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Abstract 

Forensic investigations are often reliant on physical evidence to reconstruct events 

surrounding a crime. However, there remains a need for more objective approaches to 

evidential interpretation, along with rigorously validated procedures for handling, storage 

and analysis. Chemometrics has been recognised as a powerful tool within forensic science 

for interpretation and optimisation of analytical procedures. However, careful consideration 

must be given to factors such as sampling, validation and underpinning study design. This 

tutorial review aims to provide an accessible overview of chemometric methods within the 

context of forensic science. The review begins with an overview of selected chemometric 

techniques, followed by a broad review of studies demonstrating the utility of chemometrics 

across various forensic disciplines. The tutorial review ends with the discussion of the 

challenges and emerging trends in this rapidly growing field. 

 

1. Introduction 

A primary aim in many forensic investigations is to establish links between people, places, or 

objects in order to reconstruct events surrounding a crime. This is typically done through the 

recovery, analysis and interpretation of physical evidence. Many items of physical evidence 

are macroscopic items such as clothing or firearms. However, this category also includes 

‘trace evidence' (such as soil, glass, paint, hair, fibres, or explosive particulates) that can be 

cross-transferred between surfaces through physical contact or proximity.1–3 

 

Assuming that an item of physical evidence is successfully recovered and analysed, significant 

challenges arise in its interpretation. Many forensic disciplines rely on visual comparisons of 

complex images or multivariate chemical data in the form of spectra, chromatograms or other 

analytical output.4,5 These comparisons require substantial time and expertise on the part of 

the examiner, and the visual complexity of the data may veil potentially useful information.6,7 

It has also become increasingly recognised that examiners are prone to cognitive or social 

biases that may affect their conclusions.8–10 Finally, evaluative interpretation of evidence 

must be made in a way that is understood by the courts.11 
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Several reports have identified the need for more objective and reliable approaches for 

evidence interpretation. These include reports issued by the 2009 National Academy of 

Sciences (United States), 2015-2018 Forensic Science Regulator (United Kingdom), and 2016 

President's Council of Advisors on Science and Technology (United States).12–17 These have 

encouraged strengthened efforts in the past decade to establish statistically validated bases 

for assessing evidential value. A widely accepted way of approaching this is through statistical 

inference, which allows the strength of evidence to be described in probabilistic terms. This 

can take the form of the frequentist approach commonly used in the United States,18 or the 

Bayesian approach recommended by the European Network of Forensic Science Institutes11. 

 

The key difference between the two approaches is the way that they treat probability. In the 

frequentist view, probability can be applied to repeatable random events, but not to fixed 

parameters. Consider a case in which DNA from a crime scene has been associated with a 

suspect, and the significance of this result is in question. The frequentist approach would be 

to determine a random match probability, considering: “What is the probability that a 

randomly selected individual other than the suspect would exhibit an indistinguishable DNA 

profile?”. Whether or not the DNA did in fact originate from the suspect is considered a fixed 

(albeit unknown) parameter and hence does not have a probability. 

 

Using a Bayesian approach on the other hand, the question becomes: “What is the probability 

of the profile being observed if the DNA originated from the suspect, compared to if it 

originated from another random individual?” Probability in this instance is used to describe 

the uncertainty around the fixed parameter of whether the DNA originated from the suspect. 

Moreover, this probability is considered in light of two opposing propositions (the suspect’s 

guilt or innocence), with the relative probability of each expressed through a likelihood ratio 

(LR). 

 

Both frequentist and Bayesian approaches make use of calculated probabilities with defined 

levels of uncertainty, allowing evaluative interpretations to be expressed in more objective 

terms compared to “the evidence strongly supports” or “the evidence is consistent with”.19,20 

However, this does not address potential error or bias in the interpretation of the evidence 

itself. For this reason, an increasing volume of literature has emerged investigating 

chemometric techniques for the analysis and interpretation of physical evidence. 

 

Emerging in the 1970s for process monitoring and control, chemometrics involves the use of 

statistical approaches to analyse and model chemical information.21 Many of these methods 

can simplify or reduce the dimensionality of complex data, which may reveal or explain 

underlying trends. As well as enhancing discrimination in questioned versus known 

comparisons, this may be valuable in generating investigative leads or forensic intelligence. 

Chemometric tools may also be used to investigate factors affecting these analyses through 

experimental design, which as of yet remains largely underutilised within a forensic context. 



Such approaches may lead to the development of statistically validated protocols for evidence 

collection, storage and analysis. 

 

The use of statistical techniques allows more objective and quantitative measures of data to 

be made compared to visual inspections. Although this offers improves objectivity in the 

actual data analysis, it is important to recognise that elements of subjectivity remain 

concerning parameter selection (e.g. data pre-processing methods, distance measures, or 

pre-defined numbers of groups) and interpretation of the output, as will be demonstrated in 

the sections below. These methods can thus reduce – but not eliminate - potential error or 

bias in forensic examinations. 

 

This review is intended to provide an accessible overview of common chemometric methods 

and their potential applications within forensic science. The first part of this review describes 

a selection of chemometric techniques, their outputs, and how this information may be 

interpreted using examples relevant to forensic casework. The second part outlines the 

applicability of chemometric techniques across various forensic disciplines, illustrated 

through a broad analysis of existing research. Finally, the review concludes with emerging 

trends and challenges in this rapidly growing field. It is not the intention to provide a 

comprehensive review of all chemometric methods or potential applications, for which the 

reader is directed to other literature as appropriate. 

 

2. Chemometric methods 

Although they cover a range of potential applications, chemometric techniques can be divided 

into three general categories. Pattern recognition techniques are oriented towards the 

automated recognition of relationships within a dataset. These techniques can be further 

categorised as unsupervised methods (exploratory data analysis) that aim to identify trends, 

or supervised methods intended to model these trends for classification and prediction 

purposes. Regression methods are designed for the quantitative prediction of sample 

properties, and in some cases may be used as binary classifiers. Finally, experimental design 

techniques are used to uncover information about chemical processes, facilitating the design 

and optimisation of analytical procedures.  

 

The use and interpretation of selected chemometric techniques reported in the literature for 

forensic science are discussed below, making use of modelled open-access data in several 

instances. These models were designed using The Unscrambler X 10.5 (Camo Analytics, 

Norway) bundled with Design-Expert 10 (Stat-Ease, USA), which collectively offer a broad 

range of data pre-processing, pattern recognition, regression and experimental design 

methods. Other commercial and open-source software packages for chemometric analysis 

are available, a selection of which are listed in  Table S1. 

 

 



2.1 Unsupervised pattern recognition  

The purpose of unsupervised learning is to detect patterns in datasets without setting any 

prior labels or outcomes. The algorithm is thus left to infer patterns with minimal human 

intervention. Whilst these methods cannot be directly applied to classification or regression 

problems, they are ideal for probing the underlying structure of data. Additionally, some 

unsupervised methods allow new samples to be projected onto a pre-existing dataset. This is 

useful for comparative purposes but should not strictly be considered classification, as there 

is no assumption of specific classes existing. 

 

2.1.1 Hierarchical cluster analysis (HCA) 

Cluster analysis refers to a group of algorithms in which objects (samples) are grouped 

according to their relative similarity. The choice of algorithm and its parameters depends on 

the properties of the dataset and the purpose of the analysis. 

 

Hierarchical cluster analysis (HCA) is a common approach in which objects are connected to 

form clusters based on separation distance. This process is most often agglomerative; starting 

with single objects and progressively grouping them into larger clusters. In this ‘bottom-up’ 

approach, each object is initially treated as a cluster of size one, and the distances between 

each possible pair compared. Those that are the closest together are merged to form a new 

cluster, and the process repeated until a single cluster is obtained.  

The clusters formed are dependent on the user’s selection of an appropriate metric (the 

measure of distance between objects) and linkage criteria (the manner in which relationships 

between clusters are established).22,23 The choice of metric will influence the grouping of 

objects, as some objects may be closely related according to one metric but not using another. 

The linkage criteria on the other hand influences the shape of the clusters formed. Common 

metrics and linkage criteria are described in Table 1. 

 

 

  



Table 1: Common distance metrics and linkage criteria used for agglomerative HCA. 

 Mode Description 

Metric 

Euclidean ‘Straight line’ distance between objects in n-dimensional 

space 

Manhattan Collective distance between objects along each 

dimension in n-dimensional space 

Mahalanobis Distance between an object and a distribution 

determined from the covariance between dimensions 

Linkage criterion 

Single linkage The shortest distance between objects of two clusters, 

resulting in long clusters. 

Complete linkage The longest distance between objects of two clusters, 

resulting in compact clusters. 

Centroid linkage The distance between central objects of two clusters, 

resulting in globular clusters 

Ward’s linkage Groups clusters so as to minimise the increase in 

variance, resulting in globular and fairly compact clusters. 

 

The hierarchical relationship between clusters is typically illustrated using a dendrogram, 

where objects are plotted according to their determined clustering pattern. An example is 

shown in Figure 1, where Maric et al. used HCA to investigate over 700 automotive clear coats 

using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy.24 

Using the squared Euclidean metric, Ward’s linkage method and Calinski–Harabasz pseudo-F 

index as a stopping rule to determine the optimal number of clusters, eight classes were 

identified and associated with the country of vehicle manufacture. In this case, the horizontal 

axis of the dendrogram represents the relative distance between samples. The vertical bars 

of the dendrogram thus indicate the distance at which a pair of samples or clusters are 

merged. However, it is also common to plot samples according to a calculated similarity 

measure, such as by comparing the distance between any given pair of samples or clusters to 

the maximum distance between any pair in the dataset. 

 

The dendrogram provides a simple means of visualising relative similarity in quantitative 

terms. In Figure 1 for example, Class 1 is the last to be merged with the remaining clusters, at 

a relative distance of almost 10. Classes 5 and 7 by contrast are within a relative distance of 

approximately 0.4, and so are merged at an early stage of clustering. These hierarchical 

relationships reflect the relative similarities of the input data, which can be seen through 

examination of the original spectra. A typical spectrum for Class 1 lacks several of the 

absorbance bands seen in the spectra of other classes, which can be inferred to be the reason 

for its greater separation distance. 

 



 

Figure 1: (Top) Dendrogram illustrating cluster analysis of infrared spectra from 746 automotive clear 

coats, revealing eight main classes corresponding to country of vehicle manufacture; (Bottom) Typical 

ATR-FTIR spectra obtained from classes 1, 5 and 7, typifying the relative similarity and dissimilarity as 

observed in the dendrogram. This dataset is available via Research Data Australia.25 

 

 

  



2.1.2 Principal component analysis (PCA) 

Identifying relationships within a dataset can be challenging when examining complex 

multivariate data such as spectra or chromatograms. Additionally, it may be of interest to 

identify the features responsible for similarity or dissimilarity between objects. This 

information can only be extracted from cluster analysis by inferring from visual comparisons 

of the original data (seen above for HCA), which may not be practical for large datasets. 

 

PCA reduces data dimensionality by extracting the orthogonal sources of variation; known as 

‘principal components’ or PCs. These PCs are a linear combination of the original variables, 

each multiplied by a loading. Each successive PC is calculated to describe the maximum 

proportion of remaining variation in the data. This process is represented in Figure 2a for a 

simplified dataset. Here, samples are initially represented as data points in a feature space 

described by the original variables; X, Y and Z. Each PC is determined by finding the direction 

along which the remaining dispersion of the data points is the greatest. Projection of the 

samples onto the components then allows them to be alternatively described using the PC 

coordinates, or scores. A scree plot, which shows the cumulative variance accounted for with 

each successive PC, can be used to indicate those containing ‘useful’ information. 

 

 
Figure 2: (a) Diagram illustrating generation of the first principal component (PC) for a simplified 

dataset described by variables X, Y and Z. Dashed lines indicate the projection of each sample onto the 

PC; (b) example scree plot showing cumulative variance accounted for by each successive PC. 

 

From a mathematical perspective, PCA transforms the original data matrix (X) into separate 

scores (T), loadings (P) and residuals(E) matrices, according to the general equation: 

 

X = TP’ + E 

 

This may be done through analysis of either the correlation or the covariance matrix.22 The 

correlation method mean centres and scales the data to place equal weight on each variable, 

accounting for different units or levels of variance. The covariance method applies mean 

centring without data scaling, which is preferred where the units and magnitude of variance 

are comparable across all variables.  



 

As the majority of variation from the original dataset is retained in the first few PCs, 

multiplying the scores and loadings for these PCs gives an approximation of the original 

dataset. The discrepancy between the actual original data and this approximation is described 

by the residuals matrix (E), which ideally encompasses random variation or noise. The 

residuals can be plotted to assess the magnitude and pattern of residual discrepancy across 

each sample, with small and randomly dispersed residuals being ideal. Residual plots can 

hence be useful in evaluating and optimising the performance of the model.  

 

The scores of a sample attained against any two or three PCs may be used as a new coordinate 

system, generating a scores plot where similar samples are clustered together. Additionally, 

the PCA loadings may be examined to identify how variables of the original dataset are 

weighted against a particular PC. Variables with highly positive or negative loadings are 

significant in determining a sample’s score along that component. PCA hence not only allows 

the separation of samples, but can reveal the basis for this separation according to the 

underlying features of the sample. 

 

PCA plots offer an alternative means of visualising data, which can assist in identifying 

patterns that are not obvious from the raw information. However, as with HCA, a full 

understanding of these trends still requires examination of the initial data. This is illustrated 

in Figure 3, in which PCA was performed on ATR-FTIR spectra acquired from 22 red-shaded 

lipsticks.26 In this example, the Labiotte ‘Chardonnay Orange’ lipstick was found to be highly 

dissimilar (clustered further away) from the remaining samples, particularly along PC1. The 

factor loadings for PC1 showed a strong positive correlation at ca. 3300 cm-1, consistent with 

an OH stretching band. When examining the original infrared spectra, the Labiotte lipstick 

showed strong absorbance in this region, attributed to water and butylene glycol in its 

composition. This high absorbance, combined with a strong positive loading, resulted in a 

more positive PC score. Combined examination of both the PCA plots and the original spectra 

thus led to the conclusion that the Labiotte lipstick had a distinct chemical formulation from 

other lipsticks; specifically as it contained water and butylene glycol as co-solvents. 

  



 
 

Figure 3: 3D PCA scores plot showing the distribution of 22 red-shaded lipsticks based on ATR-FTIR 
spectra. Factor loadings and comparison of the ATR-FTIR spectra revealed the separation of the 
Labiotte lipstick from other brands such as QXX due to the presence of water and butylene glycol. This 
dataset is available via Research Data Australia.27 

 

 

2.2 Supervised pattern recognition 

The purpose of supervised learning is to map labelled inputs to an expected output. Input 

variables are paired with the desired output or classification, with the algorithm being tasked 

to develop a function that correlates the two. In other words, supervised algorithms are 

designed to create functions based on known data that can then draw inferences about new 

samples. These methods are ideal for classification and regression problems, as the model 

can be ‘trained’ to detect and accurately model specific patterns. The model must then be 

validated to assess how it will generalise these patterns to independent datasets.23 The 

importance of rigorous validation cannot be overstated, as failure to establish accurate error 

rates has significant implications for criminal justice. For a more detailed discussion of 

validation approaches, the reader is directed to focussed reviews on this topic.28,29 

 

Initial model selection often makes use of resampling, where ‘test’ samples representing new 

inputs are drawn from the original data. This is often done multiple times, with the overall 

predictive ability calculated as an average across all iterations. The most popular of these 



approaches is cross-validation (CV), in which a subset of the data is withheld as the testing 

set. The withheld portion may consist of individual samples (leave-one-out CV) or a block 

(leave-p-out CV and related variants). Another mode of resampling is the bootstrap, where 

test samples are drawn with replacement and hence the same sample can be represented 

multiple times. Resampling methods are economical, but the overlap between training and 

testing data can over-estimate the model’s performance. This is particularly the case for 

leave-one-out CV, which is discouraged except where samples are extremely limited.  

 

A more robust method is test set validation, where the model is evaluated using an 

independent test set that commonly makes up 30 % of the total data. To provide the most 

rigorous evaluation of the model, this data should be selected in such a way as to adequately 

represent the full sample population, including samples likely to be challenging from a 

predictive standpoint.30 

 

2.2.1 k-Nearest neighbour (kNN) 

The k-nearest neighbour (kNN) method is based on the distance between known and 

unknown samples. The training set is divided into known classes, and the distance metric 

between the unknown and each training sample determined. The unknown is subsequently 

assigned to the pre-determined class that is most common among its ‘k’ nearest neighbours 

(Figure 4). ‘k’ is generally a small integer, with the optimal value often determined through 

cross-validation. This selection may alter the predictive result, demonstrating how some 

degree of subjectivity can remain in chemometric analysis. In Figure 4, setting ‘k’ at a value of 

3 leads to the unknown sample (red star) being classified into Class A, but a marginally higher 

‘k’ of 7 leads to an assignation of Class B. 

  
Figure 4: Representation of a kNN analysis where an unknown sample (red star) must be assigned to 

Class A or Class B, determined by the mode class value of the ‘k’ closest training samples. The resulting 

classification may vary depending on the selection of ‘k’. 

kNN has the advantage of being simple to implement, as the training phase is minimal and 

there is no requirement for linear separation of classes. Additionally, the only assumption 



placed on the data is that it exists in a feature space, allowing for distance measures to be 

calculated. However, limitations of the kNN method are its dependence on the ‘k’ value 

selected and its bias towards larger training classes, as these represent a greater number of 

potential neighbours. Additionally, as there is no reduction or screening of the data prior to 

classification, the potential exists for overly influential variables to distort the results. For this 

reason, kNN is primarily used in forensic research to establish the relative performance of 

other classification methods.31–34 

 

2.2.2 Linear discriminant analysis (LDA) 

Discriminant analysis (DA) aims to classify objects into pre-defined, mutually exclusive classes 

based on scores derived from a discriminant function. This function is a combination of input 

variables, calculated to maximise the ratio of between-class to within-class variance (the 

Fisher ratio). If it is assumed that the separating function is linear, this method is referred to 

as linear discriminant analysis (LDA). This approach is similar to PCA, in that they each look for 

linear combinations of variables to best describe trends in complex data. LDA is hence a 

valuable tool for data visualisation and classification. However, LDA requires the number of 

samples to exceed the number of descriptor variables. For this reason, LDA is often carried 

out following a preliminary data reduction method such as PCA. This is particularly the case 

when dealing with highly multivariate data and correlated data such as spectra. 

 

Table 2 shows the primary output of LDA; a confusion matrix; performed on the ATR-FTIR 

spectra of three classes of polyethylene cling film identified through PCA.35 As the sample size 

of each group must exceed the number of variables, the first two PCs from PCA were 

substituted in place of the original variable set. Several other approaches to variable selection 

have also been described, such as the Wilks’ lambda test statistic, Bayesian information 

criterion, or simply observing features common to (but variable amongst) each group.36–38 

Table 2: LDA confusion matrix displaying results of two-PC-LDA model constructed for three classes of 

polyethylene cling film based on ATR-FTIR spectra. This dataset is available via Research Data 

Australia.39 

 Predicted  

 
Actual 

Class 1 Class 2 Class 3 % Correct 

Class 1 6 0 0 100 

Class 2 0 30 0 100 

Class 3 0 0 30 100 

Total 6 30 30 100 

 

The confusion matrix summarises the number of objects in each known class of the training 

set and their predicted classes using the LDA model. Numbers in the diagonal of the matrix 

(bolded above) thus indicate objects that have been correctly assigned, and this can be used 



to determine a discrimination accuracy for the model. This matrix can also be used to identify 

classes that are not effectively separated, as these will appear as misclassified samples. 

 

One should be wary, however, of accepting these results without further critique. As LDA is a 

‘hard’ classification method, objects will be assigned to the single class to which it 

demonstrates the closest similarity. This does not recognise the possibility of objects not yet 

described by any data within the model, which would hence be poorly classified. However, 

these atypical objects may be identified through their discriminant values (DVs), which act as 

distance measures between the object and the centroid of each known class. 

 

Table 3 shows the DVs of a new spectrum classified by the polyethylene cling film model. This 

spectrum in fact originates from a lipstick trace, and hence would not be expected to fit within 

any of the known classes. In this case, despite being assigned to Class 3, the large magnitude 

DV compared to the training samples indicates that the new sample is not well described by 

this class. Similar, small-magnitude DVs against two or more classes can also indicate groups 

of samples that are not yet reliably separated. These values are hence an important metric in 

evaluating the quality of separation and prediction.   

 

Table 3: DVs of a lipstick spectrum against three known classes of polyethylene cling film, compared 

to training samples from each class. 

 Class 1 Class 2 Class 3 

Lipstick Spectrum -13,417 -1,735 -150 

True Class 1 Sample Average -2 -130 -84 

True Class 2 Sample Average -1324 -2 -27 

True Class 3 Sample Average -5162 -198 -2 

 

Samples may also be plotted according to their DVs against any two classes, producing a 

discriminant plot. This may be interpreted in a similar fashion to the PCA scores plot. 

However, the fundamental difference is that PCA is designed to explore the largest variation 

present regardless of whether this corresponds to particular sample features. LDA by contrast 

looks for variation that is useful in distinguishing pre-established groups. For this reason, the 

clustering pattern may differ when examining the discriminant plot (Figure 5). The 

discriminant plot may be used as a visual way of assessing the quality of separation. 

 



 

Figure 5: (Left) 2D PCA scores plot (depicting scores against first two PCs); (Right) LDA discriminant plot 

(depicting discriminant values against first two classes) of nine polyethylene cling films based on ATR-

FTIR spectra. Varied shading has been used to distinguish the plots; however, each depicts the same 

spectra and three established classes. This dataset is available via Research Data Australia.39 

 

2.2.3 Soft Independent Modelling of Class Analogy (SIMCA) 

In some scenarios, classification needs to be more flexible than kNN or LDA would permit. 

Soft independent modelling of class analogy (SIMCA) is a disjoint technique, meaning that it 

constructs separate models (in this case derived using PCA) describing a boundary around 

each class. The number of PCs retained for each model is highly influential, as too few will 

result in a loss of information whilst too many will introduce noise. Cross-validation is typically 

used for determining the optimal number of PCs describing each class, although other 

measures such as the Malinowski indicator function can also be used.40,41 

 

Classification of a new object is based on its sample-to-model distance for each class as 

determined by two limits; residual variance and leverage.42 The residual variance of an object, 

calculated as a residual sum of squares, is that which remains unexplained after projection 

onto a known class. The critical limit for residuals distances is commonly determined using a 

chi-square distribution or Jackson-Mudholkar approximation.43 Leverage is the Mahalanobis 

distance between an object and the centroid of a given class, with a high leverage indicating 

outlying objects in the model space. An object falls within the above limits if the residual 

variance and leverage do not exceed the selected cut-off values. 

 

Objects will be assigned to any class for which they meet both of the above limits. Unlike 

other supervised techniques, SIMCA thus permits classification into one, multiple, or none of 

the known classes. ‘Soft’ classifications allow easier identification of atypical samples 

compared to kNN or LDA. On the other hand, the disjoint modelling of each class means that 

there is limited measure of between-class to within-class variation. Consequently, SIMCA is 

highly sensitive to sample leverage and variance, which may result in incorrect rejections 



(false negatives). This may be compensated for by reducing the significance level (α), or the 

percentage of training samples deemed acceptable as outliers.44 By reducing α and thus 

expanding the model boundaries, more samples may be accepted for classification – but at 

the risk of increased false positive classifications. 

 

An example is shown in Table 4, where PCA models were constructed to describe three issued 

series of Western Australian driver’s licence cards based on their cross-sectional ATR-FTIR 

spectra. The SIMCA approach was then used to predict spectra originating from a Western 

Australian driver’s licence of each series, as well as a Swiss driver’s licence not yet represented 

in the model. The 2001 test sample was assigned to both the 2001 and 2014 series, as these 

had been established to be chemically similar,45 whereas the Swiss licence was identified as 

an outlier and not assigned to any of the three series. It can also be seen that two of the four 

replicate spectra from the 2014 test sample were incorrectly rejected, reflecting a drawback 

to SIMCA prediction. 

 

Table 4: SIMCA classification results for three Western Australian driver’s licences and one Swiss 

driver’s licence against constructed models for 2001, 2011 and 2014 series Western Australian Driver’s 

licences. Numbers indicate the number of replicate spectra accepted for classification. This dataset is 

available via Research Data Australia.45 

 2001 Series 2011 Series 2014 Series 

2001 Test Sample 4 0 4 

2011 Test Sample 0 4 0 

2014 Test Sample 0 0 2 

Swiss Test Sample 0 0 0 

 

These classifications are often visualised using a Coomans plot, which shows the sample-to-

model distance of a given sample against any two groups.46 This may be considered analogous 

to the discriminant plot within LDA. As with PCA, residuals plots can also be used as an 

additional tool for evaluating and optimising the SIMCA model.  

 

Metrics of note in the SIMCA output are the modelling and discriminatory power.42,47 

Modelling power is analogous to a factor loading with PCA; showing the contribution of an 

initial variable to describing a particular class. A high modelling power (approaching 1) 

indicates the variable to be more relevant. By contrast, discriminatory power describes a 

variable’s importance to discriminating between two separate models. Variables that possess 

both low modelling and low discriminatory power are likely to be encompassing noise, and 

can potentially be omitted. Another important indicator is the model distance, which reflects 

how well two classes are separated based on residual variance. Generally, models with an 

inter-class distance above three may be considered well-separated. 

2.2.4 Support Vector Machines (SVM) 



In situations where known classes cannot be linearly separated, support vector machines 

(SVMs) are considered by many as an ideal classifier. In SVM analysis, samples are considered 

as points in a multi-dimensional space. Boundaries between different classes are established 

in the form of a separating gap or hyperplane, which is mapped to be as wide as possible 

(Figure 6a). The hyperplane (classifier) can be expressed in terms of the samples lying closest 

to its boundaries, which are known as support vectors. Classification then occurs by mapping 

new samples into the same space as the training set, and assigning them to a known class 

based upon which side of the boundary they fall on. 

 

In order to establish the classifier between non-linearly separable classes, the data is 

transformed through a mathematical function (referred to as a kernel). This transforms the 

data into a higher-dimensional space, in which linear separation is then achievable 

(Figure 6b). The mathematical basis behind such kernel transformations (the most common 

being linear, polynomial or Gaussian radial basis function) or computation of the classifier 

function are beyond the scope of this review, but have been covered in other literature.48 

 

 
Figure 6: (a) Two hypothetical sample classes that cannot be linearly separated, (b) Samples mapped 

to a higher dimensional plane in which a linear hyperplane can be constructed. When mapped back 

into the lower dimensional plane, this hyperplane becomes a non-linear classifier. 

 

Table 5 shows the results of SVM applied to the driver’s licence series previously shown for 

SIMCA. Because SVM is designed for binary classification, its application to multi-class 

problems requires the construction of separate classifiers to distinguish each possible class 

pair. On this occasion, all three Western Australian licences were correctly classified, and 

unlike SIMCA, all replicate spectra were assigned to a class. However, this has also resulted in 

the anomalous Swiss licence being assigned to the most similar series (2011), despite 

possessing a different polymer composition. 

 

  



Table 5: SVM classification results for three Western Australian driver’s licences and one Swiss driver’s 

licence against constructed models for 2001, 2011 and 2014 series Western Australian Driver’s 

licences. Numbers indicate the number of replicate spectra accepted for classification. This dataset is 

available via Research Data Australia.45 

 2001 Series 2011 Series 2014 Series 

2001 Test Sample 4 0 0 

2011 Test Sample 0 4 0 

2014 Test Sample 0 0 4 

Swiss Test Sample 0 4 0 

 

SVM models can prove advantageous for analysing high dimensionality data, as they allow 

non-linear separations without the tedious process of building and training an artificial neural 

network (discussed further below). They also work with fewer training samples, and are able 

to handle datasets where the number of variables exceeds the number of samples. A 

disadvantage however is that there are no immediate metrics provided to indicate the 

reliability of discrimination. Additionally, results may be highly dependent on the selection of 

the kernel function and associated parameters, which can make optimisation more arduous. 

 

 

2.2.5 Decision Trees and Random Forest (RF) 

Decision trees are a popular tool in machine learning for constructing and visualising 

classification rules. The tree is made up of several nodes, each representing a test on a 

particular sample attribute. Depending on the outcome of the test, the sample is directed 

along the corresponding branch to the next node, where the process repeats until a class label 

(leaf) is reached. 

 

Whilst decision trees have the advantages of both simplicity and transparency, they are 

inherently unstable. Small changes in the dataset can lead to significant changes in the tree 

structure, which in turn can lead to errors. This can be remedied through use of a random 

forest (RF); an ensemble of independent decision trees (Figure 7). These trees are built via a 

‘bagging’ process, wherein a random subset of samples is selected for each tree, and a 

random subset of features used to build each tree’s structure.49,50 The trees thus have low 

correlation to each other, compensating for individual errors. Input from an unknown sample 

is simultaneously processed by each tree, and the mode result given as the RF classification. 

 



 
Figure 7: Architecture of a random forest model.  

 

Although usually considered a classification method, RFs can also be applied to unsupervised 

learning as their architecture naturally investigates dissimilarity amongst samples. 

Alternatively, they can be used for regression, with the mean prediction value given as the 

overall output.50 Random forests are hence a versatile approach relatively robust to outliers 

or noise. Unlike many other classifiers, they are also able to handle missing data values. On 

the other hand, the complexity of the network can be more difficult to interpret and requires 

more computational resources to build and train.  

 

RFs remain an emerging area of forensic interest, with studies to date largely focussed on 

body fluid identification51–53 and age predictions.54,55 As this approach is still being trialled 

within forensic contexts, a detailed example of RF classification is considered beyond the 

scope of this review. The reader is directed towards cited the studies for additional reading.  

 

 

2.2.6 Artificial Neural Networks (ANN) 

Artificial neural networks (ANNs) are computational models based on the assembly and 

functions of biological neural structures. ANNs consist of interconnected nodes or ‘neurons’ 

that are typically aggregated into an input layer, one or more hidden layers, and an output 

layer, as shown in Figure 8a. This figure shows a fully connected network, where each neuron 

in a given layer connects to every neuron in the next layer. Other architectures include pooled 

(feed-forward) networks, in which neurons of one layer connect to a single neuron in the 

subsequent layer; or recurrent networks that allow links to be formed to the same or previous 

layers.56 The more complex the network, the more powerful it becomes. However, they will 

also require a greater degree of training in order to establish relationships. 



Inputs received by a neuron are multiplied by a weighting through various mathematical 

operations (Figure 8b) that can be considered to reflect the strength of the neural connection. 

The resulting products of the inputs are summed, then processed through a non-linear 

activation function to generate an output.22 This output must meet a minimum threshold in 

order to be passed on to subsequent neurons. When the information reaches the output 

layer, an appropriate response is generated. 

 

 

Figure 8: (a) General schematic showing the architecture of a fully connected ANN with a single hidden 

layer, (b) Diagrammatic representation of the processing functions within a neuron. 

 

The key advantage of ANNs is their ability to learn from example. The ANN is trained by 

conducting an initial prediction of a training set, then using any errors to adjust the hidden 

layers until the required accuracy is achieved (back-propagation).57 ANNs also do not assume 

any initial mathematical relationship between inputs and outputs, and have the ability to 

implement non-linear functions.23 This makes them highly flexible, which is ideal for analysing 

complex data. On the other hand, the lack of an assumed model may require more training 

data in order to derive relationships.  

 

A significant drawback to ANNs is the lack of transparency in the hidden layers, meaning there 

is no direct means of extracting information on the model’s processes. This has to date limited 

the use of ANNs in forensic analysis, where the ability to explain and justify results is a 

fundamental requirement. Despite this, a small volume of literature has applied ANNs within 

forensic entomology for insect age determination,58–60 anthropology for sex or vertebral 

height estimation,61–63 crash velocity prediction,64 or age estimation on the basis of blood DNA 

methylation.65 The reader is again directed towards these research studies to further explore 

this approach. 

 

 

 

 

 



2.3 Multivariate Regression 

Multivariate regression methods are used to establish quantitative relationships between 

multiple predictor variables and a dependent response. The resulting model can then predict 

the response of an unknown sample based on measured predictor data. Such approaches can 

also be used for binary classification by assigning arbitrary responses to each class. 

 

2.3.1 Multiple linear regression (MLR) 

The simplest multivariate regression technique is multiple linear regression (MLR), which 

constructs a linear combination of variables to describe the dataset in the form: 

 

yi = β0 + β1xi1 + β2xi2 + ... + βpxip + ϵ 

 

Where yi is the response variable, β0 is an intercept, βp is the coefficient loading applied to the 

corresponding predictor variable xip, and ϵ is the residual error. This regression equation is 

constructed to best approximate the individual data points (i.e. to minimise residuals). 

 

p-values can be generated for the coefficients to identify variables that have negligible 

influence on the response.23 p-values tests the null hypothesis that a variable’s coefficient is 

not significantly different from zero (i.e. the variable has negligible influence). Low p-values, 

generally considered to be less than 0.05, provide evidence against this hypothesis and 

indicate variables that are in important to measuring the response, whereas those with high 

p-values can be omitted. This is important as MLR requires the sample size to exceed the 

number of predictor variables, which can limit its use in complex datasets. A further limitation 

of MLR is the assumption that there is no major correlation or multicollinearity between 

predictors, which does not hold for most spectral data and chromatographic data. 

 

 

2.3.2 Principal Component Regression (PCR) 

One way to overcome the limitations of MLR is to first use a dimensionality reduction 

technique to remove multicollinearity and reduce the number of predictors for analysis. 

Principal component regression (PCR) does this by applying PCA to the original variables, with 

selected PCs retained as orthogonal predictors.66 PCs are generally retained on the basis of 

their eigenvalues, or the percentage of variance accounted according to the scree plot. PCs 

with low variances often encompass noise that can increase the uncertainty of the model. On 

the other hand, these PCs may also contain important information for distinguishing specific 

sample groups. 

 

Figure 9 shows the output of PCR used to model the changes in diffuse reflectance visible 

spectra occurring in a blue ballpoint pen ink exposed to light for 32 months.67 PCA is first 

carried out, producing a scores plot. These can be used to identify systematic changes 



between the samples that may be linked to the response. In this instance, more positive 

scores along PC 1 were observed with increased ageing. The regression plot (in this case, using 

the first four PCs accounting for 99.3 % of variance) then shows the predicted vs. actual 

responses for the dataset based on re-substitution of the calibration data and a cross-

validation. A lack of agreement or overlap between the calibration and cross-validation points 

is an indication of outliers in the data, where removal of a single data point substantially alters 

the structure of the model. 

 

The regression model gave a high linear correlation (R2 = 0.993) and a root mean square error 

of approximately 24 days between predicted and reference values. This appeared to indicate 

strong predictive performance in estimating the age of an unknown ink deposit to within one 

month. However, prediction of a separate validation set was far less accurate, particularly for 

samples in the first six months (170 days) of ageing (Table 6). Several of the age estimations 

were negative values, whilst results across replicate spectra displayed a high relative standard 

deviation (RSD). It was concluded that the rapid chemical changes occurring during this initial 

ageing period were too variable between separate ink deposits to be precisely modelled. This 

example highlights the importance of appropriate test set validation for chemometric models. 

 

 

Figure 9: PCR results showing (left) scores plot for first two factors and (right) regression plot depicting 

predicted versus actual ages of a blue ballpoint ink deposit exposed to light over 32 months based on 

diffuse reflectance visible spectra. This dataset is available via Research Data Australia.68 

 

2.3.3 Partial least squares regression (PLSR) 

A potential limitation to PCR is that it focusses on variation amongst the predictors, but not 

in the response. That is, it applies heavier weighting to X variables that show the greatest 

variability, even if this is unrelated to changes in Y.23 Partial least squares regression (PLSR) 

calculates factors that maximise the covariance between X and Y. Greater weight is hence 

applied to predictor variables that are highly correlated with the response, under the 

assumption that these will be most accurate for predictive purposes.66 It must be noted that 

this does not guarantee an increase in predictive performance. As seen in Table 6, age 

estimation of blue ballpoint inks was no better using a PLSR model than PCR. This indicates 



that in this instance, the predictors showing the greatest overall variation were also those 

most strongly correlated with the response. 

 

Table 6: Actual versus estimated age of a validation blue ballpoint ink deposit exposed to light over 24 

months using four-factor PCR and PLSR models. Predictions for each time interval were averaged over 

five replicate spectra. This dataset is available via Research Data Australia.68 

 PCR PLSR 

Actual Age 
(Days) 

Predicted Age % RSD Prediction Age % RSD 

1 -52 18 -47 17 

6 -41 14 -35 15 

21 -18 56 -12 82 

42 -13 61 -4 194 

98 28 57 39 40 

147 85 21 93 18 

504 452 10 453 10 

596 430 50 432 47 

617 587 6 588 6 

672 632 4 633 4 

 

Another common application of the PLS algorithm is binary classification. Partial least 

squares-discriminant analysis (PLS-DA) uses dummy variables to represent the two classes to 

be distinguished. Regression of new samples onto the model results in a classification based 

on whether the estimated value falls close to zero (Class A) or one (Class B). This process is 

illustrated in Figure 10, where PLS-DA was used to differentiate authentic and counterfeit 

perfumes analysed using paper spray mass spectrometry (PS-MS).69 

 

 
Figure 10: PLS-DA predictions of authentic (red; coded as 1) and counterfeit (green; coded as 0) 

perfume samples analysed by PS-MS. Full symbols represent training set samples and empty symbols 

represent validation samples. Horizontal dashed line indicates the estimated decision threshold. 

Adapted from Ref. 69 with permission from The Royal Society of Chemistry, copyright 2017. 

Like SVM, a drawback to this approach is the need for several models to solve multi-class 

problems. PLS-DA also does not account for the within-class variability, and predicted values 



between zero and one can be challenging to assign. On the other hand, PLS-DA can provide 

valuable insights into the basis of discrimination based on generated weights and loadings. 

 
 
2.4 Experimental design 

The quality of outputs from any chemometric model depends on the quality of the initial input 

data. It is therefore critical that the analytical parameters chosen to acquire analytical data 

from forensic evidence are fit for purpose. For this reason, experimental design methods are 

valuable tools to identify, model and optimise factors that may affect analytical results. These 

may include sample preparation procedures, storage methods, or instrumental analysis 

parameters. Here we focus on multivariate designs that vary several factors simultaneously, 

rather than a one-factor-at-a-time (OFAT) approach. The key disadvantage to OFAT is that it 

does not consider potential interactions between factors. For example, the optimal extraction 

time for a solid phase microextraction might be expected to vary depending on the 

temperature. An OFAT approach can be tedious in such scenarios, as the optimisation of one 

factor will require re-optimisation of others. The multivariate approach is thus more efficient 

when investigating several factors, as it directly assesses interactions between them. 

 

2.4.1 Factorial designs 

An initial goal of experimental design is often to identify main factors with a significant effect 

on the target response. This can be done using a factorial design, the simplest of which is a 

two-level (2k) factorial design. In this case, ‘k’ refers to the number of continuous variables 

being investigated, each with a ‘low’ and ‘high’ level. Figure 11a shows a graphical 

representation of a 23 design where the three factors form x, y, and z dimensions of a cubic 

design region (Figures 11b-d depict other experimental designs that will be discussed further 

below). For a full two-level factorial design, experiments are run at all possible combinations 

of low and high levels across all factors (represented as vertices of the cube for a 23 design). 

These are used to derive a linear plane representing the change in response with each factor. 

Additional replicates of these design points may be carried out to increase the model’s power 

in detecting statistically significant effects. 

 



 

Figure 11: Graphical representation of minimum experimental runs required for (a) two-level full 

factorial, (b) three-level full factorial, (c) face-centred central composite, and (d) Box-Behnken designs 

investigating three continuous variables. 

 

Analysis of variance (ANOVA) is used to evaluate the fit of the model, along with the potential 

significance of each factor or factor interaction on the target response.70 Table 7 shows the 

ANOVA for a 23 factorial design intended to maximise the extraction of cocaine from hair 

using enzymatic hydrolysis, with two replicates of each point (16 runs in total).71 The factors 

investigated were buffer solution volume, Pronase E concentration ([P–E]) and dispersing 

mass to hair mass ratio (D–S); coded as variables A, B and C respectively. A high R2 value was 

obtained, indicating a good model fit; whilst a predicted R2 of 0.689 suggested reasonable 

predictive ability for new experimental runs. The predicted R2 is akin to a cross-validation 

accuracy, where each observation is iteratively removed and predicted using a regression 

equation estimated from the remaining data. A predicted R2 substantially less than the R2 of 

the model may indicate that the model is ‘over-fitted’ to the initial data, and subsequently 

unable to adapt to new information. 

 

 

 

 

 

 

 



Table 7: ANOVA for data from a 23 factorial design optimising cocaine extraction from hair samples 

based on enzymatic hydrolysis. Note that the three-way interaction ABC can also be assessed, but has 

been omitted below for clarity. This dataset is available as supplementary information associated with 

the corresponding research article.71 

Parameter p-value Parameter Value 

Model significance < 0.001 R2 0.922 

A: Volume (mL) < 0.005 Adjusted R2 0.854 

B: [P-E] (mg mL-1) < 0.001 Predicted R2 0.689 

C: D-S  0.487   

AB: 0.888 * Adjusted R2 is used when comparing models with 

differing numbers of factors AC 0.095 

BC 0.337   

 

ANOVA was carried out on each of the model terms to identify those with a statistically 

significant effect on cocaine extraction. This process is based on a null hypothesis that the 

effect of a given parameter on the response (in this instance, recovered amount of cocaine) 

is not statistically significant. The calculated p-value for each parameter reflects the 

probability of observing a response as large as that obtained in the experiment if this 

assumption is true. Low p-values (generally < 0.05, representing a 5 % probability) are thus 

strong evidence against the null hypothesis. That is, they indicate parameters that do in fact 

significantly affect the response. In this instance, Pronase E concentration and buffer volume 

were found to significantly affect the recovery of cocaine using enzymatic hydrolysis 

extraction. 

 

This was reinforced by examination of the Pareto chart (Figure 12a), which shows the ranked 

standardised effects of each factor based on t-statistics. Both factors fell above the t-value 

limit, indicating a statistically significant effect on the cocaine concentration. The Pareto chart 

and one-factor plots (Figure 12b) showed these effects to be negative, meaning that lower 

buffer volumes and Pronase E concentrations led to a greater extraction efficiency of cocaine 

from hair. A normal plot of residuals (Figure 12c) was used to check the distribution of 

residuals for each of the 16 experimental runs (two replicates of each factorial point). Non-

linearity of the residuals plot could indicate the presence of outlying samples, or an 

undetected factor not accounted for within the design.   

 



 

Figure 12: Graphical output from a 23 factorial design optimising cocaine extraction from hair samples; 

(a) Pareto chart, (b) One-factor plot for Pronase-E concentration; (c) Normal plot of residuals; (d) 

Response surface for the concentration of cocaine as a function of buffer volume and dispersing mass 

to hair mass ratio. Arrow indicates optimum parameters on the response surface. This dataset is 

available as supplementary information associated with the corresponding research article.71 

 

Figure 12d shows the response surface for the concentration of extracted cocaine as a 

function of buffer volume and dispersing mass to hair mass ratio, assuming a minimal 

Pronase E concentration. This response surface is modelled as a linear plane anchored by the 

average response at each design point. The highest concentration of extracted cocaine was 

obtained using a minimal Pronase E concentration and buffer volume (as expected) and a 

maximal dispersing mass to hair mass ratio of 50. However, these may not in fact be the 

absolute optimal extraction parameters. 

 

 

 



A disadvantage of 2k factorials is that they assume the response changes linearly with each 

factor and hence only indicates if the response is positive or negative. Detecting non-linearity 

(curvature and a maximum or minimum) in the response requires investigation of additional 

values between the low and high levels. One approach to this would be a three-level factorial 

(3k) design, but this can again lead to an unfeasible number of experiments. As seen in Figure 

11b, investigation of three factors at three levels (a 33 full factorial design) already requires 

27 experiments! There is hence a need for more efficient designs that are able to estimate 

curvature in response. 

 

Each additional factor doubles the number of possible combinations of levels, and hence the 

number of experiments. As this may not be practical for a high number of factors (five factors 

for example would require 64 experiments), a fractional factorial design may also be used, in 

which some possible interactions are omitted.72 Another alternative is to use a Plackett 

Burman design, which allows designs to be created with a number of runs with a number of 

runs between those of a 2k factorial, at the cost of main factor effects being confounded with 

factor interactions.70,72 

 

 

2.4.2 Central Composite Designs (CCD) 

A central composite design (CCD) augments a two-level factorial design with replicated centre 

points in which all factors are set to a median level, and a set of axial (star) points where a 

single factor takes on levels above and below the median (Figure 11c). These additional design 

points allow the detection and modelling of curvature in fewer runs than a three-level 

factorial design.73 The axial and centre points can also be run without the embedded factorial, 

producing a Box-Behnken design (Figure 11d) that requires even fewer experiments.72 

Although highly cost-efficient, this can make modelling of the response less precise. 

 

CCD models may be described as circumscribed, inscribed, or face-centred depending on 

whether the axial points fall beyond, within, or on the factorial space respectively.70 

Circumscribed designs are useful for covering a larger investigative range, whereas an 

inscribed design may be needed if settings outside of the factorial levels are not readily or 

safely achievable. Both of these designs are also rotatable, meaning they give a uniform 

prediction error across the design area. Face-centred CCDs are non-rotatable, but can be 

simpler to run (as there will only be three possible levels per factor) and may be needed if 

levels between or beyond the factorial levels are not practicable. 

 

Figure 13 shows a non-linear ‘saddle’ response surface for the concentration of extracted 

cocaine using a circumscribed CCD created by adding axial and centre points (in duplicate) to 

the original factorial design. ANOVA again found the Pronase E concentration to have a 

significant negative effect on response, and buffer volume was similarly found to again be 

negatively associated with cocaine concentration. However, the optimal dispersing mass to 



hair mass ratio was found to be 35, due to curvature in the response surface. This optimum 

was not detectable in the 23 full factorial design due to the lack of experiments carried out at 

median values of each factor. CCDs are thus a powerful method for optimising the handling 

and analytical protocols of evidence samples. 

 

 

Figure 13: Response surface for the concentration of cocaine as a function of buffer volume and 

dispersing mass to hair mass ratio using a circumscribed CCD. Arrow indicates optimum parameters 

on the response surface. This dataset is available as supplementary information associated with the 

corresponding research article.71 

 

3. Chemometrics in forensic science 

Given the wealth of information obtainable from physical evidence using chemometrics, it is 

no surprise that an increasing volume of research has emerged in this field. This section 

provides a broad overview of these studies, both recent and not-so-recent, to showcase the 

applicability of chemometrics across various disciplines. Although previous reviews exist on 

this topic,74–80 they have generally focussed on specific disciplines and/or chemometric 

methods. The present review is intended to provide a broader overview of how experimental 

design, pattern recognition and regression can be applied across the forensic sciences. 

 

3.1 Drugs and pharmaceuticals 

Substantial research on the forensic application of chemometrics has focussed on drugs of 

abuse, particularly for the purposes of batch comparisons or impurity profiling. The most 

substantial portion of this work has involved the qualitative and quantitative analysis of 

amphetamines,81–90 opiates,91,92,101,102,93–100 cocaine,103,104,113,114,105–112 pharmaceuticals,33,115–



119 or a combination of these.91,120–125 Specific studies of interest in these areas are discussed 

in more detail below, though more comprehensive reviews of the literature have been 

covered elsewhere.77,80 Recent years have also seen a greater interest in the characterisation 

of emerging or novel psychoactive substances,126–134 precursor chemicals135 and psychoactive 

plants.136–139 

 

3.1.1 Amphetamine-type stimulants 

Andersson et al. used PLS-DA and statistical distance metrics to identify linked samples of 

amphetamine with GC-MS.81 The resulting models were able to identify linked and non-linked 

samples, in addition to distinguishing those synthesised by different routes. However, no 

quantitative information concerning sample composition or similarity was derived. Research 

by Goh et al. instead used field-portable ATR-FTIR spectroscopy with PLSR to quantify solid 

mixtures containing methylamphetamine, glucose and caffeine, with predicted 

concentrations of these components typically within 6 % w/w of known values.89 Hughes et 

al. applied the same methods on a larger sample set, resulting in models able to quantify 

samples containing as little as 0.3 % w/w methamphetamine.90 The ability of this model to 

distinguish methamphetamine from structurally similar drugs is yet to be determined. 

 

3.1.2 Opiates 
Research by Moros et al. used diffuse reflectance near-infrared (DR-NIR) spectroscopy and 

PLSR to quantify heroin in seized illicit street drugs, resulting in the accurate quantitation of 

validation samples ranging from 6 – 34 % w/w purity.100 However, it should be noted that the 

validation set consisted of only 10 samples, and no replicate spectra were acquired to gauge 

the predictive reproducibility. Turner et al., using FTIR spectroscopy with modified PLSR and 

PLS-DA, achieved successful and reproducible separation of heroin samples originating from 

three different poppy cultivars.101 Five component opiates of the poppy heads were also 

identified and distinguished, though only morphine could be reliably quantified. 

 

In addition to spectroscopic methods, more recent studies have utilised inductively coupled 

plasma (ICP) as a more sensitive method of analysis based upon elemental composition. Chan 

et al. applied ICP-MS to street heroin samples seized in Malaysia, identifying two separate 

classes of samples using PCA.93 It was noted, though, that class similarities did not necessarily 

indicate batch linkages, as the profiled elements could have been introduced from 

contaminant sources in separate distribution chains. Later work by Liu et al. employed the 

same approaches to distinguish opiate samples originating from the Golden Crescent and 

Golden Triangle; Asia's two principal areas of illicit opium production.102 Ten elements and 

seven elemental ratios were found to markedly differ between samples originating from the 

two regions, and a subsequent PLS-DA model gave a 97 % prediction accuracy of 175 

validation samples. 

 

3.1.3 Cocaine 



Dujourdy et al. studied the source determination of hydrochloride cocaine samples based 

upon the headspace profiling of residual solvents.111 Cluster analysis was largely able to 

separate samples seized in Bolivia, Peru or Columbia, with a limited capacity to also 

distinguish hydrochloride (salt) and base forms of cocaine. Separate studies by Rodrigues et 

al.112 and Groberio et al.113 on Brazilian seizures were able to reliably distinguish between salt 

and base samples based on their IR spectra, with the latter establishing PLSR models for the 

quantification of cocaine and selected common adulterants. More recent work by Eliaerts et 

al. used ATR-FTIR with SVM for the detection and quantification of cocaine in seized 

powders.114 The resulting models gave 99 % sensitivity and specificity, and a quantitative root 

mean square error of prediction (RMSEP) of only 6 % over a wide working range.  

 

Within forensic toxicology, there is strong interest in simple, rapid and non-destructive 

screening methods for drugs of abuse, especially in situations involving public health or 

security. Risoluti et al. used a miniaturised MicroNIR spectrometer with PCA and PLS-DA to 

detect cocaine in non-treated oral fluids.140 PCA was able to differentiate between blank and 

spiked samples, as well as detecting variations in the spectral profile over time due to 

metabolic breakdown of cocaine to benzoylecgonine. Six real samples were used to validate 

the approach, which performed comparably to GC-MS. 

 

3.1.4 Pharmaceuticals 

In addition to illicit drugs, recent studies have also investigated pharmaceutical products, 

particularly in regard to counterfeit medications. Researchers at the University of Lausanne 

have explored several approaches toward counterfeit identification and profiling. Roggo et al. 

employed Raman spectroscopy with SVM models to distinguish between 25 therapeutic 

product families, and postulated that this methodology could potentially be applied to detect 

counterfeit substitutes.117 Been et al. then utilised NIR and Raman spectroscopy with pattern 

recognition (including PCA, HCA, kNN, PLS-DA and ANN) to successfully distinguish six genuine 

batches of a pharmaceutical product from 27 counterfeit seizures.118  

Dégardin et al. combined the above approaches; using Raman spectroscopy with SVM models 

in a two-step method to detect counterfeit products and compare them against a known 

reference database.119 The resulting methodology successfully discriminated counterfeit 

seizures from genuine products, and identified several seizures of similar chemical profiles. 

An external validation set of generic brand medications was also recognised as being distinct 

from both the brand-name medications and existing counterfeit products. 

 

More recent work by Custers et al. used ATR-FTIR spectroscopy to characterise brand-name, 

generic and counterfeit erectile dysfunction medications, with PCA enabling discrimination 

based on the active pharmaceutical ingredients.33 Although kNN classification and regression 

tree analysis were unsuccessful in classifying the majority of spectra, SIMCA provided 100 % 

discrimination of counterfeit tablets from both genuine and generic brand products. 

 



3.1.5 Optimisation of forensic toxicology screening 

Several studies have made use of experimental design methods in order to optimise screening 

procedures for drugs and their metabolites in biological samples such as urine, blood, hair, or 

vitreous humor.141–149 For example, Ho et al. used a Plackett-Burman design and CCD to 

identify and optimise parameters influencing the separation of frequently consumed drugs 

analysed with capillary electrophoresis.141 The optimised parameters according to the 

experimental design approach were compared with those established using an OFAT 

approach, and found to provide improved resolution within a shorter analysis time.  

 

Decaestecker carried out a Plackett–Burman screening procedure to identify factors affecting 

the solid phase extraction (SPE) of 18 substances (including benzoylecgonine, codeine, 

strychnine and diazepam) from human blood.142 Three factors were found to have a 

significant effect; the volume of the first washing step, percentage of methanol in the first 

washing step; and molarity of the used buffer. A CCD was subsequently used to optimise these 

parameters based on the overall extraction yield, number of compounds effectively retrieved, 

and total number of ions detected. It was reported that this procedure is currently being 

utilised for real toxicological samples and has been found fit-for-purpose, although no data 

was presented in this regard. 

 

Hložek, Bursová and Čabala also used an experimental design approach to investigate eight 

factors affecting GC determination of ethylene glycol, 1,2-propylene glycol and glycolic acid 

in blood serum and urine.143 In this instance, a fractional factorial was selected as an initial 

screening design, followed by a face-centred CCD for optimisation. The optimised method 

performed well in terms of both accuracy and precision, with samples spiked with as little as 

25 mg L-1 of the target analytes being accurately determined with calculated recoveries 

between 92.4 % and 108.7 %. 

 

3.1.6 Distinction of positional isomers 

A number of recent studies have specifically applied chemometric approaches specifically for 

drug isomer differentiation. Many novel psychoactive drugs include isomeric analogues of 

controlled substances (e.g. methcathinone, fentanyl or amphetamines) that can be 

challenging to distinguish due to their chemical similarity. This is particularly important where 

different isomers of a drug may be subject to different legal classifications or controls. 

 

Bonetti examined three structural isomers each of fluoromethcathinone and fluorofentanyl 

using GC/EI-MS with PCA and LDA, the latter from which posterior probabilities were also 

determined.127 All isomers were successfully differentiated, including within blind trial and 

case study validation, though sample dilution could cause misclassifications. Kranenburg et 

al. used a similar approach to distinguish three fluoroamphetamines, three 

methylmethcathinones and two methylethcathinones at low and high ionisation voltages.133 

Low energy GC/EI-MS was found to improve the selectivity for ring-isomeric differentiation, 



particularly amongst cathinones. Stuhmer et al. then used PCA and unequal variance t-tests 

to examine EI-MS spectra from ortho-, meta- and para- isomers of ethylmethcathinone and 

fluoromethamphetamine. Statistical association of the corresponding isomers was 

demonstrated at the 99 % confidence level or above, with ortho- isomers more readily distinct 

from meta- or para- analogues. As with earlier studies, low concentration spectra were 

identified as a challenge, along with the impacts of instrumental variation. 

 

Davidson and Jackson distinguished six synthetic phenethylamine derivatives by carrying out 

PCA and canonical DA on their ion abundances in EI-MS spectra.131 Variance was assessed 

based on the 15 most abundant ions, resulting in a 99.5 % classification accuracy even when 

pooling data from multiple instruments and including low abundance spectra. Roberson and 

Goodpaster similarly applied PCA and DA to GC vacuum ultraviolet (VUV) spectra from eight 

phenethylamines.132 Subtle differences were identified in the VUV spectra and were 

supported by chemometric analysis to be distinctive between different isomers, including the 

diastereometers ephedrine and pseudoephedrine. GC-VUV was thus suggested as a 

complementary method to GC-MS, though it was recognised that further work would be 

needed to expand on the available VUV spectra of reference compounds. 

 

3.2 Document analysis 

Despite the increasing trend toward electronic communication and transactions, physical 

documents are still widely used in financial, legal and personal matters. An array of research 

has hence examined the use of chemometrics in questioned document examination, 

particularly in the characterisation of paper and inks from handwritten documents. 

 

3.2.1 Paper 

Several studies have sought to gain improved understanding of the variability of paper 

substrates.150–154 An early study by Kher et al. utilised infrared spectroscopy techniques with 

pattern recognition tools to distinguish between 14 white or yellow paper substrates.153 PCA 

of spectra collected using ATR-FTIR spectroscopy was able to distinguish almost 68 % of 

possible pairings, while the analysis of diffuse reflectance FTIR spectra gave 100 % 

discrimination using cross-validation. An approach by Sarkar et al. employed statistical 

correlation measures and t-testing with laser-induced breakdown spectroscopy (LIBS) to 

match 10 unknown paper substrates with a known database.154 100 % correct identification 

was achieved; although as these substrates were all acquired from a single source, the 

applicability of the method to a wider range of substrates was not firmly established. 

 

Other research has instead focussed on the potential ageing of paper documents.155–158 Silva 

suggested a non-destructive dating method based on FTIR spectroscopy and PLSR.157 Due to 

the potential variability in paper composition, different weighting methods were trialled to 

enable construction of a single model. Modelling of documents representing 15 different 

years from 1985 – 2012 gave an acceptable RMSEP of ca. 4 years; however, it was evident 



that inorganic components such as kaolinite and calcium carbonate were exerting high 

influence on the PLS models, potentially affecting their performance. 

 

More recently, Xia et al. explored the analysis of naturally aged and conserved journals dated 

at five-year intervals between 1940 to 1980 using FTIR.158 Least squares SVM was able to 

distinguish documents of different ages with an accuracy of 99 %, outperforming both LDA 

and SIMCA. However, it is unclear whether this approach would be able to distinguish 

documents within five years of age. This classification-based approach is also limited to 

estimating document ages already represented in the training samples. 

 

3.2.2 Writing inks 

In addition to paper, several studies have been conducted regarding the characterisation of 

writing inks. The majority of these articles have focussed on blue ballpoint pens; one of the 

most widespread types of writing instrument. The successful discrimination and classification 

of blue ballpoint inks using secondary ion or ICP mass spectrometry,159,160 vibrational 

spectroscopy161–169, chromatographic methods,163,165,170,171 ultraviolet-visible (UV-Vis) 

spectroscopy,172–177 and image processing178 have been described in the open literature. 

Of particular interest, Denman et al. conducted surface analysis of ballpoint inks on paper 

using time-of-flight secondary ion MS using PCA, providing in situ analysis of organic and 

inorganic components with no interference from the underlying substrate.160 This was able 

to discriminate 41 out of 45 pairs of inks (sourced from seven different pen models), and in 

one case was able to distinguish between separate batches of the same pen. Braz et al. 

instead applied PCA to Raman spectra for the non-destructive, in situ analysis of over 300 

pens, representing 38 pen models sourced from 12 known brands.169 This was able to 

distinguish inks of different brands, models or batches, as well as identifying the main 

colourants present.  

 

A smaller volume of research has also been published on the characterisation of black writing 

inks.179–184 For example, da Silva et al. employed PLS-DA to distinguish 55 inks of six different 

types based on their visible spectra, demonstrating the applicability of this method in 

casework scenarios to identify the pen type, brand and model used on several pages of a 

questioned document.185 Work by Adam et al. used UV-Vis spectroscopy and PCA to 

distinguish 25 black ballpoint inks,186 and later analysed a subset of these pens in pairwise 

comparisons by luminescence spectroscopy, resulting in 60 % of handwritten samples being 

successfully discriminated.187 Silva et al. employed NIR hyperspectral imaging to identify 

alterations made to documents by the obliteration or adding of text.188 A combination of PCA, 

multivariate curve resolution-alternating least squares (MCR-ALS) and PLS-DA was able to 

identify 82 % of additions and 85 % of alterations made using different inks.  

 

The absolute or relative dating of an ink deposit is a frequent topic of interest in document 

examination, leading to attempts to construct reliable dating models using chemometric 



approaches. A number of studies have demonstrated the use of UV-Vis-NIR spectroscopy with 

multivariate regression to estimate the age of an ink deposit to within 14 days, based on 

analysis of inks aged between 2-18 months.176,189,190 However, these approaches generally 

required solvent extraction of ink and/or investigated relatively short-term ageing. Sauzier et 

al. instead proposed diffuse reflectance visible spectroscopy with PLSR as a non-destructive 

approach.68 Regression models for constructed for inks aged under a diurnal light cycle over 

32  months, then evaluated using a test set aged up to 24 months. Predictive accuracy was 

poor for the first 2–6 months of ageing but found to improve for long-term ageing, with two-

year old samples yielding age estimates with a maximum error of 6 months. 

 

Another potential point of interest in questioned document examinations is the order in 

which two or more inks were deposited. Researchers at the Federal University of 

Pernambuco, Brazil have studied various approaches for the sequencing of crossed ink lines 

using hyperspectral imaging. An initial study by Braz et al. used confocal Raman imaging with 

MCR to generate images of blue pen ink crossings, resulting in correct determination of the 

ink deposition sequence in over 60 % of cases.191 de Souza Lins Borba et al. extended this 

approach by applying MCR-ALS to multilayer Raman images acquired at different sample 

depths from crossed ink lines and obliterations.192 This approach was able to successfully 

establish the chronological order in which inks were deposited and satisfactorily recover 

obliterated text. Later work by Brito et al. compared the use of k-means clustering, MCR-ALS 

and PLS-DA to study crossings involving combinations of blue and black pen inks. MCR-ALS 

was found to be the more efficient approach, correctly determining the order of over 70 % of 

crossings.193 

 

An alternative approach by Almeida et al. used laser desorption ionisation (LDI)-MS and LDI 

imaging with PCA to characterise 18 blue and black pen inks.194 By monitoring the relative 

intensity of ions associated with the various dyes present, LDI-MSI was able to determine the 

sequence of different pens, pens with different printer inks, or lines produced by the same 

pen at least seven days apart. The use of MS offers the advantage of being able to identify 

the dyes present in each ink, though at the cost of potential destruction to the document. 

 

3.2.3 Printing inks and toners 

Identifying the source of a printed document can be important in forensic investigations 

involving a range of fraudulent materials. This has naturally led to chemometric investigations 

into inkjet inks and printing toners.195–199 Gál et al. studied 19 black inkjet inks of six different 

brands using Vis-NIR fibre optics reflection spectroscopy, enabling analysis directly from the 

printed paper surface.195 PCA of the resulting spectra was able to separate inks containing 

carbon black as main colorant from the other inks. Spectra from a separately prepared set of 

validation samples was projected onto the PCA and were clustered with the expected 

reference samples, indicating a good level of reproducibility. However, this analysis made use 



of averaged spectra, making it difficult to evaluate the reliability of discrimination based on 

between-group to within-group variation. There was also no supervised analysis involved. 

 

Subsequent work led by Oravec et al. applied FTIR spectroscopy with DA to distinguish black 

ink from 22 inkjet printers.196 In this instance, 45 replicate spectra were acquired across three 

separately printed squares of each ink, resulting in a total 990 spectra that were split into a 

calibration and test set. LDA using a Euclidean distance measure was found to give the best 

classification accuracy, with a 3-PC model correctly assigning all spectra from carbon black-

based inks, and a 5-PC model correctly assigning nearly 80 % of spectra from other black 

colourant inks. However, this analysis again made use of averaged spectra, and the 

discriminant values of the LDA models were not examined for any further insight. 

 

3.3 Explosives and related materials 

Explosive events have become of increasing concern over recent decades, with a large 

number of high-profile incidents resulting in mass civilian casualties. Chemometrics can 

provide a rapid means of assessing the large volumes of data generated from an explosives 

investigation, as well as distinguishing key signatures of various explosive materials. 

 

3.3.1 Low explosives and propellants 

Although they have lower reaction velocities, low explosives such as propellants or 

pyrotechnics can nevertheless cause devastating damage. Several studies have examined 

how chemometric techniques can be used to detect, discriminate or trace low explosive 

residues recovered following an explosive incident.200,201,210–219,202–209 

 

In a series of three articles, Bueno et al. described the identification and discrimination of 

gunshot residues (GSR) using a combination of Raman and FTIR data. The first of these 

employed NIR Raman microspectroscopy to differentiate GSR particles originating from 

different calibre ammunition.200 Differentiation algorithms based on SVM and PLS-DA 

resulted in 9 mm and 0.38 calibre residues being successfully distinguished with only one 

misclassified spectrum. In the second paper, Raman and FTIR data were combined into a 

single dataset to improve statistical discrimination, yielding increased sensitivity and 

specificity compared to the original method.202 Finally, automated Raman microspectroscopic 

mapping was used as a novel approach for GSR detection on adhesive tape.203 Validation tests 

resulted in true positive rates of 85 % for organic residues and 90.4 % of inorganic residues, 

and a detection limit of 3.4 µm was proposed. 

 

Ceto et al. demonstrated a system for the identification of subjects involved in firearm-related 

incidents based on electroanalysis with chemometric data treatment (PCA and ANN).217 This 

approach was successfully able to distinguish subjects with no GSR exposure, secondary 

exposure, and exposure related to the loading and firing of ammunition. Steffen et al., using 

energy dispersive X-ray (EDX) and ICP-MS with DA, was able to separate 15 primers from 



different ammunition brands based on their elemental and isotopic composition.212 

Fernández de la Ossa et al. took a broader approach, using NIR hyperspectral imaging with 

PLS-DA to successfully distinguish black powder, smokeless powders, nitrocellulose and 

ammonium nitrate residues in handprints.215 This holds potential as a non-invasive technique 

for explosives security screening, although limits of detection and the potential impact of skin 

contaminants are still under investigation. 

 

An optimisation study by Sauzier et al. used a face-centred CCD to investigate the effect of 

swabbing solvent, storage time, storage temperature and extraction time on the recovery of 

double-base smokeless powder residues analysed with GC-MS.216 The best recoveries were 

obtained from isopropanol-wetted swabs stored under refrigerated conditions, then 

extracted for 15 minutes on the same day as collection. These parameters were applied to 

the recovery of post-blast residues deposited on steel plates following a pipe bomb 

detonation, and gave over 95 % detection rates for nitroglycerin and diphenylamine, though 

ethyl centralite proved challenging due to its low volatility. 

 

3.3.2 High explosives 

Several authors have examined the analysis of explosives using chemometrics in combination 

with laser-induced spectroscopy or emission techniques,220–226 electrochemical analysis,227–

229 vibrational spectroscopy,230–234 ion mobility or isotope ratio mass spectrometry,235–237 

capillary electrophoresis,238,239 gas chromatography,240 or atmospheric flow tube-mass 

spectrometry.241 

 

Gottfried et al. demonstrated the detection of cyclotrimethylene trinitramine (RDX) and non-

explosive residues on various surfaces using LIBS and PLS-DA.223 Models were constructed for 

each substrate based on nine peak intensities and 20 peak ratios, acquired from a 25 m 

distance. A detection rate of at least 90 % was achieved on all surfaces, though non-explosive 

residues on wood or travertine gave false positive rates exceeding 10 %. A combined model 

incorporating all substrates gave a true positive rate of 88.6 % and false positive rate of 

12.7 %, with almost all false positives originating from wood, travertine or cardboard. Despite 

the issues encountered with these surfaces, the ability of LIBS to acquire spectra from a 

distance of several metres makes this a highly promising method for the remote detection of 

explosives. 

 

Ceto et al. described the simultaneous determination of five nitro-containing explosive 

compounds using cyclic voltammetry.227 Voltammetric responses were pre-processed using 

discrete wavelet transform and the resulting coefficients analysed by PCA, distinguishing the 

pure components from five commercial mixtures. An artificial neural network was 

constructed to individually quantify RDX, trinitrotoluene (TNT) and pentaerythritol 

tetranitrate (PETN) in each mixture, yielding highly accurate estimates for both the training 

and validation sets. It was suggested that this methodology could be expanded to peroxide 



explosives such as triacetone triperoxide (TATP) that may prove challenging to analyse using 

traditional detection techniques, such as GC-MS. 

 

Buxton and Harrington examined the use of ion mobility spectrometry with multivariate 

mixture analysis to distinguish PETN and cyclotetramethylene tetranitrate (HMX) residues 

from potential interferents encountered during airport baggage screening.235 Modification of 

the instrument to allow temperature programming yielded greater sensitivity and selectivity 

in comparison to standard thermal desorption; however, the analysis time was increased 

from 5 to 20 seconds. This could potentially be problematic during peak periods when the 

throughput demanded for luggage screening is extremely high. 

 

3.5 Fire debris 

Each year, deliberately lit fires cause significant damage to people, property and the 

environment. Various studies have used chemometrics to extract key information from 

accelerants (including diesel fuels,242–245 gasolines31,246–254 and other ignitable liquids255–262) or 

fire debris.263–268 The reader is also directed to existing in-depth reviews on this subject.76,269  

 

Of particular interest, Sinkov et al. applied PLS-DA and SIMCA classification to the GC-MS data 

acquired from 220 casework arson samples.247 Chromatograms were first aligned based on a 

spiked ladder of perdeuterated n-alkanes, with variable selection and model optimisation 

performed using an in-house program. This resulted in all 55 validation samples being 

correctly assigned as either gasoline-containing or gasoline-free, although no determination 

could be made regarding the type of gasoline used or any other classes of accelerant present.  

 

Research by Bodle and Hardy employed solid phase microextraction (SPME)-GC and SIMCA to 

distinguish five classes of accelerants, with a cross-validation accuracy of 97.2 %.257 Waddell 

similarly utilised several multivariate methods to distinguish ignitable liquid classes based 

upon their GC-MS total ion spectra.265 An initial approach using quadratic DA resulted in a 

70.9 % validation accuracy based on samples produced in laboratory and field-test burns. A 

subsequent article evaluated SIMCA as an alternative classification scheme compared to 

inspection by an examiner.264 It was found that whilst the examiner achieved a 90.5 % 

classification accuracy compared to 79.1 % using SIMCA, the false positive rate also increased 

from 8.9 % to 15.0 %. 

 

Chemometric methods have also been used to discriminate accelerants within a class 

according to their refining process, brand or other distinguishing features. Monfreda and 

Gregori for example were able to separate 50 unevaporated gasoline samples of five brands 

based on GC-MS determination of their aromatic compound content modelled using PCA and 

DA.250 For two brands, it was additionally possible to link the chemical characteristics of 

samples to the crude oil employed. Balabin et al. were also successful in separating classes of 



liquid gasoline according to their refining site, refinery stream or octane rating using NIR 

spectroscopy and nine multivariate classifiers including LDA, SIMCA, kNN and SVM.31 

 

A limitation when establishing chemometric classifiers for arson investigations is the potential 

impact of sample weathering or degradation. Additionally, the analysis of ‘neat’ samples does 

not take into account the various matrix interferences found in casework samples. Baerncopf 

et al. thus developed a methodology to associate post-burn ignitable liquid residues to the 

corresponding neat liquid, with discrimination from matrix interferences.255 Six ignitable 

liquids were burned on carpet, extracted using passive headspace extraction and analysed by 

GC-MS. PCA resulted in the six liquids being discriminated based upon their alkane and 

aromatic content, while Pearson product moment correlation coefficients were able to 

correctly associate all residues to their neat liquid equivalent.  

 

Turner and Goodpaster subjected simulated samples containing gasoline to weathering and 

microbial degradation in soils prior to analysis by GC-MS and PCA.253 Volatile components 

were found to be susceptible to weathering, while mono-substituted aromatics or long-chain 

alkanes were most affected by microbial action. Highly substituted aromatics were found to 

be most resistant to weathering or degradation, and hence these compounds can be 

suggested as ideal targets for analysis. 

 

3.6 Polymers 

Polymeric products are prevalent throughout daily life and so could reasonably be expected 

to appear in the course of criminal investigations. Several studies have used chemometrics to 

assess the chemical diversity amongst polymers such as paints,24,270,279–288,271,289–297,272–278 

banknotes,298–300 adhesives tapes,301,302 or cling films35,303 in order to better exploit them as 

forms of evidence. 

 

3.6.1 Paints and coatings 

Paints and other coatings are applied to many manufactured items to protect or aesthetically 

improve their surface. Paint chips and smears are thus commonly encountered as forensic 

transfer evidence, and their analysis may prove essential in obtaining investigative leads. 

 

Muehlethaler et al. analysed 34 red household paint samples using both FTIR and Raman 

spectroscopy combined with unsupervised chemometric analysis.287 PCA of the FTIR data was 

able to distinguish samples based on their binder type (alkyd or acrylic resin) and presence or 

absence of calcium carbonate, whilst Raman spectroscopy differentiated samples according 

to their pigment composition. The same authors later applied FTIR with supervised and 

unsupervised methods to analyse 74 red, green and blue spray paints.288 Iterative PCA was 

able to discriminate over 90 % of samples in each category, and SIMCA models gave an 

approximately 95 % classification accuracy of a separate validation set. 

 



Chemometric methods have also proved a valuable tool in the analysis of paints used in 

artworks. Of particular interest, Rosi et al. combined PCA with reflection micro IR 

spectroscopy to map cross-sectioned paint from simulated ancient easel paintings.292 This 

method allowed characterisation of the layer sequence according to the inorganic pigments 

and organic binders present in each layer. Although these studies were originally conducted 

from an art provenance and conservation standpoint, the established approach could 

potentially be applied to investigations of art forgery. 

Liszewski et al.281 and Mendlein et al.285 examined a series of automotive clear coats using UV 

or micro Raman spectroscopy. Pattern recognition revealed broad classes, but these could 

not be correlated with any specific features of the source vehicles. Later studies by Maric et 

al. used vibrational spectroscopy with PCA and LDA to discriminate the clear coat or primer 

surfacer layers from Australian and international vehicles.24,282–284 This ultimately revealed 19 

distinct classes related to the vehicle manufacturer, model and in some instances specific year 

ranges or manufacturing plants. Further work established that post-manufacture coatings or 

long-term environmental exposure could cause erroneous classifications when relying solely 

on analysis of the upper clear coat, though these samples could be identified as atypical.293,296 

This result has implications for the sampling of automotive paint from known vehicles, and 

for the interpretation of questioned versus known comparisons. 

 

Several studies by Lavine et al. investigated the use of genetic algorithms to match 

automotive clear coats against the IR spectral library of the Paint Data Query database.278–280 

Successful discrimination was made between 2000 – 2006 model Chrysler and General Motor 

vehicles according to their assembly plant, allowing identification of the model, line or 

manufacturing year of the source vehicles. However, as the samples utilised in this study 

originated solely from North American manufacturing plants, the methodology currently has 

limited applicability within an international context. 

 

3.6.2 Polymer banknotes 

Less than a decade after the first modern polymer banknotes were issued, the first polymer 

counterfeits were detected. Chemometrics has recently been proposed as a rapid and 

reproducible means of authentication. Early work by de Almeida et al. used Raman 

spectroscopy with PLS-DA to distinguish authentic and counterfeit Brazilian banknotes.298 

Although successful, the counterfeits were paper based, so the applicability of this approach 

to more sophisticated polymer counterfeits is uncertain. Correia et al. instead proposed using 

NIR spectroscopy, with PCA identifying three areas most likely to vary between authentic and 

counterfeit banknotes.299 PLS-DA successfully distinguished three authentic and nine 

counterfeit banknotes, though a separate test set was not examined. Additionally, da Silva 

Oliveira et al. used portable NIR spectroscopy with SIMCA and LDA to distinguish 300 

authentic and 227 counterfeit banknotes.300 Both approaches were reported to be successful, 

although no metrics such as discriminant values were used to assess the quality of the 

classifications. 



 

3.6.3 Adhesive tapes 

Electrical tapes are a common commercial and household product often encountered as 

physical evidence, particularly in explosives investigations. Goodpaster et al. employed PCA 

and DA to characterise 67 electrical tape rolls from the reference collection of the Bureau of 

Alcohol, Tobacco, Firearms and Explosives (ATF), according to their surface texture and 

elemental composition.301 36 classes were identified within the dataset, to which samples 

could be assigned with up to 94 % accuracy. A subsequent study employed FTIR spectroscopy 

and DA to classify 72 tape rolls to their nominal brand based on spectra acquired from the 

tape backing and adhesive, with accuracy rates of up to 99 %.302 This model was additionally 

utilised to correctly associate two fragments of blast-damaged tape from a detonated pipe 

bomb to their respective brands of origin. 

 

3.6.3 Other polymers 

Several other polymeric products are also of interest for forensic purposes. Cling films for 

example are commonly used in the packaging of illicit drugs, hence their analysis could 

potentially establish linkages between seizures. Telford et al. studied nine rolls of low-density 

polyethylene cling films using ATR-FTIR spectroscopy, with PCA identifying three main clusters 

associated with the manufacturing brand.35  

Whilst several studies have been carried out on automotive paint, other automotive polymers 

may provide useful information to an investigation. Grant et al. investigated the chemical 

diversity amongst 40 automotive window tints using ATR-FTIR spectroscopy with PCA and 

LDA.304 Substantial variability was observed between tints of different brands, and in some 

instances individual tint products. Subsequent predictive models were able to associate 

unknown tint samples to their brand, and found to be robust to both adhesive curing and 

short-term environmental exposure over a five-month period. May and Watling successfully 

discriminated polycarbonate headlamp lenses from three vehicle types based on trace 

elemental analysis with LA-ICP-MS and PCA-LDA.305 Blind validation trials for each headlamp 

type gave correct assignment of simulated unknowns, with the exception of some headlamp 

lenses produced on the same day. 

 

Counterfeiting of polymer identity cards poses significant security and economic concerns. 

McGann and Willans et al. highlighted SVM as a possible tool to assist expert examination of 

suspected counterfeits.45 Three issuing series of Western Australian driver’s licences were 

distinguished based on their cross-sectional ATR-FTIR spectra, and test licences of each series 

correctly assigned. Whilst this approach has not yet been validated on known counterfeits, it 

established that variations in the polymer composition could indeed be detected using 

simple, non-destructive analysis. 

 

  



3.7 Hairs and fibres 

Two of the most frequently encountered forms of evidence in forensic investigations are hairs 

and fibres. The wide range of potential colours or morphologies, particularly for fibres, can 

make these forms of evidence extremely probative. This was expounded in the recent 

judgement of The State of Western Australia v Edwards [2020] WASC 339; a case in which 

fibre analysis and transfer played a significant role.306 

 

Chemometric studies of hair have generally focussed around the discrimination of dyed and 

non-dyed hairs, or species identification.307–309 In one example, Barrett et al. investigated the 

discrimination of red-dyed hair samples based upon their UV-Vis absorbance spectra.308 HCA 

identified three clusters of samples that were visually consistent with different shades of red. 

PCA identified the same groupings, and inspection of the loadings plot suggested that this 

separation was based on differences in the intensity of absorbance peaks related to both the 

hair and the dye. DA yielded an 89.1 % classification accuracy based on cross-validation, and 

75 % using an external validation set. Additionally, it was found that successive washing of 

the hair samples led to a significant loss of dye colour within three weeks of application, which 

could lead to incorrect classifications. 

 

Chemometric methods have also been applied in several studies for the discrimination or 

provenance determination of fibres.310–317 318–327 Causin et al. utilised pyrolysis GC-MS with 

PCA to differentiate colourless polyacrylonitrile-based fibres of similar morphological 

features.310 The sample set comprised 36 fibres acquired from 11 manufacturers, with fibres 

from certain manufacturers differing by batch, manufacturing plant, or intended end-use. 

Fibres from one manufacturer were able to be uniquely identified based on the presence of 

methyl methacrylate as a co-monomer. The remaining samples were divided into two clusters 

according to the presence or absence of vinyl acetate, although no further separation 

according to any categorical factors was achieved. 

 

Rich et al. applied PCA and LDA to analyse a database of over 5,000 MSP spectra acquired 

from approximately 500 dyed textile fibres.325 Both UV-Vis absorbance and fluorescence 

spectra were found to provide discriminating information, depending on the fibre set under 

analysis. In general, however, UV-Vis spectroscopy was determined to be the best single 

discriminating technique, allowing 78.9 % of fibres to be differentiated. It should be noted 

that in this study, all fibres of a particular colour were compared simultaneously, whereas 

casework scenarios more commonly utilise pairwise comparisons between a recovered fibre 

and one from a known source. It is thus possible that pairwise comparisons of this sample set 

would have led to improved discrimination between similar fibres. 

 

 

  



3.8 Biological materials 

The analysis of biological materials such as bodily fluids,328,329,338–347,330–337 decomposition 

fluid,348 skeletal remains349–351 or fingermark residues352–354 has forensic relevance for 

identification and timeline reconstruction. Chemometrics can assist in distinguishing various 

forms of biological material, creating dating models, or exploring variations associated with 

biological factors such as age and sex. 

 

Sikirzhytski et al. used confocal Raman microscopy with DA to differentiate between dry 

samples of blood, semen and saliva with 100% accuracy.342,343 With increasing advances in 

portable Raman spectrometers, this approach could provide the foundation for an at-scene 

identification method. Li et al. attempted to estimate the age of equine bloodstains 

(employed as an analogous material for human blood) based on their visible reflectance 

spectra.333 Initial results using LDA produced a correct classification rate exceeding 90 %; 

however, this was obtained using a single blood deposit for both training and test purposes, 

with only 10 replicate spectra making up each set. The correct classification rate fell to 54.7 % 

when using an external test set obtained from a second bloodstain. 

 

Doty and Lednev used Raman spectroscopy with PLS-DA to distinguish human blood taken 

from 49 donors (representing different ages, biological sexes and races) from those of 16 

animal species known to yield false positives with certain presumptive tests such as luminol 

or the Kastle-Meyer reagent.330 An external validation sensitivity of 1.00 was achieved, along 

with a specificity of 0.93, as some false positives were obtained when analysing blood from 

species with a similar haemoglobin structure to human blood. The ability to identify 

bloodstains originating from various species is of importance in wildlife forensics, or to hit-

and-run incidents that may involve both humans and animals. 

 

Exploratory chemometric tools have also been utilised to investigate the composition of 

latent fingermark deposits. Girod and Weyermann used GC-MS and cluster analysis to classify 

fingermarks from 25 donors into ‘poor’ or ‘rich’ lipid categories.353 Fingermark replicates of 

selected donors were tested as a validation set, with 86 % being correctly classified. It was 

proposed that this model could be exploited for research purposes in order to select ideal 

donors for given compounds of interest. Frick et al. later employed PCA to examine the lipid 

composition of fingermarks collected from over 100 donors.352 Although variations between 

different donors were apparent, no correlation to specific donor traits could be discerned. 

 

3.9 Cosmetics and personal products 

An emerging area of interest in forensics is the examination of cosmetics including 

lipsticks26,34,355–360, kohl/kajal361,362 and nail polish;363,364 as well as ‘personal products’ such as 

fragrances365 and lubricants.32,366–370 These traces have particular relevance in cases involving 

violent and/or sexual assault.  

 



Kulikov et al. employed wavelength-dispersive X-ray fluorescence spectrometry for the 

elemental analysis of 39 cosmetic powders.371 Cluster analysis and PCA were able to clearly 

discriminate between samples possessing traditional ingredient or mineral-based 

formulations, and also distinguish specific manufacturers of the latter. Salahioglu et al. later 

demonstrated the use of Raman spectroscopy to discriminate lipstick samples deposited on 

textile fibres, cigarette butts and paper tissues.34 Thirty spectra each of ten different lipsticks 

were subjected to PCA and kNN, attaining accuracy rates up to 98.7 %. 

Coon, Beyramysoltan and Musah constructed a database of condom residues from 110 

condoms of 16 brands using direct analysis in real time-mass spectrometry.32 PLS-DA was then 

used to generate a classifier for brand prediction, which gave an accuracy of 97.4 %. This 

model was generally robust to air exposure or dust contamination, but failed to correctly 

assign residues that had been transferred to glass slides. Baumgarten et al., rather than 

attempting to classify by brand, established eleven classes of silicone-based lubricants 

according to their chemical composition.366 Several groupings were distinguished based on 

the relative ratio of components such as nonoxynol-9 (a spermicide) or octylamine (an 

emulsifier). An LDA model validated using known and blind test samples gave highly accurate 

results, slightly outperforming both kNN and SVM classification. 

 

Maurer et al. used a full factorial design to investigate factors affecting the pyrolysis GC/MS 

analysis of PDMS, particularly in terms of repeatability.369 Temperature and pyrolysis time 

were found to be highly influential on target compound variability. The factorial design was 

extended to a face-centred CCD to optimise these parameters, which were then applied to 

extracts from silicone-based condoms. Although the condoms presented similar chemical 

profiles to the standards, the results lacked repeatability, which may have been due to 

variations in the integration of minor peaks. Nonetheless, this study represents an important 

step in determining statistically validated protocols for condom and lubricant analysis.  

 

3.10 Soil particulates 

Soils may generate probative information in both criminal and environmental forensic 

investigations. There have hence been a number of studies applying chemometrics to 

discriminate or classify soils of different origins.372–381 

 

Thanasoulias et al. were able to distinguish soils from five different sites due to differing 

relative concentrations of aromatic groups in their fulvic and humic acid fractions.380 A k-

means cluster analysis followed by PCA and LDA yielded an 85.0 % classification accuracy. 

Dragović and Onjia described the classification of soils originating from 15 locations in Serbia 

and Montenegro, by applying PCA to radionuclide data collected by gamma-ray 

spectrometry.376 An overall 86.0 % correct ‘classification’ was achieved, on par with results 

achieved by Thanasoulias et al. However, PCA should not generally be considered as a true 

classification method, as it makes no assumptions of pre-existing classes. 

 



Bonetti and Quarino were able to separate soil samples collected from 12 New Jersey state 

parks based on their particle size distribution, pH and organic content.373 PCA and canonical 

DA were initially performed solely on the particle size data, with error rates then found to 

decrease with the inclusion of the remaining data. Final error rates of 33.3 % and 3.3 % were 

obtained for soils collected during the summer and fall seasons respectively, with the high 

error rate of the former attributed to the collection of samples at 15 metre intervals. This 

indicates a high level of heterogeneity even amongst soils within a relatively limited 

geographical area, which may prove challenging when establishing the provenance of a 

questioned soil sample. 

 

3.11 Glass 

Glass fragments are often recovered at the scene of automotive accidents or burglaries. The 

ability to distinguish the source of these fragments may be vital in determining the sequence 

of events. Although substantial literature exists concerning the evaluation of glass using 

probabilistic approaches, limited work has been published examining glass using multivariate 

statistics.382–387  

 

Early work by Almirall used LDA to discriminate sources of glass according to their end-use 

based on elemental composition data.386 Glass samples originating from headlamps were 

correctly classified, as were the majority of container glass fragments. Float glasses were 

distinguishable from headlamp and container glass, although some misclassifications were 

observed between window float glass and vehicle float glass. It was also acknowledged that 

the lack of an independent test set may have produced a higher proportion of correct 

assignments. 

 

Zadora and Brozek-Mucha applied cluster analysis with scanning electron microscopy-EDX to 

differentiate glass samples based on their elemental content.383 Employing a logarithmic 

transformation of selected element abundances revealed three clusters consistent with the 

glass type (car headlamp, car window or container), with only four objects lying outside of 

these clusters. A later study described the use of naїve Bayes classifiers and SVM models to 

separate glass samples originating from car or building windows and those from bulbs or 

headlamps.384 Classification accuracies of 90 % or greater were achieved across ten training 

and validation sets using both methods, though it was recognised that classifications based 

solely on elemental composition should be interpreted with caution. 

 

Later work by Teklemariam and Gotera attempted to distinguish glass from assorted food 

containers with other glass types such as that used in labware, electronic displays and 

lighting.382 HCA found that most food container glass exhibited different elemental profiles to 

other types of glass based on their LIBS spectra. Some significant within-glass differences 

were also detected between container glass samples taken from different food brands. 

However, no supervised analysis was carried out to determine whether these sources could 



be reliably distinguished, or if unknown glass fragments could be confidently assigned to a 

given source type. 

 

Most recently, Gupta et al. suggested an approach for integrating chemometric analysis into 

a probabilistic framework.387 PCA was first used as a dimensionality reduction method, with 

the scored PCs then used to compute likelihood ratios to compare samples of vehicle float 

glass. The use of PCA resulted in shorter computation times, and also reduced the occurrence 

of Type I (false positive) and Type II (false negative) errors. It was suggested that this approach 

could be readily transferred to other types of evidence yielding multivariate data. 

 

3.12 Impressions 

The 2009 National Academy of Sciences report recommended the “raising of standards for 

scientific examination of all forms of physical evidence”.17 This could be argued as especially 

important for disciplines such as impression evidence, which currently rely on direct visual 

comparisons between recovered (questioned) and known reference samples. Subsequently, 

there has been some interest into the use of pattern recognition for impression analysis. 

 

Petraco et al. reported the use of chemometrics to evaluate the ‘uniqueness’ of shoe 

impressions related to accidental mark or wear patterns.388 Partial impressions left by five 

shoe pairs of the same brand and style, worn by a single person over 30-day periods were 

converted into feature vectors based on the number and location of any accidental marks. 

The vectors of 116 impressions were then subjected to PCA and DA to assign each impression 

to the corresponding shoe pair, resulting in cross-validation accuracies of 77 % to 100 %. 

 

A similar methodology was later applied to the statistical discrimination of toolmark 

impressions.389 An image processing program was used to convert the striation marks left by 

nine different screwdrivers into binary feature vectors, with PLS-DA and PCA-SVM then 

employed to match each screwdriver to its corresponding impression. The classification 

performances of each model were assessed through cross-, leave-one-out and bootstrap 

validation, yielding classification accuracies of 97 % or greater with both classifiers. 

 

 

 

 

 

 

 

 

 

 

 



4. Considerations and emerging trends 

As evident from the examples highlighted above, chemometric methods show great potential 

for analytical method development, as well as obtaining, decoding and assessing analytical 

data gained from forensic analyses. However, there are several considerations to be made 

when applying these approaches, or when evaluating studies presented in the literature.  

 

The first of these considerations is whether the models have been appropriately validated. 

High classification or prediction accuracies do not necessarily imply a reliable model, 

particularly when dealing with limited sample sizes that may not represent the entire 

population. As discussed in Section 2.2, the use of appropriate test sets is essential to model 

validation. These sets should ideally be independent of the training data to avoid over-

estimating the model’s capabilities, and of a sufficient size to allow a reasonable measure of 

likely error rates. Where possible, testing should deliberately include atypical or challenging 

samples to provide a more rigorous test of model performance.  

 

Similarly, the analysis of replicates is essential to evaluating constructed models and defining 

levels of acceptable variation. To draw conclusions without any consideration of potential 

sample variance fails to establish proper limits and measures of performance considering the 

impact of sources of variability. The ideal form of replication would be to conduct analysis of 

independent samples treated in the same manner, rather than simply repeating measures of 

a single sample. When taking replicates from a bulk material, careful consideration must be 

given to the sampling approach. For example, in analysing polyethylene cling films, Telford et 

al. recommended a stratified random sampling approach to ensure adequate representation 

across each roll.35 In the case of mass manufactured products, it may also be appropriate to 

obtain replicates across separate lot numbers to consider batch variation. 

 

Another key consideration is the definition of what constitutes a ‘good’ or ‘reliable’ result – 

whether it be the classification of a predictive model, estimation from a regression model, or 

optimal parameters given by an experimental design. It may be tempting to simply accept the 

immediate results shown in the model output, particularly where they seem to indicate a 

‘successful’ outcome. However, the examples shown in this tutorial have demonstrated that 

more careful inspection of the underlying metrics may reveal important information.  

 

The importance of these factors can be demonstrated by examining work by Huang and 

Beauchemin, who described the use of PCA and LDA to determine ancestry (referred to in the 

study as ethnicity) based on multi-elemental analysis of hair.390 Hair from thirteen donors of 

different ancestral backgrounds (broadly categorised as Caucasian, East Asian or South Asian) 

were analysed using solid sampling electrothermal vaporisation (SS-ETV) ICP-OES. However, 

the study design had a number of flaws, especially concerning the sampling and chemometric 

approach. Hair samples were collected and provided by the donors themselves, thus it was 

unknown whether these samples were fully representative of each individual. Only a single 



analysis was conducted on hair from each donor, making it difficult to assess the level of 

within- to between-group variation. Additionally, no external test set was used for validation 

of the LDA model. 

 

Although LDA gave 100 % discrimination accuracy, closer examination shows that the 

conclusion of reliable discrimination was not supported by the data (Figure 14a). For example, 

whilst three of the four Caucasian hair samples were clustered together in PCA, this cluster 

was more closely related to samples from East Asian and South Asian donors than the 

remaining Caucasian sample, which was nearest the majority of the East-Asian samples. 

Similarly, one East-Asian sample was nearest the South-Asian sample cluster. Testing the LDA 

model using a separate validation set would likely have given a greatly reduced predictive 

accuracy, revealing the lack of reliable separation.  

 

 
Figure 14: PCA scores plot from human hair samples of different ancestry based on elemental 

composition; (a) Without replicates; (b) With theoretical replicates reducing within-group to between-

group variation; (c) With theoretical replicates increasing within-group to between-group variation. 

Adapted from Ref. 390 with permission from The Royal Society of Chemistry, copyright 2014. 

 

 

It is possible that the ‘outlying’ samples in the scores plot were the result of anomalous 

measurements, and that additional replicates would have been more closely associated with 

the expected clusters (theorised in Figure 14b). This could have supported the conclusion that 

discrimination based on ancestry could be achieved, albeit at a lower predictive accuracy. 



However in Figure 14c, further theorised replicates revealed even greater overlap between 

categories, leading to the conclusion that no such discrimination could be achieved. Sampling, 

replication and validation thus have significant effects on chemometric modelling. This 

reinforces that the reliability of any conclusions drawn are inherently dependent on the initial 

sampling and study design. 

 

It must also be recognised that there are a variety of ‘real’ factors that may affect 

chemometric models. Samples encountered in casework may be subjected to a variety of 

ageing or weathering conditions prior to collection, which may affect chemometric 

classifications against new samples under controlled conditions. Likewise, models based on 

standard materials may not be robust to those that contain analytes contained within (or 

deposited on) a complex matrix. Finally, one must consider the persistence of different 

sample components under various conditions, which may again affect multivariate profiling. 

These factors are significant from an interpretative standpoint when determining whether 

recovered traces are consistent with a posited sequence of events. 

 

As well as the considerations above, integrating chemometric routines into existing forensic 

workflows must be planned and purposeful. Questions that must be asked include “what are 

the standards for interpreting the outputs?”, “how can the results be presented in a way that 

is understood and accepted by the court?”, and most importantly, “how does this add value 

to what is already being done?”. Although statistical techniques may reduce error or bias, it 

is dangerous to assume that they are infallible, or even necessarily more accurate than human 

decision-making. The emphasis should be on the use of chemometrics to support, not replace, 

current analytical procedures. This was discussed by Bovens et al., who described the various 

steps in a forensic workflow to show where chemometric tools could fit into the process, but 

emphasised the need for “interconnection and coordination” in doing so.391 The authors also 

introduce the ‘Steps Towards a European Forensic Science Area’ project coordinated by the 

European Network of Forensic Science Institutes; a sub-project of which is aimed at 

constructing best practice guidelines on how to apply chemometrics in forensic 

investigations, explained using specific application examples. 

 

One such example by Salonen et al. described three scenarios of illicit drugs casework 

applying chemometric methods.392 In one instance, Euclidean distances were calculated from 

physical measurements to determine whether a number of questioned tablets had been 

stamped with a seized tableting machine. The similarity threshold was set to yield a 5 % false 

positive and 9 % false negative rate, and it was noted that such decisions must be made in 

consultation with those requesting the analysis to ensure that it meets the required 

standards. It was concluded that two questioned tablets shared the same physical 

measurements to those from the seized tablet machine (all tablets contained MDMA), but 

were of a different colour indicating different production batches. In this scenario, 



information derived from chemometrics was combined with standard visual comparisons and 

chemical profiling to establish possible linkages between drug seizures.  

 

A study by Sauzier et al. compared the use of chemometrics and visual examination for 

detecting additions and alterations in handwritten documents.175 Five blind validation 

samples were analysed using both PCA (based on visible spectra acquired with a video 

spectral comparator) and microscopic/alternative lighting examinations by document 

experts. The two approaches performed comparably, with both successfully detecting 

samples that contained simulated additions or alterations. In one sample, the same number 

of inks were detected but associated with different ink strokes (with visual examination 

correctly identifying the distribution). It was suggested that the scores generated from PCA 

could be used as statistical indicators of sample similarity to support the findings from visual 

examination, although no proposed threshold for an inclusion or exclusion result was not 

determined. 

 

Other studies have examined the potential integration of chemometric techniques with 

probabilistic approaches, such as previously discussed work by Gupta et al. on glass 

comparisons using PCA with likelihood ratios (Section 3.11). Another study by Martyna et al. 

proposed a hybrid approach combining chemometrics with a Bayesian likelihood ratio 

framework to report the evidential value of vibrational spectra from automotive polymers.393 

LDA was used to generate distance representations between samples, which were then used 

to construct naïve LR models for sample comparisons. For each comparison, 100 LR values 

were generated to express the evidential value of sample similarity. The rate of false positive 

associations between compared samples varied from ca.  10 – 25 % depending on the number 

of discriminants retained, whilst false negatives were consistently around 5 % for FTIR spectra 

and 10 % for Raman spectra. Squared Euclidean and correlation-based distance metrics were 

found to be optimal, yielding ≤ 10 % false positive rates using bivariate or trivariate models. 

Despite the limited availability of samples, which is often a limiting factor in Bayesian 

frameworks, the results obtained using this hybrid approach were deemed satisfactory for 

legal processing. 

 

5. Conclusion 

It is clear that the forensic interest in chemometrics has grown considerably over recent 

decades. The focus of these studies has begun to evolve from simple pattern recognition to 

the optimisation of analytical procedures and establishing statistical measures of evidential 

value. The chemometric methods applied to these problems have also shifted from ‘standard’ 

PCA and LDA to an array of alternative techniques including SVM, PLS-DA and ANNs, with the 

recognition that each may provide specific advantages or disadvantages depending on the 

question under consideration.  



The increasing volume of literature in this field suggests that these methods are not all that 

far away from being introduced to operational forensic laboratories. However, this 

fundamental step first requires a further body of work probing the capabilities and limitations 

of these approaches. In particular, methods must be validated against known ‘ground-truth’ 

samples to establish potential error rates, documented as to provide transparency to the 

conclusions drawn, and established to meet the scientific standards accepted by a court. 
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