, while the KRL model can extract three of them: c2c, c2t, and c2a. 

On the other hand, task/procedure dependencies (t2t) and entity-package relations (c2p) 

are set up using rules. For one thing, the number of training samples of t2t and c2p 

relations (i.e., sentences implying the relations) is often much less than that of c2c, c2a, 

and c2t relations. For another, task/procedure entities are usually mentioned in 

separated sentences but still hold dependencies. Current DL models are not good at 

extracting relations from such separated data (Goodfellow et al., 2016). Finally, the 

package-package (i.e., p2p) and constraint/task/procedure-participant (i.e., ct2pp) 
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relations cannot be extracted automatically thus need to be manually inserted. Such 

relations generally rely on project properties (e.g., the project scale and type) hence 

are difficult for DL models to capture common patterns (Wang, 2018). The classes of 

constraint entities (obtained through the focus group) are also important inputs for the 

KRL model. The classes can provide the model with additional domain information 

thus facilitating training (see the next section and Section 4.4 for more details). 

3.4.3.2 Overall design of the relation extraction model (RM3.2) 
To achieve higher triple extraction performance in the bridge rehabilitation domain, 

specific information (e.g., domain classes of entities) is utilised in the KRL model. 

Besides, there are always entities that do not exist in the training dataset. The issue 

should be addressed, otherwise, it can largely damage model performance when the 

model encounters entities never seen during training. Finally, it is essential to have a 

good initialisation method to generate initial embeddings of triple elements (h, r, and 

t), which can also affect model performance. As such, three supplementary modules 

are created for the proposed KRL model. 

First, a class mapping model is developed. For entities in an entity-pair, the model 

maps them to domain classes (e.g., mapping ‘crane’ to the class ‘Equipment’). Second, 

a synonym mapping module is created. This module is employed during model testing 

only, which maps an unseen entity to an existing one in the training set according to 

the cosine similarity between the names of the two entities. Finally, a TransE model, 

a simple but effective model in the early studies of relation extraction, is applied to 

initialise embeddings of triple elements, which can accelerate KRL model training 

(Dettmers et al., 2017; Wang et al., 2014). Specifically, when a candidate triple is 

inputted, the classes and synonyms (when necessary) of entities in the triple are 

identified. The embeddings of entities, classes, and relations are extracted, which are 

initialised by the TransE model. The core of relation extraction, the KRL model, is 

based on a CNN structure. Above embeddings are concatenated as an input matrix so 

that CNN filters can extract features/patterns of the input triple by convolution and 

pooling operations. The operations produce a vector representing the validity of the 

triple, which is compared with the true triple label to train the model (i.e., updating 

model parameters and triple element embeddings) using backward propagation. The 

detailed working mechanism of the model is introduced in Section 4.4. 
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3.4.3.3 DL model experiments (RM6.1) 

The DL experiment process of the KRL model is similar to that of the Bi-LSTM-CRF 

model introduced before, while the differences are summarised below.  

(1) Experiment data collection, pre-processing, and labelling 

As mentioned, the AEC industry does not have large KBs that contain triples to train 

the KRL model. Thus, training triples were generated based on extracted entities. It 

should be noted that the triple generation process only produced c2c, c2a, and c2t 

triples because the KRL model only supports automatic extraction of the three types 

of relations. During training and validating the KRL model, triples were generated 

using entities manually tagged in sentences to ensure the correctness of data. After 

manual tagging, vocabularies (e.g., V1 and V2 introduced in Table 4-1) were created 

to record unique entities and relations, respectively. During model testing, the triples 

were created using entities extracted by the Bi-LSTM-CRF model automatically. This 

could reflect the situation when implementing the model in practice. Nevertheless, 

triples for training and testing the KRL model were created by traversing entities and 

setting-up relations among them. Specifically, each CONS entity should set up all 

three types of relations with all other entities. As such, //(// − 1) + ///0 + ///1 

triples can be generated, where the //, /0, and /1 are the number of unique CONS, 

TP, and AT entities, respectively.  

The generated training triples were manually labelled as valid or invalid. However, 

not all triples were included for training. The traversal process can generate a lot of 

triples, and manually labelling all of them is very time-consuming. Fortunately, some 

triples are too simple for the model to learn valuable patterns, as they are against 

common sense in construction projects (e.g., ‘paving constrains asphalt’) (Zhang et al., 

2018b). In addition, the validity of some triples can be affected by construction stages 

thus can be ambiguous. For instance, the triple ‘steel constrains scaffolding’ is valid 

during temporary facility construction, as erecting scaffolding requires steel, however, 

the inverse (i.e., ‘scaffolding constrains steel’) is valid in subsequent project stages, as 

scaffolding can vertically transport materials. Correctly recognising working stages 

requires interpreting the graph topology (e.g., if a ‘scaffolding’ entity is linked to the 

entity ‘building temporary facilities’ in the graph) (Nguyen, 2020; Zhou et al., 2018). 

Such ambiguity is considered and addressed in the KBC model introduced in Section 

3.6.2, where the entire graph has been built and the topology is available. However, 
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for relation extraction, such issues are left for the future. In experiments, unrealistic 

and ambiguous triples were deleted, and a proportion of the remaining triples were 

randomly sampled and manually labelled for training the KRL model. 

(2) Training, validation, and testing protocols 

The KRL model extracts relations through binary classification, i.e., by classifying 

triples as valid and invalid. Thus, the model again adopted the Pr, Re, and F1 scores 

for evaluation in experiments. Other model training, validation, and testing protocols 

are similar to those developed for the Bi-LSTM-CRF model. 

(3) Data splitting and experiment process  

The data splitting process is the same as that for the Bi-LSTM-CRF model. However, 

the KRL model utilises domain information to improve performance. Thus, several 

rounds of experiment were carried out to compare the performance metrics under 

different model settings in the testing dataset, including 1) whether the domain class 

information was added to the model structure, and 2) the domain class information 

was stacked horizontally or vertically. More details can be found in Section 4.5.2.  

(4) Model hyper-parameter tuning methods  

The hyperparameter tuning process is again similar to that for the Bi-LSTM-CRF 

model, except that some specific hyper-parameters can be different. More details are 

introduced in Section 4.5.1. 

3.4.3.4 Controlled experiments (RM6.2) 
To verify the proposed information management approach in practice, including the 

hybrid IE model (the Bi-LSTM-CRF and KRL model), the ontological KBs (i.e., 

BRMO), and the KBC model. Two concrete-reinforced bridge rehabilitation projects 

were selected to conduct controlled experiments. The first project was carried out on 

a bridge located in Zhejiang, China. It is a beam bridge (415m long and 42m wide) 

and three tasks were carried out: 1) fixing concrete cracks, 2) replacing deck pavement 

with modified asphalt, and 3) reinforcing bridge piers using concrete wrapping. The 

second project was carried out on a cable-stayed bridge (160m long and 19m wide) in 

Luohe, China. The main task was to replace damaged cables. 

To demonstrate the usefulness of the hybrid IE model, the experiments compared the 

time to draw AWP graphs using the traditional manual approach and the Bi-LSTM-
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CRF and KRL model. The input data were meeting records of the deck pavement 

replacement task in the first case project. To obtain fair results, the experiment was 

conducted by the researcher and one of his colleagues. The colleague is also a PhD 

student in the field of infrastructure engineering and has relevant domain knowledge. 

All the experiment data, activities or tasks, equipment (i.e., computer hardware and 

software), and environment (i.e., location and time) were the same for the researcher 

and the colleague, except that the researcher carried out AWP modelling using the 

hybrid IE model while the colleague relied on the manual approach. More details of 

the experiments are introduced in Section 4.5.3. 

3.5 Ontology development (Objective 3) 

3.5.1 Domain knowledge collection (Step 3-1 & RM2) 
The ontologies should be built on a comprehensive collection of domain knowledge 

of bridge rehabilitation, i.e., domain classes of constraint entities and relations (called 

properties in ontologies) as well as the hierarchies (i.e., taxonomies) to organise the 

classes and relations. In this research, the domain classes, relations, and hierarchies 

were first extracted by reviewing relevant documents of bridge rehabilitation, e.g., 

working plans, meeting records, academic articles, standards, manuals, and case 

reports. The initial knowledge was refined through the focus group introduced in 

Section 3.4.2. 

3.5.2 Ontology development steps (Step 3-2 & RM4.1) 
The ontologies were constructed following the ontology development 101 guideline 

proposed by Stanford University owing to its wide recognition and clear instructions 

(El-Diraby, 2013; El-Gohary & El-Diraby, 2010; Ren et al., 2019; Stanford, 2002). 

Figure 3-2 shows the steps suggested in the guideline. 

(1) Step 1 determine ontology domain and scope 

The first step should define the domain and scope of the ontologies (i.e., BRMO), 

which can be achieved by answering the following fundamental questions: 

Q1: What domain does the BRMO cover? 

A1: The domain is bridge rehabilitation. The BRMO should cover rehabilitation tasks 

and procedures (a task includes several procedures whereas the same procedure can 
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be required in different tasks), constraints, constraints’ attributes, as well as project 

participants. 

Q2: For what purpose the BRMO is used? 

A2: The BRMO intends to integrate constraint information in bridge rehabilitation 

projects, which also enables essential project management functions using semantic 

reasoning, e.g., evaluation of work progress, constraint statuses, and performance of 

participants. 

Q3: Who can use and maintain the BRMO? 

A3: The main user is the management team of the bridge rehabilitation project, and 

other participants, e.g., the bridge owner and maintenance team, also have access. 

Q4: What are the sources for developing the BRMO? 

A4: Bridge rehabilitation standards and manuals, case reports, project documents (e.g., 

work plans, schedules, and meeting records), and experts’ opinions obtained by the 

focus group are the main sources. 

Q5: What types of questions can the BRMO answer? 

A5: The BRMO can answer questions that a bridge rehabilitation project manager may 

ask, such as the progress of tasks/procedures, reasons of delay, constraint statuses, 

critical constraints, participants and their performance, and relevant knowledge to 

address constraints that are not timely removed. 
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Figure 3-2 Steps to develop the BRMO 

(2) Step 2 consider reusing existing ontologies 

Reusing existing ontologies can save much time to develop the BRMO from scratch. 

During the ontology development process, several ontology libraries were searched, 

e.g., the Ontolingua, DAML, and DMOZ, while no relevant ontologies were found. 

Current bridge maintenance ontologies focus on static information of components 

rather than dynamic constraint information in rehabilitation projects. These ontologies 

were not taken as reference in this thesis (Liu & El-Gohary, 2017a; Ren et al., 2019). 

In contrast, some ontologies include common taxonomies of constraints and tasks or 

procedures in conventional construction projects (El-Diraby, 2013; El-Gohary & El-

Diraby, 2010; Wang, 2018; Wang et al., 2016), which could fit the scope of BRMO 

hence were adopted for developing the ontologies. 

(3) Step 3 enumerate domain terms 

In this step, critical terms, i.e., domain concepts of bridge rehabilitation, should be 

identified, including tasks/procedures, constraints, constraints’ attributes, and project 



 

 

 

 

71 

participants. In this research, the focus group results were taken as a reference during 

the process. 

(4) Step 4 define a class hierarchy 

In this step, domain classes are extracted from the above critical terms and class 

hierarchies should be developed using a mixed extraction approach. The most salient 

classes are extracted first, which can be generalised or specialised. For instance, when 

the class ‘Deck System Replacement’ is extracted, the term ‘Replacement’ is extracted 

as its super-class, while the terms ‘Pavement Replacement’ and ‘Auxiliary System 

Replacement’ are extracted as its sub-classes. It should be noted that when developing 

the hybrid IE model, the constraints’ attributes were treated as domain classes (see 

Chapters 4 and 6). This is different from conventional ontologies where attributes are 

treated as simple literals but still does not violate the OWL syntax. 

(5) Step 5 define properties 

Relations are also called properties in the sector of ontologies, including two main 

types: the object and datatype property. Object properties refer to the relations among 

ontological instances (entities), such as the ‘is-constrained-by’ relation setup between 

two constraint entities. On the other hand, datatype properties link instances to their 

quantitative or qualitative attributes, for example, all constraint entities have a ‘has-

planned-removal-date’ property. Definitions and descriptions of properties should be 

determined in this step. When developing the BRMO, the refined relation hierarchies 

obtained in the focus group were utilised for defining properties. 

(6) Step 6 define facets of properties 

Facets (e.g., characteristics and domain and range restrictions) should be defined to 

enrich property semantics. There are many characteristic types, in general, properties 

can be normal (i.e., no characteristics), functional, symmetric, asymmetric, transitive, 

and irreflexive. Functional properties have and only have one value as the object. For 

instance, the ‘has-actual-removal-date’ property is functional, because a constraint can 

only be removed once. Symmetric properties are equivalent to their inverse, whereas 

asymmetric properties do not have this feature. For instance, the property ‘is-close-to’ 

can model the spatial relations among components and is a symmetric property. If a 

subject ‘is-close-to’ an object, the object ‘is-close-to’ the subject as well. Transitive 

properties can propagate among instances and form a chain. One typical transitive 
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property is the ‘sub-class-of’, i.e., if A is the sub-class of B while B is the sub-class of 

C, then A is the sub-class of C. Reflexive properties allow an instance to be linked to 

itself through the relation, whereas this is forbidden in irreflexive properties. Object 

properties should consider all the characteristics whereas datatype properties mainly 

concern functionality. On the other hand, domain and range restrictions specify the 

allowed classes of the subject and object in a relation, respectively. The values of 

domain and range are classes and data types (e.g., integer and double) for object and 

datatype properties, respectively. For instance, the domain of ‘has-planned-duration’ 

and ‘is-constrained-by’ properties can be class ‘Date’ and ‘Constraint’, respectively. 

With such restrictions, properties (i.e., relations) can be only valid when they are set 

up among certain classes. For instance, a material cannot be linked to a procedure 

using the ‘manage’ property if the domain of the property is the ‘People’ class. The 

restrictions also enhance reasoning. For instance, given the domain of the property 

‘manage’, it is easy to infer that an entity belongs to the ‘People’ class if it manages 

other entities. 

(7) Step 7 create instances 

Instances can be generated by mapping ontological classes to real-world things. For 

AWP constraint modelling, instances include constraints, attributes of constraints, 

tasks/procedures, as well as project participants. The number, name, and properties of 

instances should be determined before instance creation. The number of instances 

often relies on the complexity and scale of the project. The naming convention is 

flexible but should be consistent. Finally, properties among instances should comply 

with the definitions of their belonging classes (e.g., the domain/range restrictions). 

3.5.3 Ontology information encoding and updating (Step 3-3 & RM4.2) 

The triples extracted by the hybrid IE model are initially stored in .csv files. Thus, a 

method should be developed to encode the triples in ontologies. On the other hand, 

conventional ontologies do not support complex computation and updating which are 

however important to manage construction projects. The proposed ontological KBs 

combine the OWL API with SWRL and SQWRL rules to address the issue. The OWL 

API is an interface supporting manipulation of ontologies, i.e., exporting, importing, 

adding, deleting, and modifying ontology information. The OWL API features two 

advantages compared to other APIs, e.g., the Apache Jena. First, the development of 

the API is closely related to the OWL syntax hence is more compatible with current 
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ontologies. Second, the OWL API is applied at the axiom level whereas other APIs 

are applied at the triple level. In ontologies, an axiom is a logic statement and can 

include multiple triples. Therefore, the axiom-centric design can better isolate users 

from bottom-level operations, e.g., serialisation and parsing of triples (Horridge & 

Bechhofer, 2011). 

3.5.3.1 Information encoding 
When encoding constraint information in the ontological KBs, the OWL API iterates 

rows in the .csv files. The general working mechanism of the API is as follows. For 

each row, the API creates an ontological instance (i.e., an entity) with the name of the 

first element (i.e., the subject) in the row and then reads the second element (i.e., the 

relation). If the relation is ‘is-a’, the OWL API finds the domain class using the name 

of the third element in the TBox. Then, it creates a class assertion axiom to assign the 

instance to that class. If the relation is not ‘is-a’, there are two situations. If the third 

element (i.e., the object) is not an attribute, the API creates another entity with the 

name of the object element then creates an object relation assertion axiom, specifying 

the two entities are linked through the relation element. Otherwise, a datatype relation 

axiom is generated to link the first element to the third element (i.e., its attribute). The 

encoding is enabled by built-in functions of the OWL API (Horridge & Bechhofer, 

2011). Figure 3-3 shows an example of the information encoding process. 

 

Figure 3-3 An example of ontology information encoding 
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3.5.3.2 Ontology computation and dynamic updating 

To support complex computation and updating, the OWL API exports information (i.e., 

axioms) out of the ontologies (i.e., BRMO) for programmatical modification. On the 

other hand, SWRL and SQWRL can express complex and rich semantics using 

ontological rules. Compared to the OWL API working well out of ontologies, SWRL 

and SQWRL are effective in terms of inferring information within ontologies. Once 

new information is computed, the OWL API imports the information back into the 

ontologies. The reasoning rules are then enabled to infer new and implicit knowledge 

based on the updated information. The overall mechanism is shown in Figure 3-4. 

Thus, the BRMO can be continuously updated, enriched, and reasoned to integrate 

static and dynamic project information. The BRMO also supports three management 

functions: 1) evaluation of work progress, 2) evaluation of constraint statuses, and 3) 

evaluation of the performance of participants. Detailed workflow and reasoning rules 

in the computation and updating process can be found in Section 5.3. 

 
Figure 3-4 Overall workflow of BRMO updating 

3.5.4 Ontology validation and controlled experiments (Step 3-3 & RM6.2) 
Ontology validation should concern the semantic and syntactical correctness of an 

ontology. Semantic validation is often conducted by asking competency questions, 

consulting experts, and merging and comparing the newly developed ontologies with 

existing ones. For BRMO, there are no similar ontologies, hence, only the first two 

types of validation were conducted. Asking competency questions is a simple way to 

self-check semantics in ontologies (Stanford, 2002). The questions should echo the 
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questions in A5 of Step 1 of ontology development while covering ontological classes, 

instances, and relations, such as 1) how many sub-classes of a certain constraint class, 

2) what are the relations among certain constraint entities, 3) what are the constraints 

of a certain task/procedure, 4) which tasks/procedures have been delayed and how 

severe the delay is, and 5) who is the participant with the best performance in terms of 

removing constraints? Artificial instances can be created to check if the ontologies 

contain enough information to answer the questions. During ontology development, 

self-checking was performed periodically to maximise the semantic validity of the 

BRMO. On the other hand, syntactical validation evaluates the ontologies against the 

underlying OWL syntax, e.g., subsumption, equivalence, and consistency. Syntactical 

validation can be conducted with specialised reasoners which can detect syntactic 

errors automatically. The introduced OWL API also has such reasoners for ontology 

checking. Thus, whenever the BRMO was modified in development and validation, 

the reasoners were launched to ensure the BRMO could pass the syntactical validation 

and was ready for further modifications (Antoniou & Van Harmelen, 2012). 

The BRMO is used to integrate constraint triples extracted by the hybrid IE model, 

and its usefulness was demonstrated in controlled experiments. The experiments were 

also conducted by the researcher and colleague, including two aspects. First, the time 

to search for constraint information was compared. The researcher searched for the 

information by navigating the BRMO using SPARQL queries, while the colleague 

performed the same task by reviewing text documents manually. Second, the three 

management functions of the BRMO were tested, i.e., evaluation of work progress, 

constraint statuses, and project participants’ performance. The experiments can prove 

the usefulness of the ontological KBs in terms of effectively exporting, importing, 

computing, reasoning, and updating constraint information in ongoing projects. More 

details of the experiments are introduced in Section 5.4. 

3.6 Knowledge base completion model design (Objective 4) 

The KBC model can predict missing triples in AWP KBs, which includes three key 

parts, i.e., an ontology-based data enriching module, a GNN-based encoder, and a 

KRL-based decoder. 
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3.6.1 Data inputs and outputs 

The proposed KBC model takes the entire project KB generated by the hybrid IE 

model (i.e., the Bi-LSTM-CRF and KRL model) as the input. The outputs are missing 

information (i.e., missing triples) in the KB. In other words, the outputs form a more 

complete KB. Figure 3-5 presents a simple example of applying the KBC model, 

where the triple ‘asphalt is-required-by paving’ does not exist in the original KB but 

is predicted by the model. 

3.6.2 Overall design of the KBC model (Step 4 & RM5) 

3.6.2.1 Semantic data enriching (RM5.1) 

The initial KBs generated by the hybrid IE model often lack adequate semantics for 

training the KBC model, which can largely hurt KBC performance. Therefore, a data 

enriching module based on the ontological KBs is created to enrich data semantics. 

The main method adopted by the module is to develop SWRL rules to 1) infer new 

triples using existing ones in the KBs, and 2) enrich semantics of triple relations, i.e., 

inferring relations with rich semantics, such as inferring relations ‘supply-power-to’ 

and ‘works-in’ rather than using the simple relation ‘constrains’. The enriched KB (i.e., 

a knowledge graph) is then fed into the GNN-based encoder. 

3.6.2.2 Encoder-decoder design (RM5.2-5.3) 

(1) Encoder design (RM5.2) 

The encoder carries out three tasks: sampling, aggregation, and updating (Figure 2-3 

shows the process). It takes the information of constraint entities, connections among 

entities (i.e., the graph topology), and domain class information of entities as inputs 

and learns new embeddings of constraint entities and relations. During sampling, the 

encoder considers the nodes and edges in the one-hop neighbourhood of each node. 

Then, the aggregation process summarises the embeddings from the nodes and edges 

linked to the central node, where the attention mechanism is employed to weight the 

embeddings and integrate them as a new embedding for the central node. During the 

updating process, the new embedding replaces the node’s original embedding. In the 

encoding process, 1) domain classes of entities are included as additional nodes so that 

the aggregation process can consider class information; 2) the original embedding of 

a node is added to its new embedding during updating, which can keep the original 

meaning of the node (e.g., the semantic meaning of the node’s name). 

(2) Decoder design (RM5.3) 
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The decoder can predict a missing entity or relation in a triple given the other two 

elements are known (e.g., predicting t given h and r). The decoder is based on CNN 

and its structure is similar to the KRL model for triple extraction. The model 1) takes 

the embeddings of the two known triple elements produced by the GNN encoder, 2) 

enumerates all other entities/relations in the KB to replace the missing element which 

is represented by a symbol ‘?’, 3) computes the validity of all candidate triples (a 

candidate triple is formed by the entity/relation replacing the ‘?’ and two known 

elements) and selects the triple that is most likely to be valid to complete the KB. As 

such, the KBC model can produce a descending list of triples, and triples with high 

validity are ranked at the top of the list. To further improve the model performance, 

another type of domain information, i.e., the working contexts of entities, are added to 

the CNN structure. Working contexts are the tasks/procedures that a constraint entity 

constrains. Working contexts are considered as they can affect the relation direction in 

a triple, which is introduced in Section 3.4.3.3. For instance, the working context of 

the entity ‘asphalt’ in bridge rehabilitation projects is paving and rolling. More details 

can be found in Section 6.2. 

 

Figure 3-5 A simple example of KBC 

3.6.3 DL model experiments (Step 4 & RM6.1) 

(1) Experiment data collection, pre-processing, and labelling 
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Triples stored in the ontological KBs were gathered for training and testing the KBC 

model, which were all assumed to be valid. However, training needs both valid and 

invalid data. Thus, invalid training triples were generated by replacing the head or tail 

element in a valid triple with a randomly sampled entity in the KBs. As such, unlike 

training the KRL model, training the KBC model does not require data labelling, as 

labelling can be automated in the process of generating invalid triples. 

(2) Training, validation, and testing protocols 

In experiments, the KBC model was also trained and tuned using the training and 

validation datasets (the cross-validation was applied) before it was evaluated in the 

testing dataset. The KBC model produced a list of candidate triples with the true 

missing triples being ranked higher. Hence, performance metrics for evaluating the 

KBC model were different from those for conventional classification tasks, and the 

Hit@1, Hit@3, Hit@10, and mean rank (MR) were adopted. The three Hit@ metrics 

can indicate the percentage that the ground true missing triple is the first, within the 

first three, and within the first ten triples in the candidate list, respectively, while the 

MR indicates the rank of the ground true triple in the candidate list. 

(3) Data splitting and experiment process 

The 7:2:1proportion was again used to split the training, validation, and testing sets. 

Different settings of the KBC model were compared through experiments to reveal the 

effect of adding domain information (i.e., classes and working context information), 

which covered three situations: 1) whether data semantic enriching was applied, 2) 

whether domain class information was used in the encoder, and 3) whether working 

context information was used in the decoder. 

(4) Model hyper-parameter tuning methods 

The hyperparameter tuning process is similar to those for the Bi-LSTM-CRF and KRL 

models, except that some hyperparameters can be different. Specific hyperparameters 

and the tuning results are introduced in Section 6.3.1. 

3.6.4 Controlled experiments (Step 4 & RM6.2) 

The experiments compared the time and accuracy to check and complete incomplete 

KBs. The KBs of the two case projects (i.e., the deck replacement task and cable 

replacement task) were developed. Then, some triples were artificially deleted to make 

the KBs incomplete. The researcher and the colleague were informed of the types of 
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missing information (e.g., finding missing constraints of a constraint). The researcher 

and the colleague checked and completed the KBs using the KBC model and manual 

approach, respectively. The colleague could review the task working plans to obtain 

additional information. The time to find out all missing information was recorded for 

comparison. In addition, Pr, Re, and F1 score were used to evaluate the identified 

missing triples. The three metrics were computed by Eq. 3-4 - Eq. 3-6, where CIT, 

WIT, and MT are the correctly identified triples, wrongly identified triples (i.e., false 

positives), and missed triples (i.e., false negatives), respectively. More experiment 

details are introduced in Section 6.3.3. 

)*,23435/ = 678
678 +978:       Eq. 3-4 

+,2;<< = 678
678 +=8:       Eq. 3-5 

-1 = 2 × )*,23435/ × +,2;<<
)*,23435/ + +,2;<<:       Eq. 3-6 

3.7 Chapter summary 

This chapter summarises the research methodology. First, the research philosophy is 

introduced as the foundation of the thesis. The research belongs to the post-positivism 

paradigm. The research methodology is mainly deductive and quantitative, which is 

based on objectivism epistemology and realism ontology. However, subjective and 

qualitative methods (i.e., focus group) are also employed to obtain relevant domain 

knowledge. Sections 3.4-3.6 introduce specific research methods. In summary, the Bi-

LSTM-CRF and KRL model are utilised to extract constraint entities and relations, 

which produce constraint triples (Section 3.4). Then, the ontological KBs are built to 

integrate these triples, which also support information computation, reasoning, and 

updating of constraint information (Section 3.5). Finally, a KBC model is developed 

to handle the incompleteness of ontological KBs, which can predict missing triples 

and continuously enrich the KBs (Section 3.6). By applying the three components, 

AWP modelling in bridge rehabilitation projects can be largely automated, and useful 

information can be timely integrated to assist project management. 
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Chapter 4: Developing automatic methods for constraint 
information extraction 

4.1 Chapter introduction 

This chapter presents the detailed model design and experiment results of the hybrid 

IE model for entity extraction (Sections 4.2-4.3) and triple extraction (Sections 4.4- 

4.5). Cross-comparison results are demonstrated to prove the usefulness of the model 

and effect of adding class information to the KRL model. Contributions of the hybrid 

IE model are discussed in Section 4.6. All the models were developed with Python 3.7, 

Tensorflow (1.14.0), and Keras (2.2.0) on a Mac machine equipped with a 2.3 GHz 

Intel core processor and 64 GB random-access memory. 

4.2 Detailed design of the Bi-LSTM-CRF model 

Extracting constraint entities is realised by the Bi-LSTM-CRF model. This section 

describes the detailed model design. 

4.2.1 Word/character embeddings 

In early NLP studies, words/characters are usually encoded in one-hot vectors. For 

instance, if the number of all unique words/characters in the entire dataset is N, then a 

matrix ∈ ℝ)×) is created. Each column in the matrix is a one-hot vector o ∈ ℝ)×! of 

a word/character, where all elements are 0 except the one denoting the position of the 

word/character in the dataset (Figure 4-1). However, one-hot vectors are too sparse to 

train DL models. Hence, modern NLP models adopt word/character embeddings, and 

the Bi-LSTM-CRF and KRL models are no exceptions.  

Word/character embeddings are low-dimension (e.g., 50-300) real-valued numerical 

vectors which can represent the semantics (i.e., meanings) of words/characters. Based 

on the embeddings, a matrix E ∈ ℝ)×2 is created (n is the embedding dimension). A 

one-hot vector o of any character/word can be transformed to its embedding vector e 

by Eq. 4-1. A sentence can be represented by a matrix I ∈ ℝ#×2 by concatenating 

word/character embeddings (m is the number of characters/words in that sentence). 

Then, the I matrix can be fed into downstream DL models (e.g., the Bi-LSTM-CRF 

model). An example of embedding transformation is shown in Figure 4-1. 

,1 =	 (51)$C	(D = 1,2…E)    Eq. 4-1 
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Figure 4-1 An example of embeddings transformation 

Word/character embeddings need to be learned by ML models, such as the widely 

recognised word2vec model (Rong, 2014). However, training such models requires 

numerous data and has excessive demands on computation power. Therefore, it is 

common to use embeddings trained by others (Baker et al., 2019). In this research, the 

pre-trained embeddings were collected from the studies conducted by Li et al. (2018) 

and Pennington et al. (2014). The embeddings (n=300) were trained on well-known 

databases (e.g., Baidu encyclopedia and Wikipedia), covering over 653473 Chinese 

characters and 400000 English words, respectively. 

To assist in understanding the following contents, Table 4-1 lists important embedding 

matrices and vocabularies in the hybrid model. F3/, F4, and F. are the number of 

unique characters or words, entities, and relations, respectively. G3/ and G1 are the 

dimensions of embeddings of words/characters and entities/relations, respectively. 

Table 4-1 Vocabularies and embedding matrices for model training 

Name Shape Embedding Usage Development methods 
V1 (!", 1) n/a Store the indices of unique 

entities and relations 
Map entities and relations 
to unique indices V2 (!#, 1) n/a 

WCE (!$%,	#$%) $$% Store the embeddings of 
characters and words 

Employ embeddings pre-
trained in other studies 

EE (!",	#&) 
$& 

Store the embeddings of 
head and tail entities 

Train the TransE model 
RE (!#,	#&) Store the embeddings of 

relation entities 

4.2.2 Bi-LSTM-CRF layer 

The mechanism of the Bi-LSTM-CRF model is demonstrated in Figure 4-2. Given a 

sentence, the model reads words/characters from left and right directions, then it feeds 
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their embeddings into LSTM cells. Each cell corresponds to a word/character and has 

three gates: forget gate, update gate, and output gate. The gates compute how much 

information from the last cell is discarded, how much information in the current cell 

is added, and how much information is used for predicting entity tags, respectively. 

Despite the long distance, the gates can keep useful information and discard useless 

information. The structure of an LSTM cell is shown in Figure 4-3. A cell needs three 

inputs: embedding H5 of the current word/character and I567 and J567 from the last 

cell. The I567 and H5 are concatenated vertically to form a long vector (concatenation 

is presented by square brackets in equations) to be fed into the gates. The gates are 

also numerical vectors which are computed using Eq. 4-2 – 4-4. 

Accordingly, I5 and J5 are computed by Eq. 4-5 – 4-7 which can be applied to both 

directions. In the equations, vectors from different directions are denoted as IKK⃗  and I⃖KK; 

the N and tanh stand for sigmoid and tanh function, taking the form of 
!

!(8'(
 and 

8(68'(

8((8'(
, respectively; and * and + mean element-wise multiplication and summing, 

respectively. All W and b are randomly initialised and continuously updated during 

training. For each word/character, the IKK⃗  and I⃖KK are concatenated as a long vector I∗ at 

the hidden layer in Figure 4-2. Finally, the I∗ is fed into the softmax layer to predict 

the vector p ∈ ℝ!×: (K is the number of entity tags) using softmax 
;<=	(>))

∑ ;<=	(>))*
)

. Thus, 

the output of a sentence is a matrix P ∈ ℝ#×:, and O@,B is the probability of the ith 

word/character being predicted as the jth tag. 
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Figure 4-2 Bi-LSTM-CRF model mechanism 

 
Figure 4-3 The internal structure of the LSTM cell 

4.2.3 CRF layer 

The CRF layer takes the P matrix and makes final predictions considering different 

combinations of tags. The score of a tag sequence ' = ('!, '"…'#) can be computed 

using Eq. 4-8. The A in the equation is a transition matrix indicating the impacts of 

forget gate update gate tanh output gate
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adjacent tags, which is also learnable. The final tag sequence is the one gaining the 

highest score among all possible sequences, i.e., '( = IPQRIS(4). 

TC = σV9C[;16!, ,1] + YCZ    Eq. 4-2 

TD = σ	(9D[;16!, ,1] + YD)    Eq. 4-3 

TE = σ	(9E[;16!, ,1] + YE)    Eq. 4-4 

2̃1 = D;/ℎ(9/[;16!, ,1] + Y/)    Eq. 4-5 

21 = TD ∗ 2̃1 +TC ∗ 216!    Eq. 4-6 

;1 = TE ∗ D;/ℎ(21)    Eq. 4-7 

4(^, ') = ∑ )F,G)
#
FH! + ∑ `G)G)+,

#
FHI     Eq. 4-8 

4.3 Entity extraction experiment results 

4.3.1 Data preparation and hyper-parameter tuning 
To train the Bi-LSTM-CRF model, three standards/manuals and 31 working plans of 

concrete-reinforced bridge rehabilitation and general construction (in Chinese) were 

collected. The documents could cover common bridge rehabilitation tasks, e.g., crack 

fixing, deck pavement, cable replacement, and structure reinforcement. Non-relevant 

texts (e.g., the organisation structures of project teams) were removed, leaving 11283 

sentences. Sentences including common constraint entities were filtered. This resulted 

in 1100 positive training samples, and the remaining sentences were treated as negative 

samples. For each positive sample, true tags were labelled manually as shown in Figure 

4-2. To prove the generalisation ability of the model, another 3100 English sentences 

were collected from four bridge rehabilitation manuals. In total, 550 positive samples 

were tagged in these English sentences. Pre-trained word/character embeddings were 

collected in research conducted by Li et al. (2018) and Pennington et al. (2014). The 

embeddings (n=300) cover 653473 Chinese characters and 400000 English words, 

respectively, which are comprehensive for training the model. 

It should be noted that mainstream Bi-LSTM-CRF models intend to extract general 

information (e.g., companies) in general texts (e.g., webpage news) (Bolucu et al., 

2019; Hochreiter & Schmidhuber, 1997), where the data are often sparse, i.e., entities 

only appear a few times in all texts. In addition, entities can have different meanings 

in different contexts, e.g., ‘Apple’ can represent a fruit or a company. Thus, training 
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requires massive data to learn the rules for matching entities in texts. In contrast, the 

proposed model is designed for the construction domain. The data used are much 

denser, with most entities having distinct meanings. Hence, the model can effectively 

learn the matching rules despite the small amount of data. 

The hyperparameters were tuned following the methods introduced in Section 3.4.1. 

The following optimal hyper-parameters were obtained: 1) for Chinese data, learning 

rate=0.01, batch size=64, epochs=10, and  I5 ∈ ℝ"JK×!; 2) for English data, learning 

rate=0.01, batch size=64, epochs=15, and the shape of I5 ∈ ℝ!"L×!. 

4.3.2 Model results and analysis 
Table 4-3 lists performance metrics of the Bi-LSTM-CRF model, and Figure 4-4 and 

Figure-5 illustrate the confusion matrix and several examples of extracted entities, 

respectively. The experiment results indicate that the model can accurately extract 

constraint entities from texts in both languages. The ‘F1-diff’ indicates differences of 

F1 scores between the training and validation sets, reflecting the degree of overfitting 

(DOF). Currently, the ‘F1-diff’ is 6%-7%. Although there are no strict requirements 

for the indicator, it means the model can suffer slight overfitting. However, the F1 

score in the testing dataset reaches 0.936 for Chinese data and 0.912 for English data, 

respectively, meaning the model can reach high accuracy and to-some-extent handle 

unseen texts. Moreover, overfitting can be addressed by adding more data. To further 

demonstrate the advantages of the Bi-LSTM-CRF model in terms of extracting entities, 

two classical ML models (i.e., the HMM and CRF model) were additionally trained 

for cross-comparison, where the tokens, part-of-speech tags, and frequencies of 

characters/words were extracted as features. It turns out that the Bi-LSTM-CRF model 

outperforms the two ML models because it achieves the highest F1 scores and lowest 

DOF while requiring no manual feature engineering. 
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Figure 4-4 The confusion matrix of NER results 

 

Figure 4-5 Examples of NER results 

It is found that most errors of the entity extraction task are caused by classifying the 

three tags (i.e., CONS, TP, AT) as the ‘O’ tag. The wrongly recognised entities only 

have a few samples in the training data (for instance, ‘tarpaulin’ in Figure 4-5). Thus, 

the model cannot see enough samples to distinguish them from ‘O’ entities. 

4.4 Detailed design of the KRL model 

Relation extraction is realised by the KRL model. This section describes the detailed 

design of each component in that model. 
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4.4.1 Class mapping model 

Class mapping can link head and tail entities to domain classes shown in Figure 4-6. 

There are usually distinct patterns when Chinese words are representing the CONS, 

TP, and AT entities. Hence, class mapping is realised by rule-based matching and 

regular expression. For CONS and TP entities, the ending characters of their names 

can largely determine their classes. For instance, the character ‘机’ in ‘压路机’ (roller) 

indicates an equipment entity, and the character ‘料’ in ‘混合料’ (mixture) indicates 

a material entity. As for AT entities, their units (e.g., meters) are extracted for class 

mapping. For instance, ‘8m’ is mapped to ‘Geometry’ while ‘5Mpa’ is mapped to 

‘Pressure/Stress’. The remaining AT entities containing alphabets and/or numbers are 

mapped to ‘Type/Property’ (e.g., ‘C50’ for concrete materials and ‘SBS’ for asphalt 

materials). To support accurate mapping in experiments, based on common words in 

the industry, 179, 79, and 65 ending characters were identified to map CONS, TP, and 

AT entities, respectively. 

 
Figure 4-6 Domain classes for class mapping 

Moreover, to allow the hybrid IE model to handle multiple languages, a translation 

mechanism is adopted. Specifically, based on civil engineering dictionaries, entities 

extracted by the Bi-LSTM-CRF model in other languages are translated to Chinese to 

make use of the distinct patterns for class mapping. Then, the entities and their classes 

are translated into English to keep language consistency for training the KRL model. 

This mechanism is applicable, as: 1) most entities have unambiguous meanings in the 

construction domain and can be precisely mapped to counterparts in other languages; 
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2) it is simple but effective (see experiment results) and does not need any additional 

training. 

4.4.2 Synonym mapping module 

Training the KRL model only requires the V1 and V2 in Table 4-1. Thus, synonym 

mapping is only implemented during model testing, where the model can encounter 

entities out of V1. When the model meets an out-of-KB entity, it: 1) iterates existing 

entities in V1, 2) extracts ,3/ of each entity pair (i.e., the unseen entity and entity in 

V1), 3) computes the cosine similarity s between the embeddings using Eq. 4-9, 3) 

sorts s values in a descending list. Then, ,1 of the unseen entity can be filled by the 

average ,1 of the first three entities in the list. The unseen entity is also added into V1 

to continuously enrich the vocabulary. However, an entity’s name might not be found 

in the WCE. For instance, ‘沥青混合料’ (asphalt concrete) is a single entity, but the 

WCE only includes ,3/ of ‘asphalt’ and ‘concrete’ separately. In this case, the entity 

name is divided into parts through tokenization. Then, the WCE is searched to find 

embeddings of all the parts. The dividing continues until a match is found for each 

part. Therefore, an entity can be divided into single characters, and its embedding is 

the average of all the found ,3/. 

4 =
∑ 8-)

./×80)
./*

)1,

M∑ N8-)
./O!*

)1, ×M∑ N80)
./O!*

)1,
    Eq. 4-9 

4.4.3 TransE model 

TransE assumes ℎ + * ≈ D for valid triples in Θ while ℎ + * is far away from D for 

invalid triples in ΘP (Bordes et al., 2013). The model loss can be computed by Eq. 4-

10, where d is a dissimilarity measure (e.g., L2-norm) between embeddings, c is a 

margin greater than 0, and [!]( denotes the positive part of !. In the model, ,1of all 

triple elements can be initialised using the uniform distribution (−6 √G1⁄ , 6 √G1⁄ ) 

(Bordes et al., 2013). The TransE model is usually trained by comparing the true and 

predicted ,1of t given ,1 of h and r while updating all ,1 using the gradient descent 

approach. The TransE model is applied to initialise parameters in the proposed KRL 

model. The outputs of the TransE model are the EE and RE in Table 4-1, recording 

,1 of each entity and relation, respectively. 

ℒ = ∑ [c + h(ℎ + *, D) − h(ℎP + *, DP)]((Q,R,1)∈T∪T2     Eq. 4-10 
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4.4.4 CNN-based KRL model 

In existing KRL models, a triple is represented by a matrix A ∈ ℝ:3×V formed by ,1 

of the tree triple elements. Then, CNN filters can effectively scan A and extract triple 

features (Dettmers et al., 2017; Nguyen, 2020). Two options are proposed to enhance 

the KRL model’s structure by adding domain class information (i.e., ,3/ of the class 

names of h and t). First, class information is vertically stacked at the ends of ,1 of head 

and tail entities, which reshapes A to ℝ":3×V. Second, class information is stacked at 

the left and right sides of A, which reshapes A to ℝ:3×J. In both cases, the enhanced 

model can learn features of relations among specific entities and classes. For instance, 

given the wrong triple ‘concrete has-attribute 5km/h’, the model can learn that the class 

‘Material’ may not have attributes of the class ‘Speed’. Thus, when the model 

encounters another material entity (e.g., asphalt), it is more likely to classify the triple 

‘asphalt has-attribute 3km/h’ as invalid. 

Following the two options, CNN filters ∈ ℝ!×V or ∈ ℝ!×J are created to extract triple 

features. Specifically, a filter i is applied to every row of A using Eq. 4-11. In the 

equation, ∗ means the convolution operation, j is the activation function (e.g., Relu), 

and Y is a bias (Dettmers et al., 2017). When all rows are scanned by a filter, a feature 

map of shape ℝ:3×! or ℝ":3×! is generated. To capture more features, multiple filters 

(i.e., L) can be applied. The feature maps are concatenated to form a feature vector v 

of shape ℝW:3×! or ℝ"W:3×!. Then, the vector v is transformed to a single score using 

inner product (Eq. 4-12). The mechanism is shown in Figure 4-7 (L is set as two for 

demonstration). 

As triples with different relations can have different features, three KRL models are 

developed for the three relation types (i.e., c2c, c2a, and c2t). For training, the triple 

scores are compared with a threshold. A triple is valid if its score 4(ℎ, *, D) is below 

the threshold. The model loss is computed using Eq. 4-13, based on which the model 

parameters are updated using the forward-backward propagation. Dropout is applied 

to randomly reset a proportion of model parameters to zero to reduce overfitting (Yin 

et al., 2018). 

kF = j(i ∗ ` + Y)    Eq. 4-11 

4(ℎ, *, D) = 25/2;D(kF) ∙ m    Eq. 4-12 
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ℒ = n log	(1 + exp	(<(Q,R,1) ∙ 4(Q,R,1)))
(Q,R,1)∈T

 

Where  <(Q,R,1) = u1	3v	(ℎ, *, D) ∈ Θ
−1	5Dℎ,*m34,

    Eq. 4-13 

 
Figure 4-7 KRL model mechanism 

4.4.5 Extracting other relation types 

The KRL model above can only automatically extract three types of relations. On the 

other hand, t2t and c2p relations need to be extracted by pre-defined rules. For c2p 

relations, these rules link CONS entities to engineering packages or site installation 

packages based on the domain classes and the tasks of the CONS entities affect. For 

instance, if a CONS entity belongs to the ‘Document’ class and constrains the entity 

representing a pavement rolling procedure through a c2t relation, the CONS entity 

should be linked to the engineering package of the rolling procedure. 

To extract t2t relations, the rules encode common work dependencies in construction 

projects (e.g., paving should be preceded by crack fixing in most deck rehabilitation 

tasks). The rules are created among domain classes, which are inherited by task or 

procedure entities. For instance, if a ‘is-succeeded-by’ relation is set up between the 

‘Paving’ and ‘Rolling’ classes, two TP entities belonging to the classes respectively 

should be linked by the relation. As work dependencies include work sequences and 

the ‘part-of’ relation, the rules for extracting t2t relations are as follows: 1) each TP 

entity checks the existence of work dependencies with other TP entities; 2) each TP 

entity checks the existence of ‘part-of’ relation with other TP entities. 
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The rules to extract t2t relations are applicable in most construction projects and do 

not need significant modifications in different situations. However, TP entities that 

should be linked can be scattered in different sentences. As such, a scope should be 

defined to apply the rules. It should be noted that if the scope is too large (e.g., it 

includes too many sentences), there can be many false positives when extracting t2t 

relations, as the rules are not as smart as human engineers and can connect two TP 

entities which even do not describe the same task. Fortunately, it is found that TP 

entities that should be linked are usually clustered in a small scope, i.e., the sentence 

that is investigated currently plus the preceding and succeeding one sentence. Thus, 

the proposed rules make use of the three-sentences scope to extract t2t relations (an 

example is shown in Figure 4-8). 

 
Figure 4-8 An example of rule-based t2t relation extraction 

4.5 Relation extraction experiment results 

4.5.1 Data preparation and hyper-parameter tuning 
The same text corpus for training the Bi-LSTM-CRF model was used. The triples to 

train the KRL model were generated using manually tagged entities in raw sentences. 

Based on 452 unique constraint entities, 16555 c2c, 11067 c2t, and 9908 c2a triples 

(in Chinese) were generated using the method introduced in Section 3.4.3. It should 

be noted that the English documents were not considered for KRL model training, as 

the generalisation ability of the model only relies on the Bi-LSTM-CRF model due to 

the translation mechanism mentioned before. The unrealistic and ambiguous training 

triples were deleted. Then, 50% of the remaining triples were randomly sampled. As 
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such, 4356 c2c, 2924 c2a, and 2615 c2t triples (in total 9895 triples) were left for 

labelling, where 2012, 1133, and 1264 were manually labelled as valid, respectively. 

The triples then were divided into the training and testing datasets following the 9:1 

proportion, and cross-validation was again applied. Finally, another 120 sentences in 

the meeting records of the deck pavement replacement task in the first case project 

were collected, where 51 unique entities and 451 valid triples were manually extracted 

for the controlled experiments (Section 4.5.3). 

Table 4-2 lists the hyper-parameter tuning results for developing the KRL model. It 

should be noted that the KRL models for extracting c2c, c2a, and c2t relations can 

require different optimal hyper-parameters. Therefore, the ‘optimal values’ column 

can include three values for extracting the three types of relation, respectively. To 

control variables and demonstrate the effect of adding domain class information, in 

experiments, the hyper-parameters were tuned for the preliminary model setting (i.e., 

initialising model parameters with random ,1). 

Table 4-2 Results of hyper-parameters tuning 

Hyper-parameters Potential values Optimal values 
Embedding dimension #& {50, 100, 300} 300 

Margin	% {1, 2, 5, 10} 1 
Classification threshold {0.01-2} (interval 0.05) (0.5, 0.45, 0.4) 
The number of filters {1, 5, 10, 15, 20} (10, 15, 10) 

Learning rate {0.001, 0.01, 0.1} (0.01, 0.01, 0.005) 
Batch size &'((24, ,-..) 128 

Dropout proportion {0.1, 0.2, 0.3, 0.4, 0.5} (0.3, 0.2, 0.3) 
Optimisation function {Adam, RMSProp, Momentum} Adam 

Non-linearity activation {Relu, Elu, sigmoid, tanh} Relu 

4.5.2 Model results and analysis 
4.5.2.1 Performance metrics of extracting relations 
Using the optimal hyper-parameters, Table 4-3 presents the metrics of different KRL 

model settings. The results are averaged values obtained by running a model ten times. 

The terms ‘random’, ‘TransE’, and ‘v_expanded’ or ‘h_expanded’ indicate a KRL 

model 1) initialised using random ,1, 2) initialised using ,1 produced by the TransE 

model, and 3) initialised using the TransE ,1  and enhanced by vertically or 

horizontally stacking domain class information, respectively. 

According to Table 4-3, the KRL model can accurately extract constraint triples. First, 

the class mapping module is very effective, where the average accuracy is 97.07%. 
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The class mapping makes use of distinct language (i.e., Chinese) patterns of domain 

entities’ names hence can correctly identify most classes. The accuracy is higher when 

mapping attribute entities, as many attributes have distinct units which significantly 

facilitate classification. Errors of mapping CONS and TP entities are mainly caused 

by the fact that some entities have different semantics but share ending characters, 

which misleads the model. For instance, the character ‘装’ is commonly used in the 

words expressing ‘installing’, however, it can also express ‘transporting’ in a few cases. 

Alternatively, one can also train ML models to map classes when more data (i.e., 

entity-class pairs) are labelled. However, given the high mapping accuracy, this 

research leaves such topics in the future. The good class mapping performance is 

critical for the downstream KRL model, as it can largely prevent errors of wrongly 

identified classes propagating to the relation extraction process. Figure 4-9 shows the 

confusion matrices of class mapping in the testing set (Figure 4-6 shows the meanings 

of axis labels). Figures 4-10 presents some examples of extracted triples. 

 
Figure 4-9 Confusion matrices in the testing dataset 
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Figure 4-10 Examples of extracted triples (wrong predictions are highlighted) 

The performance metrics of relation extraction are lower. The highest F1 score when 

extracting the c2c, c2a, c2t, t2t, an c2p triples in the testing set is 0.859, 0.885, 0.908, 

0.912, and 0.890, respectively. For extracting c2c, c2a, and c2t triples (only the three 

types of relations can be extracted by the KRL model), the training was finished in a 

very short period (5.15 minutes). State-of-the-art KRL models can reach 85-90% F1, 

which however are often trained on millions/billions of triples while training can take 

hours/days (Lin et al., 2015; Nguyen et al., 2019). Hence, the proposed KRL model 

can achieve competitive performance in literature with much less time. Most errors of 

triple extraction are caused by the fact that some entities have similar names but 

different semantics. For instance, in Figures 4-10, ‘crew’ and ‘manager’ share some 

characters in Chinese texts. If the model learns that ‘raining’ constrains the work of 

‘crew’, it can wrongly infer that ‘raining’ also constrains ‘manager’ as both entities 

belong to the ‘People’ class.  

4.5.2.2 The effect of stacking domain class information 
To demonstrate the effect of stacking domain class information in the model structure, 

Figure 4-11 compares the loss curves in the training and validation datasets. It turns 

out that the model randomly initialised has the worst performance, while the models 

initialised using the TransE model and enhanced with domain class information have 

higher metrics and lower loss. The model stacking class information horizontally in 

the input matrix has the most obvious performance increase compared to metrics of 
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the ‘TransE’ setting, where the F1 score can be increased by 1.9%, 12.0%, and 6.0% 

when extracting c2c, c2a, c2t triples in the testing dataset, respectively. The model 

stacking class information vertically has similar performance to the model adopting 

the ‘TransE’ setting, except the additional 5.1% F1 score when extracting c2t triples. 

It seems that the A matrix expanded horizontally is easier for CNN filters to capture 

the features of entity-class relations, relations among classes, and relations between 

head/tail entities. Another reason is that the vertically expanded KRL models have 

more parameters hence requiring more training data. Moreover, when domain class 

information is added, the model loss declines more quickly and smoothly. This means 

the model converges in a shorter time and has less oscillation. One reason is that class 

information can cluster entities based on their classes so that the model is less likely 

to be distracted by heterogenous entities’ names. However, the models stacking class 

information horizontally have larger DOF, i.e., they can cause more overfitting. This 

is reasonable, as these enhanced models have more complex structures which often 

cause additional overfitting. Nevertheless, overfitting can be alleviated by feeding the 

model with more data (Goodfellow et al., 2016). 
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Figure 4-11 Loss curves of different KRL model configurations 



 

 

 

 

97 

  
Table 4-3 Model performance metrics 

Model Pr-train Pr-val Pr-test Re-train Re-val Re-test F1-train F1-val F1-test F1-diff 
NER (Chinese)B 0.969 0.909 0.944 0.966 0.895 0.928 0.968 0.902 0.936 0.066 
NER (Chinese)H 0.968 0.902 0.881 0.957 0.886 0.873 0.962 0.894 0.877 0.068 
NER (Chinese)C 0.976 0.885 0.910 0.981 0.901 0.907 0.978 0.893 0.908 0.085 
NER (English)B 0.959 0.892 0.925 0.945 0.872 0.900 0.952 0.882 0.912 0.070 
NER (English)H 0.943 0.872 0.863 0.960 0.869 0.851 0.951 0.870 0.857 0.081 
NER (English)C 0.970 0.870 0.896 0.947 0.894 0.844 0.958 0.882 0.869 0.076 

c2c_random 0.941 0.806 0.803 0.926 0.866 0.840 0.933 0.835 0.821 0.098 
c2c_TransE 0.948 0.808 0.809 0.935 0.905 0.874 0.941 0.854 0.840 0.087 

c2c_v_expanded 0.954 0.824 0.823 0.930 0.881 0.849 0.942 0.851 0.838 0.091 
c2c_h_expanded 0.966 0.889 0.856 0.964 0.854 0.862 0.965 0.871 0.859 0.094 

c2a_random 0.965 0.816 0.764 0.941 0.770 0.759 0.953 0.792 0.761 0.160 
c2a_TransE 0.918 0.837 0.781 0.838 0.768 0.756 0.876 0.799 0.765 0.077 

c2a_v_expanded 0.949 0.928 0.883 0.928 0.785 0.759 0.938 0.850 0.816 0.088 
c2a_h_expanded 0.990 0.945 0.931 0.977 0.881 0.842 0.983 0.912 0.885 0.071 

c2t_random 0.966 0.844 0.862 0.938 0.815 0.788 0.952 0.829 0.824 0.123 
c2t_TransE 0.947 0.857 0.887 0.863 0.829 0.812 0.903 0.843 0.848 0.060 

c2t_v_expanded 0.943 0.864 0.903 0.868 0.828 0.806 0.904 0.846 0.852 0.059 
c2t_h_expanded 0.993 0.920 0.934 0.993 0.865 0.883 0.993 0.892 0.908 0.101 

P.S. B, H, C indicate the Bi-LSTM-CRF, HMM and CRF model, respectively; the best metrics and the lowest DOF are highlighted in the bold and 
underlined font, respectively
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Figure 4-12 Effect of using different class levels (a) training (b) testing 

The effect of adding domain classes of different levels of detail was also tested. The 

model performance was evaluated using only the three main classes (i.e., Constraint, 

Attribute, and Task in Figure 5-3), level-two classes in Figure 4-6 (i.e., the default 

setting), and more detailed level-three classes (e.g., ‘Labour’ and ‘Manager’ can be 

created as the subclasses of ‘People’). Figures 4-12 presents the results. The model 

using level-two classes gains the best performance of triple extraction (especially in 

the testing dataset), which is followed by the performance of using level-three and 

level-one classes, respectively. The performance metrics of the TransE setting (i.e., no 

class information) are also presented in the figure as the baseline. Particularly, if the 

class hierarchy is too simple, the effect of clustering entities is weak. On the contrary, 

if there are too many classes, the number of entities belonging to each class is small. 

This can cause underfitting, i.e., making it difficult for the model to learn patterns of 

entity-class and class-class relations. 

4.5.3 Controlled experiments (AWP KBs development) 
To demonstrate the usefulness of the hybrid model, AWP constraint modelling was 

carried out based on three meeting records of the deck replacement task in the first 

case project introduced in Section 3.4.3. The task was selected as it was the most time-

consuming and labour-intensive task in that project, involving more constraints than 

other tasks. Triples were extracted using the hybrid IE model and rules (for extracting 

t2t and c2p relations). The triples were encoded into the Neo4j graph database for 

visualisation and information searching (Gong et al., 2018). As mentioned, the model 

cannot automatically identify working package entities. Hence, package entities and 

relations among them (i.e., p2p relations) were manually inserted at the beginning. In 
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the experiments, the initial AWP graph only included work packages (Figure 4-13(a)). 

However, the constraint modelling was partially automated, where constraint entities 

and triples were extracted and the AWP graph was automatically enriched by these 

triples (Figure 4-13(a)-(d)), To demonstrate the interconnections among constraints, 

Figure 4-13(d) shows the constraints (red circles) that constrain the central constraint 

‘asphalt mixture’ (the red dashed circle), where only one relation is highlighted for 

clarity. The constraint modelling was completed in 78s, where the time to manually 

insert work package entities and setup links was included. It took 38 minutes for the 

colleague of the researcher to construct the graph manually. 

 
Figure 4-13 (a) Initial graph, (b)-(d) AWP modelling in three weeks, where the 

yellow, green, blue, and yellow-grey nodes refer to the work packages, constraints, 

tasks, and attributes, respectively 

The automatically generated graph can facilitate project management by integrating 

unstructured constraint information, which enables efficient information searching 

using graph-based queries (Gong et al., 2018). For instance, a foreman can quickly 

retrieve the required amount and type of equipment for the demolishing procedure 

(Figure 4-13(b)); he/she can also easily identify the constraining relations among 
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project entities and prepare constraint removal. For instance, the entity ‘emulsion 

asphalt’ constitutes ‘tack coat’ therefore should be delivered first, and the constraint 

‘choreman’ should be removed before material constraints (e.g., asphalt mixture) for 

onsite material storage and transportation. 

The AWP graphs are often incomplete. In other words, using the hybrid IE model 

cannot extract all needed information from texts and there are always some triples 

missing. For instance, in Figure 4-13, the entity ‘site manager’ should constrain all 

materials and equipment, whereas the model can only identify some of them. This is 

because the hybrid IE model is designed for extracting triples from single sentences 

hence cannot capture triples hidden in multiple sentences. If the graph is manually 

drawn, some missing triples can be avoided, as a human can reason the existence of 

them. However, the time spent is 29 times that of the hybrid IE model. In addition, a 

human can also miss triples when he/she gradually loses concentration, even finding 

such triples is very simple for an experienced engineer. Incompleteness is a common 

issue for KBs (Dettmers et al., 2017; Shi & Weninger, 2017; Trouillon et al., 2016). 

To address the problem, the KBC model is developed to automatically complete KBs 

(Chapter 6). Finally, the controlled experiments only included brief texts in meeting 

records for demonstration. As such, the graph can be easily enriched when more texts, 

e.g., detailed plans, are processed by the hybrid IE model. In that case, the advantages 

of automated modelling will be more evident. 

4.6 Discussion 

It can be argued that the hybrid IE model has three contributions. First, the model can 

improve information extraction in the AEC industry. Existing IE methods in the area 

focus on extracting entities. A few efforts attempt relation extraction. However, most 

of them can only extract simple relations, e.g., the existence of relations, synonyms, 

and hypernyms (Chi et al., 2019; Le & David, 2017). As such, semantic rich relations 

cannot be extracted from texts using current methods. A recent study could extract 

complex constraint relations, which however heavily relied on handcrafted rules (Wu 

et al., 2021b). Creating and updating rules not only require much time and effort but 

also make the results (i.e., extracted triples) subjective. On the contrary, the hybrid IE 

model combines the Bi-LSTM-CRF and KRL model, which automatically identifies 

constraints, their attributes, and tasks/procedures and establishes relations among the 
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entities. Another study used multi-layer NN models to extract task dependencies from 

quality codes, reaching an average F1 score of 0.74 (Zhong et al., 2020b), Despite that 

the performance metrics cannot be directly compared with those of the hybrid IE 

model, the model in this research can effectively extract five types of relations and 

achieve a high average F1 score (0.891). It can be intuitively argued that the hybrid IE 

model outperforms the previous studies. As such, a distinct feature of the proposed 

model is that it is an early exploration in the area that can extract both entities and 

semantic rich relations using DL models.  

Second, the hybrid IE model contributes to the implementation of AWP. Current AWP 

is inefficient, as constraint modelling still depends on manually extracting constraint 

information from documents (Li et al., 2019; Wang et al., 2016). The hybrid IE model 

partially automates constraint modelling, as it can automatically extract entities and 

relations, based on which the AWP graph can be automatically developed. However, 

some human intervention is still inevitable, e.g., inserting the p2p relations which are 

project-specific (Halala, 2018; Halala & Fayek, 2019). Full automation is left in the 

future. However, the hybrid IE model can still significantly reduce the constraint 

modelling time to 1/29 of the manual approach. Thus, the model can save much time 

for constraint monitoring and removal. The model training relies on multiple types of 

documents (e.g., manuals, standards, and plans), therefore, it can handle both static 

data (e.g., imperative requirements stated in standards) and dynamic data (e.g., the 

changing interconnections among constraints), meeting the demands of intensive and 

repetitive AWP modelling. The controlled experiments only included brief texts in 

three weekly meeting records. There can be thousands of constraints in practice, and 

it is exhausting and error-prone for engineers to extract all constraint information 

merely based on experience, especially for young engineers who have less experience 

(CII, 2020; Hamdi, 2013). Thus, the effect of the hybrid model is more significant in 

practice. In recent years, construction management approaches are shifting from an 

experience-driven to a data-driven manner (Cao et al., 2019; Wu et al., 2020a). Hence, 

the hybrid IE model is an attempt to make AWP data-driven, which can help (not 

replace) engineers (especially new engineers) to quickly understand interconnections 

among constraints and improve management decision-making. 

Third, the hybrid model contributes by improving current KRL models so that they 

can be better applied to construction documents. Most KRL models (e.g., ConvKB 
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and ConvE) are trained on general KBs which model general knowledge and can 

contain billions of triples. However, such KBs do not have enough triples for AWP 

modelling. Thus, the training triples for the proposed KRL model were generated by 

traversing entities extracted by the Bi-LSTM-CRF model. Although the dataset is 

small (452 entities and 9895 triples), the experiment results prove that the model can 

achieve high relation extraction performance (i.e., 0.891 F1 on average) while the 

training can be very fast (5.15 minutes). The main reason is that the number of unique 

entities and triples is much smaller than those in general KBs. For instance, the deck 

rehabilitation domain can be covered by the 452 unique entities while the five types of 

relations can support general AWP modelling (Halala & Fayek, 2019; Wang et al., 

2016). In such a dense dataset, triple patterns appear frequently, which can alleviate 

the data sparsity problem encountered in general KBs and facilitate model training 

(Zhang et al., 2018b). Besides, current KRL models do not adequately consider out-

of-KBs entities (Bi et al., 2020; Zhao et al., 2020). To address the issue, the hybrid IE 

model adopts synonym mapping to map them to existing ones in KBs. Existing studies 

handle out-of-KBs entities by adding information (e.g., text descriptions) or applying 

complex graph-based DL models to estimate unknown embeddings of these entities, 

which requires much computation power and training data. This is because many 

entities in general KBs are ambiguous (e.g., Apple can be a fruit or a company), which 

cannot be recognised by naive synonym mapping (Bi et al., 2020; Zhao et al., 2020). 

In contrast, as most entities in construction projects have distinct meanings, synonym 

mapping is efficient to handle out-of-KBs entities, which does not need additional data 

and training. 

This hybrid IE model also enhances state-of-the-art KRL models by adding domain 

information. Current CNN-based KRL models take input matrix A of shape (!!, 3) 

(Nguyen, 2020; Nguyen et al., 2018). However, the proposed model maps the head 

and tail entities to their domain classes and then expands A by stacking character/word 

embeddings of the classes in A. Model performance using different structures was 

compared in experiments. The results prove that although enhanced models can cause 

more overfitting due to more complex structures, relation extraction performance is 

increased by 6.63% on average with domain class information stacked horizontally. 

Moreover, the loss curves during training and validation decline more quickly and 

smoothly, which can save computation power and accelerate model convergence. As 
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such, the hybrid IE model improves existing KRL models by proposing a novel way 

to utilise domain information in the CNN-based structure. 

The hybrid IE model was mainly trained for Chinese documents. However, it can be 

generalised to process texts in other languages. For one thing, the experiments have 

proved that the Bi-LSTM-CRF model can achieve high entity extraction accuracy 

(0.912 F1) when processing English data. This is because DL models support transfer 

learning, i.e., the model can be trained using different data while the model structure 

remains unchanged (Pan & Yang, 2009). Thus, the Bi-LSTM-CRF model can extract 

entities in different languages as long as the text data are provided (Peng et al., 2017). 

For another, the KRL model was trained using separated triples, hence, it does not rely 

on syntactic features of certain languages (Zhao et al., 2020). Due to the translation 

mechanism introduced in Section 4.4.1, the proposed KRL model can be trained on 

English data regardless of input languages. Therefore, the entire hybrid IE model is to-

some-extent language independent. 

4.7 Chapter summary 

This chapter introduces the detailed design and experiment results of the hybrid IE 

model. The model includes a Bi-LSTM-CRF model to extract constraint entities, a 

class mapping module to identify classes of the entities, a synonym mapping module 

to handle out-of-KBs entities, and a CNN-based KRL model to extract triples among 

the entities, where the KRL model structure is improved by adding domain class 

information. The hybrid model can extract CONS, AT, and TP entities and five types 

of relations (i.e., c2c, c2t, c2a, c2p, and t2t), which can achieve high performance. 

Besides, adding domain class information (especially when the information is stacked 

horizontally in the input matrix) can increase model performance and accelerate model 

convergence. In practical AWP modelling, the hybrid IE model can largely automate 

the modelling and updating of AWP graphs when the project proceeds. Thus, much 

time to develop the graphs can be saved for constraint monitoring and removal. 
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Chapter 5: Developing ontological KBs for AWP-based bridge 
rehabilitation projects 

5.1 Chapter introduction 

This chapter introduces the development of the TBox/RBox of the ontological KBs 

(i.e., BRMO) following the steps introduced in Section 3.5. The information encoding 

process is then introduced to integrate constraint information. Finally, the results of 

the information searching experiments are presented to show the usefulness of the KBs. 

5.2 Ontology taxonomy 

The proposed ontological KBs include four taxonomies, i.e., ‘Rehabilitation Task’, 

‘Procedure’, ‘Constraint’, and ‘Project Participant’. A taxonomy can be expanded up 

to the fifth level. An overview of relationships among the taxonomies is shown in 

Figure 5-1. 

 
Figure 5-1 High-level overview of the BRMO 

5.2.1 Taxonomy of bridge rehabilitation tasks and procedures 
The taxonomy of bridge rehabilitation tasks is shown in Figure 5-2 (it is not fully 

expanded). The three top-level classes are ‘Hazards Treating’, ‘Reinforcement’, and 

‘Replacement’. The ‘Replacement’ class is divided by bridge components to be 

replaced. Different engineering approaches are applicable for hazard treatment and 

reinforcement. Thus, the ‘Hazard Treating’ and ‘Reinforcement’ classes are divided 

by dominant engineering approaches, while the ‘Hazard Treating’ class is divided by 

main hazard types first. To model relations between procedures and tasks (i.e., the 

part-of relations), a procedure taxonomy is developed, including three basic classes: 

‘Preparation’, ‘Execution’, and ‘Acceptance’. A task could have some or all these 

procedures, while a procedure class can also be detailed and expanded. 

Core sub-ontology 2:
Constraint

Core sub-ontology 1: 
Rehabilitation Tasks

Core sub-ontology 3: 
Project Participant

is-constrained-by

is-supervised-by

is-removed-by

Supplementary ontology: 
Procedure

part-of is-constrained-by
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Figure 5-2 Overview of task/procedure taxonomy 

5.2.2 Taxonomy of constraints 
As shown in Figure 5-3 (not fully expanded), the constraint taxonomy includes three 

first-level classes. Specifically, the engineering constraints mainly cover engineering 

documents, e.g., drawings and approvals, the supply chain constraints refer to the 

delivery of materials and equipment, and the site constraints refer to constraints that 

can hinder the work of site crews. The classification between the special and general 

labour relies on whether the job requires considerable training and can pose danger to 

others (SAWS, 2010; Wu et al., 2019). 
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Figure 5-3 Overview of constraint taxonomy 

5.2.3 Taxonomy of project participants 
As shown in Figure 5-4 (not fully expanded), the taxonomy of participants covers 

project-level and external-level participants as the top classes. The two classes are 

divided based on the roles and responsibilities as well as project stages related to the 

participants. It should be noted that although the ontological KBs (i.e., BRMO) have 

three taxonomies, the intention is not to cover all terms but to include common and 

critical terms in the domain of bridge rehabilitation. The taxonomies can be expanded 

when necessary. Finally, the class hierarchy for class mapping in the KRL model 

(Section 4.4.1) is also developed based on the class taxonomies. 
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Figure 5-4 Overview of participant taxonomy 

5.2.4 Relation hierarchies 
Based on the domain knowledge obtained in the focus group, descriptions of object 

and datatype ontological relations have been summarised in Table 5-1 and Table 5-2, 

respectively, providing unambiguous meanings for relations in the BRMO. Besides, 

the object and datatype relation hierarchies are shown in Table 5-3 and Table 5-4, 

respectively. In the tables, ‘Trans’, ‘Sym’, and ‘Func’ indicate transitive, symmetric, 

and functional characteristics, respectively, ‘PP’ indicates project participants, and the 

meanings for other abbreviations can be found in Figure 4-6. The relations highlighted 

by the bold font are first-level relations, the others are second-level relations. 

Table 5-1 Object relation descriptions 

Relation name Description 
constrains  

accommodate Temporary facilities provide accommodation for workers and 
engineers 

check-quality Engineers check the quality of tasks/procedures and constraints 

constitute A material constraint can consist of multiple materials (e.g., 
concrete consists of sand, stone, cement, and water) 

vertically-transport Some constraints vertically deliver other constraints off-site or 
onsite 

horizontally-transport Some constraints horizontally deliver other constraints off-site 
or onsite 
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grant-permission-to Some project participants provide approvals for other 
constraints (e.g., materials, equipment, and tasks/procedures) 

manage Engineers supervise constraints and tasks/procedures 
monitor Some equipment can monitor statuses of other constraints 

needs-material Some equipment can require certain materials 

use Some people (e.g., labour) can require certain materials or 
equipment 

build Some people (e.g., labour) construct facilities/structures 
 pre-requisite-doc-of Approval of one document can require another document 

produce Some constraints can produce certain constraints (e.g., some 
equipment can produce certain materials) 

protect Some constraints can protect onsite engineers and workers 

prevent-harm-from Some constraints can prevent onsite engineers and workers from 
injury caused by certain constraints 

provide-space-for Temporary facilities provide space for constraints and 
tasks/procedures 

work-in Onsite workers work for certain tasks/procedures 
is-required-by A material/equipment is required by certain tasks/procedures 

remove Project participants remove certain constraints 
deliver-work Project participants are responsible for certain tasks/procedures 

review Engineers check and review documents 
specify Documents specify requirements of constraints 

supply-power-to Some equipment provides power to other equipment 
supply-water-to Some equipment provides water to other equipment 

supply-gas-to Some equipment provides gas to other equipment 
has-unremoved-constraint Link a constraint or task/procedure to its unremoved constraints 
part-of Link a detailed procedure to a more general procedure or task  
work-dependencies  

finish-procedure-of The final procedure of a task/procedure 
is-preceded-by Preceding relations 

is-succeeded-by Succeeding relations 
latest-procedure-of The procedure that is currently carried out 

proceed-concurrently Two tasks/procedures proceed concurrently 
start-procedure-of The first procedure of a task/procedure 

is-a Link an entity to its domain class 
subclass-of Subclass relations between domain classes 

Table 5-2 Datatype relation descriptions 

Relation name Description/examples 
has-attribute  

has-amount number, m2, m3, kg, t, etc. 
has-geometry m, cm, mm, etc. 

has-pressure/stress Pa, KPa, N, KN, etc. 
has-price dollar, yuan, etc. 

  has-proportion The proportion of each part when mixing materials 
(e.g., concrete mixture) 

has-speed/frequency m/s, km/h, Hz, etc. 
has-temperature/humidity ℉, ℃, etc. 

has-time day, hour, second, etc. 

has-type/property C50, C20, etc. for concrete, and SBR, SBS, etc. for 
asphalt 

has-constraint-status  
has-actual-removal-date 

Indicating the actual/planned removal dates of a 
constraint and whether the removal is delayed or 
potentially delayed 

has-planned-removal-date 
has-removal-delay 
is-timely-removed 

is-removal-potentially-delayed 
is-removed 
has-reason Specifying the reasons for delay (if any) 
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can-be-delayed-by Specifying the fact that a constraint entity might be 
delayed by another entity 

has-performance  

has-constraint-removal-performance The ratio of the number of timely removed constraints 
to the number of all constraints a participant removes 

has-task-performance 
The ratio of the number of timely finished tasks or 
procedures to the number of all tasks or procedures a 
participant performs 

has-progress-information  
has-actual-duration 

Indicating the actual/planned duration and starting and 
finishing dates of a task/procedure as well as whether a 
task/procedure is started, finished, and delayed (or 
potentially delayed).  
The current and total progress indicates the current 
schedule progress performance compared to the plan in 
terms of specific days. 

has-actual-duration-from-start 
has-actual-finish-date 

has-actual-start-date 
has-current-duration 
has-current-progress 

is-finished 
has-planned-duration 

has-planned-finish-date 
has-planned-start-date 

has-started 
has-total-progress 

is-work-delayed 
is-work-potentially-delayed 

P.S. the meanings of ‘has-attribute’ relations are very clear in their names, as such, 

only common attribute units are listed to help one understand. 

Table 5-3 Object relation hierarchy and properties 

Relation name Trans Sym Func Domain Range 
constrains      

accommodate × × × TF PE 
check-quality × × × PE CONS, TP 

constitute × × × MAT MAT 
vertically-transport × × × CONS CONS 

horizontally-transport × × × CONS CONS 
grant-permission-to × × × PP CONS, TP 

manage × × × PE CONS, TP 
monitor × × × EQU CONS 

needs-material × × × EQU MAT 
use × × × PE MAT, EQU 

build × × × PE TF 
pre-requisite-doc-of × × × DOC DOC 

produce × × × CONS, TP MAT 
protect × × × CONS PE 

prevent-harm-from × × × CONS CONS 
provide-space-for × × × TE CONS 

work-in × × × PE TP 
is-required-by × × × MAT, EQU TP 

remove × × × PP CONS 
deliver-work × × × PP TP 

review × × × PE DOC 
specify × × × DOC CONS 

supply-power-to × × × EQU EQU 
supply-water-to × × × EQU EQU 

supply-gas-to × × × EQU EQU 
has-unremoved-constraint × × × CONS CONS 
is-constrained-by × × × CONS CONS 
part-of √ × × TP TP 
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work-dependencies      
finish-procedure-of √ × × TP TP 

is-preceded-by √ × × TP TP 
is-succeeded-by √ × × TP TP 

latest-procedure-of √ × × TP TP 
proceed-concurrently √ √ × TP TP 

start-procedure-of √ × × TP TP 

is-a √ × √ CONS, TP, 
PP, AT 

CONS, TP, 
PP, AT 

subclass-of √ × √ CONS, TP, 
PP, AT 

CONS, TP, 
PP, AT 

Table 5-4 Data relation hierarchy and properties 

Relation name Func Domain Range 
has-attribute    

has-amount × CONS String 
has-geometry × CONS String 

has-pressure/stress × CONS String 
has-price × CONS String 

  has-proportion × CONS String 
has-speed/frequency × CONS String 

has-temperature/ humidity × CONS String 
has-time × CONS String 

has-type/property × CONS String 
has-constraint-status    

has-actual-removal-date √ CONS Date 
has-planned-removal-date × CONS Date 

has-removal-delay √ CONS Integer 
is-removal-delayed √ CONS Boolean 

is-removal-potentially-delayed √ CONS Boolean 
is-removed √ CONS Boolean 

is-timely-removed √ CONS Boolean 
has-reason × CONS String 

can-be-delayed-by × CONS CONS 
has-performance    

has-constraint-removal-performance √ PP Double 
has-task-performance √ PP Double 

has-progress-information    
has-actual-duration √ TP Integer 

has-actual-duration-from-start √ TP Integer 
has-actual-finish-date √ TP Date 

has-actual-start-date √ TP Date 
has-current-duration √ TP Integer 
has-current-progress √ TP Integer 

is-finished √ TP Boolean 
has-planned-duration × TP Date 

has-planned-finish-date × TP Date 
has-planned-start-date × TP Date 

has-started √ TP Boolean 
has-total-progress √ TP Integer 

is-work-delayed √ TP Boolean 
is-work-potentially-delayed √ TP Boolean 

5.3 OWL API workflow and ontological reasoning rules 

The OWL API and ontological reasoning rules are combined to realise three critical 

management functions, namely, evaluation of work progress, evaluation of constraint 
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statuses, and evaluation of participants’ performance. The API exports information in 

ontologies to carry out the complex computation not supported by conventional OWL 

syntax, then, it imports the results into the ontologies to enable SWRL and SQWRL 

rules. Figure 5-5 presents the detailed workflow in the OWL API, and the following 

sections introduce the details of realising the management functions. It should be noted 

that most rules can be applied to both procedures and tasks. However, for clarity, the 

examples of rules in the following contents are procedure-level rules. 

 
Figure 5-5 Workflow in OWL API 

5.3.1 Evaluation of work progress 
This function evaluates the progress of a procedure, a task (multiple procedures), and 

a project (multiple tasks). In practice, task durations and progress are often recorded 

by starting and ending dates. Given temporal computation is not supported by SWRL 

and SQWRL, OWL API extracts the date information from the datatype properties of 
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task/procedure entities, identifies the latest task/procedure that is ongoing, and then 

computes actual and planned durations and current progress performance (i.e., the 

specific days behind or ahead of the planned schedule) of each task/procedure. The 

information is then imported back into the BRMO to enable rules to infer additional 

schedule information such as identifying the potentially delayed work and evaluating 

the total delay of a task or project. A flowchart in the API is shown in Figure 5-5(a). 

Critical rules to realise the function are listed in Table 5-5. It should be noted that 

during reasoning in the ontologies, the two relations ‘has-total-progress’ and ‘has-

current-progress’ indicate the progress performance, where the values can be positive 

(ahead of schedule) or negative (delay). 

Table 5-5 Rules for progress evaluation 

Rule Rule body Explanation 

1 
has-actual-duration(?p, ?ad) ^ has-current-progress(?p, ?cp) ^ 
start-procedure-of(?p, ?t) -> has-total-progress(?p, ?cp) ^ has-
actual-duration-from-start(?p, ?ad) 

This rule computes the 
duration and delay of the 
starting procedure of a 
task as its total duration 
and delay. 

2-1 

Procedure(?p1) ^ Procedure(?p2) ^ is-succeeded-by(?p1, ?p2) 
^ has-actual-duration-from-start(?p1, ?adfs) ^ has-actual-
duration(?p2, ?ad) ^ swrlb:add(?y, ?adfs, ?ad) -> has-actual-
duration-from-start(?p2, ?y) 

The procedures of a task 
are sequential. The rules 
traverse them to sum the 
duration and progress 
values, which enable 
Rules 3-1 and 3-2 to 
evaluate the total duration 
and delay of that task. 

2-2 

Procedure(?p1) ^ Procedure(?p2) ^ is-succeeded-by(?p1, ?p2) 
^ has-total-progress(?p1, ?tp1) ^ has-current- progress 
(?p2, ?cp) ^ swrlb:add(?y, ?tp1, ?cp) -> has-total-progress 
(?p2, ?y) 

3-1 

latest-procedure-of(?p, ?t) ^ is-preceded-by(?p, ?pp) ^ has-
actual-duration-from-start(?pp, ?adfs) ^ has-current-
duration(?p, ?cd) ^ swrlb:add(?y, ?adfs, ?cd) -> has-actual-
duration-from-start(?t, ?y) 

The rules evaluate the 
total duration and delay 
of the latest procedure of 
a task and then assign the 
values to the task. 3-2 

latest-procedure-of(?p, ?t) ^ is-preceded-by(?p, ?pp) ^ has-
total-progress(?pp, ?tp) ^ has-current-progress(?p, ?cp) 
swrlb:add(?y, ?tp, ?cp) -> has-total-progress(?t, ?y) 

4 

Rehabilitation_Task(?t1) ^ Rehabilitation_Task(?t2) ^ is-
constrained-by(?t1, ?t2) ^ has-actual-duration-from-
start(?t1, ?ad1) ^ has-actual-duration-from-start(?t2, ?ad2) ^ 
swrlb:add(?y, ?ad1, ?ad2) -> sqwrl:max(?y) 

Task dependencies can be 
sequential or parallel. The 
rule enumerates all paths 
of tasks and computes the 
maximum duration as the 
duration of the project. 

5-1 Procedure(?p) ^ is-finished(?p, true) ^ (has-current-progress 
some xsd:integer[<0])(?p) -> Delayed_Procedure(?p) 

The rules identify 
delayed procedures and 
tasks based on the 
progress values. 5-2 Rehabilitation_Task(?t) ^ is-finished(?t, true) ^ (has-total-

progress some xsd:integer[<0])(?t) -> Delayed_Task(?t) 

5.3.2 Evaluation of constraint removal  
This function covers four aspects: 1) finding constraint removal statuses, i.e., if a 

constraint is removed and if the removal is delayed, 2) warning delay and evaluating 
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the reasons of delay, 3) evaluating constraint removal performance, and 4) identifying 

critical constraints. 

The planned and actual removal dates of a constraint can determine if the constraint 

removal is delayed. The OWL API extracts the date information and computes the 

removal delay. Then, it updates the information in the BRMO. Delayed constraints 

(i.e., constraints not timely removed) can warn of potential delay of ongoing tasks or 

procedures while helping identify reasons for delayed work. In contrast, unremoved 

constraints can diagnose work before it starts. Based on the number of unremoved and 

total constraints, the ratio of unremoved constraints is computed (Figure 5-5(b)). The 

ratio is taken by the reasoning rules to order tasks/procedures and constraints so that 

constraint entities needing more attention (i.e., they have a high unremoved constraint 

ratio) are found. The rules can also identify critical constraints. The ontologies KBs in 

essence is a network. As such, network measures (i.e., in-degree and out-degree) can 

be computed for each constraint. The former reflects a constraint’s vulnerability, i.e., 

how many constraints can affect it, while the latter reflects its impact, i.e., how many 

constraints it can affect (Figure 5-5(c)). Those constraints with high degree values are 

regarded as critical. Some rules to realise the function are summarised in Table 5-6. 

Table 5-6 Rules for constraint-removal evaluation 

Rule Rule body Explanation 

6-1 
Constraint(?c) ^ is-constrained-by(?p, ?c) ^ (has-removal-
delay some xsd:integer[>= 0])(?c) -> is-timely-
removed(?c, true) 

The rules find the delayed 
constraints for certain 
procedures according to 
removal delay. 6-2 

Constraint(?c) ^ is-constrained-by(?p, ?c) ^ (has-removal-
delay some xsd:integer[< 0])(?c) -> is-timely-removed(?c, 
false) 

6-3 
Procedure(?p) ^ has-started(?p, true) ^ is-finished(?p, 
false) ^ is-constrained-by(?p, ?c) ^ is-timely-removed(?c, 
false) -> Potentially_Delayed_Procedure(?p)  

The rule warns delay of 
ongoing procedures that have 
delayed constraints. 

6-4 Delayed_Procedure(?p) ^ is-constrained-by(?p, ?c) ^ is-
timely-removed(?c, false) -> can-be-delayed-by(?p, ?c) The rules find the delayed 

constraints as the causes of 
delayed procedures. 6-5 

Potentially_Delayed_Procedure (?p) ^ is-constrained-
by(?p, ?c) ^ is-timely-removed(?c, false) -> can-be-
delayed-by(?p, ?c) 

6-6 
Constraint(?c) ^ Procedure(?p) ^ is-constrained-by(?p, ?c) 
^ is-timely-removed(?c, false) ^ has-reason(?c, ?r) -> 
sqwrl:select(?p, ?c, ?r) 

The rule extracts the reasons 
for delay (if any). 

7 

Constraint(?c) ^ Procedure(?p) ^ is-constrained-by(?p, ?c) 
^ has-started(?p, false) ^ has-unremoved-constraints-
ratio(?c, ?r) -> sqwrl:select(?p, ?c, ?r) ^ 
sqwrl:orderBy(?r) 

The rule finds the unremoved 
constraints of procedures not 
started and then orders them 
by the unremoved constraint 
ratio. 
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8-1 Constraint(?c) ^ has-out-degree(?c, ?l) -> 
sqwrl:select(?c, ?l) ^ sqwrl:orderBy(?l) The rules rank constraints of 

a project by their criticality. 
8-2 Constraint(?c) ^ has-in-degree(?c, ?l) -> 

sqwrl:select(?c, ?l) ^ sqwrl:orderBy(?l) 

5.3.3 Evaluation of the performance of project participants  
Participants’ performance is mainly evaluated based on the ability to timely remove 

constraints and deliver tasks/procedures. Rules created for realising the function can 

identify responsible participants of delayed tasks/procedures and constraint removal. 

The rules can also rank participants by performance. To enable these rules, the API 

traverses the delay of tasks/procedures and constraint removal related to each project 

participant and then computes its performance following the process shown in Figure 

5-5(d), where the delay is computed using the previous two functions. Finally, rules 

are created so that one can select participants based on certain performance criteria. 

Critical rules to realise the function are summarised in Table 5-7. 

Table 5-7 Rules for participant performance evaluation 

Rule Rule body Explanation 

9 
is-supervised-by(?p, ?pp) ^ Delayed_Procedure (?p) -> 
Participant_With_Delayed_Procedure(?pp) ^ 
sqwrl:select(?pp, ?p) 

The rules find participants 
who fail to complete work 
or remove constraints on 
time, respectively. 10 

Constraint(?c) ^ to-be-removed-by(?c, ?pp) ^ is-timely-
removed(?c, false) -> 
Participant_With_Delayed_Constraints(?pp) 

11 has-constraints-removal-performance(?pp, ?cp) -> 
sqwrl:select(?pp, ?cp) ^ sqwrl:orderBy(?cp) 

The rules compare the 
delay of participants in 
terms of constraint removal 
and delivering work then 
rank participants based on 
the performance. 

12 has-work-performance(?pp, ?wp) -> sqwrl:select(?pp, ?wp) 
^ sqwrl:orderBy(?wp) 

13 has-constraints-removal-performance(?pp, ?cp) ^ 
swrlb:largerThan(?cp, 0.9) -> Good_Participant(?pp) 

The rules select 
participants based on their 
performance and certain 
thresholds. 14 has-work-performance(?pp, ?wp) ^ swrlb:largerThan(?wp, 

0) -> Good_Participant(?pp) 

5.4 Controlled experiments (information integration and searching) 

5.4.1 Ontology preparation 
To verify the BRMO, five components must be in place: 1) The TBox, RBox, and 

ABox, which are built following the steps introduced in Section 3.5 2) An ontology 

management tool (Protégé 5.50 in this research) that can edit ontologies using state-

of-the-art syntax and interact with information in the ontologies using queries. 3) A 

rule engine that can edit the SWRL and SQWRL rules, and such engines are also 

supported by the Protégé 5.50. 4) The OWL API (version 5.50) that exports, modifies, 
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and imports ontology information. 5) A built-in reasoner, i.e., Pellet, that executes 

rules and infers implicit knowledge. The workflow is shown in Figures 5-6. It should 

be noted that although the hybrid IE model can automatically extract constraint 

information, in the experiments, the TBox and RBox were still manually constructed 

as the skeleton of the KBs, and Figure 5-7 shows the overview of them in Protégé. 

 
Figure 5-6 Workflow among BRMO components  
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Figure 5-7 Overview of the TBox and RBox in Protégé (no instances) 

5.4.2 Information encoding experiments 
In the experiments, a large proportion of the ABox was developed by applying the 

hybrid IE model to automatically extract constraint triples from documents of the deck 

pavement replacement and concrete wrapping task in the first case project. Table 5-8 

and Figure 5-8 compare the statistics and overview of the ontologies in Protégé before 

and after information encoding. Figure 5-9 shows a complete view of the change of 

the ontologies. In the experiments, the initial ontologies only included the TBox (class 

nodes are coloured in red, and the RBox is not visualised). After encoding, the TBox 

remained unchanged while entities (blue coloured nodes) and relations were added. 

The two entity clusters in Figure 5-9 represent the two main tasks (i.e., deck pavement 

replacement and concrete wrapping of bridge piers). Figure 5-10 shows a few encoded 

triples, which can reveal the positions of entities in the domain class hierarchies and 
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the relations among entities and classes. As mentioned, some entities and relations 

cannot be automatically extracted, i.e., the project participants, work packages, and 

p2p and ct2pp relations, which were manually inserted in the ontologies, considering 

the specific project conditions. 

 
Figure 5-8 Overview of information encoding in Protégé 

Table 5-8 Statistics of the ontological KBs 

Part Statistics 
Before 

encoding 
After 

encoding 

TBox 
The number of maximum levels of the class hierarchies 5 5 
The number of classes 207 207 

ABox 

The number of object relation assertion axioms 0 367 
The number of datatype relation assertion axioms 0 59 
The number of class assertion axioms 0 110 
The number of entities 0 110 
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Figure 5-9 Change of ontologies (a) before encoding, (b) after encoding 

 

Figure 5-10 Examples of encoded triples of (a) the concrete wrapping task, (b) the 

pavement replacement task 

5.4.3 Information searching experiments 
After information encoding, the BRPMO was tested in four scenarios. Scenario 1 

tested the functions of static information searching. In the scenario 2-4, the BRMO’s 

ability in terms of supporting the three management functions (Section 5.3) based on 

integrating, inferring, and searching for dynamic constraint information were tested. 
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Figure 5-11 SPARQL queries and results 

Scenario 1: Some project participants wanted to know more about the project. Instead 

of searching for information scattered in documents or systems manually, the BRMO 

encoded such information for efficient retrieval using the SPARQL query. The queries 

and information searching results are introduced below. 

Query 1 (Figure 5-11 (a)) can not only return the specific constraints of procedures or 

tasks (steel materials for temporary bridge construction in this case) but also detailed 

requirements (e.g., the type and amount of material constraints) so that the engineer 

can arrange constraint removal in advance. 

Query 2 (Figure 5-11 (b)) can retrieve information (e.g., contact information) of 

project participants (the asphalt supplier in this case) to facilitate communication 

among participants. 

Query 3 (Figure 5-11 (c)) can show the detailed activities and precautions of a task or 

procedure (paving the new deck in this case), which are often required by the foreman 

and supervisors to control onsite work sequences and quality. 
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Query 4 (Figure 5-11 (d)) can find solutions to the unremoved constraints (rain in this 

case), serving as remedial actions after delay occurs. 

Scenario 2: When the project ongoing, the engineer needed to check the progress of 

tasks/procedures against plans and identify delayed work. It was assumed that at Sep 

15, 2018, the engineer checked the progress of deck paving which was the latest 

ongoing procedure. The original BRMO only included static information and could 

not support the checking. Thus, the OWL API extracted the date information of the 

tasks/procedures to compute duration and progress values. The BRMO was updated 

with the results, based on which Rules 1-4 in Table 5-5 were run to infer additional 

progress information of the tasks/procedures (yellow shaded). The process is shown 

in Figure 5-12, where information computed by the OWL API is highlighted in red 

boxes. The engineer found that the deck pavement replacement was delayed by 21 

days with the first three procedures each contributing to seven days, while the total 

task duration was 95 days. The delayed tasks/procedures were automatically inferred 

by running Rule 5 in Table 5-5. 

 
Figure 5-12 Evaluation and inferring of procedure progress 

Scenario 3: The engineer wanted to minimise delay by better controlling constraints. 

For ongoing and finished work, the focus was on the constraints not timely removed. 

As such, the OWL API took the removal date information of constraints and then 

computed removal progress. The results enabled rules to identify delayed constraints 

(Rule 6-1 - 6-2 in Table 5-6), warn potential delay of tasks/procedures (Rule 6-3 in 

Table 5-6), and infer or extract the causes of delay (Rule 6-4 - 6-6 in Table 5-6). For 

instance, the engineer found that a warning was triggered for the new deck paving 
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procedure (Figure 5-13), because its constraints, such as materials (e.g., asphalt), 

equipment (e.g., the asphalt paver), and labour (e.g., choremen and operators), were 

not timely removed. In addition, the engineer could explore the reasons of delay 

following the ‘can-be-delayed’ and ‘has-reason’ relations. For instance, one cause of 

the delay of the asphalt paver was the delay of the temporary power generator, while 

the delay of the generator was caused by quality issues. For work not started, the focus 

was on the number of unremoved constraints so that they could be removed before 

work started. Therefore, the OWL API computed the unremoved constraint ratio of 

constraints and then enabled Rule 7 in Table 5-6. For instance, as shown in Figure 5-

14, on 10 August 2018, when the new deck paving procedure had not started, the 

engineer checked its constraints and found that the procedure was likely to be delayed 

by the special labour, as half of constraints affecting the arrival of special labour were 

not removed yet. 

 
Figure 5-13 Exploration of delayed constraints 

 
Figure 5-14 Evaluation of unremoved constraint ratio 
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The in- and out-degrees of constraints were also computed, allowing Rules 8-1 and 8-

2 in Table 5-6 to identify critical constraints at different levels. For instance, the 

vulnerable constraints at the procedure (deck paving) level were identified (Figure 5-

15(a)), e.g., workspace, approvals, and equipment. Hence, more attention should be 

paid to their constraints and related participants to avoid delay. On the contrary, the 

engineer also found the constraints with greater impact on others at the task (deck 

replacement) level (Figure 5-15(b)), e.g., approvals, permits, engineering drawings, 

and temporary facilities. These constraints should be closely monitored, buffer could 

be assigned to the procedures affected by them, and remedial solutions should be 

proposed to handle possible delay. 

 
Figure 5-15 Identification of critical constraints 

Scenario 4: The bridge owner wanted to assess the performance of participants for 

future collaboration. For this purpose, the owner could execute Rules 9-10 in Table 5-

7 to identify the participants with delayed tasks/procedures or constraint removal. In 

addition, to evaluate specific performance of participants, the OWL API computed the 

total delay when delivering tasks/procedures and ratio of timely removing constraints 

(i.e., the number of timely removed constraints to the number of total constraints for 

which the participant was responsible). The results enabled Rules 11 and 12 in Table 

5-7, which compared and selected participants. For instance, the owner found that the 

sub-contractor of the old deck demolishment procedure (sub-contractor_2) had good 

performance, because it had less work delay (Figure 5-16(a)) and outperformed others 

in terms of removing constraints (Figure 5-16(b)-(d)). The owner also found that the 

government agencies, such as the building and construction authority granting the 

construction approval and DoTs granting the bridge closure approval, had poorer 

performance in terms of removing constraints (Figures 5-16(b)-(d)), indicating that 

additional buffer should be assigned to these participants. 
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Figure 5-16 Comparison of participant performance 

Information to answer the queries in Scenario 1 can be scattered in different sources, 

and the management functions in scenarios 2-4 could also generate important project 

information. To show the usefulness of information searching of the BRMO, Table 5-

9 lists the time to search for information using the BRMO and manual approach. The 

average time to search for information by querying the BRMO (i.e., scenario 1) is 

about 0.1s. The BRMO can largely reduce the searching time from 215.8s to 50.5s, 

including the time for writing queries. The average time to perform the activities in 

scenarios 2-4 is 27.3s, only 1/50 of the manual approach (1003s). The time consumed 

using the manual approach also presents large variance and can dramatically increase 

when the information is scattered in multiple sources (e.g., scenarios 2 and 4). On the 

contrary, the time consumed by the BRMO is much more stable, as information has 

been integrated in the KBs. Besides, scenarios 2-4 involve semantic reasoning based 

on domain knowledge not explicitly mentioned in documents. Therefore, in some 

cases (e.g., scenario 3), it can be impossible to obtain the information merely using 

manual searching. 

Table 5-9 Comparison of searching time 

Query Meeting 
records 

Address 
books 

Working 
plans BoQ Domain 

knowledge BRMO Manual 

S1, Q1 √  √ √  0.13s 
(64s) 562s 

S1, Q2  √    0.08s 
(56s) 116s 

S1, Q3   √   0.09s 
(45s) 77s 

S1, Q4   √   0.11s 
(37s) 108s 

S2 √  √  √ 23s 1172s 
S3 √  √  √ 44s n/a 
S4 √  √  √ 15s 834s 
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P.S. ‘S’ indicates a scenario and ‘Q’ indicates a query; the time values in parentheses 

include the time for writing queries; the time values in S2-S4 include the time spent 

for performing all activities in that scenario, e.g., in S2, the activities include finding 

the cause of delay, computing the unremoved constraints ratio, and identifying critical 

constraints. 

5.5 Discussion 

The BRMO has three contributions. First, existing ontologies for bridge maintenance 

focus on integrating information at the inspection, evaluation, and decision-making 

stages (El-Gohary & El-Diraby, 2010; Liu & El-Gohary, 2017c; Ren et al., 2019; Zhou 

et al., 2016). However, bridge rehabilitation projects involve specific information, e.g., 

specialised constraints and tasks. Therefore, current ontologies cannot be used directly. 

The development of the BRMO relies on comprehensive collection of bridge 

rehabilitation knowledge from various sources, e.g., standards, manuals, case reports, 

and previous studies. The knowledge was further refined through the focus group. As 

such, the BRMO covers adequate domain knowledge of bridge rehabilitation and can 

integrate information of constraints, tasks/procedures, and project participants. Thus, 

the BRMO extends the coverage of domain ontologies to the bridge rehabilitation 

stage. Besides, extensibility and flexibility are important features of ontologies. The 

BRMO can be merged with current ontologies without significant modifications. For 

instance, the entities of the ‘Procedure’ class can be linked to bridge components in 

existing ontologies through the relation ‘is-performed-on’ (Liu & El-Gohary, 2017c; 

Ren et al., 2019). Therefore, the BRMO has unique contributions and is compatible 

with previous work in the field. 

Second, the BRMO supports a novel information updating approach which improves 

the functions of conventional ontologies in the AEC industry. Most ontologies handle 

information of static objects (e.g., components) and facts (e.g., defects) (Niknam & 

Karshenas, 2017; Zhang et al., 2015). However, owing to the syntax limitations, these 

ontologies cannot perform complex computation and dynamic updating thus cannot 

integrate dynamic information in ongoing projects. Even in previous studies focusing 

on process-oriented ontologies, the functions are simple and only work as auxiliary 

parts. For instance, procedure entities are generated to merely store other information 

of a procedure (e.g., hazards and constraints), which however are not considered in 
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reasoning and computation (Wang, 2018; Zhang et al., 2015)). Progress information 

in these ontologies is also simple and qualitative (e.g., progress is recorded using 1-5 

ratings rather than actual durations). As such, sophisticated management functions 

(e.g., detailed progress evaluation and delay analysis) are not supported (Dong et al., 

2011). On the other hand, the BRMO combines the SWRL, SWRQL, and OWL API 

to address the limitations. Thus, the BRMO can manage dynamic and quantitative 

project information (e.g., constraint removal and task/procedure progress). When the 

information is imported, the BRMO can support various management functions, e.g., 

estimating delay of tasks, procedures, and constraint removal, identifying critical 

constraints, and evaluating participants’ performance. Although these functions can 

also be realised in traditional tools (e.g., Microsoft Project), one can conveniently 

navigate in the BRMO to explore implicit information (e.g., finding causes of delay). 

The easy semantic exploration is a key benefit of ontological KBs, which is difficult 

to be realised in traditional tools, as information in these tools is not integrated in a 

data format neutral and unambiguous manner (Park et al., 2013; Ren et al., 2019; 

Woldesenbet, 2014).  

Third, current constraint management approaches (e.g., AWP) suffer from manual 

information searching, which can delay information delivery and hinder constraint 

removal. Moreover, finding some information (e.g., the critical constraints) relies on 

knowledge reasoning (e.g., interpreting the relations among constraints). Finding such 

information is extremely difficult using the manual approach. On the contrary, the 

BRMO can search for, compute, reason, and update both static (e.g., the required 

material types and contact information of participants) and dynamic information (e.g., 

progress of tasks/procedures and constraint removal) in a much shorter time than the 

manual searching, especially when the information is scattered in multiple sources. 

Thus, the BRMO can improve AWP by automating the information searching step. 

Enormous time can be saved for proposing more effective constraint removal plans. 

5.6 Chapter summary 

This Chapter introduces the BRMO to improve information integration and searching 

in bridge rehabilitation projects. Development of the BRMO is based on adequate 

domain knowledge and follows a guideline. The BRMO has three class taxonomies 

(i.e., tasks/procedures, constraints, and participants) and two relation hierarchies. By 
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combining the SWRL, SQWRL, and OWL API to export, compute, import, and infer 

information, the BRMO can overcome the OWL syntax limitations in conventional 

ontologies. Thus, the BRMO supports integrating, inferring, and searching for both 

static and dynamic constraint information. The BRMO was validated in controlled 

experiments. The results prove that the BRMO can efficiently integrate constraint 

information in ongoing projects. Based on the continuously updated information, the 

BRMO can realise essential functions for project management, e.g., computing the 

delay of tasks/procedures and constraint removal, identifying critical constraints, and 

evaluating performance of participants. The BRMO extends the coverage of domain 

ontologies in the bridge sector to the rehabilitation stage. In practice, the BRMO can 

promotes AWP implementation by providing timely access to project information, 

which can facilitate constraint monitoring and removal.

Chapter 6: Developing automatic methods for constraint knowledge 
base completion 

6.1 Chapter introduction 

This chapter presents the detailed design of the KBC model for identifying missing 

information in ontological KBs. Cross-comparison experiment results are introduced 

to show the effect of enriching data semantics and adding domain information (class 

and working context information). Controlled experiment results are also introduced 

to show the usefulness of the KBC model in practice. The KBC model was developed 

with Python 3.7 and Pytroch 1.7.1. Model training, validation, and testing were carried 

out on the Google Colab cloud computing platform. 

6.2 Detailed design of the KBC model 

6.2.1 Ontology-based data enriching module 
Data enriching has two key steps: mapping entities to domain classes and enriching 

data semantics using ontology rules. Class mapping mechanism has been introduced 

in Section 4.4.1, and this section introduces the rule-based data enriching in detail. 
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Figure 6-1 Domain classes for data enriching 

The ontologies and relation hierarchies are presented in Chapter 5. It should be noted 

that the full ontologies are used to enrich data through rule reasoning (introduced 

below). However, when identifying and adding class information to the GNN (Section 

6.2.2), not all classes are used. In that case, the number of entities belonging to each 

class is small, which can cause underfitting and require more data to allow the model 

to learn entity-class patterns. Moreover, it is commonly difficult to capture relations 

between constraints and attributes, as attributes vary significantly (e.g., the amount of 

concrete usage for different tasks). In most cases, such data are also very sparse (e.g., 

one type of equipment can only appear once in KBs). Therefore, adding all attribute 

data when training the KBC model can hurt its performance. To overcome the issue, 

only attributes of the ‘Date’ (e.g., the removal date of constraints) and ‘Boolean’ (e.g., 

if a constraint is removed and if a task is started) classes are considered. The classes 

used in the encoder are highlighted by the bold borders in Figure 6-1. 

Based on the ontologies, semantic rules are constructed to enrich data in the KBs. All 

the rules follow the SWRL syntax introduced in Section 2.3.1 and Section 2.4.1. The 

rules only take the relations with basic semantics: ‘constrains’, ‘part-of’, ‘is-a’, ‘is-

succeeded-by’, and ‘has-attribute’ and identify all axioms satisfying the conditions at 

rule bodies. The rules have two purposes: 1) adding triples (inferring new triples with 

basic relation semantics) and 2) enriching relation semantics (inferring more complex 



 

 

 

 

128 

relation expressions based on the relation hierarchies). Newly inferred triples with 

basic relation semantics are also fed into the semantic enriching process. There are in 

total 42 rules in the data enriching module, and some examples are summarised in 

Table 6-1. 

Table 6-1 Examples of rules for adding data semantics 

Purpose Rule 

Adding 
triples 

constrains(c, t1), part-of(t1, t2) ⇒ constrains(c, t2) 
constrains(c1, c2), is-removed(c1, true) ⇒ is-removed(c2, true) 
constrains (a, b)), constrains(b, t), Task(t), has-planned-removal-date(a, pr), has-
planned-start-date(t, ps), lessThanOrEqual(pr, ps) ⇒ constrains(a, t) 

Enriching 
semantics 

Task(t), constrains(p, t), People(p) ⇒ works-in(p, t) 
Manager(m), constrains(m, c), (Equipment or Material or Temoporary_Facility)(c) 
⇒ checks-quality(m, c) 
Power_Facility(f), constrains(f, c) ⇒ supply-power-to(f, c) 
Work_Space(s), constrains(s, c) ⇒ provide-space-for(s, c) 
Lifting_Equipment(e), constrains(e, c), Material(c) ⇒ transport(e, c) 
BoQ(b), constrains(b, c), (Equipment or Material)(c) ⇒ specify(b, c) 

6.2.2 GNN-based encoder 

In general, a KB = (E, R, T), where E, R, and T are the set of entities (i.e., nodes), 

relations (i.e., edges), and valid triples (h, r, t), respectively. N and M are the total 

number of entities and relations, respectively. Each node and relation are associated 

with an embedding ∈ ℝ"!, i.e., {ℎ#, ℎ$, … ℎ%} for nodes and {)#, )$, … )&} for edges. 

*' denotes the 2-hop neighbourhood of central node i. A triple between node i and j 

in *' is denoted as +'(), (i.e., h=ℎ', t=ℎ(, and r=))). All triples starting from node i in 

*' is denoted as ,'. Then, an adjacency matrix AD can be built, where each entry is 1 

or 0, denoting if two nodes are linked. Thus, a KB has three basic matrices: -. ∈
ℝ%×"! (each row refers to an entity), /. ∈ ℝ&×"! (each row refers to a relation), and 

01 ∈ ℝ%×% . It should be noted that in the GNN-encoder, if node i is not directly 

linked to node j in *' (e.g., the node j is in the outer layer of *'), a virtual relation is 

setup between them. The embedding of the virtual relation is computed by summing 

the relation embeddings along the path (see Figure 6-2(b)) (Nathani et al., 2019). 

Given valid triples ∈ 2 , the proposed KBC model can find missing triples by 

classifying potential triples in the hidden set H, where 3 ∩ 2 = ∅. 
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Figure 6-2 (a) Neighbourhood expanded by domain classes, (b) Virtual relations 

The proposed KBC model concerns three types of nodes, i.e., CONS, AT, and TP 

entities. As for relations, to cover rich semantics, all relation types which can be 

reasoned by rules in Table 6-1 are included. At each iteration of the encoding, the 

GNN computes {ℎ#+ , ℎ$+ , … ℎ%+ } ∈ ℝ""  for nodes and { )#+ , )$+ , … )&+}  for relations, 

where k={0, 1… K} is the 7!, iteration (e.g., ℎ'- refers to the original embedding of a 

node). Algorithm 1 (Figure 6-3) shows the pseudo code of encoding, while Figure 2-

3 illustrates the process. Each iteration can be realised by three functions introduced 

below, i.e., SAMPLING, AGGREGATING, and UPDATING. After each iteration, a 

transformation matrix WR is employed to update the relation embeddings (RM) to 

adapt the change of node embeddings. 
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Figure 6-3 Overall algorithm of GNN encoding 

6.2.2.1 Attention-based neighbourhood sampling 

The ‘SMAPLE’ function computes the attention values (i.e., relative importance) to 

identify important nodes in *' (Velickovic et al., 2017). A KB usually has different 

types of nodes and relations, and a node can play different roles. Therefore, attention 

values should consider both nodes and relations. For instance, in Figure 6-2(a), the 

node ‘asphalt’ appears in two triples: it is-required-by ‘paving’ while a ‘supplier’ is 

responsible for supplying it. The attention mechanism computes an attention value 

8'() for each triple in ,'. The process for computing attention is visualised in Figure 

6-4. Taking the node i in Figure 6-2(a) as an example, a triple embedding 9'() for the 

node is created by stacking embeddings of the three triple elements into a matrix which 

is fed into two transformation matrices (i.e., W1 and W2) and a Relu non-linearity 

function. If the relation p is a virtual relation for multi-hop connections, it is computed 

as the sum of relation embeddings in the path of connections. Then, :'() is computed 

as the absolute attention value of 9'(). Finally, softmax function is used to convert :'() 

into the relative attention value 8'() (Nathani et al., 2019).  

 
Figure 6-4 (a) Algorithm of SAMPLE function, (b) Attention mechanism 

Furthermore, classes of entities in the ontological KBs are identified and inserted as 

additional nodes using class mapping. This expands the neighbourhood of entities by 

further including class nodes when computing attention values. An example is shown 

in Figure 6-2(a), which is the expansion of Figure 3-5 (work packages are omitted for 

clarity). With domain class information, the model can learn patterns among entities 

as well as between classes and entities. As suggested by (Lin et al., 2015), adding class 
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information can divide KB entities into ‘clusters’, and the model can better learn triple 

patterns in distinct clusters thus improve its learning efficiency and capacity. 

6.2.2.2 Multi-head information aggregation 

The ‘AGGREGATE’ process is illustrated in Algorithm 3 (Figure 6-5). The hidden 

embedding ℎ'+ of node i is computed by summing all triple embeddings 9'() weighted 

by attention values in *'. In addition, the multi-head attention mechanism is applied 

to stabilise the process and gather more neighbourhood information. At each iteration, 

S attention heads compute the ℎ;'+ values independently and simultaneously, which are 

concatenated as the final output ℎ'+. An exception is the last encoding iteration (i.e., 

k=K), where the	ℎ'. is computed by averaging the multi-head attention results to merge 

the information. 

 
Figure 6-5 Algorithm of AGGREGATE function 

6.2.2.3 Graph information updating 

After sampling and aggregation, the ‘UPDATE’ function replaces ℎ'+/# with ℎ'+ that 

is returned from the ‘AGGREGATE’ function. At each iteration, the encoder gathers 

information from *' (2-hop) of the node i. However, critical semantics in the node’s 

original embedding can be lost when K is large (i.e., when the information has been 

passed through multiple iterations). The information loss can hurt the model especially 

when the initial embeddings (i.e., ℎ'-) are not random values, e.g., they are initialised 

with word embeddings. To recover such information, the original embedding of each 

node is transformed by a matrix W0 and then added to ℎ'.  after the last encoding 

iteration following Eq. 4-14. 
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ℎ'. = ℎ'. +>0 × ℎ'-    Eq. 4-14 

Another critical activity during information updating is to identify working contexts 

of nodes. Working contexts are determined based on tasks (i.e., TP entities). For the 

TP nodes, their working contexts are themselves. For CONS nodes, they follow the 

top-level relation ‘constrains’ to identify the TP entities they affect as their working 

contexts. For AT nodes, as one attribute can be only linked to one constraint, their 

working contexts are the same as the CONS nodes to which they are linked. All 

identified working contexts (i.e., TP entities) are mapped to their domain classes to 

avoid ambiguation and duplication. For instance, the working contexts of the entity 

‘asphalt’ are identified as {‘Paving’, ‘Rolling’}. A dictionary is built for each node to 

record its working contexts. Adding working context information can again help the 

model cluster entities and minimise false positive triples. For instance, if the model 

learns ‘crew_1 constrains rolling’, it is likely to predict the triple ‘crew_2 constrains 

rolling’ as a valid missing triple, as the two triples have similar head/tail entities and 

connection structures in the KB. However, the second triple should be invalid when 

crew_2 is not assigned to the rolling task (i.e., the two head entities do not belong to 

the same working context). This kind of information cannot be correctly recognised 

until working contexts are utilised. It should be noted that working contexts are only 

used during decoding process to improve the CNN-based decoder (see Section 6.2.3). 

6.2.3 KRL-based decoder 
The CNN-decoder takes the similar structure to the KRL model for triple extraction. 

However, the KRL model stacks domain class information while the decoder stacks 

working context information in the input matrix. Besides, an additional step is needed 

to improve the model structure in the CNN-decoder, i.e., encoding working context 

information. Based on different TP entities involved, the dictionaries built during the 

updating process can include many combinations of working contexts. For instance, 

entities ‘asphalt_mixture’ and ‘asphalt_paver’ have same working contexts {‘Paving’, 

‘Rolling’}, and the working contexts of the entity ‘supervisor’ have more TP entities 

{‘Paving’, ‘Rolling’, ‘Acceptance’}. The word embeddings of classes of TP entities 

in a working context dictionary are extracted and averaged. Suppose the number of 

working context combinations is c, a matrix C ∈ ℝ0×"# is created to encode all of 

them. The head or tail entities of any triple can look up the matrix C to retrieve the 

working context embeddings. The mechanism is shown in Figure 6-6. Then, working 
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context embeddings of the head/tail entities in a triple are stacked at the left and right 

sides of the input matrix, respectively, and the matrix is fed to model training. 

 
Figure 6-6 The decoding process 

6.3 Knowledge base completion experiment results 

6.3.1 Data preparation and hyper-parameter tuning 
Experiments of the KBC model were performed based on the data for developing the 

hybrid IE model (Section 4.5).  In total, 6049 triples were extracted to train the KBC 

model. The raw triples only included three types of relations with simple semantics: 

‘constrains’, ‘has-attribute’, and work dependencies (‘is-succeeded-by’) and ‘part-of’. 

The raw triples were fed into the data enriching module, where the number of relation 

types was increased from 39 to maximum 74, and 17587 triples (with simple and rich 

semantics) were generated. The protocols of training, validation, testing, and hyper-

parameter tuning are similar to those for developing the Bi-LSTM-CRF and KRL 

model. The results of hyper-parameter tuning are listed in Table 6-2. 

Table 6-2 Results of hyper-parameters tuning 

Hyper-
parameters Explanation Potential values Optimal 

values 

Learning rate Control model parameters updating {	5$%, 8$%, 10$%, 
5$&, 8$&, 10$&} 0.008 

Batch size Divide data into batches which are taken 
by the model separately {2' k=1,2…12}  1024 

Epoch Decides the number of times that the 
model processes all training data {100, 200…2000} 600 

K The number of attention iterations {1, 2, 3} 1 
L The number of CNN filters {1 - 50} 12 

Embedding size The dimension of embeddings of nodes, 
relations, and words/characters {100, 200, 300} 200 
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Activation 
function 

Trigger non-linearity transformation in 
the model structure {sigmoid, Relu, Elu} Relu 

Optimiser Compute gradients to update model 
parameters 

{Adam, RMSprop, 
Momentum, Stochastic 

gradient descent} 
Adam 

6.3.2 Model results and analysis 
6.3.2.1 Overall results 
Eight experiments were carried out, which could reveal model performance under 

eight model configurations with increasing complexity, i.e., with increasing semantics 

or domain specific information (Table 6-3). To minimise the impact of randomness in 

initialisation. To evaluate each model configuration, the model was ran for ten times, 

and the median values of model performance were computed as results, which are 

shown in Table 6-4. The performance metrics in and out of the parentheses indicate 

the metrics of training and testing, respectively. The best and the second-best metrics 

in the testing dataset are highlighted in the bold and italic font, respectively. 

Table 6-3 Summary of model configurations 

Config Simple semantics Rich semantics Class Context 
SR √    

SR+T √   √ 
SR+C √  √  

SR+C+T √  √ √ 
R  √   

R+C  √ √  
R+T  √  √ 

R+C+T  √ √ √ 

Figure 6-7 plots the model loss curves during training. Although models using simple 

semantics have slightly higher loss during first 300 epochs, all models can converge 

after 600 epochs. On the other hand, according to Table 6-4 and Figure 6-8, the R+C+T 

configuration outperforms other configurations. The simplest configuration SR (i.e., 

the model without any enriching) produces the worst performance. Besides, based on 

Figure 6-8, it can be argued that: 1) the models with rich semantics outperform those 

with simple semantics in all situations; 2) with rich semantics, the variance of metrics 

is also largely reduced. This is because rich semantics can increase expressiveness of 

data, thus the model can better distinguish entities linked by different relations. For 

instance, if only the simple ‘constrains’ relation is used, the model can assign high 

scores to all triples of the form ‘entity constrains entity/task’, which can lead to many 

false positives. 
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On the other hand, Figure 6-9 illustrates the change of attention values of all nodes in 

the KBs under R, R+T and R+C configurations. During training, the R+T and R+C 

configurations have similar patterns of attention value changing, which are different 

from the patterns of the R configuration. In addition, when class or working context 

information is added, the number of nodes with high attention values is less than that 

of using R configuration. This indicates the models enhanced by domain information 

can better distinguish important nodes from irrelevant ones when nodes are clustered 

according to classes or working contexts. 

 
Figure 6-7 Training loss curves 

Another finding is related to overfitting. The DOF values in Table 6-4 are averaged 

differences of hit@10, hit@3, and hit@1 between the training and testing datasets. 

According to the results, with rich semantics, the models have less overfitting (i.e., all 

DOF values are less than 0.1). In contrast, all DOF values are larger than 0.1 and can 

reach 0.23 when simple semantics are adopted. The R+C+T model features the least 

overfitting, indicating again that it is the best model configuration. 
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Figure 6-8 Comparison between different model configurations 

 
Figure 6-9 Change of attention values using configuration (a) R (b) R+C (c) R+T 

6.3.2.2 Ablation study 

To demonstrate the effectiveness of adding domain information to the original model 

proposed by Nathani et al. (2019). The amount of performance increase (hit@1, the 

strictest metric in this case) owing to each type of improvement strategy (i.e., adding 

semantics, adding class information, and adding working context information) is 

presented in a diagram (Figure 6-10). In the diagram, the starting point is the simplest 

configuration SR. The paths are extended following different improvement strategies 

until they reach the full configuration R+C+T. The added information and increased 

performance are shown at the paths. 
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Figure 6-10 Effect of improvement strategies 

There are three findings. First, all three strategies are effective, which increase model 

performance with different degrees (0.011-0.343). Second, adding class information 

causes the most significant performance improvement (0.277 in average). This is 

followed by adding working context information (0.129 in average), while enriching 

semantics has less effect (0.112 on average). Third, the amount of improvement due 

to inserting class nodes presents less variance when the paths extend (0.156-0.343). 

On the contrary, the amount of increase owing to adding working contexts (0.051-

0.263) and semantics (0.011-0.153) can significantly change when the strategies are 

adopted in different ways (i.e., different places along the paths). 

6.3.3 Controlled experiments (AWP KBs completion) 
The controlled experiments were conducted to show the usefulness of the KBC model 

(i.e., R+C+T configuration) by comparing it with the manual KB checking approach. 

Constraint triples were extracted from the working plans of the second case project 

(the cable replacement project). Then, a full AWP was developed using these triples 

as ground truth, where some links and nodes were intentionally deleted to make it 

incomplete. Again, the entities and relations which cannot be handled by the current 

approach were manually inserted. As listed in Table 6-5, five activities were tested, 

covering four common relation types (c2c, c2t, c2a, t2t) and missing information in 

practical AWP (Hamdi, 2013; Li et al., 2019). 

When performing the first four activities, the KBC model enumerated all entities or 

relations to replace the ‘?’. Then, the model produced a list of scores of triples formed 
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by the candidate entity/relation replacing the ‘?’ and two known entities/relations. The 

candidate entities/relations of the first three triples in that list were added in another 

list based on which the human engineer (i.e., the researcher) made the final decisions. 

In other words, as the model cannot reach very high hit@1 (around 84%), one could 

rely on the more accurate hit@3 to filter irrelevant information and make decisions. 

When performing activity five, the model first identified entities constraining the task 

or procedure entity through reasoning. Then, it traversed the entities and tested the 

validity of triples with the form ‘entity is-removed false’. If the score of a triple is 

below a threshold (e.g., 0.8), the triple was regarded as valid, and the constraint entity 

was added to a list recording unremoved constraint of the task/procedure. The 

researcher conducted all five activities using the KBC model, while the colleague took 

a manual approach relying on his experience. The working plan was available to the 

colleague to provide additional help. 

Precision, Recall, and F1 scores were computed to evaluate the performance of the 

two approaches. Figures 6-10 - 6-12 show different triples predicted by the model. 

Table 6-6 lists the performance for completing the activities. The KBC model can gain 

a higher F1 score while reducing the time to 1/6-1/40 of the manual approach. The 

time saving is due to the automatic traversing and filtering. The effect of increasing 

accuracy of completion is smaller than that of saving time, as the validity of most 

triples can be determined by engineering experience. However, using the manual 

approach, one must navigate the KBs, find relevant nodes, and evaluate the validity of 

candidate triples. Thus, more errors can appear when the engineer losses focus. This 

is proved by the fact that the engineer has high precision but lower recall, i.e., most 

triples identified by the engineer are correct, but many correct triples are also missed. 

Nevertheless, higher F1 scores can be gained when applying the model to all activities 

except finding missing tasks/procedures (the third activity). One reason is that the 

number of tasks or procedures is much smaller than that of constraints, which makes 

it hard for the model to learn their patterns. In addition, missing work dependencies 

are easier to be identified than relations among constraints. This is mainly because 

such dependencies are often explicitly mentioned in working plans, thus, the engineer 

could check candidate triples thoroughly with reasonable efforts and time. 
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Figure 6-11 Examples of predicted triples (triple form ‘? relation entity’) 

 
Figure 6-12 Examples of predicted triples (triple form ‘entity relation ?) 
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Figure 6-13 Examples of predicted triples (triple form ‘entity ? entity’) 

6.4 Discussion 

This KBC model has two main contributions. First, it improves AWP that relies on 

high-quality knowledge graphs (i.e., KBs). Current AWP KBs have two limitations: 1) 

They suffer incompleteness because information extraction methods in the industry 

cannot extract all needed information. 2) They lack rich semantics as they often only 

consider relations with simple semantics, e.g., existence of relations (i.e., no relation 

type is identified), synonyms, hypernyms (Chi et al., 2019; Xu & Cai, 2020), as well 

as basic constraint management relations (‘constrains’ and ‘has-attribute’) (Wu et al., 

2021b; Zhong et al., 2020b). The two limitations can hinder AWP as follows. Given 

the large number of entities and complex relations in modern projects, it is difficult to 

complete KBs using manual checking or reasoning rules (many triples cannot be 

reasoned by rules) (Qu & Tang, 2019; Yang et al., 2017). Thus, missing information 

in KBs can affect management functions in AWP (e.g., information searching and 

graph analysis). On the other hand, current KBC models cannot be directly applied to 

AWP, because the lack of semantics in KBs can largely hurt model performance. The 

proposed KBC model can address both limitations. The ontology-based data enriching 

module includes 42 semantic rules to add constraint triples and enrich semantics of 

existing triples. The experiment results show that the number of triples and relation 

types can be increased from 6049 to 17587 and from 39 to 74, respectively. Using the 

enriched data, the KBC model can be effectively trained to identify missing triples in 
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KBs. The model achieves good performance (95.0%, 91.0%, 84.4%, and 3.84 for 

hit@10, hit@3, hit@1, and mean rank, respectively), and the hit@1 of the model can 

be improved by up to 15.9% due to data enriching. 

Second, the main computational novelty of the KBC model is that it improves the 

original model in Nathani et al. (2019) by utilising domain information to increase 

model performance. The information of domain classes and working contexts are 

considered. Classes are identified as additional nodes and fed into the GNN encoder. 

Tasks/procedures are selected as working contexts of entities. A constraint entity can 

be linked to several tasks/procedures, and the information of different task/procedure 

combinations is integrated as the working context embedding of a constraint entity, 

which is stacked in the input matrix of the decoder. The two strategies have similar 

effect of clustering entities in two different aspects, i.e., domain classes and project 

stages. In this way, the model can learn triple patterns among entities, between entities 

and clusters, and among clusters. Therefore, the model is less likely to be affected by 

entities with heterogenous names. According to the ablation study, the two strategies 

can gain additional 27.7% and 12.9% hit@1 compared to using the original model 

structure, respectively. 

It is difficult to find useful information in incomplete KBs. Thus, the main function of 

the KBC model is not to search for information, instead, it can help engineers identify 

missing information important for implementing AWP, e.g., statuses of constraints and 

tasks. As shown in Section 6.3.3, the KBC model can reduce the time to complete a 

KB to 1/6-1/40 of manual checking while remain higher accuracy. Thus, in practice, 

the KBC model can supplement existing information searching tools (e.g., SPARQL) 

to increase the comprehensiveness and accuracy of searching results. 

6.5 Chapter summary 

The AWP graphs (i.e., KBs) are often incomplete and can hinder the effectiveness of 

AWP. This Chapter introduces experiment results of the novel KBC model that can 

automatically identify missing triples and complete AWP KBs. The model has an 

encoder-decoder structure. The encoder applies the attention mechanism based GNN 

to learn embeddings of entities and relations. The decoder applies CNN to scan triple 

embeddings and compute scores for triples as their possibility of being valid. The 

proposed model features two improvements compared to existing studies. First, a data 
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enriching module is developed based on ontological reasoning rules to add semantics 

of triple data and facilitate KBC training. Second, the model utilises two types of 

domain information: i.e., domain classes and working contexts. Domain classes are 

inserted in KBs as additional nodes which are taken by the encoder, while working 

context embeddings are stacked in the decoder. The improvement strategies can 

significantly increase model performance. The KBC model can effectively identify 

different types of missing triples in KBs. As such, it can be supplementarily applied 

with the hybrid IE model. The hybrid IE model automatically develops the KBs while 

the KBC model continuously adds missing information to increase the KBs’ quality. 

Completed KBs can help engineers identify constraints and tasks/procedures requiring 

more attention and support informed decision-making regarding constraint removal. 
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Table 6-4 Experiment results under different model configurations 

Config hit@10 hit@3 hit@1 MR Overfitting (DOF) 

SR 0.596 (0.846) 0.443 (0.709) 0.297 (0.482) 39.01 (12.79) 0.233 

R 0.644 (0.728) 0.547 (0.640) 0.450 (0.550) 37.48 (22.78) 0.092 

SR+T 0.740 (0.844) 0.653 (0.775) 0.560 (0.686) 21.83 (10.81) 0.117 

R+T 0.786 (0.862) 0.681 (0.781) 0.571 (0.683) 14.75 (7.83) 0.096 

SR+C 0.883 (0.979) 0.791 (0.946) 0.634 (0.831) 10.53 (3.26) 0.149 

R+C 0.943 (0.980) 0.884 (0.966) 0.793 (0.916) 5.48 (3.14) 0.081 

SR+C+T 0.900 (0.989) 0.836 (0.969) 0.716 (0.886)  7.55 (1.66) 0.130 

R+C+T 0.950 (0.989) 0.910 (0.979) 0.844 (0.939) 3.84 (1.84) 0.068 

P.S. performance metrics in above table are all median values 
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Table 6-5 KBC activities 

No. Missing information Triple form Examples 
1 Participants who remove a constraint entity (? removes constraint) (? removes new_cable) 
2 Entities that a constraint can constrains (constraint constrains ?) (labour uses ?) 
3 Task entities of a particular task (? work-dependencies task) (intalling_cables is-succeeded-by ?) 
4 Relations among entities (constraint/task ? constraint/task) (tensing_machine ? new_cable) 

5 Unremoved constraints of a particular 
task/procedure 

(constraint is-removed ?) where 
(constraint constrains task/procedure) 

(crane is-removed?) where (crane is-required-by 
intalling_cables) 

 

Table 6-6 Comparison between manual and KBC approaches 

 
Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 

M K M K M K M K M K 
Time 

(second) 71 6.3 121 9.4 141 10.5 33 5.2 240 6.8 

P 0.917 0.897 0.920 0.871 0.952 0.885 0.962 0.862 1.000 0.920 
R 0.815 0.963 0.767 0.900 0.800 0.920 0.893 0.893 0.800 0.920 
F1 0.863 0.929 0.836 0.885 0.870 0.902 0.926 0.877 0.889 0.920 

P.S. M and K indicate the manual and automatic KBC approach, respectively. 
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Chapter 7: Conclusions, contributions, implications, and future 
work 

7.1 Conclusions 

In this section, important findings of previous chapters are summarised to draw 

unambiguous conclusions of the research. This research develops an automatic and 

effective approach to improve AWP in bridge rehabilitation projects based on novel 

DL models for information extraction and completion and ontologies for information 

integration. This research is mainly deductive and quantitative based on objectivism 

epistemology and realism ontology, e.g., DL model development and experiments. On 

the other hand, subjective domain knowledge is employed in the proposed KBs and 

DL models, e.g., domain classes and relations collected through literature review and 

the focus group. Hence, it can be argued that this research is a mixed research and 

belongs to the post-positivism paradigm. 

The proposed information management approach includes three key components: 1) a 

hybrid IE model to extract constraint entities and setup relations among entities; 2) 

ontological KBs (i.e., BRMO) to integrate constraint information and support project 

management functions; and 3) a KBC model to identify missing triples in KBs. The 

hybrid IE model extracts constraint information from documents; then, the BRMO 

integrates such information in ontological KBs; finally, the KBC model is used to 

enrich the KBs and improve the quality of KBs. Both DL model experiments and 

controlled experiments have been carried out to validate the capacity and usefulness 

of each component in the proposed approach. The results show that the approach can 

reach high performance in terms of entity/relation extraction and KB completion, it 

can also integrate dynamic project information, i.e., constraints, tasks, procedures, 

attributes of constraints, and project participants. The approach can largely automate 

AWP constraint modelling while enabling effective information integration. Hence, it 

can contribute to project success by saving much time for other AWP tasks, e.g., 

constraint monitoring and removal. 

7.1.1 Research findings for Objective 1 
Objective 1: To investigate topics, trends, and limitations of information management 

in bridge maintenance projects, implementation of AWP in the AEC industry, and 

information extraction and integration approaches. 
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Summary of findings: The critical review is carried out based on 485 articles of 

DDBM studies, 29 articles and 106 industry documents (e.g., standards and reports) 

of AWP, and 117 articles of information extraction and integration approaches. All 

documents come from the Web of Science and databases of AWP implementors. The 

review has clearly shown the research gaps below:  

� Bridge rehabilitation projects are complex, and advanced package-based 

constraint management approaches (e.g., AWP) can contribute to the success 

of such projects. However, current efforts of bridge rehabilitation focus on 

engineering techniques and do not adequately consider the management aspect. 

Thus, modern constraint management approaches have not been implemented 

in bridge rehabilitation projects. 

� Successful project management needs to integrate project information in KBs. 

The challenge is that the information is often scattered in isolated sources, 

buried in unstructured documents, and changes as a project proceeds. Existing 

information management approaches in the sector cannot effectively extract 

and integrate such unstructured and dynamic project information.  

� As a result of the above two limitations, constraint modelling, the prerequisite 

of AWP, still depends on manually identifying constraint entities and relations, 

which is believed to be very inefficient at the time of this study. Besides, the 

generated KBs (i.e., AWP graphs) are often incomplete, while information is 

not integrated into a central environment to assist information access. 

7.1.2 Research findings for Objective 2 
Objective 2: To develop a novel deep-learning-based information extraction model to 

automate AWP constraint modelling by extracting constraint entities and relations 

from text documents. 

Summary of findings: the hybrid IE model combines a Bi-LSTM-CRF model to 

extract constraint entities and a CNN-based KRL model to extract relations through 

identifying valid triples from candidate triples formed by traversing and connecting 

the extracted entities. Based on experiment results, the following findings are drawn. 

� The Bi-LSTM-CRF model can accurately extract CONS, AT, and TP entities 

with the F1 score being 0.936 in the testing dataset. 
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� The CNN-based KRL model can effectively extract five types of relations, i.e., 

c2c, c2t, c2a, t2t, and c2p relations, with the F1 scores being 0.859, 0.885, 

0.908, 0.912 and 0.890 in the testing dataset, respectively. 

� In the KRL model, adding class information can significantly increase the 

model performance of relation extraction and accelerate model convergence. 

Particularly, when the information is horizontally stacked at the input matrix 

of the model structure, the most significant increase of F1 score (1.9%, 12.0%, 

and 6.0%) can be gained for c2c, c2a, and c2t relation extraction, respectively 

It should be noted that the other two types of relations (i.e., t2t and c2p) are set 

up by rules, thus, the performance cannot be improved using the strategies. 

� Most data for training the hybrid IE model are Chinese documents, but the 

model can be generalised to other languages. The Bi-LSTM-CRF model can 

reach 0.912 F1 when extracting entities in the additionally collected English 

texts, and the KRL model is to-some-extent independent of languages due to 

the translation mechanism (Section 4.4.1). 

� The hybrid IE model can partially automate AWP constraint modelling, and 

the time to develop the AWP KBs can be reduced to 1/29 of that using the 

manual approach. 

7.1.3 Research findings for Objective 3 
Objective 3: To develop ontological knowledge bases to integrate the constraint 

information in bridge rehabilitation projects. 

Summary of findings: The development of the ontological KBs (i.e., the BRMO) 

follows a standard guideline and is based on a comprehensive collection of domain 

knowledge. 

� The BRMO has three class taxonomies for tasks/procedures, constraints, and 

participants, respectively as well as two relation hierarchies for object and 

datatype relations, respectively.  

� The BRMO overcomes the syntax limitations in conventional ontologies by 

combining the SWRL, SQWRL, and OWL API. Thus, the BRMO supports 

complex computation and updating therefore enabling integration, inferring, 

updating, and searching for both static and dynamic constraint information. 
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� In the information encoding experiments, the BRMO can integrate all triples 

automatically extracted by the hybrid IE model developed in Objective 2. 

� In the information searching experiments, the BRMO can search for project 

information of AWP efficiently. The searching time can be reduced up to 1/50 

of manual searching, where the time for writing queries has been considered. 

� The BRMO can realise essential management functions, e.g., computing the 

progress and delay of tasks/procedures, evaluating constraint statuses (e.g., 

evaluating removal progress), identifying critical constraints, and evaluating 

the performance of participants. 

7.1.4 Research findings for Objective 4 
Objective 4: To develop a novel knowledge base completion model to automatically 

identity missing triples in AWP KBs. 

Summary of findings: The KBC model has three essential parts: an ontology-based 

data enriching module, a GNN encoder to learn embeddings of entities/relations, and 

a CNN-based decoder to predict missing triples. 

� This research proposes three strategies to improve model performance. The 

data enriching module infers new triples and enriches semantics of existing 

triples to facilitate training. Besides, two types of domain information: i.e., 

domain classes and working contexts, are utilised. Domain classes are inserted 

in KBs as additional nodes to be processed by the encoder, whereas working 

context embeddings are stacked in the decoder structure. 

� The proposed KBC model can effectively identify different types of missing 

information in KBs. The maximum performance is 95.0%, 91.0%, 84.4%, and 

3.84 for hit@10, hit@3, hit@1, and mean rank, respectively. 

� In cross-comparison experiments, eight model configurations are tested. The 

full configuration applying all three strategies significantly outperforms other 

configurations. All three strategies increase model performance to different 

degrees. To be specific, adding domain class information, adding working 

context information, and enriching semantics can increase hit@1 (the strictest 

metric) by 0.277, 0.129, and 0.112 on average, respectively. 
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� In the controlled experiments, the KBC model can reduce the time to check 

and complete KBs to 1/6-1/40 of manual checking while obtaining higher F1 

in terms of identifying missing information. 

7.2 Contribution, implication, and future work 

7.2.1 Summary of theoretical contributions 

The main theoretical contributions of this research lie in three aspects, i.e., expansion 

of existing domain ontologies, a novel approach for integrating dynamic information 

in ontologies, and novel computational models for automatic information extraction 

and KB completion in the AEC industry. 

(1) Expansion of domain ontologies 

Existing ontologies for bridge maintenance are often developed for the inspection, 

evaluation, and decision-making stages. However, bridge rehabilitation has specific 

domain knowledge, e.g., specialised constraints and tasks as well as relations among 

these entities. Thus, previous ontologies cannot effectively integrate information of 

bridge rehabilitation due to lacking such domain knowledge. This research proposes 

the BRMO created based on the comprehensive collection of bridge rehabilitation 

knowledge. As such, the BRMO expands the coverage of ontologies to the bridge 

rehabilitation stage. The BRMO can effectively integrate information of rehabilitation 

tasks/procedures, project participants, and three types of constraints (i.e., engineering 

constraints, supply-chain constraints, and site constraints). Moreover, although the 

BRMO is designed specifically for bridge rehabilitation, it can be usefully integrated 

with other bridge ontologies (e.g., ontologies that model bridge components) without 

significant modifications to support informed maintenance decisions. 

(2) A novel approach for integrating dynamic information in ontologies 

Most previous ontologies in the AEC sector focus on integrating static information 

(e.g., geometries) and facts (e.g., reasons of defects and accidents). Such information 

often does not change regularly. However, these ontologies do not adequately take 

dynamic project information, e.g., the progress of tasks and constraint removal into 

consideration. The main reason is that conventional ontologies do not support critical 

computations required for updating such dynamic information. The BRMO addresses 

this issue by combining the SWRL, SQWRL, and OWL API to overcome the syntax 
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limitations in conventional ontologies and realise an effective information updating 

process. Specifically, the OWL API exports information out of the BRMO and then 

performs all required computation programmatically (e.g., computing the delay of 

tasks/procedures and ratio of unremoved constraints). The results are imported back 

into the BRMO through the API. On the other hand, SWRL and SQWRL are good at 

inferring new knowledge in ontologies. Based on the updated information, the rules 

are used to infer additional information (i.e., triples) to reflect the performance of a 

project in three aspects: work progress, constraint removal progress, and participant 

performance. It can be argued that the proposed method extends current information 

management approaches in ontologies so that the BRMO can be continuously updated 

to integrate both static and dynamic project information. 

(3) Novel computational models for automatic information extraction and 

knowledge base completion 

To automate constraint modelling and provide comprehensive information for AWP, 

this research proposes two critical DL models, the hybrid IE model (Section 3.4 and 

Chapter 4) and KBC model (Section 3.6 and Chapter 6). The models make use of 

cutting-edge NLP studies. However, NLP models in these studies focus on general 

knowledge. They do not consider specific information in the AEC domain therefore 

cannot reach good performance if being directly used for AWP. Thus, this research 

contributes by utilising domain-specific information to modify structures of state-of-

the-art DL models and improve their performance. Two types of domain information 

are considered: domain classes and working contexts of project entities. Such domain 

information can cluster constraint entities so that the DL models are less likely to be 

distracted by heterogeneous entity names in training and testing. Based on detailed 

model experiments, the research proposes two ways to utilise domain information that 

can realise maximum performance improvement: 1) For the KRL model, embeddings 

of domain classes of a triple’s head/tail entities are horizontally stacked at both sides 

of the input matrix. 2) For the GNN encoder, the domain classes are inserted in the 

KBs as additional nodes which are processed by the encoder. 3) For the CNN decoder, 

embeddings of working contexts of the head/tail entities in a triple are horizontally 

stacked at both sides of the input matrix. On average, the proposed KRL model can 

increase the F1 score of triple extraction by 6.63%, and the proposed KBC model can 

increase the hit@1 values by 11.2%-27.9%. Finally, the research is an early attempt to 
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extract both entities and semantic rich relations in the AEC sector, thus, the model 

training and validating protocols, optimal hyper-parameters, and model performance 

metrics are all valuable baselines for future IE or NLP studies in the sector. 

7.2.2 Summary of implications 

Package-based constraint management approaches, e.g., AWP, rely on three critical 

steps, constraint modelling, constraint monitoring/analysis, and constraint removal. 

However, as the first step, constraint modelling still relies on manually reviewing 

project documents in practice, owing to the lack of efficient IE approaches to extract 

both constraint entities and relations. Besides, project teams lack tools (e.g., graph-

based KBs) to integrate extracted constraint information for reuse. Finally, even KBs 

are built, there are no practical methods to automatically check, update, and enrich 

these KBs. Practical AWP is an iterative and intensive process, thus, these challenges 

can damage AWP functions and hinder the remaining constraint management steps. 

Hence, the research proposes the hybrid IE model, ontological KBs, and KBC model 

to solve the issues for implementing AWP in bridge rehabilitation. Accordingly, the 

proposed information management approach has three practical implications. 

(1) Automatic AWP modelling tools 

The hybrid IE model is a useful tool to extract constraint information and automate 

constraint modelling. The model can extract three types of entities and five types of 

relations, which can cover typical routines in construction projects. In the controlled 

experiments, the model can reduce constraint modelling time to 1/29 of the manual 

approach. Thus, much time can be saved for constraint monitoring and removal. The 

model can handle both static data (e.g., imperative requirements in standards) and 

dynamic data (e.g., task progress and constraint statuses). In real projects, the number 

of constraint entities is much larger than that in the experiments. It is exhausting for 

engineers to manually extract all constraint information. The approach developed in 

this research can to-some-extent automate the AWP modelling process, which helps 

(not replaces) engineers to capture interconnections among constraints and improve 

management decision-making. Finally, some efforts propose advanced management 

frameworks for AWP, concentrating on efficient constraint monitoring and removal. 

However, information in such frameworks is still manually inserted (Wang et al., 

2016). Therefore, as an effective and automatic IE tool, the hybrid IE model can 

supplement such efforts and better reap the benefits of AWP. 
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(2) Ontology-based project information integration platform 

The BRMO can integrate, infer, and search for both static and dynamic information in 

ongoing projects in a much shorter time (1/50) compared to the manual approach, 

especially when the information is scattered in multiple sources. Thus, the BRMO is 

an effective and software neutral platform that allows different participants to access 

project information. Moreover, the BRMO supports several important management 

functions, e.g., evaluating work progress, constraint removal progress, and project 

participant performance, warning potential delay, and identifying critical constraints. 

Although the functions can be realised in traditional tools (e.g., Microsoft Project), 

using the BRMO, one can navigate the KBs to explore implicit information (e.g., 

finding root causes of delay). This is difficult to achieve in traditional tools. 

(3) Automatic KBs completion tools 

It can be difficult to find useful information (manually or automatically) to support 

AWP management functions if KBs are incomplete. The proposed KBC model can 

help engineers quickly identify critical missing information in ontological KBs, e.g., 

statuses of constraints/tasks. As shown in Section 6.3.3, the KBC model can reduce 

the time for checking and completing a KB to 1/6-1/40 of the manual approach while 

maintaining high completion accuracy. The main function of KBC in practice is not to 

extract or search for information, instead, it is more beneficial to apply the model as a 

supplement tool. For instance, when initial AWP KBs are created using either manual 

or automatic IE methods, the KBC model can improve the quality of KBs by adding 

missing information. It can work with information searching tools (e.g., the SPARQL 

for ontology querying) to increase the comprehensiveness and accuracy of searching. 

7.2.3 Towards construction 4.0 

Since the 1760s, the world has experienced three industrial revolutions which have 

made a significant advance in many sectors and greatly improved people's life. The 

first revolution focuses on mechanization, i.e., using machines to replace human labour. 

The second revolution focuses on the intensive use of electrical energy. The third 

revolution focuses on widespread digitalisation (modern computers and the Internet). 

During the last decade, the world is undergoing the fourth industrial revolution (i.e., 

industry 4.0) which focuses on establishing the connections among information, 

objects, and people using computers and cyber-physical systems. The main aim is to 

develop a decentralised connection between the real world and cyberspace so that 



 

 

 

 

153 

different scenarios are simulated in cyberspace (i.e., the virtual world) to derive 

optimised decisions before carrying out tasks in the real world. 

Despite that the construction industry is notorious for inadequate applications of new 

ICTs, it also experiences a process similar to industry revolutions, i.e., construction 

1.0 (from labour-intensive construction to the adoption of machines, e.g., cranes), 

construction 2.0 (from non-standard construction to standard construction, e.g., off-

site construction), construction 3.0 (from document-based construction to computer-

based construction, e.g., computer-aided design). In recent years, various intelligent 

techniques of industry 4.0 are increasingly adopted in the sector, e.g., BIM, artificial 

intelligence (AI), and IoT. They have brought many benefits to construction projects, 

including but not limited to improved productivity, safety, and quality. Therefore, 

domain experts are unanimous on the fact that the construction industry is shifting 

towards construction 4.0 or intelligent construction (Schönbeck et al., 2020).  

The concept of construction 4.0 was first proposed in 2016, and there is currently no 

common agreement of its definition (Lasi et al., 2014). There are two pillars for the 

transformation towards construction 4.0, namely, industrialisation and digitalisation. 

Specifically, industrialisation refers to the new materials, industrialised construction 

methods (e.g., modular construction), and construction robotics. On the other hand, 

digitalisation includes the following parts: 1) big data (i.e., approaches for automatic 

data or information collection, storage, analysis, and exchanging), 2) AI techniques 

for information analysis and decision-making, 3) computer and BIM-based design, 

construction, and maintenance, and 4) virtual reality (VR) and augmented reality (AR). 

Accordingly, there are three essential features of construction 4.0, i.e., digitalised, 

automated, and connected (Forcael et al., 2020; Schönbeck et al., 2020). 

As such, this research can facilitate the transformation towards construction 4.0. In 

particular, the research contributes to the development of the digitalisation pillar of 

construction 4.0 in the following aspects, which makes the industry more digitalised, 

automated, and connected. Figure 7-1 illustrates the architecture of construction 4.0 

and highlights the improved areas through this research. 

(1) Improving unstructured information extraction (more digitalised) 

This improvement belongs to the data/information collection and applications of AI 

techniques of the digitalisation pillar. Construction projects involve different data 
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types, e.g., images, sensor readings, and plain texts. Construction 4.0 is information-

driven, and useful information should be efficiently extracted from raw data. Current 

studies focus on processing data collected by sensors and imaging techniques (e.g., 

UAVs and LiDAR). For instance, many methods are developed to extract defect 

information from photos (Xu et al., 2020). However, when it comes to text data, useful 

information is buried in unstructured texts and cannot be efficiently digitalised. This 

is especially true when it comes to extracting semantic-rich relations and is against the 

characteristics of construction 4.0 (Wu et al., 2020b). The information management 

approach proposed in this research can extract entities and semantic-rich relations from 

texts and then integrate them in KBs. Thus, it can to-some-extent address the above 

problem and make construction more digitalised. Besides, in the last decade, owing to 

the fast development of CNN-based models, much more efforts of construction 4.0 are 

dedicated to applying computer vision techniques, e.g., detecting cracks (Yeum & 

Dyke, 2015) and unsafe behaviours of workers (Fang et al., 2020). However, the 

applications of NLP techniques largely lag. Along with the advances of NLP models 

(e.g., Google's BERT and GNNs), an important future direction of AI is human 

language understanding based on combinations of knowledge graphs with intelligent 

NLP algorithms (Vaswani et al., 2017). From this perspective, the research explores 

applications of state-of-the-art NLP techniques in the AEC sector (e.g., information 

extraction for AWP using the Bi-LSTM-CRF and KRL model as well as automatic 

knowledge completion using the KBC model). This can help the industry catch up the 

cutting-edge AI research and bridge the gap of unstructured information extraction and 

integration, which can make steps moving towards construction 4.0 more balanced in 

terms of applying AI techniques. 

(2) Minimising human intervention for information modelling (more automated) 

This improvement belongs to the computer and BIM-based construction management 

of the digitalisation pillar and can make the construction sector more automated. One 

key challenge of construction 4.0 is to set up and maintain the link between physical 

and cyber projects. In this case, a typical implementation is to create n-D BIM models 

to model different aspects of a project (e.g., schedule (4D) and costs (5D)) before the 

physical project commences. The link (i.e., the BIM environment) is maintained by 

IoT and computer vision systems which collect data of structures, labour, materials, 

and equipment in a real-time manner and upload the data into BIM (Dave et al., 2018). 
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However, such systems focus on structured data, e.g., sensor readings and geometries 

of defects measured in images, but they cannot automatically capture some important 

information for modern project management approaches (e.g., AWP), e.g., complex 

semantics of and interconnections among project entities (Wu et al., 2021b). As such, 

AWP heavily relies on inefficient manual approaches (e.g., manually extracting and 

updating interconnections among entities). In contrast, the proposed approach can 

handle unstructured data thus largely automating AWP modelling and KBs checking. 

Such automation frees engineers from strenuous and repeating manual work so that 

they can spend more time on essential management tasks (e.g., constraint monitoring 

and removal). This can also supplement BIM-based management. For instance, a data 

link can be set up between AWP KBs generated by the proposed approach and BIM 

systems, so that data from both sides can be automatically integrated to enable more 

sophisticated functions. As an example, some studies of historical building restoration 

propose to 1) store non-geometric information (e.g., historical events and complex 

material properties) in ontologies, 2) export geometric information from BIM to the 

ontologies for reasoning (e.g., detecting inconsistency between different inspection 

activities), 3) visualise the results in BIM for communication (Niknam & Karshenas, 

2017; Simeone et al., 2019; Werbrouck et al., 2020). The approach can be adopted in 

bridge maintenance projects (e.g., storing geometries and defects of components in 

BrIM while storing condition evaluation rules in ontologies to assist structure health 

assessment) to take use of strengths of different information management tools. 

(3) Improving unstructured information integration (more connected) 

This improvement belongs to the data exchange part of the digitalisation pillar, which 

can make construction projects more connected. According to Schönbeck et al. (2020), 

the studies of construction 4.0 pay more attention to industrialisation and automated 

construction approaches (e.g., off-site construction and robotics) than information 

communication and integration. This complies with the findings that existing BIM 

studies focus on modelling capabilities and lack consideration of interoperability 

(Costin et al., 2018). Exchanging information in construction projects largely relies on 

relational databases and focuses on structured information. Thus, even unstructured 

information (e.g., knowledge triples) can be extracted, the information cannot be 

effectively stored and exchanged, which negatively affects the connectivity among 

stakeholders. On the other hand, the BRMO can to-some-extent tackle the problem. 
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The BRMO can integrate, store, and search for both static and dynamic information of 

constraints, tasks/procedures, and project participants, it can also compute and 

continuously infer new information by supplementary usage of the reasoning rules 

(SWRL and SQWRL) and OWL API. Furthermore, the BRMO can also be combined 

with relational databases to exchange both unstructured data (e.g., knowledge triples) 

and structured data (e.g., sensor readings). 

 

Figure 7-1 Pillars of construction 4.0 and improved areas of this research 

In summary, the proposed information management approach focuses on improving 

three parts of the digitalisation pillar of construction 4.0, i.e., unstructured information 

extraction, automated project modelling, and unstructured information integration. 

Therefore, the research can make the AEC domain more digitalised, automated, and 

connected, which facilitates the transformation towards construction 4.0. 
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7.2.4 Limitations and future work 

In this section, limitations of the proposed information extraction and integration 

approach for AWP modelling are identified. Accordingly, potential future research 

directions are proposed. 

(1) Limitations of the hybrid IE model (Objective 2)  

The hybrid IE model includes two parts, each of which has several limitations. The 

Bi-LSTM-CRF model still produces some errors, which can hurt downstream triple 

extraction. The model also suffers from slight overfitting. In the future, to improve 

model capacity and alleviate overfitting, more training data will be collected, the 

balance between data samples (i.e., the number of different tags for NER) will be 

improved using advanced sampling techniques, and novel methods to incorporate 

domain knowledge in the model structure will be proposed (in this research such 

knowledge is only utilised for KRL and KBC models) (Srivastava et al., 2014). In 

addition, in the automatically developed KBs, some extracted entities are duplicated, 

which can cause ambiguation during information sharing. Hence, ontology merging 

methods, e.g., description logical reasoning (Kumar & Harding, 2013), will be used to 

further improve the practicality of the hybrid model. 

On the other hand, as mentioned, there are seven common relation types in AWP, but 

only five of them can be automatically extracted, i.e., the c2c, c2a, c2t relations are 

extracted by the KRL model, while the t2t and ct2p relations are extracted by rules. 

However, the other two relation types, i.e., t2t and c2p, need to be manually inserted. 

To fully automate the relation extraction process and maximise the model flexibility 

(i.e., minimising the use of rules), the model that can support triple extraction from 

multi-sentences will be tested. This can help extract t2t relations that are separated in 

texts. Additional training samples will be collected for the model to enable extracting 

c2p relations. Besides, although the original BERT model is not designed for relation 

extraction, it, in essence, provides an effective method to extract and integrate text 

features in a parallel manner (i.e., the attention mechanism) (Vaswani et al., 2017). 

The features, once extracted, can be used in almost any ML task (Murphy, 2012). As 

such, it is also worth trying to modify the BERT structure and make it applicable for 

extracting AWP relations. The final two relation types (i.e., p2p and ct2pp) are subject 

to project features (e.g., scale and type). Thus, future research will develop templates 

for typical project/task types and scales to automatically extract the relations. 
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(2) Limitations of the BRMO (Objective 3) 

The BRMO has two main limitations. First, the BRMO only supports basic functions 

for computation and reasoning, which still leaves much room for improvement. For 

instance, the strength of different relation types can be added to better represent the 

degree of connection among entities. A common practice is to model such connection 

strength using fuzzy sets (Moufti et al., 2014). Various network analysis techniques, 

such as dynamic network analysis and social network analysis, can also be used to 

discover more project knowledge. For instance, these methods can identify critical 

constraints using more sophisticated metrics, such as betweenness, centrality, and 

PageRank values (Farshchi & Brown, 2011). Second, searching for information in the 

BRMO requires certain skills (e.g., writing SPARQL queries). Therefore, studies will 

be carried out to automatically generate queries from natural languages based on NLP 

methods (Tahery & Farzi, 2020), which can further reduce information searching time 

and make BRMO more practical in real projects. 

(3) Limitations of the KBC model (Objective 4)  

One limitation of the proposed KBC model is that not all data in KBs are used. Most 

triples related to constraints’ attributes are not considered, because: 1) such data have 

high variance and are very sparse, and 2) GNN models are good at interpreting the 

connections among nodes rather than predicting specific values (e.g., attribute values 

of constraints). One solution that will be tested in the future is to train additional ML 

models to predict missing attributes, considering various factors. For instance, an ML 

model can predict the delay of a task based on the type, quantities, and its current 

constraint removal progress (Hashemi et al., 2020). The current performance (0.844 

hit@1) is not very high, and human intervention is needed in the KBC tasks (e.g., 

selecting one entity from three candidates). As such, more data will be collected for 

training to increase the model performance. 

Moreover, as mentioned in Section 2.4, some unsupervised methods can mine rules 

automatically (e.g., association rule mining), whereas a few DL models are proposed 

to even automatically create reasoning rules. The main idea is to create a few initial 

rules to infer implicit knowledge (e.g., triples) in KBs while combining DL models 

and Markov logic network to predict missing information encountered when reasoning 

(e.g., missing entities in the rule’s body). The methods/models can improve both the 

information searching and reasoning capacity of the BRMO and KBC performance. 
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Many of them are still in an infancy stage and the studies applying in the AEC sector 

are limited. Therefore, it is still worth testing their performance for AWP in bridge 

rehabilitation projects. 
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Appendix 2 Focus group questions (classes) 

Initial domain concepts/classes of bridge rehabilitation have been identified by the 

researcher. These classes 1) cover three aspects: constraint, rehabilitation task, and 

project participant, 2) are organised in hierarchies which have maximum four levels 

currently. Please provide advice in terms of adding, deleting, and modifying classes 

and subclasses. Please note the maximum number of class level in this research is five. 

Constraint (level-1) 

1. Engineering constraint (level-2) 

Initial sub-classes (level-3) of ‘Engineering constraint’ (level-2): BoQ, design 

document, inspection, maintenance, and rehabilitation (IMRR) reports, project 

approval, site permit, standard or manual, working specification 
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Suggestions for adding/deleting/modifying classes/sub-classes 

 

1) BoQ (level-3) 

Initial sub-classes (level-4) of ‘BoQ’: N/A 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

2) Design document (level-3) 

Initial sub-classes (level-4) of ‘Design document’ (level-3): original design drawing, 

original shop drawing, maintenance design drawing, maintenance shop drawing, 

original 3D model, maintenance 3D model 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

3) IMRR report (level-3) 

Initial sub-classes (level-4) of ‘IMRR report’ (level-3): maintenance/rehabilitation 

history report, inspection report 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

4) Project approval (level-3) 

Initial sub-classes (level-4) of ‘Project approval’ (level-3): bridge close approval, 

construction approval, environment approval 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

5) Site permit (level-3) 

Initial sub-classes (level-4) of ‘Site permit’ (level-3): site discharge permit, night 

working permit, noise permit, safety permit 

Suggestions for adding/deleting/modifying classes/sub-classes 
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6) Standard and manual (level-3) 

Initial sub-classes (level-4) of ‘Standard and manual’ (level-3): N/A 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

7) Working specification (level-3) 

Initial sub-classes (level-4) of ‘Working specification’ (level-3): N/A 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

2. Site constraint (level-2) 

Initial sub-classes (level-3) of ‘Site constraint’ (level-2): people, temporary facility, 

weather 

1) People (level-3) 

Initial sub-classes (level-4) of ‘People’ (level-3): general labour, special labour, 

engineer/manager 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

2) Temporary facility (level-3) 

Initial sub-classes (level-4) of ‘Temporary facility’ (level-3): lighting facility, power 

facility, site accommodation, storage area, supporting system, water facility, work 

space 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

3) Weather (level-3) 

Initial sub-classes (level-4) of ‘Weather’ (level-4): heat/cold, rain, sun, wind 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

3. Supply constraint (level-2) 
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Initial sub-classes (level-3) of ‘Supply constraint’ (level-2): equipment, material 

1) Equipment (level-3) 

Initial sub-classes (level-4) of ‘Equipment’ (level-3): drilling equipment, excavating 

equipment, transporting equipment, mixing equipment, monitoring equipment, paving 

equipment, piling equipment, PPE, pumping equipment, rolling equipment, vibrating 

equipment, welding equipment, auxiliary equipment, demolishing equipment 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

2) Material (level-3) 

Initial sub-classes (level-4) of ‘Material’ (leve-3): asphalt material, cement material, 

coating material, admixture, concrete material, resin material, soil material, metal 

material, sand and stone material, supplementary material 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

 

Rehabilitation task (level-1) 

1. Hazard treating (level-2) 

Initial sub-classes (level-3) of ‘Hazard treating’ (level-2): asphalt hazard treating, 

concrete hazard treating, rust treating, deflection treating 

1) Asphalt hazard treating (level-3) 

Initial sub-classes (level-4) of ‘Asphalt hazard treating’ (level-3): asphalt crack 

treating, asphalt aging treating, asphalt deformation treating 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

2) Concrete hazard treating (level-3) 

Initial sub-classes (level-4) of ‘Concrete hazard treating’ (level-3): concrete crack 

treating, concrete weathering treating, concrete spalling treating, honeycomb treating, 

pockmark treating 
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Suggestions for adding/deleting/modifying classes/sub-classes 

 

3) Rust treating (level-3) 

Initial sub-classes (level-4) of ‘Rust treating’ (level-3): N/A 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

4) Deflection treating (level-3) 

Initial sub-classes (level-4) of ‘Deflection treating’ (level-3): anchoring, jacking, 

retaining wall 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

2. Reinforcement (level-2) 

Initial sub-classes of ‘Reinforcement’ (level-2): exterior covering, external reinforcing, 

foundation reinforcing, section area increasing, structure changing 

1) Exterior covering (level-3) 

Initial sub-classes (level-4) of ‘Exterior covering’ (level-3): CFRPS sticking, fibre 

glass cloth sticking, panel sticking, concrete wrapping, steel wrapping 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

2) External reinforcing (level-3) 

Initial sub-classes (level-4) of ‘External reinforcing’ (level-3): N/A 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

3) Foundation reinforcing (level-3) 

Initial sub-classes (level-4) of ‘Foundation reinforcing’ (level-3): additional piling, 

artificial foundation, anti-scouring 

Suggestions for adding/deleting/modifying classes/sub-classes 
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4) Section-area increasing (level-3) 

Initial sub-classes (level-4) of ‘Section-area increasing’ (level-3): pier section-area 

increasing, beam section-area, foundation section-area increasing 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

5) Structure system transformation (level-3) 

Initial sub-classes (level-4) of ‘Structure system transformation’ (level-3): beam to 

beam-arch combination, simply-supported system to continuous-slab deck system, 

adding traversing beam 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

3. Replacement (level-2) 

Initial sub-classes (level-3) of ‘Replacement’ (level-2): deck system replacement, sub-

structure replacement, super-structure replacement 

1) Deck system replacement (level-3) 

Initial sub-classes (level-4) of ‘Deck system replacement’ (level-3): auxiliary system 

replacement, deck pavement replacement 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

2) Sub-structure replacement (level-3) 

Initial sub-classes (level-4) of ‘Sub-structure replacement’ (level-3): pre-cast pier 

replacement, cutwater replacement, pre-cast abutment component replacement 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

3) Super-structure replacement (level-3) 

Initial sub-classes (level-4) of ‘Super-structure replacement’ (level-3): pre-cast beam 

replacement, bearing replacement, cable replacement 



 

 

 

 

177 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

 

General task (procedure) (level-1) 

1. Preparation (level-2) 

Initial sub-classes (level-3) of ‘Preparation’ (level-2): site surveying, site layout, 

bridge inspection, building temporary facility, project mobilisation 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

2. Execution (level-2) 

Initial sub-classes (level-3) of ‘Execution’ (level-2): cleaning, transporting, coating, 

pouring, curing, dismantling, drilling, excavating, grouting, fixing, installing, mixing, 

paving, piling, rebar engineering, rolling, spraying, sticking, vibrating, welding 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

3. Check and acceptance (level-2) 

Initial sub-classes (level-3) of ‘Check and acceptance’ (level-2): quality checking, 

intermediate acceptance, final acceptance 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

 

Project participant (level-1) 

1. Project-level participant (level-2) 

Initial sub-classes (level-3) of ‘Project participant’ (level-2): owner, pre-completion 

stage participant, rehabilitation stage participant 

1) Owner (level-3) 

Initial sub-classes (level-4) of ‘Owner’ (level-3): N/A 
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Suggestions for adding/deleting/modifying classes/sub-classes 

 

2) Pre-completion stage participant (level-3) 

Initial sub-classes (level-4) of ‘Pre-completion stage participant’ (level-3): designer, 

contractor, supplier, consulting team 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

3) Rehabilitation stage participant (level-3) 

Initial sub-classes (level-4) of ‘Rehabilitation stage participant’ (level-3): designer, 

contractor, supplier, consulting team, maintenance team 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

2. External participant (level-2) 

Initial sub-classes (level-3) of ‘External participant’ (level-2): bridge user, government 

agency 

1) Bridge user (level-3) 

Initial sub-classes (level-4) of ‘Bridge user’ (level-3): driver, pedestrian 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

2) Government agency (level-3) 

Initial sub-classes (level-4) of ‘Government agency’ (level-3): municipal bureau, 

transportation department, environment department, construction department 

Suggestions for adding/deleting/modifying classes/sub-classes 

 

Appendix 3 Focus group questions (relations) 

1. constrains (level-1) 
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Initial sub-relations (level-2) of ‘constrains’ (level-1): there are 14 initial relations 

listed below, please provide advice in terms of adding, deleting, and modifying these 

relations. 

Relation name Head/tail entity linked by the relation Advice 

accommodate head: temporary facility entities; tail: people  

check-quality head: engineer/manager; tail: constraint entities  

transport head: equipment; tail: constraint entities  

grant-permission-to head: project participant; tail: document  

supervise head: engineer/manager; tail: constraint entities  

monitor head: equipment entities; tail: constraint entities  

use head: labour; tail: material entities  

produce 
head: equipment entities or task/procedure entities; 

tail: material or temporary facility entities 
 

protect head: equipment entities; tail: people entities  

provide-space-for 
head: temporary facility entities; tail: constraint 

entities 
 

work-in head: people entities; tail: task/procedure entities  

remove head: participant entities; tail: constraint entities  

specify head: document entities; tail: constraint entities  

has-unremoved-

constraints 
head: constraint entities; tail: constraint entities  

Suggestions for adding/deleting/modifying relations 

 

 

2. work dependency (level-1) 

Initial sub-relations (level-2) of ‘work dependency’ (level-1): there are three initial 

relations listed below, please provide advice in terms of adding, deleting, and 

modifying these relations. 

Relation name Head/tail entity linked by the relation Advice 

is-preceded-of 

head and tail: task/procedure entities 

 

is-succeeded-of  

proceed-concurrently  

Suggestions for adding/deleting/modifying relations 
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3. has-attribute (level-1) 

Initial sub-relations (level-2) of ‘has-attribute’ (level-1): there are eight initial relations 

listed below, please provide advice in terms of adding, deleting, and modifying these 

relations. 

Relation name Head/tail entity linked by the relation Advice 

has-amount 

head: constraint entities; tail: numerical values 

 

has-geometry  

has-price  

has-speed  

has-temperature  

has-humidity  

has-time  

has-type head: constraint entities; tail: String/numerical values  

Suggestions for adding/deleting/modifying relations 

 

 

4.  has-constraint-status (level-1) 

Initial relations (level-2): there are initially six relations listed below, please provide 

advice in terms of adding, deleting, and modifying these relations. 

Relation name Head/tail entity linked by the relation Advice 

has-actual-removal-date 
head: constraint entities; tail: date values 

 

has-planned-removal-date  

has-removal-delay head: constraint entities; tail: numerical values  

is-timely-removed 

head: constraint entities; tail: Boolean values 

 

is-potentially-delayed  

is-removed  

Suggestions for adding/deleting/modifying relations 

 

 

5. has-progress-information (level-1) 

Relation name Head/tail entity linked by the relation Advice 
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has-actual-duration 
head: task/procedure entities; tail: numerical values 

 

has-progress  

has-actual-start-date 

head: task/procedure entities; tail: date values 

 

has-actual-finish-date  

has-planned-start-date  

has-planned-finish-date  

is-finished 

head: task/procedure entities; tail: Boolean values 

 

is-started  

is-delayed  

is-potentially-delayed  

Suggestions for adding/deleting/modifying relations 

 

 

 




