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Abstract

Predictive maintenance (PdM) is a well-known maintenance approach that comprises of two

problems, machine prognostic modelling and maintenance scheduling. The objective of prog-

nostic modelling is to predict faults in machine components such as aircraft engines, lithium-ion

batteries or bearings. The objective of maintenance scheduling is to reduce the cost of perform-

ing maintenance once the future degradation behaviour of a component has been established.

Sensors are used to monitor the degradation behaviour of components as they change over time.

Supervised learning is a suitable solution for prognostic modelling problems, especially with the

increase in sensor readings being collected with Internet of Things (IoT) devices. Prognostic

modelling can be formulated as remaining useful life (RUL)- or machine state estimation. The

former is a regression- and the later is a classification problem.

Long short-term memory (LSTM) recurrent neural networks (RNNs) are an extension of tradi-

tional RNNs that are effective at interpreting trends in the sensor readings and making longer

term estimations. An LSTM uses a window of sequential sensor readings when making prog-

nostic estimates which causes it to be less sensitive to local sensor variations, which results in

improved prognostic model performance.

In this study we create a framework to implement PdM approaches. The work consists of a

codebase which can be used to create testable, comparable and repeatable prognostic modelling

results and maintenance scheduling simulations. The codebase is designed to be extensible, to

allow future researchers to standardise prognostic modelling results. The codebase is used to

compare the prognostic modelling performance of an LSTM with tradition supervised prog-

nostic modelling approaches such as Random Forests (RF)s, Gradient boosted (GB) trees and

Support Vector Machines (SVM)s. The prognostic models are tested on three well-known

prognostic datasets, the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)

engine aircraft-, Center for Advanced Life Cycle Engineering (CALCE) battery- and Intelligent

Maintenance Systems (IMS) bearing datasets. During the study we highlight factors that influ-
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ence prognostic model performance, such as the effect of de-noising sensor readings and the size

of the sample window used by the LSTM when making estimations. The results of the prog-

nostic models are compared with previous studies and the LSTM shows improved performance

on considered cases.

The developed prognostic models are used to perform preventative maintenance scheduling with

assumed costs in two simulations. The objective is first to compare the efficacy of traditional

maintenance approaches, such as a mean time between failure (MTBF) strategy, with a PdM

strategy, and second to investigate the effect of using a better performing prognostic model

(such as the LSTM) in a PdM strategy. The improvements are measured by the reduction in

costs.

Key words:

Predictive maintenance; remaining useful life; machine state estimation; preventative mainte-

nance scheduling.
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Samevatting

Voorspellende instandhouding (PdM) is ’n bekende instandhoudingsbenadering wat bestaan uit

twee probleme, naamlik masjienprognostiese modellering en instandhoudingskedulering. Die

doel van prognostiese modellering is om foute in masjienkomponente soos vliegtuigenjins, litiu-

mioonbatterye of laers te voorspel. Die doel van instandhoudingskedulering is om die koste van

die uitvoering van instandhouding te verminder sodra die toekomstige degradasiegedrag van ’n

komponent vasgestel is.

Sensors word monitor die degradasiegedrag van komponente soos hulle verander oor tyd. Toe-

sigleer is ’n geskikte oplossing vir prognostiese modelleringsprobleme, veral met die toename

in sensorlesings wat met Internet of Things (IoT) toestelle ingesamel word. Prognostiese mod-

ellering kan geformuleer word as oorblywende nuttige lewensduur (RUL)- of masjientoestand-

beraming. Eersgenoemde is ’n regressie- en die latere is ’n klassifikasieprobleem.

Langtermyngeheue (LSTM) herhalende neurale netwerke (RNN) is ’n uitbreiding van ’n tra-

disionele RNN wat effektief is om tendense in die sensorlesings te interpreteer en langert-

ermynskattings te maak. ’n LSTM gebruik ’n venster van opeenvolgende sensorlesings wanneer

prognostiese skattings gemaak word, wat veroorsaak dat dit minder sensitief is vir plaaslike

sensorvariasies, wat lei tot verbeterde prognostiese modelwerkverrigting.

In hierdie studie skep ons ’n raamwerk om PdM-benaderings te implementeer. Die werk bestaan

uit ’n kodebasis wat gebruik kan word om toetsbare, vergelykbare en herhaalbare prognostiese

modelleringsresultate en onderhoudskeduleringssimulasies te skep. Die kodebasis is ontwerp om

uitbreidbaar te wees, sodat toekomstige navorsers prognostiese modelleringsresultate kan stan-

daardiseer. Die kodebasis word gebruik om die prognostiese modelleringsprestasie van ’n LSTM

te vergelyk met tradisionele prognostiese modelleringsbenaderings soos Random Forests (RF)’e,

Gradient boosted (GB) trees en Support Vector Machines (SVM)’s. Die prognostiese modelle

word getoets op drie bekende prognostiese datastelle, die Commercial Modular Aero-Propulsion

System Simulation (C-MAPSS) enjinvliegtuie, Sentrum vir Gevorderde Lewensiklusingenieur-
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swese (CALCE) battery en Intelligente Onderhoudstelsels (IMS) dradatastelle. Tydens die

studie beklemtoon ons faktore wat prognostiese modelprestasie beïnvloed, soos die effek van

die ruisonderdrukking van sensorlesings en die grootte van die monstervenster wat deur die

LSTM gebruik word wanneer ramings gemaak word. Die resultate van die prognostiese mod-

elle word vergelyk met vorige studies en die LSTM toon verbeterde prestasie op die oorwoë

gevalle.

Die ontwikkelde prognostiese modelle word gebruik om voorkomende instandhoudingskeduler-

ing uit te voer met veronderstelde koste in twee simulasies. Die doelwit is eerstens om die

doeltreffendheid van tradisionele-instandhoudingsbenaderings, vb. ’n gemiddelde tyd tussen

mislukking (MTBF)-strategie, met ’n PdM-strategie te vergelyk en tweedens om die effek van

die gebruik van ’n beter presterende prognostiese model (soos die LSTM) in ’n PdM strategie

te ondersoek. PdM strategie. Die verbeterings word gemeet aan die vermindering in koste.

Sleutelwoorde:

Voorspellende instandhouding; oorblywende nuttige lewensduur; masjien toestand skatting;

voorkomende onderhoudskedulering.
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Chapter 1

Introduction

1.1 Maintenance strategies and implementations

If you have ever owned a car, you understand how importance the regular services are. The

scheduled maintenance should not be ignored, as the risk of component failure increases dra-

matically without them. As a responsible, inquisitive owner you might wonder how the main-

tenance intervals are determined, how effective they are, or are there better ways of doing it?

For example, how accurate can one predict the remaining lifetime of a key component such

as the gearbox or alternator? What kind of information is needed in order to make accurate

predictions?

Now, consider the viewpoint of a operations manager in a car rental company. The fleet of cars

under management have a dynamic maintenance requirement. Due to factors such as operating

conditions, failure modes and maintenance quality the cars fail at random intervals. How can

the maintenance be performed strategically to reduce the overall cost of maintenance for the

fleet of cars? When is the optimal time to perform maintenance on a car?

This work address these issues amongst others in a more general context. If we can predict

the remaining lifetime of key components in a car, how well does the same approach apply to

batteries or rotating machine parts such as bearings? The estimation approaches are therefore

tested on multiple asset types, where we can investigate the influential factors that cause or

deter correct estimates.

It is generally assumed that the cost of planned maintenance is less than unplanned mainte-

nance, owing to factors such as resource allocation, component availability, off-peak mainte-

nance and optimal route planning. With the knowledge of the future behaviour of a machine
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and the cost of performing maintenance, we can create a policy for maintenance scheduling

that reduces these costs.

It is important to note the development of machine maintenance strategies. Initially, main-

tenance was not thought of as a strategic practice, as machines would continue until failure

before maintenance was implemented to restore a machine to a usable state. This is referred

to as corrective maintenance.

It was during World War 2 that the American aviation industry began investigating preventative

maintenance strategies, where preventative maintenance refers to maintenance before machine

failure. During the war, there was an increased demand for air plane production and factory

machine downtime was unacceptable. Initial preventative maintenance strategies involved a

mean time to failure (MTTF) approach, which uses the time intervals between machine failure

as means to create statistical models. In a fleet of machines, the mean time to failure is the

sum of the total operating hours divided by the number of machines. The MTTF is used

to determine preventative maintenance intervals. Preventative maintenance would then be

scheduled before the estimated failure interval.

The next preventative maintenance strategy was reliability centred maintenance (RCM). A

RCM strategy uses a questionnaire to determine the maintenance strategy of a system of

degrading machines (Moubray, 2001). In the aviation industry, a successful implementation of

a RCM strategy reduced the required maintenance labour hours from 4 000 000 to 66 000 needed

to achieve the same operating hours for the Boeing DC-8 to the Boeing DC-10, respectively

(Moubray, 2001). The cost savings found in this approach lead to more industries investing

into the research and development of preventative maintenance strategies.

The next maintenance strategy was condition-based maintenance (CBM). It was the first main-

tenance strategy that made use of sensors to monitor machines as they degrade until failure.

The three challenges associated with performing CBM include collecting the sensor data, de-

veloping a diagnostic model that makes accurate estimations of machine health and taking cost

effective actions to schedule machine maintenance (Zhang and Nakamura, 2005). The require-

ments needed to overcome these challenges are machines that follow a predictable degradation

pattern to failure, measurable signals that indicate degradation, field experts to interpret these

signals to develop CBM models and an investigation into the costs associated with performing

maintenance.
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The advances of technologies such as Near Field Communication (NFC), Bluetooth andWireless

Fidelity (Wi-Fi) enabled the collection of more sensor data. This resulted in the development

of the internet of things (IoT) and consequently Big Data. The term Industry 4.0 encapsulates

the development of such technologies where smart devices have gained the ability to collect,

transfer and store data directly on the internet (Schmidt et al., 2015). Furthermore, advances

in cloud computing has allowed maintenance scheduling practitioners to use the sensor data in

data driven prognostic model development. Supervised prognostic modelling approaches have

reduced the dependence on field experts to interpret the sensor readings, since more data is

available to train the models.

Predictive maintenance (PdM) is the practice of using a prognostic model and known main-

tenance costs to perform cost effective preventative maintenance. The challenges in a PdM

strategy include data collection, data labelling, prognostic model development, system mainte-

nance cost gathering and planning maintenance scheduling. The challenges can be separated

into two modelling problems. The first, prognostic modelling, is the estimate of the current

condition of the machines within a fleet of similar machines. The second, optimal maintenance

scheduling, is scheduling maintenance for the entire fleet optimally with regards to costs. In

this work, a PdM strategy is developed and applied to different prognostic data sets.

1.2 Motivation

There has been extensive work done on data-driven prognostic modelling since the inaugural

2008 PHM Societies annual prognostics competition (refer to Subsection 2.2.3) (Ramasso and

Saxena, 2014), specifically, using the Commercial Modular Aero-Propulsion Simulation (C-

MAPSS) data sets used in the competition.

Ramasso and Saxena (2014) identified that common misunderstandings of the data sets and

prognostic model performance lead to researchers having difficulty comparing new results. They

compare implementations and results from previous publications on the C-MAPSS data sets.

The work can be extended by creating a code base, which can be used by researchers to

standardise, reproduce and compare existing and new prognostic modelling approaches not

only on the C-MAPSS data sets, but on other prognostic and maintenance scheduling data sets

as well.

Machine prognostic estimation has been performed as remaining useful life (RUL) estimation,

3

Stellenbosch University https://scholar.sun.ac.za



which is a regression problem. Investigation into machine prognostic estimation as a multi-class

classification problem is not as well established. Performing both regression and classification

will allow for better insights into factors that influence machine health estimation model perfor-

mance. Specifically, the factors that influence supervised prognostic model performance (such

as sensor degradation profiles, sensor noise and the effect of time series data windowing) can

be better established.

The two main themes investigated in this work is machine prognostic modelling and preventative

maintenance scheduling. We approach machine prognostic modelling as both a classification

and a regression problem. The resulting prognostic models are used in preventative maintenance

scheduling in a rule based approach.

To our knowledge, there is no publicly available code base that combines both prognostic

modelling and maintenance scheduling available to researchers. Additionally, there is a need

for tested code which follows a functional process that allows for repeatable results. From a

single script, users will be able to perform preprocessing on raw sensor data, train and save a

versioned prognostic model and compare the model results with other results. A user will have

the ability to test different models by changing a small number of workflow variables, which in

turn causes different preprocessing and model training approaches to be followed. A user can

update the prognostic model used in maintenance scheduling simulations by updating a single

path parameter. As a result, a user can easily investigate the effect of using a specific prognostic

model on costs associated with maintenance scheduling. These features will enable future

researchers to perform efficient initial investigations into predictive maintenance, reproducing

benchmark results and the ability to expand on the code base with new modelling approaches.

1.3 Aim and objectives

The overall aim of this project is, therefore, to contribute to supervised prognostic modelling and

maintenance scheduling strategies by creating a code base that implements readable, reusable

and well tested code. The code will be used to implement a comprehensive prognostic modelling

approach across multiple data sets and use the output of the models in preventative maintenance

scheduling.

The objectives to achieve the overall aim are:
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1. Design and implement a comprehensive prognostic modelling approach that can test mul-

tiple models on multiple data sets in a repeatable, interpretable and testable manner.

2. Identify the key factors of the prognostic models and data sets that attribute or deter

model performance.

3. Compare the model performance of random forests (RF), gradient boosted trees (GB),

support vector machines (SVM) and long-short term memory (LSTM) recurrent neural

network (RNN) prognostic models on multiple data sets.

4. Implement a maintenance strategy that makes use of prognostic estimates and mainte-

nance costs to perform cost efficient preventative maintenance.

5. Design and implement a simulation that compares traditional maintenance scheduling

(such as a mean time between failure (MTBF)-based strategy) with advanced maintenance

scheduling techniques.

6. Investigate and discuss the benefit of using a superior prognostic model when performing

machine maintenance scheduling.

7. Design and implement the software to allow future researchers to reuse and extend the

code base.

1.4 Thesis layout

The thesis is composed of seven chapters. Chapter 1 is the introduction. Chapter 2 gives

context to this work with a discussion on the background of maintenance. This discussion is

separated into a discussion on machine health estimation and maintenance scheduling. The

machine health estimation discussion follows a chronological order, starting from the inception

of corrective maintenance and concludes with current preventative maintenance approaches.

Chapter 3 discusses the three data sets used in this thesis. Chapter 4 presents the pre-processing

performed on the data sets before prognostic modelling can take place. In Chapter 5 and 6

we apply two prognostic approaches to estimate machine health on the seven data sets used in

this work. The two approaches are machine state estimation and remaining useful life (RUL)

estimation. We conclude these two chapters with a discussion of the results and findings.

Next, in Chapter 7 we discuss the implementation of maintenance scheduling strategies. These

strategies make use of the prognostic models discussed in the previous chapters to implement
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a policy-based PdM approach. We discuss the software developed throughout the thesis in

Chapter 8. The software was developed to create reproducible testable results. We therefore

discuss the directory structure of the software and means to apply it. The code exists on a

private Github repository and the readme is contained in the appendices. Finally, Chapter 9

presents the achievements of the thesis and concludes with a discussion on the limitations and

recommendations for future work.

1.5 Contributions

1. A code base which enables researchers to reproduce existing prognostic results on the

C-MAPSS engine aircraft, CALCE battery and IMS bearing data sets.

2. Investigate and discuss key factors that influence prognostic model performance, such as:

• the influence of filtering data before model training,

• the effect of model hyper parameters, and

• the effect of machine sensor degradation profiles (refer to Chapter 3).

3. Simulations that investigate the factors that influence cost in preventative maintenance

scheduling, such as:

• correct prognostic estimates by a data-driven model in machine health estimates,

and

• the effects of performing early and late maintenance.
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Chapter 2

Background

2.1 Overview

In this chapter we provide context to the thesis by discussing the background on the two PdM

problems, machine prognostic modelling and maintenance scheduling. We begin, in Section

2.2, by discussing the evolution of corrective maintenance and preventative maintenance. In

addition, we discuss how data driven prognostic modelling have become compelling machine

prognostic model solutions owing to the development of key technologies. We then highlight how

the Prognostic and Health Management (PHM) Society has advanced prognostic modelling.

Next, in Section 2.3, the three types of prognostic models (physics-based, data-driven and

hybrid) are discussed along with previous implementations relevant to this thesis. Last, in

Section 2.4, the three components of maintenance scheduling (machine state estimation, system

reliability structure and maintenance costing) are elaborated on. Finally, key publications in

maintenance scheduling are discussed.

2.2 Maintenance approaches

If there exists a fleet of machines requiring periodic maintenance owing to machine degradation,

there is a cost efficient way in which to perform the maintenance. A maintenance strategy aims

to achieve this cost effective manner through better maintenance scheduling. Maintenance

strategies can be divided into two approaches. That is, preventative maintenance (PM) and

corrective maintenance (CM) which are defined as maintenance that is performed before and

after machine output degrades to an unusable standard respectively. For our purposes we will

refer to a machine that has degraded into an unusable state as a machine failure. The repair
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costs after this degradation tend to be notably increased. In the subsequent sections we will

discuss different maintenance approaches. We summarise these in Figure 2.1.

Figure 2.1: A overview of the maintenance approaches.

2.2.1 Corrective maintenance (CM)

The earliest maintenance strategy was corrective maintenance. It is difficult to derive when CM

was first implemented as it is by default the standard maintenance approach if no maintenance

strategy exists in a fleet of machines. It is still implemented today. The strategy is reactive

in nature. In a CM strategy, maintenance costs are reduced by allowing machines to remain

in a failed condition for a period of time. During this time, multiple machines could pass into

a failure condition and maintenance can be performed across multiple machines. Maintenance

operations, such as route planning, part ordering and call outs can then be efficiently planned

for to allow for a reduction in maintenance costs.

The main advantage of CM is that maintenance costs are reduced by the economies of scale.

With an increase in the number of machines in a fleet, more machines are likely to be in a

failed state. Subsequently, effective maintenance planning can take place. However, there is a

constraint on the availability of personnel performing maintenance. The availability of machines

in a CM strategy is linearly dependant on the available manpower and the number of machines

in a failed condition.

Some of the disadvantages of CM are that maintenance repairs after a failed condition are

usually more costly than preventative maintenance repairs and machine downtime increases

the risk of costly production losses (Dekker et al., 1997). As a result of the disadvantages we

focus on preventative maintenance.

2.2.2 Preventative maintenance (PM)

During World War 2 (WW2), between 1938-1940, the aviation industry in America required a

production output of 10 000 air planes (Carlsson, 1984) annually. This represented an increase
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of five fold on what the industry could output at the time. Assembly lines and machinery used

in the automotive industry were used to assist in the increased demand. A failure in a single ma-

chine would have dramatic effect on the assembly line output efficiency. Hence, there was a need

for more advanced maintenance strategies. This caused an investigation into PM strategies.

PM looks to avoid machine failures by moving from reactive to proactive maintenance. Since

inception, PM has evolved through four approaches, namely: time-between failure maintenance,

reliability centred maintenance, condition-based maintenance and predictive maintenance. All

of these strategies are still implemented today in hybrid approaches to solve for a system’s

requirements. We therefore highlight early implementations of the approaches in our review.

Time-between failure maintenance

Time-between failure maintenance entails logging the intervals between failures (Moubray,

2001). Then, using a statistical model, the mean time between failure (MTBF) is estimated,

where MTBF is calculated as the total number of machine hours divided by the total number

of machine failures. No underlying information of the system is used in the model, only the

time between failures. A maintenance schedule is created from the MTBF, which is optimised

to avoid the majority of failures and maintenance in critical times. This schedule is then also

used to optimise resource allocation, such as the manpower required to perform maintenance.

An advantage of time-based maintenance is that it can be improved through an iterative process.

For example, if it is determined that the maintenance interval causes many machines to fail, the

interval can be iteratively reduced until an optimal interval is determined. Another advantage

is that maintenance can be avoided in critical operating times.

The disadvantage of time-based maintenance is the lack of consideration for external events,

such as overuse, weather, faulty installations or substandard maintenance. These events are

unique to machines in the fleet and can cause unexpected machine failures. Another disad-

vantage of MTBF maintenance is inefficient maintenance can be scheduled for a machine in a

healthy state.

A good example of this is a study performed by United Airlines in the American aviation

industry in 1960 to investigate the effect of a time-based maintenance strategy (Siddiqui and

Ben-Daya, 2009). The result was an unexpected drop in system reliability. The underlying

assumption of time-based maintenance is that machines have a set time interval between failures

caused by continuous degradation. It was discovered that this assumption was not true as more
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than 70% of the failures were not due to ageing or monotonic degradation. A maintenance

strategy was required to account for non-continuous events.

Reliability centred maintenance (RCM)

RCM was developed as a result of the United Airlines study. It entails using a questionnaire

based approach to ascertain diagnostic information about the asset or system under review

(Moubray, 2001). Consequently, a process that takes into account events leading machine

failure modes, inspection intervals and maintenance costs is developed to satisfy the unique

maintenance requirement of a fleet of machines.

With the successful implementation of a RCM strategy on the Boeing DC-8 to DC-10 came

a decrease from 4 000 000 to 66 000 maintenance hours required for 20 000 operating hours

(Moubray, 2001).

One of the major disadvantages of a RCM strategy include a manual inspection to determine

the status of a machine. However, in other maintenance strategies, such as condition-base

maintenance continuous machine monitoring is enabled.

Condition-based maintenance (CBM)

CBM signifies the introduction of sensors to monitor metrics such as temperature, pressure

and vibration that change as machines degrade until failure (Martin, 1994). A CBM strategy

combines maintenance data and measured sensor readings to perform a machine diagnostic

estimate. This estimate can be thought of as the likelihood of machine failure (based on

historic data). Furthermore, if there are clearly separable states in the sensor readings during

machine degradation then these can be classified as degradation states, with different failure

types and resulting treatments. Future sensor readings are then classified into these states to

signify machine health. This classification is known as a diagnostic estimate. When making a

diagnostic estimate, the most likely machine failure type is derived. A maintenance policy is

then derived which prioritises the risks associated with the failure types. For example, if a car

signifies an oil change is needed or if it detects there is a loss in tyre pressure. In the former

oil change scenario, although undesirable, the potential short term effects are less calamitous

than in the latter. Therefore policy dictates prioritising maintenance for the latter.

The maintenance policy is extended to account for the costs associated with performing main-

tenance. The cost of performing maintenance on a fleet of machines can then be reduced with
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efficient scheduling. For example, in the case of a fleet of cars, a single technician can perform

multiple oil changes on a single day.

Jardine et al. (2006) published a review on CBM approaches and applications.

Predictive maintenance (PdM)

On-premise solutions (software installed to run on computers on the premises) were common

during early implementations of CBM. Dillon et al. (2010) describes the challenges with collect-

ing, transporting and storing data in an on-premise solution. However, with the advancement of

sensor technology, communication protocols, data storage and cloud computing (as described in

Section 1.1) many of these challenges have been overcome. Data can be collected, transported

and stored through the internet at much lower costs than was historically possible. As a result,

data-driven model development has become more compelling.

Predictive maintenance makes use of the data collected from sensors measuring metrics such as

temperature, pressure, vibration and other forces to develop a prognostic model for a machine.

The model is then used to make estimates of the future behaviour of similar machines. The

key objective is to estimate the time until failure. Once future machine health behaviour has

been established, preventative maintenance scheduling should be planned for in a cost effective

manner.

One of the most important advantages of PdM is owing to making use of real-time sensor data

a real-time indication of the level of machine degradation (Li et al., 2017). As a result, fewer

inspections are required since the sensors are already providing relevant information that would

be gained from frequent inspections.

The disadvantages of PdM include the cost and complexity of the initial system setup (Li et al.,

2017) and the cost of experts needed for model development (especially when compared to other

PM strategies, which have no such costs). The advancement of machine prognostic modelling

techniques has been aided by the establishment of the Prognostics and Health Management

Society.

2.2.3 Prognostics and Health Management Society

The Prognostics and Health Management (PHM) Society was established in 2009 with the goal

of promoting unrestricted access to PHM knowledge, promote interdisciplinary and interna-
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tional collaboration in PHM and to lead the advancement of PHM as an engineering discipline.

The PHM Society releases open source PHM data sets and asks the community to apply health

monitoring approaches in an annual competition. Jia et al. (2018) published a survey publi-

cation on the findings in the competitions. The four topics covered in these competitions are

fault- detection, diagnosis, assessment and prognosis. We provide a description of each in Table

2.1.

Table 2.1: Topics for machine health monitoring competitions since 2008 and their descriptions

Name Description Comp Date
Detection Detect when a machine is in an unusable state. The binary

outcome of usable/unusable is estimated. There is no analysis
on the cause.

PHMS 2015,
PHMS 2017,
PHMS 2009,
PHMS 2011.

Diagnosis Root cause detection. Identify what caused a machine to change
from usable to unusable. There can be multiple causes for
changes in usability.

PHMS 2013,
PHMS 2015,
PHMS 2017,
PHMS 2009.

Assessment Estimate the current machine health based on recent sensor
readings. Study machine health behaviour of many similar ma-
chines to determine the health of a current machine.

PHMS 2010,
IEEE 2014,
PHMS 2019

Prognosis Determining the remaining time until a machine becomes unus-
able or fails.

PHMS 2008,
PHMS 2012,
PHMS 2014,
PHMS 2020

2.3 Prognostic models

Prognostic models are models used to estimate the remaining behaviour of a machine until

failure. There are three types of prognostic models, namely physics-based, data-driven and

hybrid models. We will discuss these below along with relevant previous implementations.

2.3.1 Physics-based prognostic models

Physics-based models are based on differential equations that describe a machine’s degradation

through time (An et al., 2015). Domain experts are required to incorporate knowledge of topics

such as strength of materials, operating conditions, noise and other domain specific compre-

hension when developing the model. The boundary conditions of these models are updated to

account for unique circumstances of a machine within a fleet of similar machines. Physics-based
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models have been used to model crack growth (Paris and Erdogan, 1963), corrosion (Sharland,

1987) and other forms of wear prominent in machines.

Physics-based models have many advantages. First, physics-based models have the ability to be

accurate over long-term predictions (Atamuradov et al., 2017). Second, they are interpretable.

Third, physics-based models are computationally inexpensive (An et al., 2015), since they

are derived equations. Fourth, the models are effective when there is little data available for

modelling (Zhao et al., 2017).

However, physics-based models have many disadvantages as well. First, the model parameters

increase with the model complexity, which causes boundary condition estimation to become

incrementally more difficult (An et al., 2015). Second, domain knowledge is required to create

and maintain the models. Third, the models do not account for unexpected failure modes,

because they only account for a monotonic degradation process that leads to a failure event.

An important physics-based model for this work is the exponential decay model from Saxena

et al. (2008). C-MAPSS, a data set to be described in Section 3.1, used extensively in this

work, was generated using a physics-based model.

To be more specific, it was discovered over many years of data analysis that the health of

an aircraft engine can be described by the efficiencies and flows of lubricants through key

components of the engine. Let e denote the efficiency and f denote the flow of a lubricant

through a component. Then, let b be a constant used to describe the rate of flow and efficiency

of a lubricant through a component. Furthermore, the initial wear of a component is accounted

for with a. Thus, the efficiency and flow rate is denoted with

e(t) = 1− ae − ebe(t) (2.1)

and

f(t) = 1− af − ebf (t). (2.2)

The health of an engine is then determined through an aggregation of the health of components

in the engine, given with

H(t) = g(e(t), f(t)), (2.3)

where the function g is an aggregate of the efficiencies and flow rates of lubricants through

components of the engine (Saxena et al., 2008).
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The equations assume a monotonic degradation, meaning there is no regeneration within the

system. However, in a real-world scenario, this is not the case, as between-flight maintenance

and other external factors influence the degradation state of the engine.

Collecting the above mentioned efficiency and flow readings is time consuming and expensive.

Additionally, these collected data sets are proprietary and therefore not publicly available. For

these reasons, Saxena et al. (2008) incorporated Equations 2.1 — 2.3 into a Matlab Simulink

tool that can be used to generate run-to-failure data sets for aircraft engines. The tool was

used in a simulation, the commercial modular aero-propulsion system simulation (C-MAPSS),

to simulate specific operation conditions, noise and failure modes that are present in real flight

operations. The result was the C-MAPSS data sets. The discussion on these data sets will

continue in Section 3.1.

2.3.2 Data-driven prognostic models

Data-driven prognostic models learn to detect the trends in sensor readings to infer future

machine behaviour from similar sensor readings. Data-driven models are then used to infer the

remaining time until failure.

The main advantages of data-driven prognostic models include: little to no domain expertise is

required to develop such models, sensor readings are relatively easy to collect and the resulting

models account for non-monotonic degradation behaviour (if it is present in the training data).

However, the main disadvantages include: potentially non-interpretable models and the set-up-,

infrastructure- and computation costs (Verbert et al., 2017) required to develop the models are

high.

Inferring machine degradation behaviour can be viewed as a regression problem or a classifi-

cation problem. Previous implementations have made use of discriminative models, generative

models or a combination of both to perform the inference. Discriminative models find the deci-

sion boundaries between the different classes directly. Generative models learn the underlying

distribution of the data points and then use decision theory to determine class membership.

The advantages of a discriminative approach includes not requiring domain expertise and not

requiring excessive computational resources to calculate class conditional densities (Bishop,

2006). The advantages of a generative approach includes the ability to perform anomaly de-
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tection (detect data points with low probability), create a rejection criterion for high-risk data

points and allow for online model training by updating the conditional densities dynamically.

Next, we discuss previous discriminative and generative prognostic modelling approaches. The

previous implementations are grouped by model type, data sets and ordered chronologically.

Discriminative models on the C-MAPSS data sets

As previously mentioned, the data set used in the 2008 PHM Society’s annual competition was

the C-MAPSS aircraft engine data set. Since the 2008 PHM Society competition, there have

been 70 publications on the C-MAPSS data sets (Ramasso and Saxena, 2014). We will discuss

some of the key results of these studies below. In the discussion, we highlight the contributions,

the key findings, and the achieved root mean squared error (RMSE) on the data sets.

Heimes (2008) used a recurrent neural network (RNN) with an extended Kalman filter (EKF) to

estimate the RUL. The RNN struggled to make long-term predictions due to encountering the

vanishing gradient problem in training. The RNN did however perform well when estimating

RUL on machines less than 55 sensor readings from failure. This means that the RNN struggled

with accurately estimating RUL on sensor readings at early degradations. To address this

problem, the author introduced a piece-wise linear function to the output label. The piece-

wise linear function is depicted in Figure 2.2. The RUL output label is a linearly decreasing

function, starting when the machine is commissioned and continuing until the point of failure.

The RUL label was set to a constant value at early degradation cycles, to allow for improved

model performance. This approach was well received in the PHM community as the model

performance becomes more relevant closer to failure.

Figure 2.2: Piecewise linear function
used on a RUL estimation label in
the training data

15

Stellenbosch University https://scholar.sun.ac.za



Peel (2008) created an ensemble of a radial basis functions (RBF) and a multi-layer perceptron

(MLP) for RUL estimation and applied it on the C-MAPSS data sets. The output was also

filtered with an EKF to allow for a reduction in the ensemble model output variance. The

author successfully identified the six operating conditions (to be described in Section 3.1) from

the sensor data using effective visualisation techniques such as neuroscale mapping (Lowe and

Tipping, 1997). These operating conditions were encoded as features and improved model

performance. The EKF was used to filter model output noise and to integrate past information

into the features. The approach achieved third place in 2008 PHM competition with a RMSE

of 25.93 on the test C-MAPSS data sets. The winner of the competition was a generative model

approach, to be discussed in the proceeding sections.

Ramasso (2009) approached prognostic modelling as a classification problem, dividing the de-

graded sensor readings into bins representing states of degradation. The hidden Markov model

(HMM) model used in the experiment achieved a precision of 68% when performing multi-class

classification.

Ramasso and Gouriveau (2010) then incorporated fuzzy logic to extend Ramasso (2009) when

performing classification on C-MAPSS data set 1. This showed slight improvement, achieving

a 70% on the multi-class weighted precision score.

Peng et al. (2012) used echo state networks to perform RUL estimation on the C-MAPSS

data set. As mentioned, one of the disadvantages of discriminative models is to adapt to new

data, they must be retrained. Echo state networks solve this problem by using a unique model

architecture that requires far less computational costs while maintaining model performance.

Tamilselvan and Wang (2013) approached the multi-class classification task using a one-vs-all

architecture. This means a classifier is trained to estimate each class as a binary classifier

and the classifier with the highest confidence score is selected when performing classification.

Tamilselvan and Wang (2013) compared the performance of a deep belief network (DBN), SVM,

NN and a self-organizing map (SOM) and found the DBN to perform best with a precision score

of 90.72% on C-MAPSS data set 1.

Zheng et al. (2017) used long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997)

networks to approach the RUL estimation problem on the C-MAPSS data set. This approach

solved the vanishing gradient problem identified by Heimes when using standard RNNs in

Heimes (2008). An LSTM is a special form of an RNN that allows the model to perform
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longer-term predictions. Another contribution of the paper was to show how the approach

could be generalised and used on different data sets. It is difficult to compare the RMSE of the

LSTM to the previous methods because the results on the challenge data was not published.

A RMSE of 16.14 was achieved on C-MAPSS Data set 1.

Li et al. (2018) used a convolutional neural network (CNN) to approach the RUL estimation

problem. The convolutional filters in CNNs allow the model to use the relationship between fea-

tures effectively. The sensor readings in the C-MAPSS data set are not independent, therefore

there could be underlying relationships between sensor readings that the CNN uses effectively.

The approach achieved an RMSE of 12.61 on C-MAPSS data set 1.

Jayasinghe et al. (2018) used temporal convolutional memory networks (TCMN) for RUL es-

timation on the C-MAPSS data set. The temporal model has the advantage of fewer model

parameters (as in the case of Peng et al. (2012)), while also having the advantage of the convo-

lutional layers of a CNN and memory layers of an LSTM. There was also a data augmentation

implementation used that allowed for the use of more training data by randomly batching the

machine degradation process. The augmentation method provides the model with examples

where a machine does not continue until failure, which allowed the model to generalise better.

The approach achieved an RMSE of 20.45 on the more challenging C-MAPSS Data set 2, that

incorporates different failure modes and different operating conditions.

Discriminative models on battery data sets

Lithium-ion batteries have been widely used as the energy storage for personal portable elec-

tronic devices (e.g. computers, laptops), electric vehicles and other applications. They have

attracted attention due to their re-usability, high energy densities relative to other battery

chemistries and high number of charge/discharge cycles.

Battery capacitance inevitably deteriorates with charge/discharge cycles due to physical-chemical

properties (Zheng et al., 2012). Furthermore, battery life deteriorates exponentially when bat-

teries enter low capacity states during the discharge cycles. Battery management is therefore

necessary to avoid the low capacity states.

We now define terminology common to battery health management. The state-of-health (SOH)

is defined as the current battery capacity relative to the initial rated capacity, while the remain-

ing useful performance (RUP) in a battery is defined as the remaining time that a battery’s
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rated capacity will remain above a threshold. State-of-charge (SOC) refers to the remaining

capacitance relative to the initial rated capacity of the battery (in a single charge cycle).

Accurate estimation of SOC in a battery management system (BMS) is important in order to

prevent batteries from over-charging or over-discharging. Commercial applications of SOC es-

timation include Coulomb counting (Ng et al., 2009), voltage monitoring (Pop et al., 2008) and

internal impedance measures (He et al., 2011a). These methods suffer from model and measure-

ment inaccuracies, leading to erroneous SOC estimates which can have dramatic effects, such as

in the case of the 2006 NASA Mars Global Surveyor satellite (Mars Global Surveyor Spacecraft

Loss of Contact [Online]). The batteries of the satellite were completely depleted after 11 hours

(after being exposed to direct sunlight), leaving it without control of it’s orientation. To avoid

such errors, data driven models are proposed for battery management.

Saha et al. (2009) used an auto-regressive integrated moving average (ARIMA) model to per-

form RUP prediction on batteries. The goal of the publication was to compare the data-driven

approach with a traditional EKF and a generative Bayesian approach using a particle filter

(PF). The findings were that the ARIMA model inaccuracies were related to not accounting

for domain specific comprehension of the underlying physics of batteries.

He et al. (2014) used a NN with an EKF to estimate SOC in batteries. This approach is similar

to that of Heimes (2008) on C-MAPSS. The batteries were made to discharge linearly at varied

constant temperatures. This was to measure the effect of temperature on SOC estimation.

Because of the linear nature of the data set, the achieved RMSE scores were low, for e.g. at

0◦C, an RMSE of 2.2 was achieved.

Zhang et al. (2018) used LSTMs to perform RUL prediction on batteries, a similar approach

to Zheng et al. (2017) on C-MAPSS. It is difficult to compare the results as the battery data

sets are unique. The findings were that the LSTM performed better than an SVM and regular

RNN presented with the same simulation parameters.

Generative models on the C-MAPSS data sets

Wang et al. (2008) used a similarity-based approach to predict RUL on C-MAPSS. This ap-

proach, which achieved first place in the 2008 PHM competition, consisted of creating models

for each of the stages of degradation for the training data. The models are then presented with

testing data and the model with the highest confidence is used for RUL estimation. A variation

of the approach was proposed in Wang (2010a), where a Trajectory Similarity Based Projection
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(TSBP) model is used in RUL estimation. This approach achieved an RMSE of 31.89 when

validated on Data set 4.

Li et al. (2013) proposed a mixture of Gaussian hidden Markov model (MG-HMM) to train

a model for different stages of degradation (as in the similarity-based approach), while fixed-

size least squares support vector regression (FS-LSSVR) was proposed to estimate RUL on

C-MAPSS and to choose which RUL estimation to use from the model library.

Lin et al. (2013) used a Gaussian mixture model (GMM) to perform online RUL estimation

on C-MAPSS. The underlying conditional densities were updated with new data. This method

allows for the RUL estimation model to dynamically change with new data by updating GMM

hyperparameters and also takes into account the uncertainty of extended time windows of

estimations.

Generative models on battery data sets

A Rao-Blackwellized particle filter (RBPF) was used by Saha et al. (2008) to estimate SOH

on a battery degradation data set. The traditional EKF estimated the SOH with a Gaussian

PDF, while the proposed method produced the PDF from a set of points inferred from known

probability masses and sampled points from an unknown state space. When comparing the

RBPF with a regular PF, the model prediction variance was greatly reduced. A similar approach

was implemented by Wang et al. (2016) who used a spherical cubature particle filter (SCPF)

instead of the RBPF. The SCPF further reduced model prediction variation.

2.4 Maintenance scheduling

In prognostic modelling we focused on estimating the health of a single machine, now we shift

the discussion to the challenges of maintaining a fleet of machines, referred to as a system.

The system consists of machines operating simultaneously, which are degrading and fail at

random intervals. This is owing to environmental impacts, operating conditions and non-ideal-

manufacturing and repairs. With such a system, there exists an optimal manner in which to

schedule maintenance. To acquire the information needed to develop a maintenance scheduling

plan four questions should be asked of a system. These are:

Q1 - Is it possible to predict machine failure, so that preventative maintenance can be per-

formed?
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Q2 - How does the failure of one machine effect the overall system output?

Q3 - When is the cost optimal time in a machine degradation cycle to perform maintenance?

Q4 - Given that it is estimated when machines will fail and the cost of performing maintenance,

which maintenance costs can be reduced through planning?

Next, we will define and discuss key characteristics of a maintenance scheduling approach

through discussions on the presented four questions. We conclude the section with a discus-

sion on previous implementations, highlighting the mentioned characteristics throughout the

discussion.

We begin by asking Q1, ‘Is it possible to predict machine failure, so that preventative mainte-

nance can be performed?’.

2.4.1 Machine health estimation and availability

Machine health estimation is an estimate of the probability of machine failure before a certain

time, for example a future inspection event. The estimation makes use of a remaining useful life

(RUL) estimate and a given future time. RUL estimation is an estimate of the remaining time

until failure, as discussed in prognostic modelling in Subsection 2.3.2. Availability is connected

to machine health. If a machine has a high probability of failure before the next inspection,

it has a low availability and vice versa. We show the relationships of these concepts in the

block diagram in Figure 2.3. At time tp, a prognostic model makes use of sensor readings Stp to

Figure 2.3: Block diagram showing the relationships between machine health estimation, RUL
estimation and availability.

perform a RUL estimation. The RUL estimation, given by h(t|Stp) = hStp
(t), is a distribution

over time of when the machine will fail. The distribution, hStp
(t), is shown in Figure 2.4.

The prognostic estimate, hStp
(t), can be any distribution, but is commonly estimated with a
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Gaussian distribution (Lin et al., 2013). Consequently, the most likely time of failure is given

with the mean of the PDF, t′fail.

Figure 2.4: A probability distribution of when a
machine is likely to fail, based on the sensor read-
ings at time tp

Next, given that t′fail is known, we wish to estimate if a machine will fail before some future

inspection time, tinsp. This is referred to as machine health estimation, H(tp ≤ t < tinsp), which

is equal to the probability of machine failure before a future time, given by Pr(tinsp < t′fail).

We define
H(tp ≤ t < tinsp) = Pr(tinsp < t′fail)

=

∫ tinsp

tp

hStp
(t)dt.

Typically, if the estimated time of failure of a machine is before the next scheduled inspection

time, the machine has a high probability of failure and an intervention is required before the

next inspection.

Finally, we describe the machine availability before a future inspection time with

a(tp ≤ t < tinsp) = 1−H(tp ≤ t < tinsp),

where availability and machine health estimation of a machine are inversely correlated.

Note that we have so far discussed the availability of a single machine. Availability of a system

comprises of the availability of the individual machines as well as the reliability structure of

the machines (to be discussed in the next Subsection).
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Next we will ask and answer Q2, ‘How does the failure of one machine effect the overall system

availability?’

2.4.2 System reliability structure

In maintenance scheduling, a reliability structure describes the relationship between inputs and

outputs of the machines within a system. For example, if the functioning of machine B depends

on an output of machine A and machine A fails, then machine B is considered failed as well.

A reliability structure is an important consideration when creating a maintenance scheduling

plan for the system. Four simple reliability structures are shown in Figure 2.5. More complex

reliability structures can be created from these (Zhang and Nakamura, 2005).

Series reliability structure

A series reliability structure is shown in Figure 2.5a. In order for the system to operate, all

machines should function normally, as each machine is dependant on the output of the previous

machine. The availability of the system is given by

As =
S∏
k=1

ak,

where As refers to the system availability of a series reliability structure and ak is the availability

of the k-th machine, with S machines operating in series. The system will produce no output

if one of the machines fail.

Parallel reliability structure

A parallel reliability structure is shown in Figure 2.5b. None of the machines within the

system are dependant on another machine, resulting on the most optimal in terms of reliability

structure. If a machine fails, it does not effect the output of other machines. The availability

of the system is determined with

Ap = 1−
P∏
j=1

(1− aj)

where Ap is the availability of a parallel reliability structure and j refers to the j-th machine

in parallel with P machines.
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(a) A series reliability structure

(b) A parallel reliability structure

(c) A series-parallel reliability structure

(d) A parallel-series structure

Figure 2.5: A block diagram of reliability structures of machines within a fleet. A block
represents M j

k , the k-th machine in series and j-th machine in parallel with other similar
machines in a reliability structure.

Series-parallel reliability structure

A Series-parallel reliability structure is shown in Figure 2.5c. The availability of a series-parallel

reliability structure is given by

As,p = 1−
S∏
j=1

(1−
P∏
k=1

ak,j),

where ak,j refers to the availability of machine k, j in the fleet.
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Parallel-series reliability structure

A Parallel-series reliability structure is shown in Figure 2.5d. The availability of a parallel-series

reliability structure is given by

Ap,s =
N∏
j=1

(1−
P∏
k=1

(1− ak,j)).

Once we have defined the system reliability structure, the next step is to determine if there is

an optimal time to perform maintenance (in terms of cost). To do so, we need to discuss the

maintenance cost of the machine throughout degradation. We ask and answer Q3, ‘When is

the cost efficient time to perform maintenance on a machine?’.

2.4.3 Maintenance costs

Maintenance costs can be divided into machine-related costs and resource-related costs (Zhang

and Nakamura, 2005). Machine-related costs are associated with the input and output of the

machine such as component replacement costs, machine output quality during degradation and

downtime costs. Resource-related cost involve the allocation of staff to perform maintenance

such as repair costs, transportation costs and inspection costs. To determine the costs associ-

ated with a system, a maintenance cost analysis must be performed for a machine throughout

a degradation cycle. This means that an investigation needs to be performed on how the men-

tioned costs change when performing maintenance at different stages of machine degradation.

Since it is difficult to estimate these costs, researchers often create simulated costs as in Zhang

and Nakamura (2005), Cadini et al. (2009), Peng et al. (2012) and Verbert et al. (2017). In

this work maintenance costs will also be simulated, owing to costs not being made available

with the used prognostic data sets (to be discussed in Chapter 3). The simulated costs will be

discussed when implementing an optimal maintenance scheduler (OMS) in Chapter 7.

Once machine health estimation, reliability structure and maintenance costing have been de-

termined for a system, a maintenance scheduling strategy can be developed. This strategy will

be used to answer the final question, Q4, ‘Given that it is known when machines will fail and

the cost of performing maintenance, which maintenance costs can be reduced through good

planning?’. To conclude this section, we review previous maintenance scheduling strategies,

during which we highlight their implementations of machine health estimation and availability,

reliability structure and maintenance costs.
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2.4.4 Previous implementations of maintenance scheduling

Zhang and Nakamura (2005) performed reliability-centred maintenance (RCB) by using a mean-

time-to-failure (MTTF) model for machine health estimation and a composite reliability struc-

ture to perform maintenance scheduling. The approach made use of a composite reliability

structure and found that increasing maintenance tasks of critical components increase the over-

all system availability.

Next, Cadini et al. (2009) used a condition-based maintenance (CBM) approach based on Monte

Carlo simulations for crack size estimation. Due to a lack of available cost data, assumed cost

parameters were used to determine a theoretical optimal replacement time, based on the crack

size. The approach highlighted the need to perform a cost analysis on a machine to determine

when the optimal time is to perform maintenance in the degradation cycle. The approach did

not use a reliability structure as it evaluated the optimal replacement time on a per machine

case.

Tian and Liao (2011) approached CBM with an algorithmic-based approach to reduce the

overhead costs associated with maintenance. To estimate machine health, a Weibull-statistical

model was employed. When performing maintenance scheduling, a series-parallel reliability

structure was employed. The approach introduced a cost to risk ratio and used it to determine

the optimal maintenance scheduling policy.

Huynh et al. (2014) added an extra layer of complexity to CBM by performing maintenance

on a component level. This can be thought of as a series-parallel reliability structure when

performing maintenance scheduling, as each component contributes to the degradation level of

the machine. When a degradation threshold was reached, the machine was considered failed.

The approach resulted in reduced machine failure risk by showing that in the worst case the

approach achieved better results that traditional approaches.

Chalabi et al. (2016) used a particle swarm optimisation (PSO) for optimal maintenance

scheduling. The health estimation model used was a statistical Weibull model. The approach

employed a series-parallel reliability structure and optimised the maintenance scheduling by

performing maintenance on machines that were dependant on failed machines, thereby re-

ducing overhead maintenance costs. The PSO was used to iteratively determine the optimal

maintenance schedule. The approach showed a significant reduction in cost when compared to

other traditional approaches.
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Verbert et al. (2017) performed CBM on a railway data set using reinforcement learning. The

machine health estimation was performed using a Bayesian approach, while the system reliabil-

ity model was a series-parallel model. To iteratively reduce costs, reinforcement learning with

dynamic programming strategies was used.
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Chapter 3

Data sets

It is important to understand the six data sets that will be used in this study. Just to recap,

there are four C-MAPSS aircraft engine data sets, the CALCE battery data set and the IMS

bearing data set. The C-MAPSS data sets consist of measurements of the efficiency and flow

lubricants through an aircraft engine. The CALCE battery data set consists of voltage and

capacitance readings, across the terminals of batteries, as the batteries degrade into an unusable

state. The IMS bearing data set consists of accelerometer readings measuring vibration on a

bearing housing unit, while a load is applied to the bearings until they degrade into a failed

state. The C-MAPSS and CALCE battery data sets contain only run-to-failure degradation

examples (machines are in a failed state upon the final reading). However, the IMS bearing data

set contains both run-to-failure as well as bearings in a non-fail state when the final reading

occurs.

3.1 C-MAPSS data set

Frederick et al. (2007) noted that degradation in aircraft engines can be measured by the

efficiencies and flows of lubricants in key components of the engine. It is, however, expensive

to monitor and collect the sensor readings of these lubricants. Furthermore, examples of failure

in such collected data sets are infrequent. Therefore, the commercial modular aero-propulsion

system simulation (C-MAPSS) Simulink model was created by the NASA Ames Research Centre

to simulate health degradation in 90 000 lb thrust-class aircraft engines.

It was observed that the sensor readings exhibited exponential decay throughout degradation.

This means the performance of worn components decays exponentially in the absence of any
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maintenance. To simulate this trend, an exponential function was incorporated into the C-

MAPSS model, as discussed in Section 2.3.1.

When we refer to the C-MAPSS data sets in this study, we refer to the implementation of

Saxena et al. (2008) who used the C-MAPSS Simulink model to create five unique data sets

for the inaugural 2008 PHM Society annual prognostic competition (see Section 2.2.3 for in-

formation on the PHM Society). The C-MAPSS hyper parameters account for environmental

flight conditions, operation modes and fault modes. Environmental flight conditions include

fluctuations in altitude and temperature-, while operation modes monitor fluctuations in en-

gine thrust levels. In total 6 operating conditions are accounted for in the C-MAPSS data

sets by accounting for environmental flight conditions and operational models. We summarise

the characteristics of the data sets in Table 3.1. There are 28 sensors producing simultaneous

Table 3.1: The five C-MAPSS data sets as per implementation of (Saxena et al., 2008). Each
data set consists of generated training, testing and validation data.

Data set Number of
unique train
data readings

Number of
unique test
data readings

Unique
machine
IDs

Fault
modes

Operating
conditions

Data set 1 20 631 13 096 100 1 1
Data set 2 53 759 33 991 260 1 6
Data set 3 24 720 16 596 100 2 1
Data set 4 61 249 41 214 249 2 6
(Data set 5)
PHM competition
data set

61 249 41 214 249 2 6

data readings for each time step in all the C-MAPSS data sets. It is worth noting that Data

sets 2 and 4 have more than twice the number of unique machines and data than Data sets

1 and 3. Since the data sets are run-to-failure data sets, failure occurs for each machine at

the final sensor reading. Each machine is modelled independently of the others, consequently

each machine has an independent degradation cycle length. This means the number of sensor

readings available per machine is independent of other machines.

In order to develop some intuition about the data sets, Figure 3.1 shows the sensor readings

of Sensor 4 and 12 of C-MAPSS data set 1 for nine randomly chosen machine IDs. The sensor

readings follow sequentially, i.e. the readings are normalised on the x-axis. The objective of

Figure 3.1 is to show that the noise levels are high in the sensor readings and that a single

machine’s sensor readings are not clearly distinguishable from other machines. Furthermore, it

is hard to identify when a machine will break down, as the final sensor readings of each machine
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(a) Sensor 4 readings for nine randomly chosen machines of C-MAPSS Data set 1

(b) Sensor 12 readings for nine randomly chosen machines of C-MAPSS Data set
1

Figure 3.1: The sensor variation of nine different machines of sensors 4 and 12
from C-MAPSS Data set 1. The sensor readings follow an exponential trend.

are at time-of-failure. The direction (positive or negative) of the trend in the sensor readings

in Figure 3.1a and 3.1b are not of significance. If we consider the mean of the readings in

Figure 3.1a and 3.1b, then the rate of change of the mean of the readings are greater when the

machine is closer to failure. This is therefore an indicator of degradation. This is an indicator

that prognostic models will make better estimates when using sequential readings.

3.2 CALCE battery data set

The battery ageing data set was created by the CALCE battery group in order to simulate

research into the detection and maintenance of battery degradation (He et al., 2011b).

The CX2 battery has unique mechanical and chemical properties (Williard, 2011). It was

created using 12 CX2 batteries with a rated battery capacity of 1.35 Ah. During creation of

the data set, an Arbin BT2000 battery testing system was used to charge and discharge the
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batteries at a constant temperature. During the charge cycle, the batteries are kept in constant

current (CC) mode at 1.5A until the battery voltage reaches 4.2V. Then, a constant voltage

(CV) mode is used until the charge current drops to 50 mA. At this stage, the battery is

considered fully charged and an impedance reading is taken using electrochemical impedance

spectroscopy (EIS). The impedance reading gives insight into the internal battery parameters

and more specifically the maximum capacity of the battery (Xing et al., 2013). Capacity is

defined as the amount of electrical charge a battery can hold in its fully charged state, measured

in Ampere-hour (Ah). Battery capacity inevitably deteriorates with charge/discharge cycles

due to its physical-chemical properties (Zheng et al., 2012). During the discharge cycle, CC

mode is used until the batteries reach 2.7V. At this point the battery is considered discharged

and is switched to charge mode again.

The maximum capacity is measured at the end of a charge cycle. When performing RUL

estimation using a battery data set, we estimate the remaining time until the maximum capacity

drops to 70% of the rated capacity. This is referred to as remaining useful performance (RUP)

estimation. After this, the battery is considered an unreliable power source, as the maximum

capacity degrades at an exponential rate without recovery.

3.3 IMS bearing data set

The data set consists of accelerometer readings measuring vibrations present in the housing

units of bearings as they degrade until failure. The rig for collecting the data set can be seen

in Figure 3.2 and will be discussed below.

Four Rexnord ZA-2115 bearings are placed on a single rotating shaft. The shaft is driven by an

alternating current (AC) motor coupled by a rub belt. The rotation of the shaft is kept constant

at 2 000 rpm (33.33 Hz) throughout the experiment. A 6000 lbs (2721 kg) perpendicular radial

load is applied to the shaft and bearings as shown in Figure 3.2. As the bearings began to wear,

debris accumulates in the oil of the bearings. A force lubrication system regulates the flow and

temperature of the oil. The density of the debris in the oil is monitored and the experiment

continues until debris collected in the oil passes a threshold, as this is evidence of sufficient

degradation.

As the bearings degrade, the vibrations in the bearings become more pronounced and can be

indicative of imminent failure. Therefore the vibrations are measured by placing accelerometers
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Figure 3.2: The rig setup for the Bearing dataset (Qiu et al., 2006)

on the housing of the bearings, as shown in Figure 3.2. Two accelerometers are installed on each

bearing. The accelerometers measure acceleration in two directions (x- and y-) perpendicular

to the shaft. The PCB 353B33 High Sensitivity Quartz ICP is the accelerometer used for the

test using a sampling rate of 20 kHz.

Figure 3.3: Schematics of a bearing (Gautier et al., 2015)

The experiment is repeated three times. The first time the experiment lasts 35 days, when

a inner race defect occurs in Bearing 3 and a roller element defect occurs in Bearing 4 (refer

to Figure 3.3 for the schematic of the bearing). The second experiment lasts only seven days,

when an outer race failure occurs in Bearing 1. The third experiment lasts 31 days, when an

outer race failure occurs in Bearing 3.

For each experiment, a one-second sample, with a sampling frequency of 20 kHz was taken

every 10 minutes. Each sample is saved in a unique file, labelled by the time stamp. In Figure

3.4, we show the samples taken by the accelerometer measuring vibration in the x -direction on
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Bearing 3 for Experiment 1. We omit the 10 minute time window between samples. From the

Figure it is clear that something catastrophic occurred after about sensor reading number 30

000 000. This is indeed when Bearing 3 experienced inner race defect (refer to Figure 3.3).

Figure 3.4: The concatenated y-accelerometer samples from
Bearing 4 of Experiment 1. At the end of the time window,
an inner race defect was detected in the bearing.

Heng and Nor (1998), Qiu et al. (2006), Janssens et al. (2016) and Zhao et al. (2017) have shown

that we can quantify the degradation in bearings through frequency domain feature analysis.

We list these features in Table 4.2 of Section 4.3.4, when discussing feature engineering for the

IMS bearing data set.
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Chapter 4

Preprocessing for Prognostic Modelling

4.1 Overview

With a prognostic model we can estimate the time until machine failure. In this chapter we

discuss the preprocessing required by the models. We approach prognostic modelling in two

ways. The first approach — referred to as machine state estimation — is a classification problem

that divides the sensor readings in the degradation process into classes and uses a prognostic

model to estimate class labels for unseen sensor readings. The second approach — referred to as

RUL estimation — is a regression problem that uses the sensor readings and a prognostic model

to perform RUL estimation. The preprocessing required by the two approaches are similar. We

therefore combine the preprocessing discussion into one chapter.

First, in Section 4.2 we discuss the definitions and notation of sensor readings and describe a

data set in terms of this notation. We also briefly mention a machine’s sensor readings in terms

of a fleet of similar machines.

Finally, in Section 4.3 we discuss the preprocessing required for machine state estimation and

RUL estimation. In Subsection 4.3.1, we discuss the noise in the readings in the data sets,

separately. We then discuss the moving average filter and its properties. In Subsection 4.3.2,

we discuss k-fold cross validation for time series data. In Subsection 4.3.3, we discuss the

presence of outliers in the data sets and the applied data scaling techniques. In Subsection

4.3.4, we create time domain and frequency domain features for the IMS bearing data set.
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4.2 Definitions and notation

A data-driven prognostic model makes use of historic sensor readings — collected from many

similar machines degrading to failure — to perform prognostic estimates on similar sensor

readings from future scenarios.

Let sn be a sensor reading taken at time step n, with n = 1, 2, ...Nf . Machine failure occurs at

time step Nf . We denote the sensor readings taken from a single sensor throughout the entire

degradation process with S1:Nf
and represent S1:Nf

as a column vector, i.e.

S1:Nf
=



s1

s2
...

sn
...

sNf


.

The machine degradation process is a continuous time process, while the discrete sensor readings

are considered independent and identically distributed (i.i.d), such that sensor readings have

no memory of previous sensor readings and are therefore not time dependant.

A degradation data set can be described by its degradation profile, the trend in the sensor

readings throughout degradation. For example, the sensor readings in the C-MAPSS data set

follow an exponential decay throughout degradation. We show the sensor readings of Sensor 12

of Machine 2 from C-MAPSS data set 1 in Figure 4.1 to show an example of the trends in sensor

readings throughout degradation. The CALCE battery data set follows a linear trend during

degradation, while the IMS bearing data set follows a impulse trend when a break occurs.

When analysing prognostic modelling results in Section 5.4 and 6.5 we discuss the effects of the

degradation profiles.

If we have P sensors collecting readings simultaneously, we denote

S1:Nf ,1:P =



s1,1 s1,2 · · · s1,p · · · s1,P

s2,1 s2,2 · · · s2,p · · · s2,P
...

... · · · ... · · · ...

sn,1 sn,2 · · · sn,p · · · sn,P
...

... · · · ... · · · ...

sNf ,1 sNf ,2 · · · sNf ,p · · · sNf ,P


,
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Figure 4.1: The sensor variation of Sensor 12 of Machine 2 from C-MAPSS
data set 1

where sn,p is the sensor reading at time step n for sensor p, n = 1, 2, ..., Nf and p = 1, 2, ..., P .

A prognostic model can make use of the P sensor readings at time step n to make a prognostic

estimate. We denote these sensor readings as

Sn,1:P =
[
sn,1 sn,2 · · · sn,p · · · sn,P

]
.

When we consider sensor readings in Sn,1:P , the P readings are not necessarily independent

from one another, as the values measured by the sensors can be related (owing to the location

of sensors or the relationship between what is being measured by the sensors). For example, in

the CALCE battery data set, the internal battery resistance and capacitance form a dynamic

relationship through degradation (Saha et al., 2008). In the case that a prognostic model makes

use of a m-window of sensor readings when making a prognostic estimate, we denote

Sn−m:n,1:P =



sn−m,1 sn−m,2 · · · sn−m,p · · · sn−m,P

sn−m+1,1 sn−m+1,2 · · · sn−m+1,p · · · sn−m+1,P

...
... · · · ... · · · ...

sn−1,1 sn−1,2 · · · sn−1,p · · · sn−1,P

sn,1 sn,2 · · · sn,p · · · sn,P


,

where Sn−m:n,1:P is a window of the m previous readings of the P sensors.

Finally, if we consider a system of similar machines, then we can distinguish the sensor readings

collected from the j-th machine, Mj, as
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Mj , S1:Nfj
,1:P =



sj1,1 sj1,2 · · · sj1,p · · · sj1,P

sj2,1 sj2,2 · · · sj2,p · · · sj2,P
...

... · · · ... · · · ...

sjn,1 sjn,2 · · · sjn,p · · · sjn,P
...

... · · · ... · · · ...

sjNf ,1
sjNf ,2

· · · sjNf ,p
· · · sjNf ,P


,

where sjNf ,p
is a reading from an arbitrary sensor at time of failure of the j-th machine. It

is important to note that due to unique operating conditions, environmental conditions and

non-ideal maintenance, Nf is specific to Machine-j. This means the number of sensor readings

collected for each machine is potentially different.

4.3 Preprocessing

In this section we discuss the data processing required before modelling can take place, specif-

ically de-noising, data splitting, normalisation and feature engineering. The preprocessing

performed on each data set is different. For example, the C-MAPSS and CALCE battery data

set contain sensor readings that follow continuous trends until failure. The IMS bearing data

set contains sensor readings measuring vibrations in a bearing housing. In the former case, time

domain features are sufficient to perform prognostic modelling, while in the latter case frequency

domain features are required to perform prognostic modelling. This was discovered through

trial and error. We will discuss the efficacy of preprocessing during the results discussion in

Section 5.4 and 6.5.

4.3.1 De-noising

In this subsection, we mention the noise contained in the data sets. Then, to remove noise, a

MA filter is applied. We analyse the time and frequency domain characteristics of the filter.

After de-noising the C-MAPSS data set we investigate the effect on the signal-to-noise (SNR)

ratio.

Background

Sensor readings are noisy owing to a variety of reasons, such as the quality of sensors, man-

ufacturing defects, environmental factors and non-ideal degradation processes. Due to these
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reasons, estimating noise can be challenging, as they affect the measured readings at difference

stages of degradation. The objective of de-noising is to improve on the signal-to-noise ratio.

Noise profiles

In generating the C-MAPSS data sets, a mixture of two random distributions were used to add

noise. The magnitude of the noise is limited to 1% of the magnitude of the maximum value of

the actual sensor readings (Saxena et al., 2008). Using two noise distributions has been shown

to be more difficult to model, even if they consist of simple individual components (Yancey,

2002).

In the C-MAPSS data sets, the sensor readings consist of the true sensor measurement and

some additive noise. More formally the true sensor readings and the noise in the p-th sensor is

given by,

S1:Nf ,p =



ŝ1,p

ŝ2,p
...

ŝn,p
...

ŝNf ,p


+ σ



w1,p

w2,p

...

wn,p
...

wNf ,p


,

where ŝn,p, n = 1, 2, ..., Nf , is a true measurement, σ is the variance of the noise and wn, n =

1, 2, ..., Nf , is standard Gaussian white noise, denoted with w1:Nf ,p ∼ N (0, 1).

The CALCE battery data set was created using a constant discharge set up (refer to Section

3.2) to reduce the noise contained in the measured impedance and voltage readings. We also

assume that the noise is normally distributed, denoted as σ.

The IMS bearing data set consists of vibration readings from an accelerometer placed on the

bearing housing. The fundamental frequency of the bearings was 33.33 Hz, while the sampling

frequency of the accelerometers was 20 kHz; therefore the spectrum of frequencies within the

data set ranges between 0 and 20 kHz. The MA filter acts as a low pass filter and is therefore

not applied to the IMS bearing data set, as this will remove information at higher frequencies.

Moving average (MA) filter

The MA filter smooths a signal by replacing a sensor reading with the weighted average of the

previous D sequential readings, where D is the MA filter window length. It has many different
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applications, such as in image de-noising, where a two dimensional filter is used and a pixel is

replaced by the mean of the neighbouring D by D pixels (Bovik and Acton, 2009).

When applying a MA filter in machine prognostic modelling, the MA filter is applied to each

sensor reading using the previous D values. This is known as an asymmetrical MA filter and

is implemented by

h[n] =
1

D

D−1∑
k=0

s[n− k], n = D, ..., Nf , (4.1)

where D is the filter window length and s[n − k] refers to the readings in the window. When

applying the given notation, the n-th filtered reading of a sensor is denoted by

h[n] =
1

D

D−1∑
k=0

s[n− k], n = D, ..., Nf , p = 1, ..., P

=
1

D

D−1∑
k=0

Sn−k:n,P n = D, ..., Nf , p = 1, ..., P

= Sfilteredn,P .

(4.2)

The impulse response can be rewritten as a Kronecker delta function with

h[n] =
1

D

D−1∑
k=0

δ[n− k]

=

1/D 0 ≤ n < D,

0 otherwise.

(4.3)

One of the negative effects of using a MA filter is a time delay between the input and output of

the filter. This delay is the size of the filter window. With an increase in D there is a decrease

in noise level, but the signal attenuation (loss of signal strength) increases as well. This means

with an increase in D, each sensor reading has a smaller impact on the output of the filter.

In prognostic modelling, this will cause a delay between sensor signals and the model response

time. If a fault is present in a machine then D sensor readings will need to be taken before the

filter output will reflect the fault. However, a high sampling frequency relative to the required

system response time will negate the effect of the delay. An illustration of the de-noising effect

of different window lengths is shown later in Figure 4.3. The frequency response of the MA
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Figure 4.2: The frequency response of a moving average filter
(Smith, 2013). It is given by |H(w)| = 1

D

∣∣∣ ωD
2
ω
2

∣∣∣ where D is the
window length of the MA filter.

filter is calculated by applying the DFT on h[n] as

H(ω) = FDFT [h[n]]

=
∞∑

n=−∞

h[n]e−jwn

=
1

D

1− e−jwD

1− e−jw

=
1

D

e−jwD/2

e−jw/2
sin(wD

2
)

sin(w
2
)
,

where ω is the angular frequency measured in radians per second. It can be substituted with

ω = 2πf
fs

, where f is the frequency in Hertz and fs is the sampling frequency in Hertz. We

investigate the amplitude frequency response of the filter by calculating the magnitude of H(ω),

i.e

|H(ω)| = 1

D

∣∣∣∣∣sin (ωD
2

)

sin (ω
2
)

∣∣∣∣∣ .
We show the effect of different window lengths, D, on the amplitude response (magnitude of

the frequency response, |H(ω)|) in Figure 4.2 with D = 3, 11 and 31, respectively. As there is

an increase in D, higher frequencies will be filtered out.

To investigate the effect of the MA filter in the time domain, the filter is applied to the sensor

readings 12, 13 and 15 of Machines 1 − 9 of C-MAPSS data set 1. The results are shown in

Figure 4.3. As mentioned, the MA filter is not applied to the IMS bearing data set. This is

because the MA filter is a low pass filter and the prognostic degradation information in the

IMS bearing data set is present at high frequencies, for example the 100 Hz to 20 00 kHz band.

Instead, we apply a digital bandpass filter when performing feature engineering, in Section

4.3.4.
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(a) The raw sensor readings of C-MAPSS data
set 1

(b) De-noised sensor readings using a 15 sam-
ple MA filter

(c) De-noised sensor readings using a 30 sam-
ple MA filter

Figure 4.3: The readings for Sensor 12 and 15 of Machines 1− 9 of C-MAPSS Data set 1. The
unfiltered data containing the Gaussian estimated noise is shown in Figure 4.3a. The noise is
reduced with a D = 15 MA filter in Figure 4.3b, with an increase in the signal-to-noise ratio
(SNR) by 54.29%. In Figure 4.3c a MA filter with a time window of D = 30 is applied, with
the resulting increase in SNR of 76.43%.

In conclusion, the MA filter is good at smoothing (in the time domain), but is a bad low-

pass filter as it has slow roll-off (delay between input and output in the time domain) and

poor stopband attenuation (frequencies outside of filtered frequency). With an increase in D

the stopband attenuation improves but the delay between input-to-output signal increases as
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a result. Because of the nature of the continuous trend of decay or growth of the values in

the C-MAPSS and CALCE battery data sets, the MA filter is a suitable de-noising filter. A

different filter such as a wavelet filter (Kohler and Lorenz, 2005) would be recommended for

applications where the roll off of the filter is an overriding specification.

4.3.2 Splitting the data

To create training, validation and testing data for prognostic model development, standard k-

fold cross validation is used. The process is repeated five times, with a 70, 20, 10 split between

training, validation and testing data, respectively.

When we measure the final performance of a prognostic model, we consider the mean and

variance of the model on a performance metric for the five-fold validation.

4.3.3 Data scaling

The prognostic models’ input data requirements determine if data scaling is necessary. For prog-

nostic modelling, we compare four models, namely a Random Forest (RF), Gradient Boosted

tree (GB), Support vector machine (SVM) and a Long-Short Term Memory Recurrent Neural

Network (LSTM-RNN).

The SVM and LSTM-RNN require data scaling. The SVM requires input features to be in

the same range to perform optimally (Nuhic et al., 2013). For the LSTM-RNN, batch normal-

isation (the method of normalising input to layers in a deep neural network) improves model

convergence rates and reduces training times (Laurent et al., 2016).

Important factors to consider before performing data scaling is the presence of outliers in the

data and maintaining the underlying distribution of the data. In the C-MAPSS and CALCE

battery data sets, local sensor variations are caused by noise (no unknown external factor

or sensor malfunction is present in the data sets). In the IMS bearing data set, the sensor

measurements fluctuate around a centre point. There are no outliers that exceed the minimum

or maximum sensor measurements when a bearing is in a failed state. This is confirmed through

manual inspection of the IMS bearing data set sensor readings.

We can perform data scaling using z-score normalisation or min-max normalisation. Z-score

normalisation is given by

zn,p =
sn,p − µp

σp
,
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where zn,p is the z-score, which forms a normal distribution centred around 0 with a standard

deviation of 1, sn,p is a sensor reading and µp and σp are the mean and standard deviation of

the sensor readings of a sensor p.

Min-max normalisation is given by

ŝn,p =
sn,p −min(S1:Nf ,p)

max(S1:Nf ,p)−min(S1:Nf ,p)
,

where ŝn,p is the min-max normalised reading of sn,p, min(S1:Nf ,p) and max(S1:Nf ,p) is the

minimum and maximum values of a sensor p in the training data set. The minimum and

maximum values is attained from the training data and used in validation and testing. The

effects of using different data scaling techniques are investigated in the results of Subsection

5.4.

4.3.4 Feature engineering

In this subsection, feature engineering for the IMS bearing data set is discussed. This feature

engineering needs to take place to transform the raw sensor readings to input features for a

prognostic model. We present a quick recap of the key aspects of the IMS bearing data set in

Table 4.1 below. For a detailed discussion of the data set, refer to Section 3.3.

Table 4.1: Key points relevant to the IMS bearing data set

IMS bearing data set
There were three experiments, with four bearings in each experiment. The experiments
continued until sufficient degradation in one or more of the bearings was detected.
Vibrations were detected (x- and y- direction) using two accelerometers placed on the
bearings’ housing unit. The rig setup is shown in Figure 3.2.
The shaft is constantly rotated at 2 000 rpm (33.33 Hz) throughout the experiment. This
is also the resonant frequency of the shaft.
The sampling frequency of the accelerometers is 20 kHz.
A sample is taken every 10 minutes for one second, resulting in 20480 data points per
accelerometer. The sample of all four bearings were taken simultaneously.
At the end of Experiment 1, race defect occurred in Bearing 3 and roller element defect
occurred in Bearing 4 (refer to Figure 3.3 for the schematic of a bearing).
At the end of Experiment 2, outer race failure occurred in Bearing 1.
At the end of Experiment 3, outer race failure occurred in Bearing 3.
Only the bearings which proceeded to a defective state were labelled at the end of the
experiments. The other bearings did not degrade sufficiently to be labelled and their
states are considered unknown.

To build intuition on events leading to a failure, we investigate the raw sensor readings of an

accelerometer (x-direction) from Bearing 4 of Experiment 1 in Figure 4.4. The figure does not
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include the 10 minute intervals between the samples to allow for a condensed view of all the

magnitudes of the readings. In total, 44 152 723 readings were taken, all centred around 0. A

larger vibration occurs at roughly sample number 30 000 000, owing to the first detection of

the surface defect. The vibration continues to become more vivid as small spalling occurs and

cracks are formed. This continues until a ‘restoration’ occurs at roughly sample number 37

500 000, where the vibration is decreased owing to continuous rolling contact. In other words,

a small groove is formed by the roller element in the inner race, that results in a temporary

decrease in the measured vibration. The ‘restoration’ phenomenon was verified by Williams

et al. (2001). After the damage has spread over a broader area, the vibration starts to increase

again at roughly sample number 40 000 000.

Figure 4.4: The raw accelerometer readings from accelerom-
eter 4 from Experiment 1, from first reading on 2003/10/22
to last reading on 2003/11/25 (sampled every 10 minutes for
one second at 20 kHz). The time window between samples
are omitted for condensed visualisation purposes.

There is a large number of similar sensor readings in the data set. We are only interested in if

there is a change in the data as this can potentially be an indication of a failure event or the

start of a degradation process. Therefore any features should be created to highlight a change

in the data.

We create the features in Table 4.2 for every 1 second sample window taken every 10 minutes.

The result is a dramatic downsampling of the data, from 44 152 723 data points to 2156 for
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Table 4.2: Time and frequency domain features for vibration data. The data is collected in
10 minute periods for a one second window with a 20 kHz sampling frequency. The features
are created for each window. The Discrete Fourier Transform (given in Equation 4.4) of the
window of samples is used to create the frequency domain features. The number of sensor
readings in a sample is given by Ns, the mean of a sample is given by µs and the sample
standard deviation by σs. The frequency is given by fn and sampling frequency is given by
fs.

Feature
Name

Equations Type Description

RMS
√

1
Ns

∑Ns

n=1(sn,p)
2 Time Average power of a signal over time.

Variance 1
Ns

∑Ns

n=1(sn,p − µs)2 Time How far a feature has deviated from the mean.

Skewness E[ sn,p−µs
σs

]3 Time Indicates whether deviations from the mean are
positive or negative. E is the expected value.

Kurtosis E[ sn,p−µ
σs

]4 Time Measure of whether the data contains outliers
or not relative to a normal distribution of the
data. A large kurtosis indicates this is true.

Spectral
skewness

∑N
n=1(

fn−fs
σs

)3S(fn) Frequency The symmetry of the distribution of the magni-
tude values around its mean.

Spectral kur-
tosis

∑N
n=1(

fn−fs
σs

)4S(fi) Frequency Compares the distribution of the spectral mag-
nitude values to a Gaussian distribution. Used
to analyse the transient behaviour in a signal.

Magnitude of
harmonic fre-
quencies

|fh| Frequency The magnitude of the harmonic frequencies,
fh = h ∗ f1, where ∗ is the convolution, h is
the h-th harmonic and f1 is the fundamental
frequency.

each sensor in Experiment 1. When each feature in the Table is created for a sensor there are

a resultant 15092 data points.

We show the RMS, skewness and kurtosis time domain features can be seen in Figure 4.5. In

Figure 4.5a, we see the RMS increase as a result of larger vibration which indicates an amplified

excitation. An amplified excitation can be an indicator of increased friction, which has been
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shown to be present in a degrading bearing (Heng and Nor, 1998). In Figure 4.5b and Figure

4.5c, we can clearly see when the initial wear begins in the skew and kurtosis features, but after

the ‘restoration’ period, it is difficult to discern between healthy and unhealthy. We conclude

that the time domain features seem to be good indicators of degradation.

(a) The RMS of the accelerometer readings (b) The skew of the accelerometer readings

(c) The kurtosis of the accelerometer readings

Figure 4.5: The magnitude of the time domain features from Table 4.2 of Bearing 4 from
Experiment 1 throughout degradation.

To create the frequency domain features, the Discrete Fourier Transform (DFT) of a sample

window is applied with

S(k) =
Ns∑
n=0

sne
−j2πkn/Ns k = 0, 1, ..., N − 1 (4.4)

where Ns = 20480 (sampling frequency or number of samples in a one-second window) and k

represents the harmonic number of a transform component. A high sampling frequency allows

for a higher bin resolution in the frequency domain and enables detection of spectral components

at high frequencies. The bin resolution can be calculated as 1/Ns which is 48.8 × 10−6. With

the calculated DFT, we can apply the equations from Table 4.2 to create a scaler for each

sample. The harmonic frequencies of a moving component have also been shown to indicate

wear in rotating machines (Janssens et al., 2016). In the IMS bearing data set, the moving
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component is the rotating shaft connected to the bearings, with a fundamental frequency of

33 Hz. Using the DFT, we obtain a spectrum ranging from 0 to 20 kHz. We then digitally

apply a band pass filter to extract the magnitudes of the spectrum of the first eight harmonic

frequencies for the 1 second windows, i.e (33 Hz, 66 Hz, 99 Hz, 132 Hz, 165 Hz, 198 Hz, 231 Hz,

264 Hz). We visualise the result of the eighth harmonic in Figure 4.6b. We see that the signal

is noisy, which is expected since the data set was obtained from a real world measurement. The

failure event is visible at around sample 1600. It is worth noting that the ball pass frequency

(a) The spectral skewness of the accelerometer
readings

(b) The 8-th harmonic frequency at 231 Hz of
the rotating shaft

Figure 4.6: The magnitude of the frequency domain features from Table 4.2 from readings of
Bearing 4 from Experiment 1. An aggregate view of features created from the 2156 sample
windows taken throughout bearing degradation. In Figure 4.6b, a band pass filter is used to
obtain the magnitude of the 231 Hz spectrum throughout degradation.

of the outer raceway (BPFO) is a frequency domain feature which has been shown to indicate

outer raceway failure detection (Janssens et al., 2016). However, the required information to

determine this feature is not available with the IMS bearing data set.

We conclude that the frequency domain features, similar to the time domain features, seem to

be indicators of degradation in the IMS bearing data set.
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Chapter 5

Machine state estimation

5.1 Introduction

In this chapter we introduce and implement the machine state estimation approach in prognostic

modelling. We begin with an introduction and overview of the chapter in Section 5.1. Next,

in Section 5.2 we define the problem statement for machine state estimation in terms of the

notation introduced in Section 4.2. In Section 5.3, we discuss why F1-score is an appropriate

performance evaluation metric for machine state estimation. We then discuss the prognostic

models and the subsequent model architecture of the long short-term memory (LSTM) network

used in machine state estimation. In Section 5.4, we present and discuss the results of the

machine state estimation problem, whilst we highlight the effect of preprocessing techniques

and model hyperparameters on model performance. We also compare our results with findings

in previous publications.

5.2 Problem Statement

Let us assume that we have sensors placed on a machine, reading values representing temper-

ature, pressure, voltage and/or current that is known to be indicative of a pending failure in

a degrading machine. Once machine failure has occurred, we can analyse the historic sensor

readings and divide them into classes, representing states of degradation. This division of sensor

readings can be done according to an event that occurred during degradation or according to

time relative to failure. Event based division requires domain knowledge to identify the event

that caused failure and will be unique to a particular machine. This approach is common in

rotating machinery (Janssens et al., 2016).
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In this work, we are interested in the generalisation of prognostic approaches. The raw data of

the measured degradation events in the C-MAPSS, CALCE battery and the IMS bearing data

sets do not have common characteristics. As a result a general event based approach cannot

be applied. We therefore use a time based approach to provide labels for sensor readings in

different states. We divide the sensor readings into time windows, labelled relative to the time

of failure. This is similar to when Janssens et al. (2016) performed classification. We show an

example in Figure 5.1, where the sensor readings of Sensor 4 from Machine 2 in C-MAPSS data

set 1 are divided into five degradation states. In the example, 30 sequential readings are binned

into classes representing states of degradation, all relative to time of failure at time step Nf .

Figure 5.1: Readings from Sensor 4 of machine 2 from C-MAPSS dataset 1.
The sensor readings are divided into five states of machine decay.

This process is repeated for the, C-MAPSS-, CALCE battery- and IMS bearing data sets. We

assign class labels to each state of degradation as summarised in Table 5.1. For Class ‘(4) fail

> 120’ we allow for an undefined window length, as degradation has not occurred during this

state. The number of sensor readings in Class 4 would vary for different machines owing to

machines having different number of sensor readings in degradation. When sensor readings are

in Class 1, we will refer to the machine as being in State 1, meaning it is 30 - 60 time steps

from failure.

The goal of machine state estimation is to estimate which degradation state a machine is in

by making use of current sensor readings. Let us define Cjn as the estimated state at sensor
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Table 5.1: The classes used for the machine state estimation simulation. The
sample window Ntw for the simulation is 30 samples. For Class 0, the machine
would be less than 30 time steps away from failure. The pattern is followed
for Class 1, 2 and 3. All the sensor readings greater than 120 time steps from
failure are considered Class 4.

Class
number

Label Number of sensor read-
ings in class

0 (0) fail ≤ 30 30
1 (1) 30 < fail ≤ 60 30
2 (2) 60 < fail ≤ 90 30
3 (3) 90 < fail ≤ 120 30
4 (4) fail > 120 remaining

reading number n of the j-th machine given by

Cjn = H(Sn,1:P ) 0 ≤ Cjn ≤ K, (5.1)

where H is a prognostic classification model which uses P sensor readings at time step n to

make a machine state estimation for machine j and K is the number of states. The prognostic

classifier can make use of historic data when making a prognostic estimate. If the classifier

makes use of a window of m sequential sensor readings when making a machine state estimation

we denote

Cjn = Hm(Sn−m:n,1:P ) 0 ≤ Cjn ≤ K, (5.2)

where Sn−m:n,1:P refers to m sequential sensor readings from P sensors. We will discuss the

models that are used as H in the next section.

5.3 Modelling

In this section, we discuss the models and their applications when used for machine state

estimation. In Subsection 5.3.1, we take a short detour to look at the model performance

evaluation metrics in the context of prognostic modelling. In Subsections 5.3.2 to 5.3.5 an

overview of the fundamentals of the four models used in machine state estimation is given. The

four models are random forests (RF), gradient boosted (GB) trees, support vector machine

(SVM) and a long short-term memory recurrent neural network (LSTM-RNN). We will not

discuss the RF, GB and SVM in detail as they have been covered in Breiman (2001), Friedman

(2002) and Scholkopf and Smola (2018), respectively. However, the inner workings and model

architecture of the LSTM-RNN will be discussed in greater detail.
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5.3.1 Performance evaluation

Precision and recall are commonly used to evaluate the performance of a classification model.

Let’s consider the effects of optimising for precision and recall in the context of machine state

estimation. First, let tp be a true positive result, fp be a false positive result and fn be a false

negative result. Then the precision is given by P = tp
tp+fp

and recall is given by R = tp
tp+fn

.

If we consider a false positive in the context of machine prognostics, then a prognostic model

would notify a maintenance manager that machine failure is imminent when it is not. As a

result, unnecessary maintenance will be performed early on the machine. If the maintenance

manager’s only concern is to ensure machine up-time (avoid machine failure), then false positives

are tolerable. However, in the case where we only consider machine up-time to be the constraint

we would want to reduce the number of false negative classifications, as this would result in

machine failures. Unnecessary inspections will be performed on the machine, but less failures

will occur in the system.

In practice, there is a cost to performing maintenance inspections which must also be considered.

To reduce the amount of inspections, the false positive would again need to be reduced. In this

case we would use precision as our performance metric.

Clearly, there is a need to combine precision and recall. The F1-score is given by F1 = 2PR
P+R

and is therefore our default performance metric for machine state estimation. In the case of

a multi-class label, we consider the weighted per class F1-score. This means that we consider

the F1-score of each class and account for a possible imbalance through weighting the result

by the size of the class. When we discuss the results in Section 5.4, we also consider precision

and recall to gain insights into a classifiers’ prognostic abilities.

Next we will discuss the prognostic models used in machine state estimation.

5.3.2 Random forests (RF)

RFs (Ho, 1995) are based on a bagging algorithm and uses ensemble learning techniques to

solving classification and regression problems. Breiman (2001) investigates the classification

and regression abilities of RFs and finds them to be effective in performing estimations without

overfitting. RFs do not require feature scaling and are stable owing to the ensemble of trees.

However, model training times increase linearly with the number of features in the data. An RF

also becomes less interpretable with an increase in the number of trees present in the ensemble.
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5.3.3 Gradient Boosted (GB) trees

GB (Breiman, 1997) trees work similar to RFs in that the model is also an ensemble of decision

trees. The difference is the manner in which the ensemble is created. During training, a GB adds

a single tree at a time in an ensemble forward-stage manner. Friedman (2002) discovers that

training the model on randomly selected data on each iteration improves model performance.

Typically three training parameters are present, namely, number of trees, depth of trees and

learning rate. The depth of trees refers to the number of splits and resulting leaf nodes in a tree

and learning rate refers to the contribution of each tree in the ensemble. GBs typically have

longer training times than RFs. GBs are prone to overfitting if noise is present in the training

data (Vezhnevets and Barinova, 2007).

5.3.4 Support Vector Machine (SVM)

SVMs (Cortes and Vapnik, 1995) construct a hyperplane in a high dimensional space to allow

for classification or regression applications.

To optimally separate two data points, we make use of a perpendicular hyperplane on the mid-

point between two data points. With an increase in data points, we require a higher dimensional

space to separate points. SVMs make use of the ‘kernel trick’ (Cortes and Vapnik, 1995) to

efficiently map data points to the higher dimensional space, where the points are separable.

SVMs are a black box by nature and are less interpretable than the GBs and RFs. However, new

studies on SVM interpretability include Shakerin and Gupta (2020). Once trained, estimations

are fast due to the efficiencies in kernel computations.

5.3.5 Long short-term memory recurrent neural networks

(LSTM-RNN)

Recurrent Neural Networks (Rumelhart et al., 1986) make use of a sequential time window of

samples to perform classification or regression. This property makes the RNN ideal for time

series applications such as in PdM.

Heimes (2008) used an RNN in the 2008 PHM Society prognostic competition to place second.

The approach proves less sensitive to noise and local sensor variations than other approaches,

because of the window of samples used when making estimations. However, due to the vanishing

gradient problem during back-propagation in model training, a traditional RNN might not
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capture the long-term dependencies prevalent in time series data (Bengio et al., 1994). A

LSTM-RNN — referred to as LSTM — is a special case of RNN, designed to learn long term

dependencies (Hochreiter and Schmidhuber, 1997) and handle the vanishing gradient problem.

LSTMs are suitable in time-series applications where there are unpredictable time intervals

between events. To explain the operation of LSTMs, we investigate components of a LSTM

cell. Then, we discuss cell connections and how model weights are updated when information

passes through the entire network.

LSTM cell

The LSTM cell consists of four interactive logic gates, namely the forget gate, the input gate,

the tanh gate and the output gate, shown in Figure 5.2. These gates control the information

passing through the cell. Each gate can be thought of as a small neural network, as they have

their own weights and biases that are updated during training. The function of each will now

be discussed.

Figure 5.2: A basic LSTM cell

The cell state, given by Ct, is updated by two gates: the forget gate and the input gate. The

forget gate activation vector, ft, is given by

ft = σf (Wf [ht−1,xt] + bf ),

where xt is some input vector, ht−1 is the output of the previous LSTM cell, Wf and bf are

the weights and biases of the forget gate and σf is a sigmoid activation function. The forget
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gate decides which information to remove from the cell state through a element-wise product

of ft and Ct−1. The next step, the tanh gate, combines the input activation vector, given by

it = σi(Wi[ht−1,xt] + bi), (5.3)

and the new candidate values, given with

C̃t = σc(Wc[ht−1,xt] + bc),

through an element wise product. The input weights and biases are given by Wi and bi and

σi is a sigmoid activation function. The input activate vector, it, determines which candidate

values to add to the cell state. The new candidate values, Ĉt, are determined similarly to

Equation 5.3, however a tanh activation function is used in σc. The weights and biases of the

candidate values matrices are given by Wc and bc, respectively.

The cell state, Ct, can now be updated with

Ct = ft ◦Ct−1 + it ◦ Ĉt,

where ◦ represents the element-wise product, ft◦Ct−1 is the output of the forget gate and it◦Ĉt

is the output of the tanh gate.

Finally, given Ct, we update the cell output, ht, with

ht = Ot ◦ tanh(Ct),

where Ot is the output gate activation vector given with

Ot = σo(Wo · ht−1,xt] + bo).

In the output activation function, σo represents the output activation function which is a

sigmoid and Wo and bo are the output weights and biases, respectively. The values in the cell

state are forced to -1 and 1 by applying the tanh activation function, because the output values

could potentially be larger than 1. The gradient of the tanh quickly becomes zero, which can

potentially avoid the exploding gradients problem.

System architecture

We will now discuss the LSTM model configuration for the machine state estimation problem.

During model training, the data passed into a repeated LSTM cell configuration (as shown in

Figure 5.3) is in the form of batch size, sample window length, number of sensors (features),

denoted as Nb, m, P , respectively. This is depicted in Figure 5.4.
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Figure 5.3: A repeated LSTM cell configuration

The batches are constructed with consecutive readings such that it consists of Sn−m:n,1:P ,

Sn−m−1:n−1,1:P , ..., Sn−m−Nb:n−Nb,1:P . In the machine state estimation simulations, the batch

size, Nb, is chosen to be 10, 32 or 64, while the sample window length, m, is chosen to be 15,

30 or 60 to investigate the effect on the model performance. The output shape of the LSTM

Figure 5.4: Batched sensor readings for LSTM input

model is a 1× k row vector, where k is the number of classes present in the output labels (refer

to Equation 5.1 on Page 49). For the machine state estimation problem, the softmax layer

output shape is [C4, C3, C2, C1, C0]
T . The proposed system architecture for the deep LSTM

classification model described below and illustrated in Figure 5.5 is:

1. input layer that takes in an input shape of [m, P ] with P LSTM units;

2. dropout layer which randomly drops 40% of the connections;

3. hidden layer with 100 LSTM units;

4. dropout layer which randomly drops 40% of the connections;

5. hidden layer with 50 LSTM units;
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6. dropout layer which randomly drops 40% of the connections;

7. hidden layer with K = 5 LSTM units;

8. output fully connected layer with K = 5 neurons using a sigmoid activation function.

Figure 5.5: LSTM architecture for machines state estimation classification

When performing classification, a LSTM makes use of a m by P window of sensor readings.

This is m historic sensor readings of the P sensors. This first layer of the LSTM has P LSTM

cells. Each sensor will be passed to an individual LSTM cell. This means the historic readings

of each sensor are unfolded over time individually. Local sensor variations, caused by noise,

will not impact the LSTM because it has the context of m consecutive sensor readings when

performing classification.

During training, early stopping is incorporated and it is found that the the training and valida-

tion curves flattened after roughly 45 epochs. We make use of Root mean square propagation

(RMSprop) (Tieleman and Hinton, 2012) to update model weights and biases during training.

We summarise model parameters for the machine state estimation in Table 5.2. We set the

sample window length, m, to be 15, 30, 60 and 90 to investigate the effect of having larger

windows historic readings when making a classifications. We set the batch size to 10, 32 and

64 to investigate the effect of updating model weights at different frequencies during training.
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Table 5.2: Optimal hyperparameters for the LSTM for CMAPSS data set 1. The hyperparam-
eters are determined through a iterative process.

Parameter Value Parameter Value
Sample window length (m) 60/30/15 Loss function Categorical cross

entropy
Input layer neurons P Metric F1-score
Hidden layer neurons 100/50/5 Optimisation function RMSprop
Output layer neurons 5 Learning rate (η) 0.01
Dropout rate 0.4 Batch size 10/32/64
Epoch 50 Activation functions tanh, tanh, tanh

and sigmoid

5.4 Results

In this section, we present and discuss the machine state estimation results. Before we discuss

these, we provide a summary of the experimental setup in Section 5.4.1. Then, in Subsection

5.4.2 we discuss the best results achieved on each data set and mention the relevant model

parameters used to do so. Next, in Subsection 5.4.3 we discuss degradation profiles prevalent

in different data sets and the resulting class F1-scores of the prognostic models. We continue

in Subsection 5.4.4, with an investigation into model hyper parameter tuning and the resulting

improvements in the results. Lastly in Subsection 5.4.5, we discuss the effects of de-noising on

model performance. We conclude the chapter with a summary of the results in Section 5.5.

5.4.1 Experiment setup

We divide the sensor readings of the data sets into five classes as summarised in Table 5.3. We

then train a RF, GB, SVM and LSTM prognostic model to classify sensor readings into the five

classes. To evaluate a model we determine the mean and variance of the classifier’s F1-score

on a five-fold cross validation test set.

5.4.2 Summary of best results

During model testing we iteratively improve model performance by tuning model hyperparam-

eters and applying preprocessing techniques. These techniques will be discussed in detail in

the subsequent subsections. However, we begin by highlighting the best performance of the

classifiers on the four C-MAPSS data sets, the CALCE battery and IMS bearing data set. The

results are summarised in Table 5.5. Overall the LSTM, outperforms the remaining classifiers.
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Table 5.3: The classes used for the machine state estimation simulation. The
sample window Ntw for the simulation is 30 time steps. For Class 0, the machine
would be less than 30 time steps away from failure. For Class 1, the machine
would be between 30 and 60 time steps from failure. The pattern is followed for
Class 2 and 3. All the sensor readings greater than 120 time steps from failure
are considered Class 4.

Class
number

Label Number of time steps

0 (0) fail < 30 30
1 (1) 30 ≤ fail < 60 30
2 (2) 60 ≤ fail < 90 30
3 (3) 90 ≤ fail < 120 30
4 (4) fail > 120 remaining

Best results on C-MAPSS

To inform this discussion, we reiterate the attributes of the C-MAPSS data sets in a Table

5.4. The number of machines, operating conditions and fault modes are the key attributes that

Table 5.4: The five C-MAPSS data sets as per implementation of (Saxena et al., 2008).
Each data set consists of generated training, testing and validation data of lubricant flow
and efficiencies in aircraft engines during the degradation process.

Data set Train data
rows

Test data
rows

Columns Unique
machine
IDs

Fault
modes

Operating
conditions

Data set 1 20 631 13 096 28 100 1 1
Data set 2 53 759 33 991 28 260 1 6
Data set 3 24 720 16 596 28 100 2 1
Data set 4 61 249 41 214 28 249 2 6

differentiate the C-MAPSS data sets. From Table 5.5, we see the LSTM performs best on the C-

MAPSS data sets. On Data set 1, the LSTM outperforms the RF with 17.46% (mean F1-score

of 0.8664 and 0.7151, respectively). On Data set 2, the LSTM outperforms the RF with 36.51%

(mean F1-score of 0.8533 and 0.5418, respectively). On Data set 3, the LSTM outperforms the

RF with 7.06% (mean F1-score of 0.8109 and 0.6830, respectively). On Data set 4, the LSTM

outperforms the RF with 30.10% (mean F1-score of 0.9193 and 0.6426, respectively).

The biggest disparity between the LSTM and the rest of the classifiers’ performance is seen on

Data set 2 and 4. The common attribute between these two data sets are the larger number of

unique machines and therefore training data in the data sets. Deep neural networks perform

better when exposed to more data (Hochreiter and Schmidhuber, 1997).
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Table 5.5: The Precision, Recall and F1-score of the RF, LSTM, GB and SVM classifiers,
respectively on the prognostic data sets. The LSTM performs best overall.

Data Set Classifier Precision Recall F1-score F1-score variance
C-MAPSS RF 0.7162 0.7293 0.7151 0.071
data set 1 LSTM 0.8742 0.8640 0.8664 0.0454

GB 0.6229 0.6612 0.6187 0.0514
SVM 0.6131 0.6591 0.5961 0.0436

C-MAPSS RF 0.5300 0.5624 0.5418 0.011
data set 2 LSTM 0.8659 0.8664 0.8533 0.0959

GB 0.5230 0.5806 0.5012 0.0088
SVM 0.5225 0.6207 0.5152 0.0013

C-MAPSS RF 0.6863 0.7106 0.6830 0.0036
data set 3 LSTM 0.8172 0.8124 0.8109 0.0335

GB 0.6123 0.6677 0.6147 0.0002
SVM 0.5624 0.6580 0.5903 0.0001

C-MAPSS RF 0.6314 0.6635 0.6426 0.0092
data set 4 LSTM 0.9208 0.9187 0.9193 0.0024

GB 0.5563 0.6532 0.5737 0.0003
SVM 0.5116 0.6738 0.5755 0.0001

CALCE RF 0.9632 0.9601 0.9608 0.0088
battery LSTM 0.9621 0.9619 0.9606 0.0001

GB 0.9672 0.9654 0.9657 0.0040
SVM 0.9534 0.9529 0.9528 0.0059

IMS RF 0.7247 0.7458 0.7276 0.0721
bearing LSTM 0.9297 0.9306 0.9099 0.0814

GB 0.7392 0.7610 0.7364 0.0823
SVM 0.5826 0.7081 0.6278 0.0158

When comparing Data set 2 and 4, Data set 2 has less complexity (according to Table 5.4) with

only one fault mode. One would therefore expect better prognostic results on 2. However, we

observe an unexpected result. All the classifiers perform better on Data set 4 relative to Data

set 2. When we investigate these two data sets, we find the mean number of sensor readings in

a degradation cycle in Data set 2 to be 206 and Data set 4 to be 245, respectively. Thus more

sensor readings are in State ‘(4) fail > 120’ in Data set 4 than in Data set 2. We will see that

the classifiers perform better when classifying this state and therefore seem to perform better

on Data set 4 than Data set 2.

Table 5.6: The Precision, Recall and F1-score of previous studies.

Publication Classifier Precision Recall F1-score
Ramasso (2009) HMM 0.6925 0.6925 0.7025
Ramasso and Gouriveau (2010) HMM &

Fuzzy
0.67 0.6625 0.66

Tamilselvan and Wang (2013) DBN 0.9072 - -
Nascimento et al. (2020) MLP 0.6306 - -
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We summarise the results of previous studies discussed in Section 2.3.2 of Chapter 2 on Page 14

in Table 5.6. Ramasso (2009) used a Hidden Markov Model (HMM) to perform machine state

estimation and was the first to show that classifiers perform better on classes closer to failure

(to be discussed in the subsequent sections). The classifiers struggle with early degradation

states. Ramasso (2009) contributed the model performance of the HMM to using sequential

information present in readings. This is corroborated by findings in this study, where the

window of sequential sensor readings used by the LSTM when making classifications boosts

model performance.

When adding degradation state labels to the C-MAPSS dataset,Tamilselvan and Wang (2013)

added 25 sensor readings of unlabelled data between classes. This was to allow for clearly

distinguishable states. As a result, a model would then not be punished unnecessarily on

classifications where the machine state is close to a class boundary. The Deep Belief Network

(DBN) is the first introduction of a Neural Network to perform machine state estimation on

the C-MAPSS data sets. It is not specified which of the C-MAPSS data sets are used in the

study, however model performance is similar to that of the LSTM on C-MAPSS data set 4.

Best results on the CALCE Battery dataset

All the classifiers achieve high F1-scores on the CALCE battery data set. This indicates it is

easier to perform prognostics on the CALCE battery data set than the C-MAPSS and IMS

bearing data sets. An unexpected result is the GB outperforming the LSTM with mean F1-

scores of 0.9657 and 0.9606, respectively.

Best results on the IMS bearing dataset

The LSTM performs best on the IMS bearing data set, outperforming the RF with 20.03%

(mean F1-scores of 0.9099 and 0.7276, respectively). The sensor readings in the vibration data

set are noisy and it is difficult to distinguish at which stage machine degradation is in. The

time window of samples used by the LSTM when classifying the sensor readings is what allows

the LSTM to outperform the other classifiers.

Comparison to related studies

Janssens et al. (2016) finds that a CNN can perform better than a RF based approach (which

requires domain expertise to perform feature engineering) when classify bearing health states.
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Table 5.7: The Precision, Recall and F1-score of previous studies.

Publication Classifier Precision Recall F1-score
Janssens et al. (2016) RF 0.8983 0.8725 0.8673
Janssens et al. (2016) CNN 0.9452 0.9360 0.9406

This corroborates the findings in this study, where the LSTM outperforms the second placed

GB classifier by 20%. The data set used by Janssens et al. (2016) was self generated.

Two suggestions from Janssens et al. (2016) can be applied to future work on the IMS bearing

data set. The first suggestion, make use of two classifiers when performing prognostic modelling

on a data set containing vibration readings. A binary classification model should detect if

degradation is present in the bearing and then a multi-class classification model should detect

which stage of degradation the bearing is in. The second suggestion, make use of the raw

sensor readings to perform machine state estimation. This removed the need for any feature

engineering, which is appropriate for a domain specific data set such as the IMS bearing data

set.

5.4.3 Effect of degradation profiles

A degradation profile is the trend present in the sensor readings throughout degradation as

discussed in Section 4.2 on Page 34. To investigate the effects of a degradation profile on a

classifier’s performance, we look at the per class F1-score on each data set, as shown in Figure

5.6.

Degradation profile in C-MAPSS data sets

For the C-MAPSS data set, the classifiers struggle to identify sensor readings in Class ‘(3) 90 ≤

fail < 120’ (refer to Figure 5.6a). If we consider the exponential degradation profile of the

sensor readings in the C-MAPSS data set, then the rate of change of sensor readings in early

degradation is low (described in Section 3.1 on Page 27). Intuitively it is difficult to separate

sensor readings in Class ‘(4) fail > 120’ and Class ‘(3) 90 ≤ fail < 120’, as the the readings are

similar. When we investigate the classifiers’ confusion matrices, we find that Class ‘(3) 90 ≤ fail

< 120’ is mistakenly estimated as Class ‘(4) fail > 120’. Furthermore, the classifiers’ per class

F1-score linearly increase for the remaining classes. This indicates that the sensor readings in

these states are more separable as we approach failure.

We used a generalised approach to select the number of readings in a class. This was to simplify
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(a) The per class per model classification F1-scores on CMAPSS data
set 1

(b) The per class per model classification F1-scores on the CALCE bat-
tery CX2 data set

(c) The per class per model classification F1-scores on the IMS Bearing
data set.

Figure 5.6: The relative performance of the GB, LSTM, RF and SVM
classifiers on the per class F1-score on three data sets. The per class
F1-score is the mean of the per class five-fold cross validation test scores.

the machine state estimation problem and investigate if such an approach was effective with

multiple datasets. Tamilselvan and Wang (2013) approached used different class sizes and had
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windows of sensor readings between classes, which resulting in improved results.

In real world applications this is an acceptable result as the correctness of the prognostic models’

estimations are more important closer to time of failure.

Degradation profile in the CALCE battery data set

The sensor readings follow a linear degradation profile throughout the degradation cycles, owing

to a constant discharge profile used when creating the data set (as discussed in Section 3.2 on

Page 29). It is therefore easier to distinguish between Class ‘(4) fail > 120’ and Class ‘(3) 90 ≤

fail < 120’ in this data set, reflected in the per class classification F1-scores of the classifiers on

the CALCE battery data set (shown in Figure 5.6b).

The results suggest that a degradation profile has a direct impact on the model performance,

as it is easier to perform machine state estimation on the CALCE battery data set than the

C-MAPSS data sets. It also suggests that a default category and class size is not appropriate

for all use cases.

Degradation profile in the IMS bearing data set

In contrast with the previous two data sets, the trend observed in the IMS bearing data set is in

the features created for the data set, rather than the raw sensor readings. These are described

and shown in Section 4.3.4 on Page 42. To illustrate, the RMS feature of the sensor readings

from Bearing 4 of Experiment 1 are shown again in Figure 5.7.

The classifiers perform well in Class ‘(4) fail > 120’ estimations when compared to Class ‘(3)

90 ≤ fail < 120’ and Class ‘(2) 60 ≤ fail < 90’ estimations, owing to the similar magnitudes

of the features in these classes. In the simulations, the degradation is only prevalent when the

sensor readings are 30 ≤ fail < 60 samples from failure. This reflects in the increase in classifier

performance on Class (2) 60 ≤ fail < 90’ and Class ‘(1) 30 ≤ fail < 60’.

The LSTM outperforms the remaining classifiers with 50.33%, 54.19% and 29.73% on Class

‘(3) 90 ≤ fail < 120’, Class ‘(2) 60 ≤ fail < 90’ and Class ‘(1) 30 ≤ fail < 60’ estimations,

respectively. The results suggest that the sequential information, used by the LSTM, in the

sensor readings allow for better classification.
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Figure 5.7: The RMS feature created for each 1 second window of readings taken in Experiment
1 of x -directional Bearing 1 from the IMS bearing data set.

5.4.4 Effect of hyper parameter tuning

For the LSTM, we study the effect of model hyper parameters on each classifier. For the RF,

GB and SVM we perform a random grid search over 100 iterations for optimal parameters.

We use a four-dimensional scatter plot, as shown in Appendix B, to visualise the results. At

the end of the simulation, the models are retrained and saved using the best performing hyper

parameters.

We investigate the effect of the sample window length, m, and batch size, Nb on the LSTM

performance by iteratively varying the hyperparameters and monitoring the model performance.

We use C-MAPPS data set 1 to investigate the effect of hyper parameter tuning and summarise

the best hyperparameters for the data set in Table 5.8. We will now discuss the effect of hyper

parameter tuning in each classifier.

Table 5.8: Effect of hyper parameter tuning on the F1-score tested the CMAPSS data set 1

Classifier Most influential
hyper parameter

Optimal
value

Variation Mean F1-score

RF samples per split 5 0.0212 0.7151
GB number of estimators 100 0.0416 0.6187
SVM C 100 0.0045 0.5961
LSTM sample window length (m) 30 0.1078 0.8664

batch size (Nb) 32 0.1025 0.8871

Hyper parameters for the RF model

There is a variation of 2.12 % in the maximum and minimum test F1-score throughout the

random search. The hyper parameters that are the most influential are the number of samples

per split (1000) and the max depth (1). We highlight these in Appendix B Figure B.1.
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(a) The effect of LSTM sample window length (m) on mean per class F1-score

(b) The effect of LSTM batch size (Nb) on mean per class F1-score

Figure 5.8: The effect of LSTM parameter tuning on mean per class F1-
score. The results of the variation in sample window length (m) is de-
picted in Figure 5.8a. The results of batch size (Nb) variation is depicted
in Figure 5.8b. The models results are the mean of the weighted F1-score
on a test set of the k-fold cross validation, performed on CMAPSS Data
set 1.

Hyper parameters for the GB model

When performing hyper parameter tuning, the GB classifier’s maximum and minimum test

F1-score fluctuates with 4.16%. The two most influential hyperparameters are the number of

estimators (200) and the minimum number of samples (1). We highlight these in Appendix B

Figure B.2.

Hyper parameters for the SVM model

The maximum and minimum test F1-score of the SVM fluctuates with 0.45% owing to hyper-

parameter tuning. Owing to the insignificant change in F1-score, we do not investigate the

hyper parameters further.
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Hyper parameters for the LSTM model

The LSTM hyper parameters that are investigated are the sample window length (m) and the

batch size (Nb).

The sample window length is the number of previous sensor readings the LSTM uses when

making a prognostic estimate. The window length, m, was chosen to be 15, 30 and 60 samples.

The sample window length causes a variation of 10.78% in the minimum and maximum test

F1-score of the LSTM, with the optimal m = 30. The results are shown in Figure 5.8a and

summarised in Table 5.8.

When we increase m there is a delay before the LSTM can perform the first classification by

m sensor readings, unless we pad the initial windows of sensor readings with a fixed value.

If we were to make m much larger relative to the number of samples in a degradation cycle,

prognostic estimates would only be performed in later stages of the degradation cycle. In the

case of the C-MAPSS data set, this would result in an increase in F1-score, since we have shown

in Subsection 5.4.3 it is easier to classify sensor readings in later stages of a degradation cycle.

It is therefore important to consider the size of m relative to the length of degradation cycles

in a prognostic data set. In C-MAPSS data set 1, the mean degradation cycle length is 205.31

sensor readings with standard deviation of 46.11 readings and shortest degradation cycle of 127

readings. In the case of the shortest degradation cycle, with a large m, say m = 60, then the

first prognostic estimate will occur in State ‘(2) 60 ≤ fail < 90’. The size of m is also considered

in RUL estimation.

The batch size, Nb, refers to the number of training samples seen by the LSTM before model

weights are updated. It is often better to have a larger batch size, to avoid local mimima during

training as well as having shorter model training times. The batch size was chosen to be 10, 32

or 64. The batch size affected model performance with 10.25% and was found to be optimal at

Nb = 10, which is the smallest of the selected batch sizes

5.4.5 Effect of de-noising

To compare results of training the classifiers on denoised and noisy data, a moving average

(MA) filter is applied to the sensor readings before modelling (described in Subsection 4.3.1).

The MA filter removes noise from the sensor readings, thus we can expect a change in the

F1-score of the classifiers.
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Bishop (1995) and Reed and Robert (1999) show that including noise in training can have

positive effects on the generalisation and performance of neural networks such as the LSTM.

Thus we expect that training on filtered data will improve results on a hold out set for the RF,

GB and SVM classifiers. However, results will deteriorate for the LSTM.

Table 5.9: The Precision, Recall and F1-score of a RF, LSTM, GB and SVM classifier on
filtered and unfiltered data from the CMAPSS data set 1. The GB and SVM perform 0.0327
and 0.0173 better respectively in F1-score on the filtered data. The RF and LSTM perform
respectively 0.0372 and 0.3263 better on unfiltered data.

Filter Classifier Precision Recall F1-score F1-score variance
MA filter RF 0.6916 0.6989 0.6779 0.0705

LSTM 0.5614 0.5550 0.5401 0.0755
GB 0.6486 0.6689 0.6513 0.0514
SVM 0.6269 0.6565 0.6133 0.0436

No filter RF 0.7162 0.7293 0.7151 0.0561
LSTM 0.8742 0.8640 0.8664 0.0270
GB 0.6229 0.6612 0.6187 0.0343
SVM 0.6131 0.6591 0.5961 0.0284

(a) Effects of training on denoised/noisy data
on GB performance

(b) Effects of training on denoised/noisy data
on LSTM performance

(c) Effects of training on denoised/noisy data
on RF performance

(d) Effects of training on denoised/noisy data
on SVM performance

Figure 5.9: The effect of training on denoised and noisy sensor readings on the per class mean
F1-score on test data from the CMAPSS data set 1. The GB and SVM perform better on
filtered data, while the RF and LSTM perform better on unfiltered data. The results are
summarised in Table 5.9.

66

Stellenbosch University https://scholar.sun.ac.za



The per class F1-score of classifiers trained and tested on noisy and de-noised data are shown

in Figure 5.9. The mean precision, recall, F1-score and F1-score variance are summarised in

Table 5.9.

RF, GB and SVM -model with filtered and unfiltered data

From Table 5.9, we observe that the RF model performs better when trained and tested on

noisy data. The effect is an increase in test F1-score of 3.72%. In Figure 5.9c we can see the

largest class F1-score difference occurs on Class ‘(3) 90 ≤ fail < 120’.

From Table 5.9, we observe that the GB and SVM perform better when trained and tested on

filtered data, with the GB and SVC achieving 3.27% and 1.73% better F1-scores, respectively,

as a result. In both cases the largest F1-score class difference occurs on Class ‘(3) 90 ≤ fail

< 120’, refer to Figure 5.9a and 5.9d.

LSTM on filtered and unfiltered data

The biggest effect is seen in the LSTM, with a 21.52% increase in classifier performance when

trained and tested with noisy data, thus confirming our expectation. Interesting to note that

the F1-score variance decreases for all the classifiers when trained on noisy data.

5.5 Summary of results

The overall best performing prognostic model for machine state estimation is the LSTM when

compared with the RF, GB and SVM on the more difficult prognostic data sets (C-MAPSS

and IMS bearing). This is owing to the sequential information available in sequential sensor

readings that the LSTM uses when making classifications.

When using the sensor readings from a single time step to perform classification as in the case

of the RF, GB and SVM, the readings could be misclassified owing to the noise or being close

to a boundary of a specific state. In the case of the LSTM, the window of sensor readings

reduces the effect of noise that results in better classification performance.

The LSTM is sensitive to model hyperparameters, with a variation in F1-score of 10.78% and

10.25% on account of sample time window (m) and batch size (Nb) respectively. The LSTM’s

generalisation capability is better when trained on non-filtered data. The effect was a variation

of 21.51% in F1-score, which is substantial. The RF also achieved better classification results
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(improved F1-score of 3.72%) when trained on noisy data. It is worth noting that when the

data is filtered, the testing data is also filtered. This would be possible in a real world setting

because of the nature of a MA filter (refer to Subsection 4.3.1 on Page 36).

The RF performed second best and trained faster by orders of magnitude than the LSTM.

Typical training times for the RF was two minutes while the LSTM would train for three to

four hours, given the hyperparameters and data set used and trained on a MacBook Pro with

a 3.1 GHz dual-core i5 processor with 8 GB of RAM. The RF is also robust to model hyper

parameters, meaning they do not have a large effect on the model performance. A recommended

approach could be to initially attempt machine state estimation using a RF for faster model

iterations and experiment setup. Then, when improved model performance is needed, one can

move over to a deep learning approach such as the LSTM.
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Chapter 6

Remaining useful life estimation

6.1 Introduction

In this chapter we perform prognostic modelling through remaining useful life (RUL) estimation.

Where machine state estimation is a classification problem with the objective of estimating the

state of degradation of a machine, RUL estimation is a regression problem with the objective of

estimating the time until failure given current sensor readings. The discussion in this Chapter

follows the same format as the machine state estimation in Chapter 5, namely, a problem

statement in Section 6.2, preprocessing in Section 6.3, modelling in Section 6.4 and finally

results in Section 6.5. The common discussions between the Machine State Estimation problem

and RUL estimation problem are combined in Chapter 4, starting on Page 33.

6.2 Problem statement

In Section 4.2 on Page 34, we defined

S1:Nf ,1:P =



s1,1 s1,2 · · · s1,p · · · s1,P

s2,1 s2,2 · · · s2,p · · · s2,P
...

... · · · ... · · · ...

sn,1 sn,2 · · · sn,p · · · sn,P
...

... · · · ... · · · ...

sNf ,1 sNf ,2 · · · sNf ,p · · · sNf ,P


,

as the sensor readings collected from sensors placed on a machine during degradation, where

sn,p is the sensor reading at time step n for sensor p, n = 1, 2, ..., Nf and p = 1, 2, ..., P . If the

number of sensor readings in a degradation cycle is known, in other words Nf is known, then
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we can determine the remaining useful life, R, at a given time step with

R = Nf − n.

Of course, Nf is not known until machine failure has occurred. We therefore estimate remaining

useful life with
R ≈ Rest

= G(Sn,1:P ),

where G is a prognostic regression model that uses the sensor readings, Sn,1:P , at time step n,

to estimate the remaining useful life, Rest, of a machine. The sensor readings at a time step

are not necessarily independent of one another (owing to the location of the sensors or the

relationships between the measurements of the different sensors).

When making a prognostic estimate, a prognostic model has access to all historical sensor

readings. Therefore, the prognostic model can make use of a window of sensor readings when

making RUL estimates. We denote

Rest = Gm(Sn−m:n,1:P ),

where Gm is a prognostic regression model and Sn−m:n,1:P is a window of size m sensor readings

used when making a prognostic estimate.

The difference between R and Rest is determined with

Rerr = Rest −R. (6.1)

If Rest > R, then the prognostic model estimates a failure will occur at a later time step

than the actual R. This would cause a machine to continue until failure. If Rest < R then

the opposite is true, preventative maintenance would be performed earlier than is necessary

to avoid failure. Given the sensor readings at time step n, the goal of RUL estimation is to

estimate Rest such that we reduce Rerr to zero. Costs for Rerr > 0 and Rerr < 0 are different

and has to be taken into account. We will account for this in our model evaluation metrics

discussed in Section 6.4.1.

6.3 Preprocessing for RUL estimation

When preprocessing the data for RUL estimation we follow a similar approach as in machine

state estimation (see Section 4.3 on Page 36). Therefore, in this section we only discuss data
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windowing and feature engineering specific to RUL estimation (Subsections 6.3.1 and 6.3.2,

respectively).

6.3.1 Data windowing

The target label for RUL estimation is a linearly decreasing function, decreasing at each time

step until failure. After a machine has proceeded to failure, a RUL label is mapped to the

historical sensor readings throughout degradation, as shown in Table 6.1.

If a prognostic model makes use of a window of sensor readings when making estimates, the

data must be handled appropriately.

First, the chronological order of the sensor readings within the window must be retained.

Second, the RUL label for the window must be appropriately handled, such that the final RUL

label in the window is chosen as the label for the entire window. For example, when we create

windowed samples from Table 6.1, with a window length of m = 3, then the RUL label for n

= 3 would be [286, 285, 284] and be set to [284]. For n = 188, the labels would be [100, 99, 98]

and set to [98].

Finally, we choose to have overlapping windows by incrementing the start and end time step

of each window with one reading. This is to allow for more training and testing data.

Table 6.1: The sensor readings and resulting RUL label for machine j after failure has occurred

Time step Sensor readings (S1:Nf ,1:P ) RUL label
n = 1 [s1,1 s1,2 · · · s1,p · · · s1,P ] 286
n = 2 [s2,1 s2,2 · · · s2,p · · · s2,P ] 285
n = 3 [s3,1 s3,2 · · · s3,p · · · s3,P ] 284
... [...] ...
n = 183 [s183,1 s183,2 · · · s183,p · · · s183,P ] 103
n = 184 [s184,1 s184,2 · · · s184,p · · · s185,P ] 102
n = 185 [s185,1 s185,2 · · · s185,p · · · s185,P ] 101
n = 186 [s186,1 s186,2 · · · s186,p · · · s186,P ] 100
n = 187 [s187,1 s187,2 · · · s187,p · · · s187,P ] 99
n = 188 [s188,1 s188,2 · · · s188,p · · · s188,P ] 98
... [...] ...
n = Nfj [sNfj

,1 sNfj
,2 · · · sNfj

,p · · · sNfj
,P ] 0

6.3.2 Feature engineering

Heimes (2008) introduced a piecewise linear function to the RUL labels for sensor readings

in early degradation. This approach was implemented in the 2008 PHM Society prognostic
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modelling competition (refer to Section 2.2.3) where RUL labels of greater than 105 were set

to 105. The reason is in early degradation stages, the sensor readings are similar and accurate

RUL estimation is therefore difficult. As a result, prognostic models perform poorly in these

early degradation estimates as has been shown in the machine state estimation results when

classifying Class ‘(4) fail > 120’ and Class ‘(3) 90 ≤ fail < 120’. Furthermore, prognostic

estimates become more important as a machine approaches failure. Other prognostic modelling

implementations that have followed this approach include Li et al. (2018), Jayasinghe et al.

(2018), Zheng et al. (2017).

In this work we will perform a similar implementation to the C-MAPSS and CALCE battery

data set. RUL labels of greater than 120 are set to 120. The effects will be discussed in

Subsection 6.5. The piecewise linear function used to generate the RUL labels on the training

data is shown in Figure 6.2.

Figure 6.1: Piecewise linear function used to set RUL labels
of the training data greater than 120 to 120.

Note that in the case of the IMS bearing data set, we cannot apply the piecewise linear function

to the training data. Three different types of failures occur with a different rates of degradation

(refer to Section 3.3 in Page 30). On the one hand, it is clear that we should not apply the

piecewise linear function when the machine has already began to degrade. On the other hand,

if we apply the RUL label to a machine that will still be in a healthy state for many proceeding

sensor readings, the regression model will not be able to distinguish between healthy and

unhealthy readings in early degradation.
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6.4 Modelling

The four prognostic models used to perform RUL estimation are random forests (RFs), gradient

boosted (GB) trees, support vector machine (SVM) and long short-term memory recurrent

neural network (LSTM-RNN). The traditional methods make use of P sensor readings at sensor

reading n when making RUL estimations. The LSTM makes use of m sequential readings of

the P sensors at sensor reading in when making RUL estimations. The RFs, GB trees and SVM

are discussed in Sections 5.3.2, 5.3.3 and 5.3.4, respectively. We therefore do not discuss them

in this chapter. We begin the discussion with the performance evaluation metrics used in RUL

estimation. A scoring function was introduced in the 2008 PHM competition that penalise a

positive Rerr, which we use in this work as well. We conclude the section with a discussion on

the LSTM-RNN model architecture used for RUL estimation. Where applicable we mention

similar implementations and discuss the similarities on our approach.

6.4.1 Performance evaluation

In prognostics modelling, the consequences of the errors made by a prognostic model should

be considered when evaluating performance. For example, if a model predicts an early failure,

i.e Rest < R (Equation 6.1), an early preventative maintenance cost will be associated with

the error — referred to as a preventative error. This is similar to the effect of false positives

in machine state estimation discussed in Section 5.3.1. If a failure is not predicted in time, i.e

Rest > R, and machine failure occurs, a corrective maintenance cost will be associated with the

error — referred to as a corrective error. In general, corrective maintenance costs are higher

than preventative cost (maintenance costs will be discussed further in Section 7.3). Saxena

et al. (2008) proposed a scoring function that accounts for the disparities in corrective and

preventative errors. It is given with

s =


∑Nf

i=1 e
−Rerr

a1 − 1 Rerr < 0∑Nf

i=1 e
Rerr
a2 − 1 Rerr ≥ 0

, (6.2)

where s is the computed ‘pos/neg’ score, Nf is the number of time steps in the data, a1 = 13

and a2 = 10. Setting a1 > than a2 allows Equation 6.2 to punish corrective errors more than

preventative errors. However, a negative property of the ‘pos/neg’ score is that it is sensitive

to outliers, since there is no error normalisation in the function.

The root mean squared error (RMSE) does not have this problem and is the most commonly
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used scoring function in RUL estimation. It is given by

RMSE =

√√√√ 1

N

N∑
i=1

R2
err,

where N is the amount of estimations made by the prognostic model. The RMSE equally

penalises the model for corrective and preventative errors.

Another scoring function used in determining model performance is the coefficient of determi-

nation, R2. It shows how correlated the actual and predicted RUL estimates are and is given

by

R2 = 1− SSres
SStot

,

where SSres is known as the sum of squares of residuals given with
∑

i=1 R
2
err and SStot is

known as the sum of squares which is proportional to the variance in the RUL labels, given by∑
i=1(R− R̄)2.

In this work we will investigate ‘pos/neg’ score, RMSE and R2 as scoring functions for RUL

estimation.

6.4.2 Long short-term memory recurrent neural networks

(LSTM-RNN) for RUL estimation

The dynamics of an LSTM-RNN — referred to as LSTM — is discussed in Section 5.3.5 on

Page 51. The architecture of the LSTM used in RUL estimation is similar to that used in

machine state estimation. There are however subtle differences that we will discuss next.

System architecture

A LSTM makes use of a window of sensor readings when making prognostic estimates, given

with Sn−m:1:P (refer to Section 6.2) with m consecutive time steps and P sensor readings.

During training, a LSTM’s model weights and biases is updated after a batch of consecutive

windows of sensor readings, given with Nb. The input data shape into the LSTM must therefore

be batch size, sample window length and number of sensors (features), denoted as Nb, m and

P , respectively. We investigate the effect of the batch size and sample window length on RUL

estimation results by selecting Nb as 10, 32 and 64 and selecting m as 15, 30 and 60 to measure

the effect on model performance. The results are discussed in Subsection 6.5.
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A many-to-one model architecture is used for the LSTM, where the model output is a scaler

that represents an estimate of the remaining time steps until failure. The proposed system

architecture for the deep LSTM regression model consists of:

1. an input layer with P LSTM cells that requires a window of input sensor readings in the

shape of [m, P ];

2. a dropout layer which randomly drops 40% of the connections;

3. a hidden layer with 100 LSTM cells;

4. a dropout layer which randomly drops 40% of the connections;

5. a hidden layer with 50 LSTM cells;

6. an output, fully connected layer with one neuron using a rectified linear unit (ReLU)

activation function.

The many-to-one LSTM network is depicted in Figure 6.2.

Figure 6.2: Many-to-one LSTM-RNN network used for RUL estimation.
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During model training on all the data sets the loss function used for the models is RMSE.

When scoring the models on the CALCE battery and IMS bearing data set, RMSE and R2 are

used to evaluate model performance. Additionally, ‘pos/neg’ score is used when scoring on the

C-MAPSS data set.

When comparing the model performance between data sets using the ‘pos/neg’ score the results

were nonsensical. This is because of the lack of error normalisation in the ‘pos/neg’ score.

Firstly, the magnitude of the metric increases with a larger number of samples present in the

data set. Secondly, when we compare the model performance over different data sets (as in this

work) the difference in the magnitudes of the metric is not interpretable. We therefore include

it in our results for the C-MAPSS data sets only, to compare with previous impementations.

The adaptive moment estimation (Adam) optimiser (Kingma and Ba, 2014) with default hy-

perparameters (learning rate = 0.001, β1 = β2 = 0.999) is used to find optimal model weights

during model training. It is found to produce better model performance than RMSprop (which

is used in machine state estimation). Early stopping is incorporated and is found that the train-

ing and validation curves flattened after roughly 45 epoch. We summarise model parameters

for the RUL estimation in Table 6.2.

Table 6.2: Parameters and hyperparameters for the LSTM tested on CMAPSS data set 1

Parameter Value Parameter Value
Sample window length (m) 60/30/15 Loss function MSE
Input layer neurons P Optimisation function adam
Hidden layer neurons 100/50 Learning rate (η) 0.001
Output layer neurons 5 Weighting parameter (γ) 0.9
Dropout rate 0.4 Batch size 10/32/64
Epoch 50 activation functions tanh, tanh and

relu

6.5 Results

In this section we present the results of the random forests (RF), Gradient Boosted trees (GB),

support vector machine (SVM) and long short-term memory recurrent neural network (LSTM)

on performing RUL estimation. The discussion begins in Section 6.5.1 with the optimal results

achieved on the C-MAPSS, CALCE battery and IMS bearing data sets. Then in Subsection

6.5.3, the effects of hyper parameter tuning are presented. Next in Subsection 6.5.4, the impact

76

Stellenbosch University https://scholar.sun.ac.za



of de-noising data before model training and testing is outlined. We conclude with a discussion

of the findings in Section 6.6.

Although it is not essential, it can be beneficial for the reader to browse through Chapter

3 as the description of the characteristics of the C-MAPSS, CALCE battery will inform the

subsequent discussions.

6.5.1 Optimal RUL estimation results

The optimal RUL estimation results on each data set is summarised in Table 6.4. These results

were found to be optimal in an iterative manner through experimentation and parameter tuning.

Optimal RUL estimation results on C-MAPSS

As in machine state estimation, we reiterate the attributes of the C-MAPSS data sets in Table

6.3. The number of machines, operating conditions and fault modes are the key attributes that

differentiate the C-MAPSS data sets. Each data set has 28 unique sensor readings, assumed to

be taken simultaneously.

Table 6.3: The five C-MAPSS data sets as per implementation of (Saxena et al., 2008). Each
data set consists of generated training, testing and validation data.

Data set Train data
time steps

Test data
time steps

Unique
machine
IDs

Fault
modes

Operating
conditions

Data set 1 20 631 13 096 100 1 1
Data set 2 53 759 33 991 260 1 6
Data set 3 24 720 16 596 100 2 1
Data set 4 61 249 41 214 249 2 6

When we refer to Table 6.4 we see that the LSTM outperforms the remaining regression models

on the C-MAPSS data sets with RMSE scores of 13.5, 14.4, 14.13 and 14.5, respectively. On C-

MAPSS Data set 1 and Data set 3 the margins between the LSTM and second placed regression

models are far smaller than on Data sets 2 and 4. The difference in the LSTM RMSE and the

second placed regression model for Data set 1 and 3 vs Data set 2 and 4 are 2.83 and 2.24

vs 19.64 and 18.36, respectively. When we consider the attributes of the data sets in Table

6.3 this is an unexpected result. The number of fault modes and operating conditions of the

aircraft engines increase with an increase in data set number. Intuitively one would expect the

complexity of performing regression to increase as well, which is not the case.
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The number of unique machine IDs in Data set 1 and 3 vs 2 and 4 is 100 and 100 vs 260 and

249, respectively. We therefore attribute the relative out-performance of the LSTM on Data

set 2 and 4 to the availability of more data. These results are supported by similar results in

the machine state estimation problem, refer to Section 5.4.

Table 6.4: The benchmark results for RUL estimation for the RF, LSTM, GB and SVM models
on the C-MAPSS, CALCE and IMS bearing data set, respectively

Data Set Regression
model

RMSE RMSE STD Pos-neg score R2

C-MAPSS RF 16.33 1.73 984.3 0.80
data set 1 LSTM 13.50 0.87 630.5 0.89

GB 16.34 1.65 974.8 0.83
SVM 17.46 0.39 1033.2 0.81

C-MAPSS RF 39.10 11.94 1318.47 -0.05
data set 2 LSTM 14.40 0.69 1125.27 0.87

GB 35.83 10.62 1419.90 0.11
SVM 34.04 1.64 1544.45 0.26

C-MAPSS RF 17.15 1.06 1165.26 0.80
data set 3 LSTM 14.13 0.72 1325.27 0.89

GB 16.37 1.44 1195.61 0.82
SVM 16.80 1.38 1208.86 0.81

C-MAPSS RF 36.15 8.73 1786.84 0.08
data set 4 LSTM 14.50 0.33 1689.35 0.86

GB 36.18 10.15 1960.93 0.07
SVM 32.86 1.11 2163.25 0.28

CALCE RF 13.77 4.62 - 0.88
battery LSTM 6.19 1.08 - 0.98

GB 14.11 4.74 - 0.87
SVM 13.36 5.07 - 0.88

IMS RF 76.6 40.43 - 0.601
bearing LSTM 102.4 79.42 - 0.61

GB 78.8 45.6 - 0.59
SVM 173.8 145.45 - 0.097

When investigating the ‘pos-neg’ scores on the different data sets, we see that the LSTM

performs the best on Data set 1, 2 and 4. On data set 2 and 4, where the LSTM well outperforms

the remaining regression models on RMSE, the ‘pos-neg’ scores are in the same range. This

suggests that the LSTM made more corrective errors than the remaining regression models.

When we consider the R2 score, we see that the LSTM outperforms the remaining regression

models with relatively large margins on Data set 2 and 4. The coefficient of determination

quantifies the degree of any linear correlation between the actual and predicted RUL values.

The low R2 score of the RF, GB and SVM on Data set 2 and 4 indicates that there is no linear
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correlation in the errors made of by these regression models. The RUL label decreases linearly

by one for every time step. If an ideal regression model- and sequential sensor readings are

used when making RUL estimates, the output forms a linear function. The LSTM proves to

be a superior regression model in data sets 2 and 4 with R2 scores of 0.87 and 0.86, where the

second best regression model scores are 0.26 (SVM) and 0.28 (SVM), respectively.

Comparing to related studies on the C-MAPSS data set

We summarise key results from previous studies on the C-MAPSS data set in Table 6.5. Heimes

(2008) first proposed making use of an RNN to exploit the sequential information in sensor

readings to estimate RUL in the C-MAPSS data sets. However, Heimes (2008) found that the

RNN struggled with early degradation estimations, owing to limited window length sizing. The

LSTM has shown to be the answer and achieve better RUL performance. We have also seen in

machine state estimation, that the LSTM outperforms the other classifiers in early degradation

classifications.

When we compare the our implementation of the LSTM with a previous implementation of the

LSTM (Zheng et al., 2017), we find it performs similarly. When we consider the difference in

the studies, Zheng et al. (2017) found optimal performance with a four layer 32, 32, 8, 8 neuron

architecture, where the final two layers are standard feed forward Neural Network layers. Zheng

et al. (2017) proposed exploration with different LSTM architectures. Our implementation of

the LSTM architecture has two fewer hidden layers, to reduce the number of model weights

and decrease model training times. We also investigate the effect of the batch size (m) which

will be discussed in Section 6.5.3 and is shown to improve model performance.

Table 6.5: The benchmark results of previous studies for RUL estimation on the C-MAPSS
data sets.

Study Data set number Method RMSE
Heimes (2008) 5 RNN 23.67
Peel (2008) 5 MLP 25.92
Wang (2010b) 4 TSBP 31.89
Zheng et al. (2017) 1 LSTM 16.14
Li et al. (2018) 1 DCNN 12.61

2 DCNN 22.36
3 DCNN 12.64
4 DCNN 23.32

Jayasinghe et al. (2018) 2 TCMN 20.45

Li et al. (2018) combines a CNN and an LSTM into a Deep Convolutional Neural Network
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(DCNN) architecture. The CNN creates a feature map from multiple sensor readings, which

is shown to improve model performance. In this study we apply a similar manual feature

engineering step, but could not improve model performance. It is therefore proposed to extend

this framework in future work with a similar architecture as proposed in Li et al. (2018).

Optimal RUL estimation results on the CALCE battery data set

For the CALCE battery data set, the LSTM is once again proves to perform best with an RMSE

of 6.19. All models perform obtain lower RMSE scores when compared with C-MAPSS data

set 2 and 4. This would indicate that performing RUL estimation on the CALCE battery data

set is a simpler task than on the more difficult C-MAPSS data sets. This result is corroborated

by the classification results in machine state estimation, where all models performed well on

the data set (refer to Section 5.4.2 on Page 57).

The pos-neg score is omitted for the CALCE battery- and IMS bearing data set owing to the

lack of error normalisation in the scoring function (the result will not be comparable with the

other data sets).

The LSTM outperforms the remaining classifiers on R2 score with 0.98 vs 0.88 (RF and SVM).

This would again suggest that the LSTM is a better regression model when performing RUL

estimation.

Comparison to related studies on lithium ion batteries

Table 6.6: The benchmark results of previous studies for RUP estimation on similar to the
CALCE battery data sets.

Study Battery Type Method RMSE
Xing et al. (2013) Lithuim-ion Polynomial re-

gression
0.1

Xing et al. (2013) Lithuim-ion PF 109
Zhang et al. (2018) Lithuim-ion SVM 32.61
Zhang et al. (2018) Lithuim-ion LSTM 16

Xing et al. (2013) compared a polynomial regression model with a Particle Filter (PF) when

performing remaining useful performance estimation on lithium ion batteries. Because of the

linear degradation profile present in the dataset the polynomial regression model fit the data

well. The reported PF RMSE performance was derived from only three reported error readings

(from three different degradation stages) by Xing et al. (2013). More testing is needed to verify

the result. A key finding was that the PF RUP performance increases as the batteries reach
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the failure threshold. This is once again corroborated by the per-class F1-score machine state

estimation results in Section 5.4.

Zhang et al. (2018) made use of an LSTM and an SVM to estimate RUP in a lithium ion

battery data set. The approach, although only two estimation results per model, showed both

the LSTM and SVM are efficient RUP prognostic models, even at different temperatures. This

is a common characteristic of the CALCE battery data set. The measurements taken were

done so at different temperatures to influence the rate of degradation. However this did not

influence the model performance in both machine state estimation and RUP estimation.

Optimal RUL estimation results on IMS bearing data set

The models performed poorly on the IMS bearing data set. The data set is a measurement of

the vibration experienced by a bearing when a radial load is applied to the bearing (Section

3.3 on Page 30). Four bearings are monitored simultaneously until failure. At failure after

three repeated experiments, two examples of outer race failure was present, one race defect and

one example of roller element defect was present. To create a run-to-failure data set, only the

bearings that proceeded to failure were used. This the data set is largely reduced. Upon visual

inspection, it was seen that the different failures have unique degradation profiles. The lack of

examples of particular degradation profiles lead to poor model performance. This highlights

the limitations of the supervised approach. Owing to the unique degradation profiles, if models

were trained on the data of a specific bearing and tested on another, then the model would not

have been trained on examples of the specific degradation profile and therefore perform badly

when used on the target bearing.

6.5.2 Comparison to related studies on bearing data sets

Table 6.7: The benchmark results for RUL estimation for the RF, LSTM, GB and SVM models
on the C-MAPSS, CALCE and IMS bearing data set, respectively

Study Battery Type Method RMSE
Zhao et al. (2017) LFGR LFGRU 8.3
Zhao et al. (2017) LFGR LFGRU 8.3

6.5.3 The effect of hyper parameter tuning

As in the machine state estimation problem, we investigate the effect of the RF, GB and SVM

model hyper parameters through a random search for 100 iterations over a grid of model hyper
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parameters.

We use C-MAPSS data set 1 to investigate the effects of hyper parameter tuning on model

performance.

Hyper parameters for the RF, GB and SVM model

In order to find best model hyper parameters we plot the results of the random search on

a four1 dimensional scatter plot. We select the best hyper parameters from the plot, using

the colour as an indicator of the best parameters. As an example we illustrate the plot for a

random forest in Figure 6.3. We follow a similar approach for the remaining classifiers. Hyper

parameter tuning improves RMSE performance for the RF, GB and SVM with 17.86%, 13.22%

and 21.22% respectively. The results are summarised in Table 6.8.

Figure 6.3: A four dimensional scatter pot showing the F1-score on a test set from C-MAPSS
data set 1 as a result of model hyper parameter tuning for a RF model. We use a pointed to show
that the optimal hyper parameters are shown as n_estimators = 1000, min_samples_split
= 5, param_max_depth = 10.

Hyper parameters for the LSTM model

The effect of varying the LSTM sample window length (m) and batch size (Nb) are shown in

Figure 6.4. We see that the sample window length has an impact on the RMSE of the LSTM,

with a RMSE of 47.75 when using a sample window length of 30 versus a RMSE of 13.5 when
1Colour is used as the fourth dimension to indicate the best test scores
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Table 6.8: Effect of hyper parameter tuning on the mean RMSE tested on a unfiltered validation
set from the CMAPSS data set 1

Model Most influential
model hyper parameter

Optimal
value

RMSE
variation

Mean RMSE score

RF Samples per split 2 3.45 15.86
GB Number of estimators 1500 2.37 15.56
SVM C 1 4.83 17.40
LSTM Sample window length (m) 120 34.25 13.50

Batch size (Nb) 64 1.68 16.73

using a sample window length of 120. The R2 ratio also improves from 0.4344 to 0.8261, which

indicates an increase in correlation between predicted RUL- and actual RUL estimates.

As the window length increases, there is a decrease in the number of training and testing

samples. More specifically the increase in window length causes the training data to reshape

from 12030, 30, 24 to 5730, 120, 24 (number of batches, window length, number of features,

respectively). With a larger window length less sample windows fit into a machine degradation

cycle.

One would think that owing to the reduction in samples, one should pad the samples with

zeros or repeated sensor readings from early degradation to increase the number of samples

from 5730, 120, 24 to 12030, 120, 24. However, owing to the piecewise linear function (setting

RUL labels of greater than 120 to 120) and how similar sensor readings in early degradation

are, the LSTM learns to estimate the padded batches of sensor readings to RUL of 120. The

result is a reduction in RMSE score to 11.85 on C-MAPSS data set 1. Therefore the result is

discounted and the original reduced number of samples are used.

When making prognostic estimations using a window of sensors one must consider the size of

the window length relative to the number of sensor readings in a machine degradation cycle.

As an example, the mean number of sensor readings in a degradation cycle in C-MAPSS data

set 1 is 205 readings, with the smallest number of readings being 134. If we consider a window

length of 120 sensor readings, then in the case of 134 sensor readings in a degradation cycle,

there would only be 14 estimations made during degradation (given no zero padding has taken

place). This could possibly not leave sufficient time to allow for maintenance planning.

Furthermore, in the case of the C-MAPSS data sets, model performance increases in later stages

of degradation owing to the sensor readings being more distinguishable in these stages (refer

to Section 5.4.3 on Page 60). A larger sample window length, results in less batches containing

readings of only early degradation. Thus, model performance appears to improve when tested
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(a) The effect of sample window length (m) on RMSE

(b) The effect of batch size (Nb) on RMSE

Figure 6.4: The effect of sample window length (m) and batch size (Nb)
on RMSE, tested on C-MAPSS data set 1.

with larger sample window batches. However this is not due to more predictive information in

larger sample windows but rather the model estimates on less examples of early degradation.

With an increase in batch size, there is also an increase in the model performance. The change

in RMSE from batch size 10 to batch size 64 is 1.7 (from 18.4 to 16.73). When compared to the

effect of sample window length, the batch size has little effect. Smith et al. (2017) discuss the

benefits of an increased batch size, such as fewer parameter updates and avoiding local minima

during model training.

6.5.4 Effect of de-noising

The moving average (MA) filter acts as a low pass filter (refer to Section 4.3.1 on Page 4.3.1

for a discussion on the properties of a MA filter) and therefore reduces information present at

higher frequencies. We remind the reader that in the results of the machine state estimation
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problem, in Section 5.4.5 on Page 65, the LSTM and RF model performance decreased when

trained and tested on denoised data.

Effect of de-noising on the LSTM model

A similar effect is observed in the RMSE scores for RUL estimation as in machine state esti-

mation. When training and testing on filtered data the LSTM achieves a RMSE score of 34.65.

Comparatively, when training and testing on non-filtered data the LSTM achieves a RMSE of

13.50. This represents an increase of 61.03 % and shows that the LSTM is sensitive to noise.

In Table 6.9 we summarise the result of the regression models when training and testing on

de-noised data from C-MAPSS data set 1.

Table 6.9: The RMSE and R2 scores of the regression models trained and tested
on noisy and de-noised data. All the regression models perform better when using
noisy data. The test is performed on C-MAPSS data set 1.

Filter Model RMSE R2
MA filter RF 17.74 0.78

LSTM 34.65 0.21
GB 18.75 0.77
SVM 19.21 0.76

No filter RF 16.33 0.80
LSTM 13.50 0.89
GB 16.34 0.83
SVM 17.46 0.81

Effect of de-noising on the RF-, GB- and SVM model

The RMSE scores of RF, GB and SVM decreased with 7.94 %, 12.85 % and 9.11 %, respectively,

when trained on noisy data. This is proportionally smaller than the 61.03 % of the LSTM.

This suggests that the RF, GB and SVM are more robust to the effects of noise when training

and testing on C-MAPSS data set 1. This is further supported by the results in Section 5.4.5

on Page 65 where the F1-scores of the RF, GB and SVM vary proportionally smaller than the

F1-score of the LSTM. This is once again due to the LSTM being less susceptible to local sensor

reading variations, because of the time window used when making estimations.
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6.6 Discussion of results

6.6.1 General model performance

The LSTM achieves the best results for RUL estimation on the C-MAPSS and CALCE battery

data sets. The largest disparity in RMSE and R2 between the LSTM and the remaining

regression models occur on the data sets where there are more training samples present, as in

the case of C-MAPSS data set 2 and 4.

The result is supported by the LSTM performing the worst on the IMS bearing data set

(where the least training samples are present after feature engineering) and the machine state

estimation results on the same data sets (Section 5.4.5 on Page 65).

In the case of the IMS bearing data set, the total number of sensor readings were relatively few (8

640) when compared to C-MAPSS data set 2 (53 758). There were three different failure modes

present in the data (inner race defect, roller element defect and outer race failure), which were

present in different bearings at the end the three repeated simulations. In all three experiments,

there were only four failures present at the end of the simulations. This is accentuated when

the data is split into training, validation and testing data where two failures are present in the

training data and one failure in the validation and test data. Thus the deep-LSTM performs

poorly on the IMS bearing data set (Bishop, 1995) and (Reed and Robert, 1999).

6.6.2 Effect of hyper parameters

Hyper parameters tuning has a significant impact on the performance of the RF, GB and SVM

with improvements on RMSE of 17.86%, 13.22% and 21,22%, respectively. Overall, the RF and

GB performed similarly on RMSE and R2 over all the data sets, while the SVM performed the

poorest.

The LSTM proved to be sensitive to the time window (Ntw) and batch size (Ns) hyper parame-

ters, as is true for the LSTM in machine state estimation. A key consideration when selecting a

sample window length is the size of the window length relative to the number of sensor readings

in the machine degradation cycles in a data set. This is because there is a delay between the

initial reading and the first prognostic estimate of a sample window length.

The LSTM model performance increases with 71.73 % with a selected sample window length of

30 to 120, respectively. This is owing to two reasons. First, there is extended temporal infor-

mation contained in an extended time window. Second, the extended time window reduces the
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number of estimates made in early degradation (owing to the delay between the initial reading

and the first prognostic estimate mentioned). It is simpler task to correctly estimate RUL

approaching failure on the C-MAPSS and IMS bearing data set because the model recognises

the larger variation in these sensor readings. This is also shown to be true in machine state

estimation with an increase in the F1 per class score as machines approach failure (Section

5.4.3 on Page 5.4.3).

An increase in batch size also improved the LSTM model performance, although it was not

as important as the sample window length hyper parameter. Batch size causes a variation in

RMSE score by 9.13 % when tested on C-MAPSS Data set 1 when varied selected to be Ns = 10

and Ns = 64.

Overall the RF, GB and SVM prove to be less sensitive to model hyper parameters than the

LSTM. A sensible model development strategy is to perform initial tests with an RF and then

proceed to more complex models such as a LSTM.

6.6.3 Effect of noisy data

Training on noisy data increases RF and LSTM model performance in the machine state esti-

mation problem. In RUL estimation, all four models performed better when trained on noisy

data. The LSTM RMSE score improves with 61.04 % when training on noisy data vs de-noised

data. The RF, GB and SVM perform 7.94 %, 12.86 % and 9.11 % better, respectively, when

trained and tested using noisy data.

6.7 Summary of results

The overall best performing prognostic model for the RUL estimation is the LSTM, which

has the advantage of using the sequential information available in a window of readings when

making a RUL estimate. Local sensor variations due to noise causes the RF, GB and SVM to

make errors when estimating RUL. The LSTM is also no succeptable to making RUL estimation

errors because of noise due to the window of sensor readings used when making estimates. These

findings are corroborated by similar studies ((Heimes, 2008), (Zhao et al., 2017) and (Li et al.,

2018)).

The RF, GB and SVM are sensitive to hyper parameter tuning when used to perform RUL

estimation. The RMSE of the RF, GB and SVM improves with 17.86%, 13.22% and 21.22%
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respectively, when performing hyper parameter tuning.

The effects of varying the LSTM sample window length (m) and batch size (Nb) were investi-

gated. The sample window length which resulted in the lowest RMSE is found to be 120 (when

tested on C-MAPSS data set 1). However, this is because the increased window length causes

less prognostic estimates to happen in early degradation which, from the results in per-class

F1-score in Section 5.4.2, is shown to be a more difficult task. There is also a time delay be-

tween a sensor reading and a prognostic estimate which must be considered with an increase

in the sample window length. A batch size of 64 results in the lowest RMSE score, however

the fluctuation in RMSE (1.7) due to batch size is smaller than the fluctuation in RMSE due

to sample window length (34.25).
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Chapter 7

Optimal maintenance scheduler

7.1 Overview

An optimal maintenance scheduler (OMS) is used to reduce machine downtime while simulta-

neously reducing maintenance costs. We discuss the background for maintenance scheduling in

Section 2.4 starting on Page 19.

If we have a system that consists of a fleet of degrading machines, where the degradation cycle

lengths of machines are random (failures occur at random times) and there is a cost to repair

machines, then three characteristics of the system should be known to perform maintenance

scheduling optimally. These characteristics are the health of the machines, the reliability struc-

ture of the system and the cost of performing maintenance throughout a machine degradation

cycle.

In this chapter, we implement an OMS on C-MAPSS data set 1. We use C-MAPSS because of

the number of machines in the data set which have varying degradation lengths.

To estimate the health of the machines we use the classifiers developed in Machine State

Estimation (refer to Section 5.4). Next, in Section 7.3, we discuss the costs associated with

performing maintenance. Finally, in Section 7.4, we perform two simulations to compare the

costs associated with an ideal, statistical and data-driven model based OMS. We investigate

the effect of using the different classifiers (RF, GB, SVM and LSTM) on the total maintenance

cost of the simulations.
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7.2 System health estimation

The health of a system refers to the system’s ability to produce output. It is therefore depen-

dant on the state of the machines within the system and the reliability structure between the

machines (refer to Section 2.4.2 on Page 22).

To get an estimate of the state of the machines within a system, we make use of the machine

state estimation models implemented in Chapter 5. Recall that the input to these models are

the sensor readings from sensors placed on components of machines indicating degradation of

the machines. The output of the models is a classification of the sensor readings into a state

representing stages of machine degradation. These stages are summarised in Table 7.1. We will

make use of random forests (RF), gradient boosted (GB) trees, support vector machines (SVM)

and a long short-term memory recurrent neural network (LSTM) to assign the class labels to

the sensor readings and investigate the effect of a better performing classifier on maintenance

costs and the number of machine failures. The LSTM has shown to be the best performing

classifier on the data sets used in this work (refer to Section 5.4).

Table 7.1: The class labels used in machine state estimation. For Class 0, the
machine is less than 30 time steps from failure. For Class 1, the machine is
between 30 and 60 time steps from failure. The pattern is followed for Class
2 and 3. All the sensor readings greater than 120 time steps from failure are
considered Class 4.

Class
number

Label Number of time steps

0 (0) 0 < fail < 30 30
1 (1) 30 ≤ fail < 60 30
2 (2) 60 ≤ fail < 90 30
3 (3) 90 ≤ fail < 120 30
4 (4) fail > 120 remaining

7.3 Maintenance costing

The cost of performing maintenance on a fleet of machines is distinct to a system owing to key

factors, such as the cost of resources and components, machine conditions, downtime costs and

the system reliability structure.

A study can be performed to obtain the costs associated with performing maintenance on a

machine. Such a study has not been performed for the C-MAPSS data set, therefore we will
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make cost assumptions as in other similar studies (Cadini et al., 2009), (Verbert et al., 2017),

(Nguyen et al., 2015), (Maillart and Pollock, 2002).

We assume that preventative maintenance costs (the cost of performing maintenance before

failure) are less than corrective maintenance costs (the cost of performing maintenance after

failure). This is necessary, otherwise there is no point in performing preventative maintenance.

7.3.1 Preventative maintenance costs

We assume that a machine has three preventative maintenance costs and all of them are con-

stant. We summarise the costs in Table 7.2 and show them in Figure 7.1. The cost of performing

Table 7.2: The preventative costs associated with performing maintenance before
failure

Preventative costs Description
c1 Call-out fee for a resource to perform an inspection before perform-

ing maintenance.
c2 Cost of performing preventative repairs.
c3 Component replacement costs.

early maintenance (the cost of a false positive) is not accounted for on a machine level. Rather,

the downtime of machines can be scheduled efficiently with preventative maintenance. We

therefore assume the preventative downtime costs to be zero.

7.3.2 Corrective maintenance costs

The corrective maintenance costs are incurred after failure. The assumed corrective mainte-

nance costs are summarised in Table 7.3 and shown in Figure 7.1. We assume the cost of

Table 7.3: The corrective costs associated with performing maintenance after
failure

Corrective costs Description
c1 Call-out fee for a resource to perform an inspection before perform-

ing maintenance.
c3 Component replacement costs.
b4 Downtime costs increase linearly with gradient b4 after failure has

occurred.
c5 Cost of performing corrective repairs after failure has occurred.

components before and after failure are the same. Since we will be using the C-MAPSS data
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(a) The inspection cost, c1, for a machine
(b) The cost of performing repairs before, c2
and after failure, c5

(c) The cost of replacing components, c3
(d) The cost of downtime increases linearly
with b4 after failure

Figure 7.1: The assumed preventative and corrective maintenance costs associated with per-
forming maintenance on a single machine throughout degradation.

sets to perform maintenance scheduling, we do not have insight into component replacement

costs.

When a machine is in a failed state, the machine cannot produce output. We account for the

associated costs with a linearly increasing cost with a gradient of b4 for each time step after

failure.

The cost of performing repairs is related to the skill and time required by a resource to perform

maintenance. When a machine is in a failed state, it usually requires more labour to restore

the machine. We therefore assume that c5 > c2.

7.3.3 Costs in simulation

A single machine failure can impact the maintenance costs of multiple machines, dependant on

the reliability structure of the system. For the simulations in this study we will assume a parallel

reliability structure (refer to Section 2.4.2 on Page 22). This means the repair and resulting

maintenance cost of a machine is independent of other machines. The cost of maintenance
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within a system is given by

CMj,i
=

c1 + c2 + c3 n < Nfj

c1 + c3 + b4(n−Nfj) + c5 n ≥ Nfj

, (7.1)

where CMj,i
refers to the cost of maintenance for the j-th machine in the i-th maintenance cycle,

n refers to the current time step and Nfj refers to the time step at failure. A maintenance cycle

is referred to as the number of times a machine has been restored to an as-good-as-new state.

If c2 > c5, then we can easily derive the optimal time to perform maintenance on an individual

machine is n = Nfj − 1 (since b4(n−Nfj) decreases to 0).

For the parallel reliability structure, the total cost of maintenance within the system is the sum

of the maintenance costs for all the machines through all the maintenance cycles. This is given

by

C =
I∑
i=1

J∑
j=1

CMj,i
, (7.2)

where C refers to the total maintenance cost of a system, J is the total number of machines

and I refers to the number of repairs performed on a machine. In the C-MAPSS data set, the

degradation cycle lengths of machines are different, therefore some machines would experience

more maintenance cycles than others.

7.4 Simulations and results

In this section, we perform two simulations to measure the efficacy of maintenance strategies on

the total maintenance cost of a system. In the first simulation, we compare a traditional time-

between failure maintenance strategy with a policy-based PdM maintenance strategy (refer

to Section 2.2.2). In the second simulation we investigate the effect of using thresholding on

machine intervention intervals and the resulting maintenance costs.

For the policy-based approach in both simulations, we calculate the lowest achievable mainte-

nance cost using an oracle.

7.4.1 Failed state

A failed state is when a machine does not produce output and requires corrective mainte-

nance to be restored to an as-good-as-new state (functional state). Consequently a corrective

maintenance cost will be incurred.
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In the C-MAPSS data sets machines are in a failed state at a RUL of zero. There are no sensor

readings of machines past RUL of zero. Because of this, in our simulations we redefine when a

machine passes to a failed state. We will assume a machine is in a failed state after degrading

into State 0 and not receiving maintenance for 15 time steps. In other words, the machine is

in a failed state when the actual RUL of the machine is 15 or less. If a machine degrades to a

RUL of 0, the machine is restored and a corrective maintenance cost.

In real-world applications the failed state will continue until a repair occurs. We show the failed

state of the simulation in Figure 7.2.

Figure 7.2: A machine is considered failed when remaining in State 0 for 15 time steps without
maintenance.

7.4.2 Assumptions

The following assumptions are made for the machines in C-MAPSS data set 1.

• Component level information is not available, therefore an entire machine is restored when

maintenance is performed.

• When maintenance is performed, a machine is restored to an as-good-as new state.

• A resource performing maintenance can do so on many machines simultaneously, reducing

the cost of performing maintenance (only a single inspection cost).

• The maintenance costs associated with the machines, described in Section 7.3, are as-

sumed to be known.

• The machines are continuously degrading and no self-restoration mechanism is available.
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• The machines are running continuously.

• There is no delay between sensor readings, prognostic model estimates and maintenance

performed.

• A machine is in a failed state with a RUL of less than 15 time steps.

• If a classifier does not classify a machine in State 0 before reaching a RUL of 0, then

corrective maintenance is performed.

7.4.3 Simulation 1

We compare the cost of maintenance of a Mean Time Between Failure (MTBF) based mainte-

nance scheduler with a PdM based maintenance scheduler. For the simulation we monitor the

states of Machines 91 to 100 from C-MAPSS data set 1 while allowing them to degrade simul-

taneously. When the MTBF and PdM based strategies estimate that preventative maintenance

is required on a particular machine, the machine is restored and a preventative maintenance

cost incurred.

The simulation runs for 1 000 time steps. We show the different degradation lengths, Nf , of

machines in C-MAPSS data set 1 in Figure 7.3. Machines 0 to 70 were used for training, 71 to

90 for validation and 91 to 100 for testing and the simulation.

Figure 7.3: The Nf of the machines in C-MAPSS Data set 1.
The Nf varies between 128 and 362 time steps with a mean of
205 and a standard deviation of 41.9.
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Time-based maintenance strategy

The MTBF is a time based maintenance strategy that uses the time between failures to estimate

maintenance intervals for machines. In a MTBF maintenance strategy, one must determine the

interval in which maintenance will occur. An early approach was to divide the total number of

operating hours with the total number of machines in a system, (Moubray, 2001) that is,

MTBFinterval =
total number of operating hours

number of machines
.

However this approach does not account for the unique degradation lengths of machines within

the system.

Another approach is to determine the optimal maintenance interval through an iterative ap-

proach by increasing the maintenance interval length until maintenance costs are reduced. In

a real world setting, this is not practical as machines are non-ideal (degradation cycle lengths

with vary for machines between repair cycles) and many iterations will be required to determine

the best maintenance interval.

A final approach is to dynamically update the maintenance interval after measurement of the

state of the machines (through inspections or sensor readings). The time to failure can then

be modelled as a distribution (typically a Weibull distribution (Zhang and Nakamura, 2005)).

The simulation costs and parameters are summarised in Table 7.4.

This approach is considered outside of the scope of this work. Instead the lowest cost of

maintenance achievable with the MTBF strategy is investigated through an iterative simulation.

We iteratively increase the maintenance interval of the MTBF strategy by 10 time steps from

10 until 360 and observe the effect on the overall maintenance cost (shown in Figure 7.4). This

information would not be available in a real world setting, but does give an indication on the

best achievable performance of the MTBF strategy. We summarise the approach in Algorithm

1 with the model parameters in Table 7.4.

The degradation cycle length (shown in Figure 7.3) for C-MAPSS data set 1 varies between 128

and 362 time steps with a mean of 205 and standard deviation of 41.9. With low maintenance

intervals (less than 100) there are high early maintenance costs owing to unnecessary early

preventative repairs. Specifically with a maintenance interval of 10, 550 machines are repaired

(with no machine failures) with a total maintenance cost of 250 000 for the simulation. Whereas

with a maintenance interval of 380, 43 machines are repaired (only corrective maintenance

occurs) with a total maintenance cost of 20 425. The lowest total maintenance cost of 16 825
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Table 7.4: OMS Simulation 1 parameters to compare the performance of a MTBF
model and a data-driven PdM model

Simulation 1
Costs Variable Value
Inspection cost c1 50
Early repair cost c2 100
Cost of components c3 100
Cost per downtime cycle b4 5
Failure repair cost c5 300
Parameters Variable
Total maintenance cost C
Machine ID machine_id
Current cycle cur_cycle
Current sensor readings cur_sens
Maintenance interval maint_int
Estimated machine state mach_state_est
Actual machine state mach_state_act
LSTM sample time window Ntw

Amount of time steps since previ-
ous maintenance

time_since_maint

Function description Variable
Machine maintenance history maintenance_history
Reset sensor readings perform_maintenance
Add machine to list for mainte-
nance

add_machine_to_maint_list

Reset maintenance list reset_maint_list

Algorithm 1: MTBF maintenance strategy OMS simulation: Find the optimal maintenance
interval
for maint_int = 10 to 360 inc 10 do

cur_cycle = 0
C = 0
while cur_cycle < 1000 do

cur_cycle = cur_cycle + 1
for machine_id = 91 to 100 do

time_since_maint = maintenance_history(machine_id)
if RUL == 0 then

C = C + c1 + c3 + b4 ∗ 5 + c5
perform_maintenance(machine_id)
update(time_since_maint, machine_id, cur_cycle)

end
else if prev_maint >= maint_int then

C = C + c1 + c2 + c3
perform_maintenance(machine_id)
update(time_since_maint, machine_id, cur_cycle)

end
end
save(maint_int, C)
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Figure 7.4: Overall simulation maintenance cost vs the mainte-
nance interval used per machine of a MTBF maintenance strat-
egy. A maintenance interval of 150 results in the lowest cost of
16 625.

is achieved with a maintenance interval of 150. This results in 61 machine repairs, of which

seven are corrective maintenance. Machine 91 has a degradation cycle of 135 time steps (which

is less than the 140 maintenance interval), which is the reason for the seven failures.

Policy-based PdM maintenance strategy

A policy is a rigid set of rules used in a maintenance scheduling strategy to reduce system

maintenance costs. In the case of a policy-based PdM maintenance strategy, the policy is

applied to the output of the classifiers.

Policy 1: perform maintenance when a classifier estimates a machine to be in State 0. Owing to

the variable degradation lengths of machines in the C-MAPSS data sets, dynamic maintenance

scheduling will occur as a result of the policy. If a machine is not in a failed state when the

classifier estimates a machine to be in State 0, then the machine is repaired and a preventative

cost will be incurred. If a machine is in a failed state when the classifier estimates the machine

to be in State 0, then the machine is repaired and a corrective cost will be incurred. If the

machine proceeds to a RUL of 0, then the machine is repaired and a corrective cost is incurred.

The policy-based PdM maintenance strategy is summarised in Algorithm 2.

The LSTM is used as the prognostic model for Simulation 1 (the effect of using different

prognostic models will be investigated in Simulation 2). The result of the simulation is 53

machine repairs (all preventative repairs) with a total maintenance cost of 13 250.
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Algorithm 2: Policy-based PdM OMS simulation
cur_cycle = Ntw

C = 0
while cur_cycle < 1000 do

cur_cycle = cur_cycle + 1
for machine_id = 91 to 100 do

mach_state_est, _ = prognostic_model(cur_sens)
if RUL == 0 then

C = C + c1 + c3 + b4 ∗ 15 + c5
perform_maintenance(machine_id)
save(prev_maint, machine_id, cur_cycle)

end
if mach_state_est == 0 and RUL > 15 then

C = C + c1 + c2 + c3
perform_maintenance(machine_id)
save(prev_maint, machine_id, cur_cycle)

end
else if mach_state_est == 0 then

C = C + c1 + c3 + b4 ∗ (15−RUL) + c5
perform_maintenance(machine_id)
save(prev_maint, machine_id, cur_cycle)

end
save(maint_int, C)

end

Policy-based oracle maintenance strategy

To obtain the lowest achievable maintenance cost and benchmark the previous results, we make

use of an oracle to run the policy based approach on the actual machine degradation states.

With this strategy, maintenance is performed one time step before a machine passes into a

failed state. The result is 48 total repairs (with 0 failures) at a total maintenance cost of 10

968. The simulation results are summarised in Table 7.5.

Table 7.5: The maintenance cost, failures and repairs experienced when using an ideal,
MTBF and policy-based LSTM maintenance strategy

Simulation 1 Results
Model Maintenance

cost
Failures Repairs

Policy-based oracle OMS 10 968 0 48
MTBF OMS 16 825 7 61
Policy-based PdM OMS 13 250 0 53
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7.4.4 Simulation 1 discussion

The benefit of the PdM maintenance strategy over the MTBF strategy is seen in machines

with longer degradation cycles. For example, in the MTBF strategy, if a machine fails after

350 time steps but is repaired after 150 time steps, then 200 time steps are lost. This will be

highlighted in an extended simulation as the total number of unnecessary preventative repairs

will increase. In Simulations two we will investigate the effect over an entire simulation.

The policy-based PdM strategy outperforms the MTBF time-based strategy with a reduction

in cost of 3 575, which equates to 21.25%.

7.4.5 Simulation 2

In this simulation, we investigate the effect of the quality of a classifier and the policy on the

total maintenance cost of the policy-based PdM maintenance strategy. We reduce the cost of

performing maintenance by sharing the inspection costs of machines in similar states.

Policy 2: when a machine is classified as State 0, find other machines in the same state and

perform maintenance on these machines simultaneously. We assume that the inspection cost,

c1, can be shared for these machines. By reducing the inspection cost we reduce the total

maintenance cost in the 1 000 time step simulation.

One approach to achieve this goal is to delay the maintenance on a machine and allow more

machines to pass into State 0. If more machines pass into State 0, we can perform maintenance

on them as well. In other words, once a machine is classified as State 0, wait n time steps

before performing maintenance on the machine. After the n time steps, perform maintenance

on all machines classified as State 0. We should note that waiting n time steps increases the

likelihood of failure of a machine.

Another approach is to make use of classifier confidence thresholding to delay maintenance.

When a machine degrades into a state, the classifier class likelihood (softmax output layer

score for RF, GB and LSTM and regularised maximum likelihood score for SVM) increases for

that state. We show the class likelihoods of the different states for Machine 96 of C-MAPSS

data set 1 throughout degradation in Figure 7.5 for an example. We see that the classifiers can

more clearly distinguish sensor readings in Class 0, with higher class likelihood scores for both

the LSTM and SVM when the machine passes into this state (when compared to Class 1, 2 and

3). This is corroborated by findings in machine state estimation, Section 5.4.3 on Page 60. We
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(a) The softmax output scores of the LSTM for machine 96 of CMAPSS data set
1

(b) The regularised output class probabilities of the SVM for machine 96 of
CMAPSS data set 1

(c) The true class label of the machine state throughout the machine life cycle

Figure 7.5: The LSTM and SVM class likelihood scores (softmax output layer for LSTM and
regularised maximum likelihood score for SVM) change dynamically as the machine degrades
through the five states until failure.

can delay maintenance on a machine by waiting until the class likelihood of State 0 reaches a

certain threshold. We then perform maintenance on the other machines also classified as State

0, without thresholding.
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Results

We investigate the effectiveness of the second approach through an iterative simulation. We run

the 1 000 time step maintenance scheduling simulation using the policy-based PdMmaintenance

strategy and Policy 2 for different State 0 class likelihood thresholds. We then iteratively

increase the threshold from 0.1 to 1 with 0.1 increments to see the effect of maintenance costs.

The approach is summarised in Algorithm 3.

Algorithm 3: OMS simulation: Delay maintenance with confidence threshold and perform
multi-machine maintenance when possible.
threshold = 0.1
while threshold <= 1 do

cur_cycle = 0
C = 0
maint_list = []
while cur_cycle < 1000 do

cur_cycle = cur_cycle + 1
for machine_id = 91 to 100 do

state_est, conf_state_0 = prognostic_model(cur_sensor_readings)
maint_flag = False
if RUL == 0 then

C = C + c1 + c3 + b4 ∗ 15 + c5
perform_maintenance(machine_id)
update(prev_maint, machine_id, cur_cycle)

end
if conf_state_0 >= threshold then

maint_list = add_machine_to_maint_list(machine_id)
maint_flag = True

end
else if state_est == 0 then

maint_list = add_machine_to_maint_list(machine_id)
end
if maint_flag == True then

C = C + c1
for mach_id in maint_list do

C = C + c2 + c3
perform_maintenance(mach_id)
update(prev_maint, mach_id, cur_cycle)

end
reset_maint_lists(maint_list)

end
threshold = threshold + 0.1

end

The results are summarised in Figure 7.6, where the total maintenance cost of the RF-, GB-,

SVM- and LSTM-based PdM maintenance scheduling approaches for different thresholds are
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shown.

At a threshold of 0.1, the RF-based maintenance scheduling performs preventative maintenance

66 times in the simulation. When we compare this with the 53 repairs achieved by the LSTM-

based PdM OMS from Simulation 1, then we see that 13 machines were repaired early owing

to Policy 2. These extra repairs are due to noisy sensor readings which cause the prognostic

model to mistakenly classify a machine as Class 0.

(a) The SVM achieves the minimum total maintenance cost at thresh-
old 0.9 with 50 preventative maintenance repairs. The remaining RF,
GB and LSTM-based policies achieve their minimum with 51 preven-
tative maintenance repairs (no corrective repairs) at their respective
thresholds.

(b) Tabulated costs of maintenance at different thresholds for the RF-,
GB-, SVM- and LSTM-based maintenance scheduling simulation.

Figure 7.6: Total maintenance cost as a function of the thresholds used in the 1 000 time step
maintenance scheduling simulation using Policy 2 for the policy-based PdM strategy. At lower
thresholds, higher costs are owing to early preventative maintenance, while at higher thresholds
it is owing to corrective maintenance.
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At the optimal thresholds the RF-, GB- and LSTM-based approach performs 51 preventative

repairs (no corrective repairs), while the SVM-based approach performs 50 repairs. When we

compare with the 53 machines repaired in Simulation 1, then owing to Policy 2 there is 2 and

3 machine repairs fewer (the maintenance was shared with other machines). Application of

Policy 2 will scale with more machines. As more machines are used in the simulation more

simultaneous repairs can occur meaning that Policy 2 will be more effective.

The costs at higher thresholds are due to machines passing into a failed state where corrective

repairs occur. In total 43 corrective repairs are performed throughout the simulations, with no

preventative repairs and no shared maintenance.

Discussion

It can be seen that the RF-, GB- and SVM-based PdM maintenance scheduler performs as

well and better than the LSTM-based PdM maintenance scheduler at optimal thresholds. This

is because the classification task is essentially a binary classification task and we have already

seen that when classifying Class 0 sensor readings in C-MAPSS data set 1 all classifiers perform

well (refer to Section 5.4 on Page 5.4). However, if the classifier performs poorly early preven-

tative repairs will be performed, as in the case of the RF at low thresholds. The LSTM-based

PdM maintenance scheduler performs better than the remaining classifiers at lower thresholds

(threshold < 0.5). We have seen the LSTM outperforms the remaining classifiers on C-MAPSS

data sets in machine state estimation, therefore it is still recommended to use the LSTM in the

policy-based PdM maintenance scheduling.

The computational cost of the Ideal model and optimal policy-based PdM maintenance strate-

gies scale linearly with the number of machines present and the number of cycles in the sim-

ulation. Once a model has been trained, be it an LSTM or a RF, the time to perform an

estimation is the same. Therefore there is not advantage to using a RF, GB or SVM over an

LSTM after training the model.

The results of the MTBF, Ideal model and optimal policy-based PdM maintenance strategies

are shown in Figure 7.7. The Ideal model is an oracle based approach to the policy-based PdM

maintenance scheduling simulation. It provides insight as to the best possible total maintenance

achievable with the strategy when applying Algorithm 3, with a total maintenance cost of 10550.

We have shown how a policy-based PdM maintenance scheduler can be used to effectively
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Figure 7.7: The total maintenance cost of a MTBF maintenance
strategy compared with a policy-based PdM strategies through-
out a simulation of 1 000 sensor readings. An ideal model (which
makes use of an oracle) is included to show the theoretical min-
imum achievable costs in the simulation.

perform predictive maintenance. When compared to a traditional statistical (MTBF) approach

the policy-based PdM maintenance scheduler performs 45.11% better.

We then implemented a static policy to further reduce the maintenance cost and showed how ef-

fective a static policy could be (23% improvement). We investigated the effect of using different

machine learning models in the policy-based approach by comparing the overall maintenance

costs. Although the costs are assumed values, large improvement indicates that there is value

in using a policy-based PdM maintenance scheduler approach over a MTBF-based maintenance

scheduler.

From the simulations we see that using a performing preventative maintenance with a PdM

approach over a MTBF approach is advantageous, however using an advanced classifier such

as an LSTM, does not have bearing to the success of the maintenance approach. It is therefore

recommended to perform PdM with a traditional model, such as a RF, with faster training

times.
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Chapter 8

Software

8.1 Overview

The aim of the software developed in this study is to enable future researchers with a framework

that can be used to test prognostic modelling and maintenance scheduling approaches. The

code base was created to be reproducible, re-usable, modular and simple. In Section 8.2 we

describe a typical experiment workflow, where a workflow refers to the process of converting

raw sensor values to maintenance scheduling results visualised in a live dashboard. The process

is shown in Figure 8.1. Then in Section 8.4 we discuss the code layout, designed to facilitate

reproducible results. The code base is available on a private GitHub repository and can be

accessed upon approval by Stellenbosch University. The readme of the code base is available

in Appendix A.

8.2 Experiment workflow

All unique experimental results are stored when using the code base. When performing prog-

nostic modelling, a result can be unique due to the data preprocessing, model hyperparameters

and model type. When performing a maintenance scheduling simulation, a result can be unique

due to data preprocessing, model type, policy and costing parameters. Every experiment makes

use of a project file to perform data preprocessing, set model parameters for training or load ex-

isting models. Flags are set in the project file to specify an experiment configuration and adjust

model hyper parameters for the experiment. The flags are included in the resulting data and

model naming conventions. For example, the ‘perform preprocessing’ and the ‘moving average

filter’ flags can be set to ‘True’ to enable data to be passed to the filter during preprocessing.
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A user can then reproduce the experiment using the same configuration or using the resulting

processed data and model by setting the appropriate load flag to ‘True’.

If the user wishes to perform a maintenance scheduling experiment, it requires a trained prog-

nostic model and processed data set (containing a testing data set for unique machines). The

training of the prognostic model happens in a separate process to the maintenance scheduling

process as shown in Figure 8.1.

Figure 8.1: Overview of the components of an experiment workflow.
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Prognostic modelling

Initially, all the raw sensor readings of each data set are stored in the Database of raw sensor

readings, shown in Figure 8.1. Data is loaded using an extract, transform and load (ETL)

function that is unique to a data set.

Next, the data is split into a training-, validation- and testing data set in a repeated k-fold

splitting process (discussed in Subsection 4.3). Each data split is saved in a separate directory,

to allow for future investigation of unexpected results. It also allows for reproducibility.

The relative states of the machines in the data sets are not known until a failure occurs.

The sensor readings need to be retrospectively labelled for time of failure. Therefore, during

preprocessing the class and RUL labels are created for the machine state estimation and RUL

estimation experiments respectively.

When a user wishes to perform data normalisation during training, the resulting data scaling

artefact is saved and applied to the validation and testing data. The data scaling artefact

follows the same naming convention as the processed data and model of the experiment with

the inclusion of a ‘z-score’ or ‘min-max ’ normalisation flag, to indicate the applied normalisation

technique.

When performing prognostic modelling using the RF, GB or SVM, a user can set the opti-

mal search flag to specify if an optimal parameter search over a parameter grid should be be

performed.

When performing prognostic modelling using the LSTM, a user can set the batch size and

sample window length in the experiment project file. The experiment model and results will

contain these parameters in the name. The LSTM- experiment’s training and testing curves

are also available to the user with the appropriate naming conventions.

If a user wishes to evaluate an existing model in the model store, the model pickle file and

testing data can be retrieved from the model store and database of processed data, shown in

Figure 8.1. A user will specify a model pickle file and processed testing data through the flags

and parameters in the project file. By forcing the user to reload the model with the appropriate

model parameters and validation data, consistent results are achieved. Following this process

allows for reproducibility, modularity and allows for a significant speed increase in reproducing

results.
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Maintenance scheduling

As previously mentioned, the maintenance scheduling component of the code base makes use of

the data and models from the database of processed data and model store during the simulations

(refer to Figure 8.1). In a real world maintenance scheduling application, live sensor readings

from each machine are added to the database of raw sensor readings through a streaming

service or through a batch upload. These sensor readings are then loaded and preprocessed

before prognostic estimations can be made on them. In our experiments we simulate streamed

readings by iteratively passing the readings at a time step of all the machines to a prognostic

model to make estimates. It is computationally efficient to use data from the Data base of

processed data as opposed to performing preprocessing on raw sensor readings for each iteration.

No prognostic model training occurs, since the prognostic model is loaded from the model store.

An interactive dashboard monitors the prognostic estimates and health of machines throughout

the maintenance scheduling simulations. A snapshot of the dashboard is shown in Figure 8.2.

Three things are shown in the dashboard. First, the coloured buttons at the top show the

estimated status of the machines. Second, the dashed line shows the actual state of a machine

throughout the simulation (which is not available in a real world scenario). Third, the blue line

shows an LSTM-based estimate of the machine’s state throughout the simulation.

Figure 8.2: A snapshot of the maintenance scheduling dashboard. The dashboard shows
the state of Machines 92 to 100 from C-MAPSS Data set 1, after the 1 000-th time step
in the simulation. The coloured buttons at the top indicate the estimated state of the
machines at this time step. A button colour is updated to dark green, light green, yellow,
orange and red for State 4, 3, 2, 1 and 0 estimates, respectively. Below the buttons, is
a graph showing the estimated and true state of Machine 93 throughout the 1 000 time
steps. The model prediction history is dynamically updated when a user clicks on different
machine buttons.
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8.3 Development process

Our initial implementation was performed with Jupyter Notebooks. This allowed for faster

iterations on experiments. We then used the notebooks as reference and created a code library.

We now recommend to use the library to perform experiments as the result will be reproducible.

Unit-tests were written to ensure the library performs as expected. We include the Jupyter

notebooks in the code base for completeness, however all the functionality has been rewritten

into the code base.

8.4 Code layout

All the software is contained in seven directories, namely, data, models, modules, note-

books, project, results and tests, the purpose of each will be discussed below.

A_deep_framework_for_predictive_maintenance

data

models

modules

notebooks

project

results

tests

The data directory contains a local copy of the C-MAPSS, CALCE battery, IMS bearing

data sets. The data directory is not included in the online resources as the data sets should be

downloaded from the respective association’s website. The C-MAPSS and IMS bearing data

set are downloadable from the online repository on the NASA Prognostics Center of Excellence

[Online] website. The CALCE battery data set is downloadable from Center for Advanced Life

Cycle Engineering’s Center for Advanced Life Cycle Engineering [Online] website.

The models directory contains all the trained RF, GB, SVM and LSTM prognostic models

for the different data sets and different simulations. The models are saved for three reasons: to

enable reproducibility of results, to enable a user to save on training time and to be used by

the maintenance scheduling module. The directory structure is

models

data_set
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data_set_number

problem_type

model_parameters

k_fold_split_number

model_name

where data_set refers to the data set on which the model will be trained and tested. The

data_set_number can be set to 1, 2, 3 or 4 (subset of larger data set) for the C-MAPSS data set

and is fixed for the CALCE battery and IMS bearing data sets. The problem_type separates the

classification- (machine state estimation) and regression (RUL estimation) model directories.

The model_parameters refers to the type of pre-processing performed on the models, such as

filtering, feature engineering and data scaling. The k_fold_split_number directory stores the

resulting model for each k-fold split (this allows for investigations into the specific validation

data sets or interesting results). The model_name is specified according to model parameters

and hyper parameters. For example, ‘lstm_k_1_batch_32_sam_30_adam_history.pkl’ is

the first k-fold split for a LSTM model trained with a batch size of 32, sample window length

of 30 and an Adam optimisation function. The model_name is indicated in red, because it

signifies a file.

Themodules directory consists of nine python files used to perform the tasks in this framework.

An experiment’s project file will make use of these python files to perform tasks specific to the

project. The directory structure is

modules

modules_file

The modules files are named etl, preprocessing,modelling, evaluation, visualisation, post_processing,

oms_functions and dashboard_functions.

The project directory consists of the project files that make use of the modules to solve

the machine state estimation- and RUL estimation problems for each data set. The directory

structure is

projects

data_set

project_file

The project_file is a python file used by an experiment for reproducible results and is created
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for a specific experiment. For example, lstm_multi_class_classification.py is used to perform

machine state estimation. There is a distinction between the LSTM and other prognostic model

project files, because of the pre-processing that is unique to the LSTM. The OMS project file

is located under the C-MAPSS data set directory. The implemented OMS policy is included

in the project name to allow for distinct OMS policy testing.

The results directory has a similar structure to the data directory, which is

results

data_set

data_set_number

problem_type

model_parameters

k_fold_split_number

model_name

This allows for easy project navigation and consistent data structures.
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Chapter 9

Conclusions and recommendations

9.1 Summary of thesis contributions

Predictive maintenance is used to reduce maintenance cost by performing preventative main-

tenance on a fleet of machines in a cost effective manner. Accurate prognostic estimates, the

cost of performing maintenance and an understanding of the interdependence of machines is

required to perform this task effectively

9.1.1 Prognostic modelling

Two supervised approaches were followed in performing prognostic modelling in this work. The

first, machine state estimation, is a multi-class classification problem where the sensor readings

collected through machine degradation are divided into classes and a classifier is trained to

classify unseen samples into the labelled classes. The second, RUL estimation, is a regression

problem where a regression model is trained to estimate the RUL of a machine. A RF, GB,

SVM and LSTM are used as the prognostic models in both prognostic modelling approaches

and were tested on three unique run-to-failure data sets, C-MAPSS, CALCE battery and IMS

bearing data set.

Temporal information in sequential sensor readings

It was found that the temporal information present in sequential sensor readings contributed

to better prognostic estimates. The LSTM (which makes use of a window of sensor readings

when making prognostic estimates) outperforms the remaining prognostic models on the C-

MAPSS and IMS bearing data sets in machine state estimation. In RUL estimation, the
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LSTM outperforms the remaining prognostic models on the C-MAPSS, CALCE battery and

IMS bearing data set.

Sensor reading degradation profiles

The sensor readings in the C-MAPSS and IMS bearing data sets have exponential decay degra-

dation profiles (refer to Chapter 3). Owing to this, it is difficult to correctly estimate the state

or RUL of machines in early degradation. Prognostic model performance improved as degrada-

tion approached failure. The sensor readings in the CALCE battery data set follow a linearly

decaying function. On account of this, the prognostic models perform better on early stages of

machine degradation estimates. The sensor reading degradation profile impacts the difficulty

of performing prognostics on a data set.

The effect of removing noise

A MA filter is applied to the training, testing and validation data. When trained on noisy data,

the LSTM and RF perform 21.52% and 3.72% better, respectively, on F1-score in machine state

estimation than when trained on denoised data. For RUL estimation, all four prognostic models

perform better on the unseen validation data when trained on noisy data. When training

on denoised data, the prognostic models’ ability to generalise on unseen data is negatively

impacted.

The effect of data windowing on sensor readings samples

When preprocessing data for the LSTM, data windowing is applied where a Ntw of sequential

sensor readings form an input sample for the LSTM. The result is that the first prognostic

estimate occurs Ntw sensor readings after the first sensor reading. Increasing Ntw causes the

first prognostic estimate to occur later in a machine degradation cycle. The effect is the LSTM

model performance increases, but this is due to performing less estimates in early degradation.

It has been shown that the prognostic models perform better on sensor readings in later stages

of machine degradation in the C-MAPSS and IMS bearing data sets. When performing RUL

estimation on C-MAPSS Data set 1, the RMSE decreased from 47.75 to 13.5 when using a

Ntw = 30 vs Ntw = 120, respectively. When choosing an appropriate size for Ntw, the machine

with the shortest degradation cycle in the data set should be considered.

114

Stellenbosch University https://scholar.sun.ac.za



9.1.2 Maintenance scheduling strategies

Two maintenance scheduling simulations are performed using theoretical maintenance costs for

C-MAPSS Data set 1. In the first simulation, a MTBF maintenance strategy is compared with

a policy-based PdM maintenance strategy. The MTBF implements maintenance on machine

after a set interval. The optimal maintenance interval is iteratively determined to be 140 sensor

readings for C-MAPSS Data set 1. The policy-based PdM outperforms the MTBF strategy

with seven fewer machine failures and a theoretical cost saving of 21.25%.

The second simulation, investigates the effect of using different prognostic models in the policy-

based PdM maintenance strategy. The result of which is the best performing prognostic model

(the LSTM) should be used in the policy-based PdM maintenance strategy to avoid early

failure predictions. With a poorly performing RF prognostic model the policy-based PdM

maintenance strategy performs 16 unnecessary early machine repairs. This in turn results in

an excess 24.24% cost of maintenance.

9.2 Limitations

9.2.1 Supervised learning in prognostic modelling

A supervised approach to prognostic modelling results in a discriminative model to identify the

state of a machine based on the current sensor readings. If the underlying characteristics of the

current sensor readings are not present in the data the model was trained on, the model will

perform poorly when making prognostic estimates.

A class imbalance is present in the sensor readings for all three data sets. During early degra-

dation, the sensor readings are considered as Class ‘(4) fail < 120’. When training on the

imbalanced data sets, prognostic models learn to estimate sensor readings as Class ‘(4) fail

< 120’. This ultimately results in better model performance when measured on F1-score (al-

though the prognostic model is actually performing worse). Supervised learning approaches

traditionally struggle with an imbalanced data set. The LSTM, which makes use of the tem-

poral information in a window of samples when making prognostic estimates, does not struggle

with the class imbalances.
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9.2.2 Policy-based maintenance scheduling

A maintenance policy is employed to reduce maintenance costs in the maintenance scheduling

simulations. A maintenance scheduling technique that detects and accounts for underlying

maintenance patterns for individual machines could be deployed to reduce costs further.

9.3 Future Work

1. The code base can be expanded with a Bayesian approach for prognostic modelling that

will allow for a distribution over time that represents the likely time to failure. This

will allow the maintenance scheduling model to account for uncertainties based on the

characteristics of the distribution (rather than the softmax output layer score used in this

work).

2. An online learning approach can be used in prognostic modelling to allow for continual

prognostic model training. In the current approach, a model needs to be retrained when

new data becomes available.

3. A reinforcement learning approach can be taken to maintenance scheduling, where the

costs (associated with performing maintenance) can be used as the penalty function. This

would allow for dynamic maintenance scheduling.

4. Apply the framework to a real world prognostic data set with actual maintenance costing

values. A cost investigation would need to be performed to obtain the maintenance cost

values through machine degradation.
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Appendix A

Readme

About The Project

A Python framework that can be used to perform machine prognostics based on degradation

sensor readings and perform preventative maintenance scheduling. The project was created to

assist future prognostic researchers with faster model implementations. The code is well docu-

mented and tested. The data sets tested in this work is the C-MAPSS engine aircraft, CALCE

battery and IMS bearing run-to-failure prognostic data sets. In prognostic modelling, a random

forest (RF), gradient boost (GB), support vector machine (SVM) and long-short-term-memory

(LSTM) recurrent neural network (RNN) are used to perform prognostics in a multi class clas-

sification problem and a regression problem. The multi class classification problem is referred

to as machine state estimation. The regression problem is referred to as RUL estimation.

The output of the machine state estimation prognostic models are used to perform preventa-

tive maintenance scheduling on C-MAPSS Data set 1, using a static policy for optimal cost

reduction. The actual maintenance costs are not available, therefore theoretical costs are used.

Built With

Developed in Python using Numpy, Sklearn, Pandas, Tensorflow and Keras.

Getting Started

To get a local copy of the code up and running follow these simple steps.
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Prerequisites

The framework currently uses v1 of Keras (2020/10/01, which is to be updated). A clean

environment is needed to install packages. Example is shown for Anaconda and Python v3.6.5

conda create --name pdm_env python=3.6.5

Installation

1. Clone the repo

git clone https://github.com/charlsteyl/A-deep-framework-for-

predictive-maintenance.git

2. Direct into ‘framework_for_PdM’ directory

cd framework_to_PdM

3. Install the required Python packages

pip install -r requirements.txt

Usage

If you use a Python IDE, open the project with the IDE and direct yourself to the project

directory. From there you can run the Python files. If you wish to run the project from

terminal, direct yourself to the top directory, framework_to_PdM and run to project file from

there. E.g

python -m projects.cmapss.rul_on_cmapss

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Charl Steyl - charlsteyl5@gmail.com

Project Link: https://github.com/charlsteyl/A-deep-framework-for-predictive-maintenance
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Appendix B

Scatter plots for hyperparameter tuning

B.1 Random forest hyperparameter tuning

Figure B.1: A 4-dimensional scatter plot showing the the F1-score on a test set from the
CMAPSS Data set 1 of a RF model due to hyper parameter tuning. The F1-score is shown
through a variation in colour, with the best scores highlighted in yellow. The hyper parameter
tuning consisted of 100 iterations using a random search approach. The optimal hyper param-
eters are shown as n_estimators = 1000, min_samples_split = 5, param_max_depth =
10.
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B.2 Gradient boosted tree hyperparameter tuning

Figure B.2: A 4-dimensional scatter plot showing the the F1-score on a test set from the
CMAPSS Data set 1 of a GB model owing to hyper parameter tuning. The F1-score is shown
through a variation in colour, with the best scores highlighted in yellow. The hyper parameter
tuning consisted of 100 iterations using a random grid search approach. The optimal hyper
parameters are shown as n_estimators = 200, min_samples_leaf = 1, param_max_depth
= 2.
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