
Concrete and Symbolic Linearisability Checking of

Non-Blocking Concurrent Data Structures

Nicole Cathryn du Toit

Thesis presented in fulfilment of the requirements for the degree of

Master of Science in the Faculty of Science at Stellenbosch University

Supervisor: Dr. C.P. Inggs, Cornelia Petronella Inggs

December 2021



PLAGIARISM DECLARATION

1. Plagiarism is the use of ideas, material and other intellectual property of another’s work and

to present it as my own.

2. I agree that plagiarism is a punishable offence because it constitutes theft.

3. Accordingly, all quotations and contributions from any source whatsoever (including the

internet) have been cited fully. I understand that the reproduction of text without quotation

marks (even when the source is cited) is plagiarism.

4. I also understand that direct translations are plagiarism.

5. I declare that the work contained in this thesis, except otherwise stated, is my original work

and that I have not previously (in its entirety or in part) submitted it for grading in this

thesis or another thesis.

Student number Signature

N.C. du Toit 04 October 2021

Initials and surname Date

Copyright © 2021 Stellenbosch University

All rights reserved

ii

Stellenbosch University https://scholar.sun.ac.za



ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Cornelia Inggs, who suggested this area of research and

whose expertise and guidance throughout my studies was invaluable in formulating this thesis. Your

insightful feedback has pushed me to sharpen my thinking, writing, and researching skills, and has

brought my work to a higher level.

iii

Stellenbosch University https://scholar.sun.ac.za



ABSTRACT

Non-blocking concurrent data structures are developed as a more efficient solution to concurrent

data structures; in non-blocking concurrent data structures hardware-level atomic instructions are

used instead of higher-level, expensive locking mechanisms. Lock-free algorithms, however, are

notoriously hard to design and prone to subtle concurrency errors that are difficult to pick up.

Linearisability Checking is the standard correctness condition for non-blocking concurrent data

structures; a data structure is linearisable if each concurrent execution of the data structure corre-

sponds to the execution of its correct sequential specification.

In this thesis, the focus is on the linearisability checking of non-blocking data structures using a

model checker. The approaches for checking linearisability using a model checker can be broadly

categorised into linearisation point and automatic linearisability checking. The state-of-the-art

strategies were implemented using the Java PathFinder Model Checker as basis. The linearisation

point linearisability checking strategy of Vechev et al. was extended to include data structures with

operations that act generically on the data structure, and not just on one element in the data struc-

ture. An improved version of Doolan et al.’s external automatic checker was implemented and the

idea of an external checker was extended to the improved linearisation point checking strategy. The

lazy read optimisation, proposed by Long et al., and a hash optimisation, proposed in this thesis,

for the automatic checker was implemented and the effectiveness and benefit of the optimisations

determined. The performance-limiting factor of the automatic checker was investigated and the

claims made by Vechev et al., Liu et al., and Doolan et al. confirmed/falsified.

The concrete checker’s usefulness in finding linearisability errors is constrained by the user’s ability

to hand-craft test cases in which errors are present. A new Symbolic Linearisability Checker

was developed, the major novel contribution in this thesis, that integrates linearisability checking

into Symbolic PathFinder, a symbolic model checker. The symbolic checker performs linearisability

checking on all possible test cases and program paths; it verifies the linearisability of a data structure

in general, constrained only by a user-defined number of operations to be executed by each thread.

Finally, extensive evaluations and comparisons of all checkers were performed, on the same model

checking framework and hardware, considering their manual input required, resource usage, scala-

bility, and ability to find errors.

iv

Stellenbosch University https://scholar.sun.ac.za



OPSOMMING

Nie-blokkerende gelyklopende data strukture is ’n meer effektiewe oplossing as data strukture

wat blokkeringsmeganismes gebruik; in nie-blokkerende data strukture word atomiese hardeware-

instruksies gebruik in plaas van duur, hoër vlak, blokkeringsmeganismes. Nie-blokkerende gelyk-

lopende data strukture is egter ingewikkeld, en is geneig om subtiele gelyklopende foute in te hê

wat moeilik is om op te spoor. Lineêriseerbaarheid is die standaard korrektheidskondisie vir nie-

blokkerende gelyklopende data strukture; ’n data struktuur is lineêriseerbaar as elke uitvoering van

die data struktuur ooreenstem met die uitvoering van sy korrekte sekwensiële spesifikasie.

Die tesis fokus op die verifikasie van lineêriseerbaarheid van nie-blokkerende data strukture deur

gebruik te maak van ’n modeltoetser. Die metodes vir die verifikosie van lineêriseerbaarheid deur

gebruik te maak van ’n modeltoetser kan breedweg gekattegoriseer word in lineêrisasie-punt en out-

omatiese lineêrisasie toetsing. Die jongste tegnieke is implementeer deur gebruik te maak van die

Java PathFinder modeltoetser as basis. Die lineêrisasie-punt lineêriseerbaarheids toetsstrategieë van

Vechev et alis uitgebrei om data strukture wat generiese operasies op die data struktuur uitvoer in

plaas van op ’n spesifieke element in die data struktuur, in te sluit. ’n Gevorderde weergawe van

Doolan et al. se eksterne outomatiese toetser is gëımplementeer en die idee van ’n eksterne imple-

mentasie is gebruik om ook ’n eksterne weergawe van die verbeterde lineêrisasie-punt toetsstrategie

te implementeer. Die lui-lees optimering wat deur Long et al. voorgestel is, en ’n hutsstrategie

optimering wat in die tesis voorgestel word, is vir die outomatiese toetser gëımplementeer en die

effektiwiteit en voordele van die optimerings is bepaal. Die faktore wat die effektiwiteit van die

outomatiese toetser beperk is ondersoek en die stellings wat deur Vechev et al., Liu et al., en Doolan

et al. gemaak is, is verifieer.

Die konkrete toetser se bruikbaarheid vir die vind van lineêriseringsfoute word beperk deur die

gebruiker se vermoë om toevoergevalle wat foute sal uitwys, op te stel. ’n Nuwe simboliese

lineêrisasie toetser is ontwikkel, ’n groot bydrae van die tesis, wat lineêrisasie toetsing in die sim-

boliese PathFinder, ’n simboliese modeltoetser, integreer. Die simboliese toetser voer toetsing uit

op al die moontlike toevoergevalle en al die moontlike paaie; dit verifieer dus die lineêriseerbaarheid

van ’n data struktuur vir algemene gevalle, en word slegs beperk deur die gebruikersgespesifiseerde

aantal operasies per liggewigproses.

v

Stellenbosch University https://scholar.sun.ac.za



Breedvoerige evaluering en vergelykings van al die toetsers is op dieselfde modeltoetser raamwerk

en hardeware uitgevoer en die volgende is in ag geneem: die toevoer wat hul nodig het, gebruik van

bronne, skaleerbaarheid, en hul vermoë om foute te vind.

vi

Stellenbosch University https://scholar.sun.ac.za



TABLE OF CONTENTS

PLAGIARISM DECLARATION ii

ACKNOWLEDGEMENTS iii

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES xiii

LIST OF TABLES xiv

LIST OF APPENDICES xv

LIST OF ABBREVIATIONS AND/OR ACRONYMS xvi

1 INTRODUCTION 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 BACKGROUND 7

2.1 Model Checking and Java PathFinder (JPF) . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Java PathFinder (JPF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Symbolic PathFinder (SPF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 State space handling techniques in JPF and SPF . . . . . . . . . . . . . . . . 14

2.2 Linearisability Checking of Non-Blocking Concurrent Data Structures . . . . . . . . 16

2.2.1 Non-blocking Concurrent Data Structures . . . . . . . . . . . . . . . . . . . . 16

2.2.2 The Trace Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Linearisability Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Linearisability Checking with JPF . . . . . . . . . . . . . . . . . . . . . . . . 23

vii

Stellenbosch University https://scholar.sun.ac.za



2.3 Types of Linearisability Checking Strategies . . . . . . . . . . . . . . . . . . . . . . . 23

3 DESIGN AND IMPLEMENTATION 26

3.1 Linearisation Point Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Fixed and Non-fixed Linearisation Points . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Data structures with generic operations . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Conclusions for the linearisation point strategy . . . . . . . . . . . . . . . . . 40

3.2 Automatic Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Optimisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Conclusions for the automatic strategy . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Implementation of the Concrete Checkers . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Internal Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 External Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Internal and External Comparison . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Symbolic Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.3 Implementation of Symbolic Checkers . . . . . . . . . . . . . . . . . . . . . . 57

3.4.4 A Hybrid Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Completeness and Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 JPF’s state hashing optimisation causes unsoundness with respect to linearis-

ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 A strategy to guarantee soundness with respect to linearisability of the input,

in JPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.3 Missed Violations of the Concrete Checkers . . . . . . . . . . . . . . . . . . . 64

3.5.4 Soundness in SPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 The JPF/SPF Linearisability Checking Extension Framework . . . . . . . . . . . . . 66

3.6.1 jpf-linearisable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.2 jpf-symb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Design and Implementation Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii

Stellenbosch University https://scholar.sun.ac.za



4 RESULTS AND ANALYSIS 69

4.1 Machine Specs and Checker Inputs used for the experiments in this chapter . . . . . 69

4.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Resource usage of the Concrete Checkers . . . . . . . . . . . . . . . . . . . . 72

4.2.2 Resource usage of the Symbolic Checkers . . . . . . . . . . . . . . . . . . . . 81

4.2.3 Optimisation techniques for the Concrete Automatic Checkers . . . . . . . . 84

4.2.4 Efficiency Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Scaling of the Concrete Checkers . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.2 Scaling of the Symbolic Checker . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.3 Scalability Conclusions: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Error Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1 Error finding of the Concrete Checkers . . . . . . . . . . . . . . . . . . . . . . 100

4.4.2 Error finding of the Symbolic Checker . . . . . . . . . . . . . . . . . . . . . . 101

4.4.3 Error finding of the Hybrid Checker . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.4 Error finding efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.5 Depth until error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Error Finding Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 CONCLUSION AND FUTURE WORK 108

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.3 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.4 Concrete Checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.5 Symbolic Checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

APPENDIX A CONCURRENT HISTORY EXAMPLES 118

ix

Stellenbosch University https://scholar.sun.ac.za



A.1 Concurrent history generation possibilities for the LockFreeList algorithm on a par-

ticular input example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2 Linearisation-error-containing concurrent history diagrams for the BuggyQueue, SnarkD-

eque, LockFreeList, and PairSnap algorithms . . . . . . . . . . . . . . . . . . . . . . 120

A.3 Non-fixed linearisation point examples for an unsuccessful add, an unsuccessful con-

tains, and a successful contains operation of the LockFreeSet data structure. . . . . 122

APPENDIX B JAVA CODE 124

B.1 BuggyQueue Java Class (SUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.2 LockFreeSet Java Class (SUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.3 Pseudocode for JPF’s depth-first-search model checking traversal . . . . . . . . . . . 127

B.4 Pseudocode for Automatic Linearisability Checking using JPF’s listener class . . . . 128

APPENDIX C EXPERIMENT RESULTS 129

C.1 Error Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

x

Stellenbosch University https://scholar.sun.ac.za



LIST OF FIGURES

2.1 Execution path interleavings example. A visual depiction of the six sequential

orderings which can be derived from a program running two threads, each of which

execute two atomic operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Concrete Model Checking Example. A concrete model checking example . . . . 9

2.3 Model Checking. A concrete and symbolic model checking comparison example . 11

2.4 Java Pathfinder (JPF). A visual illustration of the logical components of JPF Core. 13

2.5 Symbolic Pathfinder (SPF). A visual illustration of the logical components of

JPF Core and its symbolic extension SPF. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Example of linearisations derived from a concurrent history . . . . . . . . . 20

2.7 Linearisability example with a Queue data structure. An example of two

concurrent history examples of the BuggyQueue data structure where one history is

linearisable and the other not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Concurrent history and linearisations: Automatic versus Linearisation

Point checking strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 On-the-fly Linearisation Point Checking Process. . . . . . . . . . . . . . . . . 28

3.2 Set data structure: Fixed Linearisation Point Example. . . . . . . . . . . . . 30

3.3 Non-Fixed Linearisation Points (key-specific example). A visual illustra-

tion of a concurrent history example for a Set data structure containing non-fixed

linearisation points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Queue data structure: Fixed Linearisation Points. . . . . . . . . . . . . . . . 34

3.5 Non-Fixed Linearisation Points (linearisable key-generic example). A vi-

sual illustration of a linearisable concurrent history example for a Queue data struc-

ture containing non-fixed linearisation points . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Non-Fixed Linearisation Points (non-linearisable key-generic example).

A visual illustration of a concurrent history example for a Queue data structure

containing non-fixed linearisation points . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Automatic Linearisability Checking Process. A visual illustration of the Au-

tomatic Linearisability Checking Process. . . . . . . . . . . . . . . . . . . . . . . . . 41

xi

Stellenbosch University https://scholar.sun.ac.za



3.8 Automatic Checking Process Example. . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Automatic checking strategy with the lazy-read optimisation example. . . 45

3.10 Symbolic Linearisability Checker. A duplicate-value concurrent history example

where the symbolic checker locates a linearisation error that the concrete checker does

not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 Soundness in JPF. An example showing two concurrent histories where, when

traversed by JPF in order, JPF makes an incorrect cut off of path 2 due to state

hashing and misses the linearisation error in the cut-off path. . . . . . . . . . . . . . 63

3.12 An example situation where the concrete checkers incorrectly verify lin-

earisability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Unsound Concrete Checkers: Execution time results (from Table 4.3) for entire

search space traversal of the LockFreeSet algorithm in the test suite . . . . . . . . . 75

4.2 Sound Concrete Checkers: Execution time results (from Table 4.3) for entire

search space traversal of the LockFreeSet algorithm in the test suite . . . . . . . . . 75

4.3 Concrete checker performance-limiting-factor execution time experiment re-

sults from Table 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Concrete, Hybrid and Symbolic checker execution time comparison. . . . . 82

4.5 Symbolic checker execution time for increasing number of operations ex-

ecuted per thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Symbolic checker number of end states for increasing number of opera-

tions executed per thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Symbolic checker number of unique concurrent histories generated during

execution for increasing number of operations executed per thread. . . . . 97

4.8 Symbolic checker execution time results graph for increased depth limit. . 97

4.9 Internal Concrete Checker Types: Execution time results (from Table 4.13) for

the time taken until the respective linearisation error was found for each of the test

suite SUTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.10 External Concrete Checker Types: Execution time results (from Table 4.13)

for the time taken until the respective linearisation error was found for each of the

test suite SUTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xii

Stellenbosch University https://scholar.sun.ac.za



4.11 Symbolic Checker Types: Execution time results (from Table 4.13) for the time

taken until the respective linearisation error was found for each of the test suite SUTs.104

A.1 Diagram depicting the 31 possible concurrent histories for the Lock-

FreeSet SUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2 A linearisation error containing concurrent history for the BuggyQueue

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.3 A linearisation error containing concurrent history for the LockFreeList

algorithm — Bug1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.4 A linearisation error containing concurrent history for the LockFreeList

algorithm — Bug2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.5 A linearisation error containing concurrent history for the SnarkDeque

algorithm — Bug1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.6 A linearisation error containing concurrent history for the SnarkDeque

algorithm — Bug2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.7 A linearisation error containing concurrent history for the PairSnap al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.8 Illustration of a non-fixed linearization point for an add operation . . . . . 122

A.9 Illustration of a non-fixed linearization point for a contains operation . . . 123

A.10 Illustration of a non-fixed linearization point for a true returning contains

operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xiii

Stellenbosch University https://scholar.sun.ac.za



LIST OF TABLES

3.1 Defining the types of linearisability checkers. . . . . . . . . . . . . . . . . . . . 27

3.2 Test suite of SUT algorithms and the operation-sequence test cases used for the

concrete, hybrid, and symbolic checkers. . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Inputs required for the different linearisation checker implementations. . . 70

4.2 Test suite of SUT algorithms and the operation-sequence test cases used for the

concrete, hybrid, and symbolic checkers. . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Concrete: Execution Time and Memory for Entire Search Space . . . . . . 73

4.4 Concrete: Search Space Statistics for Entire Search Space . . . . . . . . . . 74

4.5 Concrete, Hybrid, Symbolic: Execution Time and Memory for Entire

Search Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 External Unsound Concrete Automatic: Optimisation results over entire search

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 External Sound Concrete Automatic: Optimisation results over entire search space 86

4.8 Internal Unsound Concrete Automatic: Optimisation results over entire search

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.9 Internal Sound Concrete Automatic: Optimisation results over entire search space 87

4.10 External Concrete scaling results for an increase in the number of oper-

ations executed per thread for 1, 2, and 3 executing threads. . . . . . . . . 92

4.11 Data showing the exponential increase in the number of test cases for a

single thread execution of a SUT with 1/2/3 methods when the number

of operations for the thread to execute is increased . . . . . . . . . . . . . . 94

4.12 External Symbolic scaling results for an increase in the number of oper-

ations executed per thread for 1 executing thread. . . . . . . . . . . . . . . . 95

4.13 Linearisability error finding ability for all checker types. . . . . . . . . . . . 99

4.14 Depth at which each error was found and max depth till the error. . . . . 106

C.1 Execution Time and Memory until error is found . . . . . . . . . . . . . . . . 129

xiv

Stellenbosch University https://scholar.sun.ac.za



LIST OF APPENDICES

APPENDIX A CONCURRENT HISTORY EXAMPLES

APPENDIX B JAVA CODE

APPENDIX C EXPERIMENT RESULTS

xv

Stellenbosch University https://scholar.sun.ac.za



LIST OF ABBREVIATIONS AND/OR ACRONYMS

JPF Java PathFinder

SPF Symbolic PathFinder

Int. Internal

Ext. External

Aut. Automatic

Lin. Point Linearisation Point

xvi

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1

INTRODUCTION

Non-blocking concurrent data structures are developed as a more efficient solution to concurrent

data structures. Concurrent data structures share their information amongst different threads and

race conditions can arise when more than one thread simultaneously access the same location in

the data structure. Locking mechanisms can be used to provide mutual exclusive access to critical

sections and avoid race conditions, but they reduce the efficiency of the program because of the

locking overhead which includes waiting for locks to be released and acquiring and releasing them.

In non-blocking concurrent data structures hardware-level atomic instructions are used instead of

higher-level, expensive locking mechanisms.

Lock-free algorithms are, however, complex to design and prone to subtle concurrency errors that

are difficult to pick up. Designing and proving their correctness is notoriously difficult, several

published data structures have been shown to contain errors even in situations where manual

proofs were attempted [9, 33, 7, 32]. Attempts to derive non-blocking concurrent data structures

from sequential specifications have resulted in algorithms that perform very poorly compared to

locking data structures [1, 3, 13, 21]. Linearisability checkers can be used to prove the correctness

of non-blocking data structures.

Linearisability Checking is the standard correctness condition for non-blocking concurrent data

structures and ensures that each concurrent execution of a data structure corresponds to the ex-

ecution of its correct sequential specification. Herlihy et al. proposed linearisability and defined

it as a non-blocking and local property [14, 15]. A property of a concurrent system is said to be

non-blocking if each pending invocation event of an operation is never required to wait for another

pending invocation event to complete. A property P of a concurrent system is said to be local if

the system as a whole satisfies P whenever each individual data structure in the system satisfies P.

A non-blocking concurrent data structure is correct with respect to linearisability if each execution

of the data structure is linearisable.

A number of verification techniques for checking linearisability have been developed over the years

including approaches such as data refinement, reduction, manual proofs, static and runtime analysis,

and model checking [15, 39, 22, 8]. For example, Herlihy et al. presented a technique for manually

1

Stellenbosch University https://scholar.sun.ac.za



proving linearisability and illustrated their strategy using a Queue example[15]. Dongol et al.

discussed some foundational strategies which have been used to verify linearisability such as data

refinement, shape analysis, and reduction; and compared the advantages and limitations of each

of the strategies [8]. Elmas et al. presented a runtime technique for checking the correctness of

concurrent programs and Flanagan presented a solution to verifying Commit-Atomicity, which is

similar to linearisability, using a model checker. Elmas et al. and Flanagan’s solutions used manually

specified points in a program and only apply to algorithms where the points can be specified for

each operation in the algorithm code [10, 11].

In this thesis the state-of-the-art strategies for the linearisability checking of non-blocking concur-

rent data structures, using model checking as a basis, were implemented [38, 39]. Model checking is

an automated property verification technique which, by definition, systematically and exhaustively

explores all possible execution sequences of a program [6].

1.1 RELATED WORK

The approaches for checking linearisability using a model checker can be broadly categorised into

linearisation point [38, 39, 22, 37] and automatic [38, 4, 23, 35, 24, 9] linearisability checking.

Linearisation points are specified in the operations of a concurrent data structure; the linearisation

point of an operation is considered to be the instant, between the operation’s invocation and

response events, at which the operation takes effect.

Both linearisation point and automatic linearisability checking techniques are based on the execu-

tion of a correct sequential version of the data structure alongside the execution of the non-blocking

concurrent data structure, and the checking that both versions yield the same final state for each

operation run during program execution. However, the former approach requires the user to man-

ually identify the algorithm-specific linearisation points, whilst the latter automatically performs

linearisability checking without the manual identification of linearisation points.

Vechev et al. extend Flanagan’s work on checking commit-automaticity using the model checker

SPIN; they use their PARAGLIDER tool and the SPIN model checker [36] for the linearisation point

linearisability checking of data structures not only with operations that have specifiable linearisation

points, but also those with operations for which linearisation points cannot be determined [38].

2

Stellenbosch University https://scholar.sun.ac.za



They formalised their extension and define non-fixed linearisation points for situations of unspecified

linearisation point operations [39]. Interestingly, linearisability checking with non-fixed linearisation

points has also been considered by other techniques such as Liang et al. who proposed a solution

based on refinement [22], and Vafeiadis proposed a solution which uses prophecy variables [37].

Since algorithm-specific linearisation points are user-intensive and often difficult to determine, it

is desirable to have an automatic solution for linearisability checking that does not require user-

specified linearisation points.

Liu et al. proposed an automatic strategy for linearisability checking using a model checker, their

strategy is based on refinement and can check linearisability without user-specified linearisation

points but is also able to take advantage of linearisation points when they are available [23].

Vechev et al. described an automatic checking strategy in which the concurrent execution informa-

tion, for each execution path generated by the model checker, is maintained at the model checker’s

states along that path. At each path end state, the concurrent execution information is used to

generate all possible sequential interleavings of the concurrent execution’s operations. If at least

one sequential interleaving is equivalent to the execution of a correct sequential specification, then

the concurrent execution is considered linearisable [38].

Burckhardt et al. [4] developed the first complete and automatic tool for automatic linearisability

checking, called Line-Up. Their tool enumerates and checks all sequential behaviour of a program

execution; they built their tool on top of the stateless model checker CHESS [26]. Unlike Vechev

et al.’s strategy, their tool works on full featured code and not just single data structures.

Doolan et al. presented an optimisation to the automatic checking strategy. The automatic checking

strategy described by Vechev et al. uses code instrumentation to include the concurrent execution

information at the model checker’s states, and for the linearisability checking logic to execute at the

end states. Doolan et al.’s strategy instead outputs the concurrent execution information generated

by the model checker to some external log. An external automatic linearisability checking tool then

uses the logged information to perform the sequential interleaving generation and linearisability

checking. The optimisation aims to reduce the size of the model checker’s state space by minimis-

ing the information stored at its states and allowing the model checker to optimise state space

exploration by backtracking mechanisms [9].

3

Stellenbosch University https://scholar.sun.ac.za



Long et al. proposed an optimisation technique to the automatic checking algorithm which they

call lazy read acceleration. The optimisation aims to reduce the number of sequential interleavings

generated for each concurrent execution produced by the model checker [24].

Various claims have been made in the literature regarding the performance-limiting factor of the

model checker utilising automatic checking tools. Vechev et al. and Liu et al. claimed that the

automatic linearisability checking logic does not scale, in time or memory, and that the automatic

checking process is the performance limiting factor [39, 23]. Doolan et al. investigated the perfor-

mance of their unoptimised automatic implementation and report that the performance limiting

factor of execution is the model checker’s concurrent-execution generation process [9].

1.2 OBJECTIVES

We aim to integrate all state-of-the-art linearisability checking techniques into Java PathFinder

Model Checker (JPF), perform reproducibility tests to confirm state-of-the-art results, develop a

symbolic linearisability checker by integrating linearisability checking into Symbolic PathFinder

(SPF), and compare all implemented checker types on a uniform system with the same model

checker and hardware.

1.3 CONTRIBUTIONS

The linearisation point checking and automatic linearisability checking techniques of Vechev et al.

have been integrated with the Java PathFinder model checker [38, 39].

We propose a hash optimisation for the automatic checking strategy that avoids re-computation

of concurrent executions that are generated by the model checker and equivalent with respect to

linearisability. We perform experiments to determine the effectiveness and efficiency benefit of this

hash optimisation as well as the lazy read optimisation proposed by Long et al. [24]. We evaluate

these optimisations on the checkers and compare the benefit of the optimisations for each checker.

We have improved the external automatic checker developed by, Doolan et al [24, 9], by extracting

not only the concurrent execution information and linearisability logic from the model checker’s

search space but also the logging logic; we present a completely external linearisability checker

that does not require any extra information included in the model checker’s search space. We define

4

Stellenbosch University https://scholar.sun.ac.za



those checkers that do not use the external optimisation as Internal Checkers, and those that do as

External Checkers.

In the literature, Vechev et al. proposed the linearisation point strategy for the Set data structure.

Their strategy can be generalised to data structures with operations that act on a specific element

in the data structure but are incompatible for operations that act generically on the data structure.

We extend their linearisation point strategy to handle generic operations and use a Queue

data structure as an example (Section 3.1.2).

For a linearisability checking tool to be considered sound, it must guarantee linearisability of the

concurrent data structure, on the input situation, given that its execution did not find any lin-

earisation errors. We have developed a solution to guarantee sound linearisability checking

in JPF and explain why this solution is necessary. We have created the linearisability checking

tools in such a way that the user can easily configure the tool to either run a sound or unsound

linearisability checking execution.

We extend the idea of linearisability checking with a concrete model checker to that of a symbolic

model checking setting; a Symbolic Linearisability Checker. The Symbolic Linearisability

Checker combines symbolic execution [20] with model checking and constraint solving for automated

linearisability error detection and test case generation for Java programs [29], [2], [27], [30]. We

have chosen to implement the automatic checking strategy for the symbolic domain because it is

most logically compatible with SPF’s framework as discussed in Section 3.4.3, and to implement

it as as an external checker because of the performance benefits of the external optimisation as

discussed in Section 4.2.1.2.

We also present a variation of the ordinary symbolic checker which is a Hybrid (concrete-

symbolic) Linearisability Checker. The purely symbolic checker performs automatic test case

generation and symbolic execution to automatically execute all possible operation sequences and

traverse all possible program paths for a given number of operations per thread. The hybrid checker

uses symbolic execution to traverse all program paths, but does not use the automatic test case

generation so checks only one exact sequence of operations per thread.

An evaluation and comparison for all checkers is performed on the same model checking

framework and hardware; considering their manual input required, resource usage, scalability,

5

Stellenbosch University https://scholar.sun.ac.za



and ability to find errors. The evaluation also determines the performance-limiting factors of each

of the implemented checkers, and confirm/falsify the related claims made by various authors in the

literature.

1.4 THESIS OVERVIEW

In Chapter 2 the background for model checking and linearisability checking is explained in detail

and an overview of the linearisation point and automatic checking strategies described in the litera-

ture, is provided. The model checkers used in this thesis are Java PathFinder (JPF) and its symbolic

extension Symbolic PathFinder (SPF); these model checkers are described in Section 2.1 [20, 19,

29, 2, 30].

In Chapter 3 the intricacies of the linearisation point and automatic checking strategies (Sec-

tions 3.1 and 3.2) are described, the design and implementation details for our internal concrete

checkers (Section 3.3.1) explained, the implementation details of our novel external versions of these

strategies given (Section 3.3.2), and a hash optimisation for the automatic linearisability checker

(Section 3.2.1.2) proposed. We present a new Symbolic Linearisability Checker and discuss its

design as an Automatic Linearisability Checker (Section 3.4) and external implementation, as well

as the benefits associated with these categories (Section 3.4.3). We present both a symbolic checker

and a hybrid (concrete-symbolic) version called Hybrid Checker. Soundness is discussed in detail

and the linearisation checkers were implemented such that they can run in a mode that guarantees

soundness or a mode that does not guarantee soundness with respect to linearisability (Section 3.5).

In Chapter 4 we evaluate and compare each of the checkers with respect to their manual input re-

quirements (Table 4.1), efficiency (Section 4.2), scalability (Section 4.3), and error finding capability

(Section 4.4).

In Chapter 5 we give our findings and conclusions for this thesis and discuss areas of future work.

6

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2

BACKGROUND

In this chapter we an overview of the foundational concepts for linearisability checking of non-

blocking concurrent data structures using model checking, is provided. Model checking, symbolic

model checking, and the model checking tools used in this thesis are described in Section 2.1. Non-

blocking concurrent data structures are defined in Section 2.2.1, the trace model used to represent an

execution of the non-blocking data structures is illustrated in Section 2.2.2, linearisability checking

is explained in Section 2.2.3, and an overview of the linearisability checking strategies presented in

the literature is provided in Section 2.3.

2.1 MODEL CHECKING AND JAVA PATHFINDER (JPF)

Model checking is an automated property verification technique, that systematically and exhaus-

tively explores all possible execution paths of a program. Java PathFinder (JPF) has been chosen

as the model checking tool for the work in this thesis.

2.1.1 Model Checking

Model checkers prove that certain properties hold for some input program and when a property

does not hold, return the exact execution sequence in which the property is violated. This is in

contrast to testing that can only prove the presence of errors in a program, not the absence of them.

The JPF model checker exhaustively explores all possible bytecode interleavings of a concurrent

execution and thus is particularly effective in finding subtle errors in complex concurrent systems;

it takes into consideration all the branching statements and different thread interleavings for the

input program. The exhaustive exploration of all execution paths does, however, cause the model

checker’s search space to grow exponentially for an increase in the number of program instructions

or executing threads.

For example, a program with two threads, each executing two atomic instructions, yields six unique

concurrent execution paths. For four, eight and sixteen atomic instructions per thread the number of

unique paths is 70, 12,870 and 601,080,390; an obvious exponential trend [16]. Figure 2.1 illustrates

the six different execution paths for the example two atomic instructions per thread example.

7

Stellenbosch University https://scholar.sun.ac.za



Figure 2.1: Execution path interleavings example. A visual depiction of the six sequential
orderings which can be derived from a program running two threads, each of which execute two
atomic operations.

2.1.1.1 Concrete Model Checking

A concrete, or otherwise known as explicit state, model checker performs model checking using

concrete variable values. The values are used to choose a single execution path for each branching

statement encountered during execution. Figure 2.2 depicts an example concrete model checking

execution.

The following elements are present in the diagram:

(a) The code fragment is the program executed by the model checker. The model checker

executes the method thread1Operation() on thread-1 and the operation thread2Operation()

on thread-2.

(b) thread1Operation() swaps the values in x and y and includes two branching statements

(lines 4 and 8).

(c) thread2Operation() assigns the concrete value 1 to the variable x.

(d) Single-border rectangles represent the program states maintained by the model checker.

Program states contain variable names and associated values; the variable values are updated

during transitions from one state to another.

(e) State transitions are represented by arrows which connect each parent state with one or

multiple child states. Each transition corresponds to a line in the code fragment. At branching

statements (lines 4 and 8), the path choice is made according to the concrete values contained

in the parent state’s variables.

(f) Double-bordered rectangles represent program end states which, like ordinary states,

8

Stellenbosch University https://scholar.sun.ac.za



Figure 2.2: Concrete Model Checking Example. A diagram showing the search space, in-
cluding states and transitions between states, for a concrete model checker’s traversal of the code
fragment algorithm that swaps the values of two variables

9

Stellenbosch University https://scholar.sun.ac.za



contain variables and their associated values but also represent the end of an execution path.

(g) Bold arrows represent transitions containing thread-2’s instructions, ordinary arrows repre-

sent transitions containing thread-1’s instructions.

(h) Bold state borders represent states for which the last instruction was executed by thread-2,

ordinary state borders represent instructions executed by thread-1.

The model checker must generate all possible execution paths for this code-fragment. To do this

it interleaves the operations of all the executing threads. Thread-2 only executes one instruction

so the interleaving options are those where this thread-2 instruction is positioned at all possible

placements between the instructions of thread-1; resulting in six different execution paths.

The diagram shows that although all execution paths begin with the same start state, the order

in which each thread’s instructions occur effects the program end states. For example the leftmost

path shows that when thread-2’s instruction is executed before all thread-1 instructions, it results

in an end state where variable x is equal to 1 and variable y is 2. In the second path from the

left, when just the first operation of thread-1’s instruction is executed before that of thread-2, the

resultant end state is an assertion error. In the fourth path from the left, x is -1 and y is 4, at the

end state.

For simplicity, the example in Figure 2.2 illustrates statement interleavings, instead of bytecode

interleavings. JPF actually interleaves the bytecode instructions of the executing threads; and each

statement in the code may require multiple bytecode instructions. The model checker verifies that

a property holds for the program on some concrete input, by proving that the property holds for

all the reachable paths of the program.

2.1.1.2 Symbolic Model Checking

A Symbolic Model Checker combines symbolic execution with model checking to not only explore

all execution paths for some concrete input situation, but also to explore all paths for all possible

concrete input situations. It does this by using symbolic values in place of concrete values, each

symbolic value can represent a range of concrete input values [20]. This checker uses the symbolic

values to generate all execution paths for all input value situations and thus explore all reachable

sections of the input program; maximising program path coverage.

10

Stellenbosch University https://scholar.sun.ac.za



Figure 2.3 shows side-by-side, the concrete checker’s execution of an example single-threaded pro-

gram (SUT) and the corresponding symbolic checker’s execution of the same program (SUT). This

program is serial for the sake of simplicity but the discussion can be applied to multi-threaded

situations which would add another layer of complexity, thread-interleavings.

Figure 2.3: Model Checking. A diagram showing the search space, including states and transi-
tions between states, for a concrete and for a symbolic model checker’s traversal on the same code
fragment algorithm that swaps the values of two variables. This example was adapted from Visser
et al. [19]

We use the same diagram representations as for the example in Section 2.1.1 but for the symbolic

diagram there are a few added complexities.

• The concrete model checker uses concrete values for x and y, the symbolic checker uses

symbolic values instead; the symbolic values X and Y are assigned to the variables, respectively.

Symbolic states thus represent sets of concrete states.

11

Stellenbosch University https://scholar.sun.ac.za



• For instruction updates that occur during transitions between states, the concrete checker

has one child state for each parent state because the concrete variable values necessitate only

one particular path taken for any given instruction. Symbolic execution instead updates the

variables in terms of the symbolic values. For example, the variable value update of line 3 is

updated to: x equals 6 and y equals 2 for the concrete checker and x equals X+Y and y equals

Y for the symbolic checker.

• A path condition is included at each of the symbolic model checker’s states. The path con-

dition contains symbolic-value constraint rules that correspond to the branching decisions

made along the path to that state: if and while (lines 2 and 6 respectively for example) are

branching statements.

The concrete checkers use the branching statement to create a single child state that represents

the path taken for the true or false result of the statement, given concrete variable values.

For example the branching condition at line 2 is x > y and for concrete values x equals 4 and

y equals 2 the path will take the path of entering the if statement.

The symbolic checker creates a child for each possible result situation and updates the path

condition of the child states according to the branching choice made. For example, the boolean

branching condition at line 2 is x > y and so the symbolic checker creates two children, one

with the path condition rule x > y (entering the if statement) and the other x <= y (not

entering the if statement). The path condition of each child contains rules for the range of

concrete variable values that correspond to the branching path decisions made to that end

state. Thus all possible branching choices are accounted for.

• For an unsolvable path condition at an end state, there is no possible configuration of variable

values which will result in the execution path to that end state; conversely for a solvable path,

there is a possible configuration of variable values which will result in the program execution

reaching the end state. For example, the leftmost end state in the symbolic diagram example

has an unsolvable end state because X cannot be both bigger and smaller than Y at the same

time. The rightmost end state is solvable since there is a set of values which satisfies the

constraints of the path condition.

12

Stellenbosch University https://scholar.sun.ac.za



2.1.2 Java PathFinder (JPF)

JPF is a concrete model checker that runs on the Java Virtual Machine (JVM) and analyses the

bytecode of a Java input program. The program is compiled to Java bytecode and then executed

on JPF’s own custom virtual machine (VM) to find program defects; we call this input program

the System Under Test (SUT).

JPF’s custom VM allows it to control the program execution of the SUT. Java’s VM (JVM) follows

only a single execution path for the program when it is run i.e., at every branching statement it

selects a single execution path. JPF’s VM, on the other hand, is able to identify and explore all

possible paths for a branching statement by generating state representations that include all path

decision options. Each state is stored and can be restored during backtracking; allowing JPF to

exhaustively explore all of the possible execution paths of the SUT, for all branches and thread

interleavings, during model checking. JPF’s VM can thus traverse a program’s execution behaviour

by moving forwards and backwards between these states, Java’s VM can only move forward. JPF

systematically explores all the possible execution paths of the SUT and can be used to verify that

none of the execution paths violate a specified property for the SUT. Figure 2.4 depicts the logical

components of JPF and the input/output for the tool’s execution.

Figure 2.4: Java Pathfinder (JPF). A visual illustration of the logical components of JPF Core,
which includes: an input configuration file, a Java input program to test, JPF Core itself, JPF
Core’s Listener class, and an output statistics report.

JPF takes as input a config file which it uses to determine the model-checking-execution settings,

13

Stellenbosch University https://scholar.sun.ac.za



and a SUT which it compiles to Java bytecode before performing model checking on it. JPF has

been designed to facilitate ongoing research and thus provides extension mechanisms that developers

can use to manipulate the search, one such extension mechanism is the listener. Listeners do not

require any modification to JPF and provide a way to observe, influence, and extend JPF’s execution

by communicating with JPF during the model checking. The listener receives information about

the search space traversal and is able to interact with JPF’s VM to alter the model checker’s search.

JPF produces a statistics report on completion of its execution or identification of a program

error; the report details information about the search and if relevant, the error encountered.

2.1.3 Symbolic PathFinder (SPF)

Symbolic PathFinder (SPF) is a Symbolic Model Checker that extends JPF [2, 30]. It uses the

analysis engine of JPF but where JPF executes the SUT with concrete variable values, SPF executes

the SUT using symbolic variable value expressions. Each variable is represented by an expression,

in terms of the symbolic values, that allows the variable to represent a range of concrete variable

values.

SPF maintains an execution tree, where each state contains a list of program variables, their cor-

responding symbolic expressions and a path condition. At each choice along the path, a constraint

that the input values must satisfy to reach that branch, is added to the path condition. In SPF,

each time a constraint is added, the satisfiability of the path condition is checked; if the path

condition is not satisfiable then the model checker backtracks to avoid unnecessary computation.

Figure 2.5 depicts the logical components of SPF, extending the component diagram of JPF, and

the input/output for the tool’s execution. The tool takes as input the SUT and interacts with JPF

to perform the model checking. It is able to make use of a listener and once SPF has reached an

error or the end of execution it produces a statistics report of the execution.

2.1.4 State space handling techniques in JPF and SPF

JPF, and by extension SPF, uses two main strategies to alleviate state space explosion: State

Hashing and Partial Order Reduction (POR) [2].

14

Stellenbosch University https://scholar.sun.ac.za



Figure 2.5: Symbolic Pathfinder (SPF). A visual illustration of the logical components of JPF
Core and its symbolic extension SPF, made up of: an input configuration file, Java input program
to test, JPF Core itself, the SPF extension, SPF’s Listener class, and an output statistics report.

2.1.4.1 Partial Order Reduction

The group of bytecode operations that are executed for JPF to move from one state to another

is called a transition. A transition consists of at least one bytecode instruction that results in

the alteration of the current state to form a new child state. For multi-threaded programs, JPF

interleaves all the possible bytecode operations of the threads so that all possible execution paths

are traversed. To optimise this process, JPF groups together sets of instructions that are allocated

to a single thread and that do not affect anything outside of the thread itself, to execute within

a single transition; this process is called Partial Order Reduction (POR). POR has been shown

to be effective in the alleviation of state space explosion with a more than 70% reduction in state

space [18].

2.1.4.2 State Hashing

JPF uses a hashtable to store visited states [16]. The JenkinsStateSet.java class is used by JPF as

the hashtable and the hashes are based on Jenkins hashes [17]. Alternative state set implementations

can be added to the framework and configured in the jpf.properties file of JPF or the field can be

set to empty where no state hashing is to be used.

• extends SerializingStateSet.java which implements StateSet.java

15

Stellenbosch University https://scholar.sun.ac.za



• calls CFSerializer.java - The default serializer is JPF’s CFSerializer. Alternative serializers

can be added to the framework and configured in the jpf.properties file of JPF. The serializers

in JPF are used to serialize a state into a format that can be used in hashing [5].

Unfortunately, the hashing used by JPF compromises soundness with respect to linearisability.

Section 3.5 discusses the details of the interaction between state-hashing and linearisability checking

and our proposed soundness-guaranteeing solution for JPF.

2.2 LINEARISABILITY CHECKING OF NON-BLOCKING CONCURRENT

DATA STRUCTURES

Non-blocking concurrent data structures are defined in Section 2.2.1, the trace model used to

represent concurrent executions of these data structures are defined in Section 2.2.2, linearisability

is defined in Section 2.2.3, and two linearisability checking strategies presented in the literature:

1. Linearisation Point Linearisability Checking, and 2. Automatic Linearisability Checking are

described in Section 2.3.

Linearisability is used to verify the correctness of non-blocking data structures, it guarantees that

every concurrent execution of a data structure correlates to a correct sequential execution of the

data structure.

2.2.1 Non-blocking Concurrent Data Structures

A data structure has a type that defines a set of possible values and a set of primitive operations that

provide the only means to create and manipulate that data structure; examples of data structures

are Sets, Queues, abd Arrays. For concurrent data structures that share their information amongst

different threads, race conditions can arise where more than one thread attempts to access a single

location in the data structure.

Blocking concurrent data structures avoid race conditions by using locks to synchronise access to

resources within the data structure, but they reduce the efficiency of the program because the

locks need to be acquired and released and allow only one thread at a time to execute the code

in the critical section; i.e. the region of code that contains the statements should be executed in

serial to avoid race conditions. This overhead can be considered expensive in performance-critical

16

Stellenbosch University https://scholar.sun.ac.za



concurrent programs.

Non-blocking concurrent data structures, also known as non-blocking concurrent objects in object

oriented environments, instead of locking sections of code, use atomic hardware operations to per-

form updates to resources. In Java, the compareAndSet operation is the wrapper for the hardware

compare-and-swap (CAS) operation; the CAS operation pseudocode is shown in the code fragment

below.

CAS operation pseudocode:

begin operation CAS(address, oldValue, newValue):

begin atomic

if address equals oldValue then:

address = newValue

return true

else

return false

end atomic

end operation

Making use of fewer and more efficient safety mechanisms allows the non-blocking data structures

to benefit from an increase in time efficiency and performance. These data structures are, however,

notoriously hard to design, implement and verify which can easily result in subtle concurrency

errors that arise due to the exponential increase in the number of interleavings with respect to

the number of concurrent processes. As stated by Doolan et al. [9], several published concurrent

data structures have been shown to contain errors even in situations where manual proofs were

attempted [33, 7].

In the following code fragments we show the enqueue operation for the BuggyQueue algorithm

(see the test suite algorithms in Section 4.1) with a lock-utilising solution and a non-blocking

CAS-atomic-operation-utilising solution, respectively.

Blocking BuggyQueue enqueue operation using a lock:

1. public boolean enqueue(int item) {

2. synchronized(lock) {

3. Q[REAR%L] = new Node(item, Q[REAR%L].counter+1, false);

17

Stellenbosch University https://scholar.sun.ac.za



4. }

5. REAR = REAR + 1;

6. return true;

7. }

Listing 2.1: Non-blocking BuggyQueue enqueue operation using atomic CAS operations:

1 . public boolean enqueue ( int item ) {

2 . int r ea r ;

3 . Node x ;

4 . boolean resultFound = fa l se ;

5 . do {

6 . do {

7 . r ea r = REAR. get ( ) ;

8 . x = (Node ) Q atomic . get ( r ea r%L ) ;

9 . } while ( r ea r != REAR. get ( ) r ea r == FRONT. get ()+L ) ;

10 . i f ( x . i s I n tNu l l ) {

11 . // CAS opera t i ons

12 . i f ( Q atomic . compareAndSet ( r ea r%L , x ,

new Node ( item , x . counter+1, fa l se ) ) ) {

13 . REAR. compareAndSet ( rear , r ea r +1);

14 . resultFound = true ;

15 . }

16 . } else {

17 . REAR. compareAndSet ( rear , r ea r +1);

18 . }

19 . } while ( ! resultFound ) ;

20 . return true ;

21 . }

The lock-utilising enqueue operation is simple in comparison to the equivalent operation using

CAS-atomic-operations. The non-blocking BuggyQueue algorithm is an example of a situation in

which the complex nature of implementing non-blocking algorithms can lead to subtle concurrency

errors; see Shann et al.’s article on the BuggyQueue for a description of the subtle concurrency

error of this algorithm [33].

18

Stellenbosch University https://scholar.sun.ac.za



Lock-Free versus Wait-Free

The non-blocking concurrent data structures referred to in this thesis are lock-free but they are not

wait-free. For example, a slow thread could keep retrying a CAS indefinitely whilst a faster thread

repeatedly performs an update in between the slow thread’s read and CAS steps. Friggens defines

wait-freedom and lock-freedom as follows [12]:

• Wait-free — A concurrent data structure is considered to be wait-free when every thread can

complete its execution within a finite number of its own program steps. Each thread thus

acts independently of the number or behaviour of other executing threads. Wait-freedom is

considered as ideal concurrent behaviour but in practice wait-free data structures are very

difficult to design.

• Lock-free — A concurrent data structure is considered to be lock-free when each of the

executing threads is able to complete its execution within a finite number of program steps,

that may include program steps in other threads. Lock-free data structures are easier to

implement than wait-free data structures and provide a more ideal concurrent behaviour than

lock-containing data structures but does not produce the most ideal concurrent behaviour of

a completely wait-free execution.

2.2.2 The Trace Model

To formally describe linearisation checking, we define a trace model that represents a concurrent

execution and is made up of operations on the non-blocking concurrent data structure.

A concurrent history is a finite sequence of operation invocation and response events on a

concurrent data structure. Every event must include the data structure’s name, the operation

name, the arguments, and the id of the thread associated with the event [15]. A response matches

an invocation if their data structure names agree and their thread ids agree. An operation, e, is

a pair consisting of an invocation inv(e) and response, res(e) event on the data structure. We

assume that each thread in a concurrent history sequentially executes a sequence of operations

on the data structure. Since the operations of non-blocking concurrent data structures are not

executed as atomic units, it is possible for operations in different threads to overlap within a

concurrent history.

19

Stellenbosch University https://scholar.sun.ac.za



Figure 2.6: Example of linearisations derived from a concurrent history A concurrent
history for a Queue data structure with the three derivable linearisations of it. Two of the three
linearisations are valid. We assume the starting Queue is empty.

A sequential history is a special case of a concurrent history where only one thread is executing;

each invocation is immediately followed by its matching response and, except the last, each response

is immediately followed by an invocation.

A linearisation is one possible order in which the operations of a concurrent history can be

ordered as a sequential history; considering that overlapping operation calls can take effect in any

order, but non-overlapping operation calls must take effect in their real-time order. A concurrent

history can have many possible linearisations because the overlapping operations can be ordered

in many possible ways; each of the linearisations can be either valid or invalid. A linearisation is

valid with respect to a sequential specification if exactly the same sequence of operation invocation

and response events can be generated by a correct sequential execution; otherwise it is invalid.

Figure 2.6 shows a concurrent history trace on a Queue data structure with two executing threads

and the two valid, one invalid linearisation which is derivable from the concurrent history.

On the left of Figure 2.6 is a concurrent history trace of an execution where thread-1 executed

an enqueue(1) operation and then an enqueue(2) operation, and thread-2 executed a dequeue()

operation which overlapped with both of the thread-1 operations. The right of the figure shows

the three linearisations which can be derived from the concurrent history. The overlapping rules

allow the thread-2 dequeue operation to be interleaved before, between, and after the two enqueue

operations of thread-1. The figure shows that the top two linearisations are valid; the response

values for the operations of each of these two linearisations corresponds to that of a correct sequential

specification. The last linearisation, however, is not valid; the response value of the first dequeue

20

Stellenbosch University https://scholar.sun.ac.za



operation in the linearisation incorrectly returns the value 1 (indicated by the red oval) where the

Queue was empty and should thus return empty.

2.2.3 Linearisability Checking

Non-blocking concurrent objects are notoriously hard to design without subtle concurrency errors

arising. Linearisability is the standard correctness criterion for concurrent data structures.

Informally, linearisability assumes that each operation applied by concurrent processes takes effect

instantaneously at some point between its invocation and its response, implying that a concurrent

execution can be represented as a sequential ordered list of events; we call this sequential ordering

a linearisation. Linearisations are determined by allowing concurrent (i.e., overlapping) operation

calls to take effect in any order, but requiring the real-time order of non-overlapping to be preserved;

thus a concurrent execution may have many possible linearisations of its operations. Certain lin-

earisations, however, may not be valid with respect to the correct sequential specification. If none

of a concurrent execution’s linearisations are valid then the concurrent execution is not considered

linearisable because it is not possible to get the same results as the concurrent execution for any of

the linearisations (which consider all orders of overlapping operations). Formally,

Definition 1. A history H induces an irreflexive partial order <H on operations: e0 <H e1 if res

(e0) precedes inv(e1) in H. A history H is linearisable if it can be extended (by appending zero or

more response events) to some history H’ such that:

complete(H’) is equivalent to some valid linearisation S, and <H⊆<S [15].

Definition 2. A concurrent history is linearisable if there exists at least one valid linearisation

of the history.

Definition 3. A concurrent data structure is linearisable if each individual concurrent history

reachable during execution of that data structure, is linearisable [15]. If there exists one or more

concurrent histories that are not linearisable then by Definition 2 the concurrent data structure is

not linearisable.

21

Stellenbosch University https://scholar.sun.ac.za



Figure 2.7: Linearisability example with a Queue data structure. An example of two
concurrent histories for the BuggyQueue data structure where one history is linearisable and the
other not. We assume a starting Queue that is empty.

Figure 2.7 shows two different example concurrent histories for the execution of a Queue data

structure. Each history has three derivable linearisations, labeled either valid or invalid according

to the rules of linearisability, and red ovals are used to indicate invalid response values from the

linearisation operations.

The concurrent history on the left has two valid linearisations and one invalid linearisation. Thus by

Definition 2, the concurrent history on the left is linearisable because at least one of the linearisations

is valid. We say it is possible for thread 2’s dequeue, which overlaps with thread 2’s enqueue, to

return 1. The concurrent history on the right has no valid linearisations. Thus by Definition 2,

the concurrent history on the right is not linearisable. We say that it is not possible for thread 2’s

dequeue operation to return 2 according to the sequential specification of a FIFO queue, even if we

consider all the possible orders in which the overlapping operations could have taken effect.

If all concurrent histories, generated by the model checker for the concurrent data structure, are

proven linearisable (that is they have at least one valid linearisation as per Definition 2) then the

concurrent data structure itself is by Definition 3 also linearisable.

22

Stellenbosch University https://scholar.sun.ac.za



2.2.4 Linearisability Checking with JPF

JPF requires as input at least the Java problem to test, called the System Under Test (SUT), as

well as any input required by the program. In our application, this program is a non-blocking

concurrent data structure and our tool performs linearisability checking of this SUT. It is assumed

that JPF will run in depth-first-search mode.

In order for a data structure SUT to be verified/checked for linearisability it must be supplied

together with a correct sequential version of the data structure SUT, also called the sequential

oracle. The sequential oracle will be used during linearisability checking to determine whether a

generated linearisation is valid by checking whether it corresponds to a sequential execution of the

same sequence of operations as in the linearisation.

To verify that the entire data structure is linearisable it is necessary to prove that each concurrent

history execution of the SUT, generated by the JPF model checker, is linearisable.

2.3 TYPES OF LINEARISABILITY CHECKING STRATEGIES

We will describe the two main linearisability checking strategies, that use model checking: 1.

Linearisation Point Linearisability Checking, and 2. Automatic Linearisability Checking. Figure 2.8

shows two identical concurrent histories where the left example uses linearisation point checking to

check linearisability of the history and the right example uses automatic linearisability checking.

Linearisation points are specified in the operations of a concurrent data structure; the linearisation

point of an operation is considered to be the instant, between the operation’s invocation and

response events, at which the operation takes effect.

The Linearisation Point Checking strategy requires linearisation points to be manually specified by

the user at program statements in the SUT. The linearisation points provide a means to order the

operations in a concurrent history into a linearisation that exactly reflects the time ordering in which

each operation of the concurrent history was executed. The left of Figure 2.8 shows a concurrent

history example with linearisation points depicted as orange circles. The orange circles are placed

between each operation’s invocation and response and corresponds to the point in time at which

the operation took place. Chronologically ordering the concurrent history operations, according to

23

Stellenbosch University https://scholar.sun.ac.za



Figure 2.8: Concurrent history and linearisations: Automatic versus Linearisation Point
checking strategies

the linearisation points, generates the one possible linearisation shown below its concurrent history.

To check whether the concurrent history is linearisable the operation results should be compared

to the corresponding results of an execution of the same operations by the sequential oracle. It

is not necessary for the linearisability checker to wait until the entire history has been generated

because the response value of each operation is available at its linearisation point. The linearisation

point checker takes advantage of this and makes on-the-fly comparisons between the concurrent

history’s operation response values and the response values, for the corresponding operations, of

the sequential oracle.

Unfortunately, linearisation points are difficult and sometimes impossible to define; the automatic

checker provides a solution for checking algorithms where the linearisation points are uncertain.

Automatic checking generates the linearisations for a concurrent history automatically. Instead of

on-the-fly comparisons, this checker maintains records of the concurrent history along the path and

then at end states it uses these records to generate all the possible linearisations of the concurrent

history. It then checks each linearisation individually until a valid linearisation is found to verify

the linearisability of that path’s concurrent history.

The right of Figure 2.8 shows the same concurrent history as for the linearisation point checking

example on the left but shows all the possible linearisations generated by the automatic checker,

24

Stellenbosch University https://scholar.sun.ac.za



which for this example is three. The automatic checker then checks each linearisation to determine

whether it is linearisable or not. If at least one is found linearisable then by Definition 2 the

concurrent history is linearisable. The design and implementation details for these and other

checkers are given in Chapter 3.

25

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3

DESIGN AND IMPLEMENTATION

The linearisation point and the automatic linearisability checking strategies are described in detail

in Sections 3.1 and 3.2, respectively. An extension to the linearisation point checking strategy in

the literature, to include data structures with operations that act generically on a data structure,

is presented in Section 3.1.2. Sections 3.2.1.2 and 3.2.1.1 detail two optimisation techniques for

the automatic checking strategy: lazy read proposed by Long et al˙ [24], and a hash optimisation

proposed in this thesis. A Symbolic Linearisability Checker that uses Symbolic PathFinder (SPF),

JPF’s symbolic execution extension, to integrate linearisability checking into a symbolic setting

is presented in Section 3.4. Lastly, JPF’s hash optimisation technique, the reasons why it causes

unsoundness with respect to linearisability, and a solution for guaranteeing soundness is presented

in Section 3.5.

The two core linearisability checking strategies implemented are Linearisation Point Checking and

Automatic Checking:

• Linearisation Point Checking

The linearisation point checking strategy requires manually specified linearisation points in

the SUT at specific program statements. The linearisation points are used to determine the

order of operation events and compare the response values of each operation in the concurrent

execution to the response values of the correct sequential specification of the program. If each

operation corresponds to the correct sequential specification then the execution is linearisable.

• Automatic Checking

The Automatic checking strategy does not require manually specified points and therefore does

not know the exact order of operation events. It records the trace information for a program

execution and at the end of the execution, generates all the derivable linearisations of the

trace. For each generated linearisation, it compares the response values of each operation in

the execution to the response values of the correct sequential specification of the program. If a

linearisation is found where each operation corresponds to the correct sequential specification

then the execution, from which the trace was recorded, is linearisable.

26

Stellenbosch University https://scholar.sun.ac.za



Each of the two linearisability checking strategies have been integrated with JPF to create con-

crete linearisability checking tools, and the automatic checking strategy has been integrated with

SPF to create a symbolic linearisability checking tool. The underlying model checkers must run

in depth-first-search mode for the linearisability checkers to run correctly. Internal and external

implementations are two different ways to implement the checking strategies in JPF/SPF. The lin-

earisability checking logic can be included in the SUT by way of manual code instrumentation, called

the internal implementation, or it can be excluded from it and executed alongside but externally

to the SUT, called the external implementation. All of the concrete checkers were implemented

for both the internal and external implementation. The symbolic checker was implemented only

with the external implementation because of the external performance benefits seen in the concrete

checkers; see Section 4.2 of Chapter 4 for performance details. Table 3.1 shows the high-level con-

crete and symbolic checkers with their corresponding details of internal/external implementations

and linearisability comparison strategies.

Linearisability checking
takes place at:

Internal
Imp.

External
Imp.

Concrete
Automatic

linearisations generated and
comparisons made at end states

yes yes

Linearisation Point
comparisons made on-the-fly

at linearisatoin points
yes yes

Symbolic Automatic
linearisations generated and

comparisons made at end states
no yes

Table 3.1: Defining the types of linearisability checkers. Implementation categories for the
two concrete and one symbolic linearisability checker types.

3.1 LINEARISATION POINT CHECKING

Linearisation points are specified in the operations of a concurrent data structure; the linearisation

point of an operation is considered to be the instant, between the operation’s invocation and

response events, at which the operation takes effect. In situations where the exact instant at which

an operation comes into effect cannot be specified, a non-fixed linearisation point will be used for

that operation during checking.

Informally, fixed and non-fixed linearisation points can be specified as follows [39]: 1. A fixed

linearisation point identifies the exact instant at which an operation comes into effect, between

27

Stellenbosch University https://scholar.sun.ac.za



its invocation and response events. 2. In situations where this exact instant is not evident then

non-fixed linearisation points can be used to define the segment or segments of time, between the

operation’s invocation and response events, for which the operation would return a correct response

value if a fixed linearisation point was placed there.

The linearisation point checking strategy performs on-the-fly comparisons between the response

values of concurrent history trace operations and the response values of the sequential specifica-

tion’s corresponding operations. The comparisons take place each time a linearisation point is

encountered, during the model checker’s generation of the trace execution. If the response values

of the trace do not correspond exactly to those of the correct sequential specification then by defi-

nition 2 the history is not linearisable. If there is at least one trace execution of the SUT which is

not linearisable then the SUT is not linearisable by Definition 3. The high-level linearisation point

checking process is shown in Figure 3.1.

Figure 3.1: On-the-fly Linearisation Point Checking. A visual illustration of the high level
linearisability checking process for the linearisation point checking strategy.

28

Stellenbosch University https://scholar.sun.ac.za



JPF takes as input the SUT and the corresponding correct sequential specification (Stage 0).

JPF generates all possible execution traces for the input, during the generation of each trace the

linearisability checker performs on-the-fly linearisability checking comparisons (Stage 1): each time

a linearisation point is encountered the sequential oracle is executed with the equivalent operation

and the response values compared. For the trace to be considered linearisable each comparison must

match the trace operation’s response with that of the sequential oracle; if even a single comparison

fails then the trace is not linearisable and the checking process is stopped. In Figure 3.1 the

generation of trace 1 is stopped when linearisation point 4 is reached and its response value does

not match the response value of the sequential oracle. The history is not linearisable, and it is not

necessary to perform the check for any later linearisation points in the history. The history of trace

2 is linearisable since each linearisation point in the history corresponds to a response value equal

to that of the sequential oracle. The time and space complexity of the one-the-fly comparisons is

linear in the length of the concurrent history.

3.1.1 Fixed and Non-fixed Linearisation Points

The linearisation point checking strategy is made up of two different types of linearisation point

logic, called fixed and non-fixed linearisation points. These together make up the linearisation point

checking strategy implemented for results in this thesis.

3.1.1.1 Fixed linearisation points

A fixed linearisation point identifies the exact instant at which an operation comes into effect,

between its invocation and response events. Fixed linearisation points provide a means to order

the operations in a concurrent history into a linearisation that perfectly reflects the time ordering

in which each operation of the concurrent history was executed. Fixed linearisation points can only

be determined for operations where there is an exact instant at which the operation comes into

effect, that is operations with one write operation that acts on the data structure.

For example, a Set data structure has operations add, remove, and contains. When the add or

remove operations return true, a fixed linearisation point corresponds to the exact instant of the

write operation on the Set data structure. Figure 3.2 shows a concurrent history trace for the Set

data structure where all operations in the trace have a fixed linearisation point.

29

Stellenbosch University https://scholar.sun.ac.za



Figure 3.2: Set data structure: Fixed Linearisation Point Example. Illustration of a
concurrent history where each operations in the history contains a fixed linearisation point, and
the corresponding linearisation.

The fixed linearisation points allow the ordering of the concurrent history operations into a lin-

earisation that perfectly reflects the time ordering in which each operation was executed. The

linearisation, as shown at the bottom of the figure and we see that each operation in the linearisa-

tion corresponds to that of a correct sequential execution; so it is linearisable.

When the add or remove operation of the Set data structure returns false or the contains oper-

ation returns true/false, the data structure is not altered and thus an exact instant at which the

operation comes into effect cannot be specified; this situation generalises to other data structures

and operation types.

3.1.1.2 Non-fixed linearisation points

In situations where this exact instant is not evident, non-fixed linearisation points can be used

to determine the segment or segments of time, between the operation’s invocation and response

events, for which the effect of the operation would produce the response value that was returned

by the operation.

A non-fixed linearisation point, for some operation, uses information from other threads to deter-

mine which segments of time, between the operation’s invocation and response, the operation would

return the response of the executed operation. The markers used to identify the start or end of a

non-fixed linearisation point segment are the fixed linearisation points in overlapping operations of

other threads; where the overlapping operations are acting on the same data structure element as

30

Stellenbosch University https://scholar.sun.ac.za



the current operation.

Figure 3.3: Non-Fixed Linearisation Points (key-specific example). A visual illustration
of a concurrent history for a Set data structure where thread one executes four operations, each
with a fixed linearisation point, and thread two executes one operation with non-fixed linearisation
point segments. The three valid and two invalid linearisations for this concurrent history are shown
below the concurrent history trace.

Figure 3.3 shows how the fixed linearisation points of operations in other threads can be used to

identify the non-fixed linearisation points in the current thread’s operation. In the figure:

1. The concurrent history shows that thread-1 executed four operations, each with a fixed lin-

earisation point identified by the filled orange circles. Thread-2 executes an unsuccessful

remove operation that does not contain a fixed linearisation point, and overlaps with all four

operations in thread-1.

2. Each of the operations act on the element in the data structure with the value of five i.e.

all the operations are called with argument five. We assume the values for each element in

the data structure are unique.

3. The vertical dashed lines identify the start and end of non-fixed linearisation point segments

31

Stellenbosch University https://scholar.sun.ac.za



of the thread-2 operation. The start and end markers are identified by considering the four

fixed linearisation points in thread one.

4. The wavy orange horizontal lines just above thread two’s operation trace and are the

non-fixed linearisation point segments.

To determine the non-fixed linearisation point segments, the effect of each overlapping fixed lin-

earisation point must be considered; providing a means to determine in which segment of time the

operation would return its response value.

We know that for a Set, after a successful add of a value, a remove of that value should be successful,

and that after a successful remove of a value, a remove of that value should be unsuccessful.

Therefore we can infer that the remove operation of thread-2 will return false after a successful

remove and before a successful add operation by thread-1. Thus the non-fixed linearisation point

for thread-2’s operation is determined to fall in three segments: 1. before the first fixed linearisation

point of thread-1, 2. after the second but before the third linearisation points of thread-1, and 3.

after the fourth linearisation point of thread-1. For completeness, the five derivable linearisations

of the concurrent history of Figure 3.3 are shown below the history trace. The five linearisations

show the five possible interleavings of thread-2’s operation between the ordered fixed-linearisation

point operations of thread-1.

The linearisations which correspond to thread-2’s operation interleaved in non-fixed linearisation

point segments (first, third, and fourth) are shown as valid linearisations, but those corresponding to

interleaving positions not in non-fixed linearisation point segments (second and third) are invalid

linearisations. The invalid linearisations fail because thread-2’s remove operation returns false

which does not correspond to the sequential oracle for that interleaving position. This illustrates

the non-fixed linearisation point’s correctness in identifying a segment in time for which, if the

operation had to come into effect, the history would be linearisable. See Appendix A.3 for the

non-fixed linearisation point diagrams for an unsuccessful add, an unsuccessful contains, and a

successful contains operation.

Linearisation point checking, when both fixed and non-fixed linearisation points are present, uses

the following method:

• Assumptions:

32

Stellenbosch University https://scholar.sun.ac.za



1. A key may be of any data type

2. The data structure initially contains no elements

3. Key values within the data structure are unique

4. A key is known to be contained in the data structure for the segment of time after

a successful operation that adds the key to the data structure and before a successful

operation that removes the key from the data structure.

5. A key is known to be absent from the data structure for the segment of time after a

successful operation that removes the key from the data structure and before a successful

operation that adds the key to the data structure.

• When a fixed linearisation point is encountered during execution of an operation, the equiva-

lent operation should be executed on the sequential oracle and the response values of the two

operations compared.

• When an operation’s response is encountered but no fixed linearisation point has occurred

for that operation, the fixed linearisation points of overlapping operations in other threads

should be considered; only those overlapping operation’s with fixed linearisation points that

act on the same key value as the current thread’s operation should be included.

If there is at least one non-fixed linearisation point segment for the operation, between the

operation’s invocation and response events, then there exists a linearisation interleaving for

this operation which yields a valid linearisation. Thus, provided that the concurrent history up

until this operation was proven linearizable, then the concurrent history remains linearizable.

If there does not exist a non-fixed linearisation point segment for the operation then there

does not exist an interleaving which yields a valid linearisation and thus the history is not

linearisable; by extension then the data structure is not linearisable (Definition 3).

3.1.2 Data structures with generic operations

The linearisation point checking strategy described up until this point is that proposed by Vechev

et al. for their Set data structure; their strategy generalises to data structures with operations

that act on a specific value in the data structure [39]. We extend their strategy to include data

33

Stellenbosch University https://scholar.sun.ac.za



structures with generic operations. Generic operations do not have arguments, they do not specify

the exact value in the data structure on which they will act. An example of such a data structure

is a Queue, the Queue has a dequeue operation which does not define the value on which it acts

but instead dequeues whichever value is at the start of the queue.

3.1.2.1 Generic operations: Fixed linearisation points

Generic operations that contain fixed linearisation points can be handled in the same way as the

operations that act on specific values, because the operations take effect at the linearisation points

and as soon as an operation takes effect, the specific value is known. Figure 3.4 shows an example of

a concurrent history which executes a generic element operation with a fixed linearisation point. The

fixed linearisation points still orders the operations of the concurrent history into a linearisation

that perfectly reflects the time ordering in which each operation of the concurrent history was

executed.

Figure 3.4: Queue data structure: Fixed Linearisation Points. An example concurrent
history, for a Queue data structure, containing operations that each execute a successful write
operation and thus each contain a fixed linearisation point, and the linearisation corresponding to
the fixed linearisation point ordering in the concurrent history.

3.1.2.2 Generic operations: Non-Fixed linearisation point segments

For generic operations that do not contain fixed linearisation points, non-fixed linearisation point

segments cannot be determined by considering the overlapping operations with fixed linearisation

points, pertaining to only one specific value; all overlapping operations with fixed linearisation

34

Stellenbosch University https://scholar.sun.ac.za



points regardless of value, should be considered.

Let LP be the set of linearisation points that should be considered and let S be the set of all keys

contained in the data structure during the time between the operation’s invocation and response

events, then

1. If there are operations with fixed linearisation points in other threads that overlap with the

current operation on a value v ∈ S, only those overlapping fixed linearisation points should

be added to LP .

2. If there are no operations with fixed linearisation points that overlap with the current oper-

ation on v ∈ S then the last fixed linearisation point for an operation on value v ∈ S should

be added to LP .

Using LP , the non-fixed linearisation point segments of the operation can be specified: If there

is at least one instant in time, between the operation’s invocation and response, where non-fixed

linearisation point segments for all values in S overlap then, provided that the concurrent history

up until this operation was proven linearisable, then the concurrent history remains linearisable.

Figures 3.5 and 3.6 show a linearisable and a non-linearisable concurrent history, respectively. All

thread-1 operations contain fixed linearisation points and all thread-2 operations contain non-fixed

linearisation points. The following elements are used in the figure:

1. The concurrent history in the figures show that thread-1 executed both specific and generic

operations that each contain a fixed linearisation point; identified by the filled circles. The

enqueue operations are specific and the dequeue operations are generic.

Thread-2 executed a generic operation, dequeue, which does not contain a fixed linearisation

point and has the response value of empty. The last 4/3 operations of thread one overlap

with the operation of thread two, respectively for Figures 3.5 and 3.6.

2. The vertical dashed lines identify the start and end of non-fixed linearisation point segments

for thread two’s operation, they are identified by considering the fixed linearisation points in

the operations of thread one.

3. The wavy orange, purple, and green horizontal lines just above thread two’s operation

trace each correspond to a different value and are the non-fixed linearisation point segments

35

Stellenbosch University https://scholar.sun.ac.za



Figure 3.5: Non-Fixed Linearisation Points (linearisable key-generic example). A visual
illustration of a linearisable concurrent history for a Queue data structure where thread one exe-
cutes four operations, each with a fixed linearisation point, and thread two executes one operation
with non-fixed linearisation point segments. The one valid and four invalid linearisations for this
concurrent history are shown below the concurrent history trace.

36

Stellenbosch University https://scholar.sun.ac.za



Figure 3.6: Non-Fixed Linearisation Points (non-linearisable key-generic example). A
visual illustration of a non-linearisable concurrent history for a Queue data structure where thread
one executes four operations, each with a fixed linearisation point, and thread two executes one
operation with non-fixed linearisation point segments. The four invalid linearisations for this con-
current history are shown below the concurrent history trace.

37

Stellenbosch University https://scholar.sun.ac.za



for those respective values.

In order to determine the non-fixed linearisation point segments, the effect of each fixed linearisation

point in LP must be considered; providing a means to determine in which segment of time the

operation would return its response value.

We assume unique values for all elements in the Queue, for reasons discussed in Section 3.5.3.

Directly after a successful dequeue operation the Queue will not contain the value removed from the

Queue and directly after a successful enqueue operation the Queue will contain the key value. Thus

the non-fixed linearisation point segments of thread-2’s operation either begin after a successful

dequeue, by thread-1 on the specific value, or after a successful enqueue, by thread-1 on the

specific value. For thread-2’s dequeue operation to be linearisable there must be a segment of time,

between the operation’s invocation and response events, where the non-fixed linearisation segments

overlap for every key in S; if there does not exist a segment of time where this is true then the

dequeue operation’s response value is not linearisable.

The example in Figure 3.5 shows a situation where the non-fixed linearisation point segments, for

each value in S, overlap (between the fourth and fifth fixed linearisation points of thread-1); thus

thread-2’s operation, when interleaved between the fourth and fifth fixed linearisation points of

thread-1, corresponds to a valid linearisation. The five possible interleavings, for which only the

interleaving just mentioned provides a valid linearisation, are shown below the concurrent history.

For the example in Figure 3.6, however, there does not exist a segment of time between thread

two’s operation invocation and response events where the non-fixed linearisation segments for each

value in S overlap; thus the history is not linearisable. The four linearisations shown below the

concurrent history of this figure show that for all possible interleavings of thread-2’s operation into

a linearisation, none produce a valid linearisation.

Thus if there is at least one instant in time, between the operation’s invocation and response,

where non-fixed linearisation point segments for all values in S overlap then, provided that the

concurrent history up until this operation was proven linearizable, then the concurrent history

remains linearizable.

38

Stellenbosch University https://scholar.sun.ac.za



3.1.2.3 Generic operations: linearisability checking procedure

Linearisation point checking of data structures with generic operations, when both fixed and non-

fixed linearisation points are present, uses the following method:

• The assumptions from Section 3.1.1.2 also apply here.

• When a fixed linearisation point is encountered for an executing operation, then the equivalent

operation should be executed on the sequential oracle and the response values of the two

operations compared.

Let LP be the set of linearisation points that should be considered and let S be the set of all

keys contained in the data structure during the time between the operation’s invocation and

response events, then

1. If there are operations with fixed linearisation points in other threads that overlap with

the current operation on a value v ∈ S, only those overlapping fixed linearisation points

should be added to LP .

2. If there are no operations with fixed linearisation points that overlap with the current

operation on v ∈ S then the last fixed linearisation point for an operation on value v ∈ S

should be added to LP .

• If an operation’s response is encountered but no fixed linearisation point has occurred for that

operation, then the fixed linearisation points in LP should be considered.

If there is at least one segment of time, between the operation’s invocation and response, where

the non-fixed linearisation points for all values in S overlap, then there exists a linearisation

interleaving for this operation which yields a valid linearisation; provided that the concurrent

history up until this operation was proven linearizable, then the concurrent history remains

linearizable.

If there does not exist a non-fixed linearisation point segment for which this is true then there

does not exist an interleaving which yields a valid linearisation and thus the history is not

linearisable; by extension then the data structure is not linearisable (Definition 3).

39

Stellenbosch University https://scholar.sun.ac.za



3.1.3 Conclusions for the linearisation point strategy

We have discussed the linearisation point checking strategy, the first of the two strategies imple-

mented in this thesis: Linearisation Point Checking, and Automatic Checking, and investigated our

extension of this strategy to include data structures with generic operations.

The defining of linearisation points for on-the-fly linearisability checking requires the user to have an

in-depth understanding of the SUT data structure in order for the manually specified linearisation

points to be determined correctly.

In the next section we investigate the automatic linearisability checking strategy and its ability to

check linearisability without specified linearisation points, and describe two optimisations to it.

3.2 AUTOMATIC CHECKING

The automatic strategy does not require user-specified linearisation points, like the linearisation

point strategy does, but automatically generates all possible sequential orderings of the concurrent

history to determine its linearisability. The automatic strategy collects and stores trace informa-

tion along each generated concurrent history path, and at each path end state is uses the stored

trace information to generate all possible linearisations for the respective concurrent history. Each

linearisation is checked for linearisability and if at least one linearisation of the history is valid then

the history is linearisable; if no linearisations are valid then the history is not linearisable. The

high-level automatic checking process is shown in Figure 3.7. In the figure:

1. Stage 0: JPF takes as input the system under test (SUT) and correct sequential specification

(sequential oracle).

2. Stage 1: JPF generates all concurrent history executions for the SUT data structure.

For each of the concurrent histories generated, the linearisability checker collects and stores

the concurrent history trace information up until JPF’s end state for that concurrent history

path.

• Stage 1.1: For each concurrent history generated, at the end state of that history’s

path the stored trace information is used to generate all possible linearisations of the

history.

40

Stellenbosch University https://scholar.sun.ac.za



• Stage 1.2: Each linearisation is compared to the sequential oracle and checked as valid

or invalid. For the first valid linearisation found, the concurrent history for that path

is proven linearisable and the checking for that path stops. If no valid linearisation is

found then history along that path is not linearisable.

Stage 1 is then executed for the next generated concurrent history until all of the

possible concurrent histories have been generated and checked.

Figure 3.7: Automatic Linearisability Checking Process. A visual illustration of the high
level linearisability checking process for automatic vanilla linearisability checking tools. 0. JPF
takes as input the system under test (SUT) and correct sequential specification (sequential oracle),
1. JPF generates all possible concurrent history executions, 1.1. For each of these concurrent
histories, all the linearisations derivable from the concurrent history are generated and 1.2. Each
of these linearisations are tested to determine whether they are linearizations. Stage one is then
redone for the next generated concurrent history.

Figure 3.8 shows an example concurrent history and the three possible linearisations for that history.

Each linearisation is labelled as either an “Invalid” or “Valid” linearisation according to its result

compared to the correct sequential specification.

The worst-case time and space complexity for the automatic checking of a history trace is exponen-

tial in the length of the concurrent history since, for each additional operation in the concurrent

history, there is an exponential increase in the number of generated linearisations. In the next

section we will describe two different optimisation techniques which aim to reduce the amount of

41

Stellenbosch University https://scholar.sun.ac.za



Figure 3.8: Automatic Checking Process Example: An example linearisable concurrent his-
tory with operations read(param1, param2) and write(param1, param2). The two operation param-
eters for write is 1. the value to write and 2. the memory location at which to execute the write
operation; the response of the write operation is the boolean value true if the write was successful
and false if it was not. The two operation parameters for the read are the two values to read;
the response returns a tuple of the 2 corresponding memory locations at which the values were
found. The checking process generates the three linearisations for the history, one of which is a
valid linearisation.

42

Stellenbosch University https://scholar.sun.ac.za



computation necessary for the automatic linearisability checking strategy.

3.2.1 Optimisations

Two optimisations were implemented: lazy read and a hashing optimisation. Lazy read was pro-

posed by Long et alṫo reduce the number of linearisations generated in checking of each given

concurrent history (Section 3.2.1.1) [24]. The hashing optimisation is proposed here to only check

linearisability of concurrent histories that have not been checked yet. It is based on the fact that

JPF generates many executions that reduce down to the same concurrent history trace.

3.2.1.1 Lazy Read optimisation

The lazy read optimisation aims to reduce the number of linearisations generated during the auto-

matic checking of a given concurrent history. It is based on the fact that only those operations that

execute successful write instructions cause changes to the concurrent data structure, and thus it is

only necessary to generate linearisations for the enumeration of these write-containing operations.

The read operations can then be included at all possible positions for these write-enumerations to

achieve the same linearisation checking as the ordinary automatic strategy but with fewer generated

linearisations, which should alleviate the exponential worst-case time and space complexity of the

automatic checking process. The optimisation changes the way that linearisations are generated

from a given concurrent history, outlined below:

1. As for the ordinary automatic checking strategy, the lazy read optimisation generates the

linearisations at path end states. The optimisation uses the stored concurrent history trace

information to generate linearisations using only those operations in the trace which contain

successful write instructions. The resultant enumerations are called the base linearisations.

2. For each base linearisation the read operations, i.e. those that during execution did not alter

the state of the data structure, are interleaved at all possible execution positions that satisfy

the happens-before relation of overlapping concurrent operations from the history trace. This

allows more than one instance of the same read operation to be added to a base linearisation

and the order of consecutive read operations; allowable because the reads do not alter the

state of the data structure so multiple instances in a linearisation do not affect the response

results of other operations. The base witnesses with the included read operations are termed

43

Stellenbosch University https://scholar.sun.ac.za



extended linearisations.

3. Each extended linearisation is then checked to see whether they contain a linearisation. To

contain a linearisation, each write-containing operation response must correlate to that of the

sequential oracle and there must be at least one instance of each read operation where its

response correlates to that of the sequential oracle. Thus the extended linearisation represents

many ordinary linearisations and if one of the ordinary linearisations within it are valid then

the extended witness is valid.

Figure 3.9 shows the concurrent history example for the ordinary automatic checker, the three lin-

earisations generated by the ordinary automatic checking strategy, and then the base and extended

linearisations generated by the lazy read optimisation for the automatic checking strategy. Lazy

read, for example, is shown as effective in reducing what would, for ordinary automatic checking, be

three generated linearisations to one extended linearisation that represents all three of the ordinary

linearisations.

The lazy read optimisation will show more benefit for test cases with fewer write operations because

the number of linearisations is determined by the number of write operation interleavings; unlike

the un-optimised automatic strategy which creates linearisations for the number of read and write

operation interleavings.

3.2.1.2 Hash optimisation

The model checker generates all possible bytecode interleavings for the execution of the SUT, but

multiple bytecode interleavings reduce to the same concurrent history trace. This optimisation

hashes the history trace information on-the-fly so that when it reaches an end state and determines

that the history has been re-encountered, it does not check linearisability for that path again.

The hash function takes as input the operation invocation/response event and it’s executing

thread information. It returns a byte array that contains the bit-format hash of the input event.

Thus each unique history is represented as a unique sequence of hashed invocation/response events

which make up the concurrent history trace.

A special kind of hashtable is maintained in the listener where operations are incrementally

hashed, as execution through the concurrent history progresses. The hashtable form an abstracted

44

Stellenbosch University https://scholar.sun.ac.za



Figure 3.9: Automatic checking strategy with the lazy-read optimisation example.
The two operation parameters for write is 1. the value to write and 2. the memory location at
which to execute the write operation; the response of the write operation is the boolean value true
if the write was successful and false if it was not. The two operation parameters for the read are the
two values to read; the response returns a tuple of the 2 corresponding memory locations at which
the values were found. The figure shows the three linearisations generated by ordinary automatic
checking and it shows the base linearisation and extended linearisation of the lazy-read process.

45

Stellenbosch University https://scholar.sun.ac.za



tree structure where states denote positions in the concurrent history and concurrent history event

hashes denote the edges connecting any one parent state to its many possible children states; the

hash tree corresponds to a minimised abstraction of JPF’s execution tree.

For JPF backtracking operations that revert previously hashed concurrent history operation events,

the position in the hash tree is backtracked accordingly to align with JPF’s execution; in this way

the hash tree shadows JPF’s execution. Each time a new concurrent history event is executed by

JPF, provided that the position in the hash tree already corresponds to those operation events

already executed in the concurrent history, the next increment, child state, of the hashtable is

updated with the newly explored event included as the event leading to the child state.

Thus the hash optimisation guarantees that each unique concurrent history traversed during JPF’s

execution will only be checked for linearisability once, irrespective of JPF generating multiple

bytecode interleaving paths that reduce to the same concurrent history trace.

3.2.2 Conclusions for the automatic strategy

Both the linearisation point and the automatic linearisability checking strategies have now been

described. Details of their integration into JPF and the two possible implementation approaches

are provided in the next section.

3.3 IMPLEMENTATION OF THE CONCRETE CHECKERS

Linearisability checking can be implemented either internally or externaally to the SUT. The inter-

nal implementation requires manual code instrumentation to be added to the SUT, the instrumen-

tation includes all linearisability checking logic into the SUT so that it executes along with JPF’s

execution of the SUT; all linearisability checking state information is part of the state space. The

external implementation does not require manual code instrumentation but makes use of JPF’s

listener API to perform all linearisability checking logic alongside, but external to JPF’s execution

of the SUT. The listener is able to receive on-the-fly notifications about the model checker’s search,

which the external implementation uses to gain access to the concurrent history trace information

and perform linearisability checking. In this case the linearisability checking state information is

recorded separately from the state space.

46

Stellenbosch University https://scholar.sun.ac.za



3.3.1 Internal Implementation

The internal implementations of the checking strategies include all of the respective linearisability

checking logic, including sequential oracle execution, in the SUT via manual code instrumentation.

The model checker generates all possible concurrent history executions of the SUT, and the lin-

earisability checking thus takes place along with the execution of each of the generated histories

since the histories contain the checking logic.

An example of manual code instrumentation

We give an example of manual code instrumentation by way of fixed linearisation point placement

in the SUT. The code fragments below shows the enqueue operation of the BuggyQueue algorithm

of Section 2.2.1 but with linearisation point code instrumentation; the code instrumentation lines

are shown in blue on lines 12, 13, 15, 16, 19, and 22.

Listing 3.1: Non-blocking BuggyQueue enqueue operation using atomic CAS operations:

1 . public boolean enqueue ( int item ) {

2 . int r ea r ;

3 . Node x ;

4 . boolean resultFound = fa l se ;

5 . do {

6 . do {

7 . r ea r = REAR. get ( ) ;

8 . x = (Node ) Q atomic . get ( r ea r%L ) ;

9 . } while ( r ea r != REAR. get ( ) r ea r == FRONT. get ()+L ) ;

10 . i f ( x . i s I n tNu l l ) {

11 . // CAS opera t i ons

12 . i f ( Q atomic . compareAndSet ( r ea r%L , x ,

new Node ( item , x . counter+1, fa l se ) ) ) {

13 . REAR. compareAndSet ( rear , r ea r +1);

14 . resultFound = true ;

15 . }

16 . } else {

17 . REAR. compareAndSet ( rear , r ea r +1);

18 . }

47

Stellenbosch University https://scholar.sun.ac.za



19 . } while ( ! resultFound ) ;

20 . return true ;

21 . }

Listing 3.2: Non-blocking BuggyQueue enqueue operation using atomic CAS operations

and linearisation point instrumentation added in blue code (lines 12, 13, 15, 16, 19,

and 22):

1 . public boolean enqueue ( int item ) {

2 . int r ea r ;

3 . Node x ;

4 . boolean resultFound = fa l se ;

5 . do {

6 . do {

7 . r ea r = REAR. get ( ) ;

8 . x = (Node ) Q atomic . get ( r ea r%L ) ;

9 . } while ( r ea r != REAR. get ( ) r ea r == FRONT. get ()+L ) ;

10 . i f ( x . i s I n tNu l l ) {

11 . // CAS opera t i ons

12 . boolean updated = false;

13 . synchronized(lock)

14 . i f ( Q atomic . compareAndSet (

r ea r%L , x , new Node ( item , x . counter+1, fa l se ) ) ) {

15 . linPoint(item);

16 . updated = true;

17 . }

18 . }

19 . if (updated) {

20 . REAR. compareAndSet ( rear , r ea r +1);

21 . resultFound = true ;

22 . }

23 . } else {

24 . REAR. compareAndSet ( rear , r ea r +1);

28 . }

48

Stellenbosch University https://scholar.sun.ac.za



29 . } while ( ! resultFound ) ;

30 . return true ;

31 . }

The code instrumentation in this example executes along with the SUT’s enqueue operation. Each

time the instrumented linearisation point method line is executed, the linearisability checking logic

performs the respective linearisability comparisons. Manual code instrumentation for other pur-

poses is included in the SUT similarly to this example.

Notice that the linearisation point instrumentation uses a synchronized section to encapsulate the

CAS operation and the linearisation point together, the reason for this is that the linearisation point

should be associated with the exact instant at which the CAS operation occurs; if the synchronized

section is not used other thread’s bytecode instructions could execute between the CAS and the

linearisation point operations. The use of this synchronized section does not not compromise the

non-blocking character of the algorithm because it does not effect any of the code logic.

3.3.1.1 Internal Implementation of the Linearisation Point Strategy

The linearisation point code instrumentation is used, throughout the model checker’s traversal, to

perform on-the-fly linearisability comparisons to the sequential oracle. In order for the user to

correctly place the linearisation points and other linearisability checking logic, the user is required

to have an in-depth understanding of the SUT algorithm as well as the linearisation point strategy.

The user should implement instrumentation for the following situations:

• At the fixed linearisation point of a SUT operation, the equivalent operation is to be executed

on the sequential oracle and the two response values compared to verify the linearisability of

the operation. All other executing threads should be notified of the fixed linearisation point

occurrence, the operation type and the data-structure value for which it occurred. These

notifications allow the other threads to determining non-fixed linearisation points in their

own operations.

• For operations which reach the end of their execution but for which no fixed linearisation

point was encountered, all non-fixed linearisation point segments for the operation must be

determined by considering the fixed linearisation point notifications from other threads. The

49

Stellenbosch University https://scholar.sun.ac.za



non-fixed linearisation points should then be used to verify the linearisability of the data

structure according to the process described in Sections 3.1.1.2 and 3.1.2.2.

3.3.1.2 Internal Implementation of the Automatic Strategy

Specifically for the automatic checking strategy, code instrumentation should gather concurrent

history trace information, generate the possible linearisations at path end states, and then check

each linearisation to determine the linearisability of the history trace.

The code instrumentation includes the following logic:

• Operation invocation and response event information is kept in a data structure along each

path so that at program end states, the trace information can be used for linearisability

checking

• At the end of the SUT, the linearisation generation and checking logic is included so that

it will execute only at the end of the program execution. To ensure this a Thread.join()

operation is used at the end of the main method to ensure all executing threads complete,

the automatic linearisability checking logic is placed directly after the Tread.join().

3.3.2 External Implementation

The external implementation does not require manual code instrumentation but uses of JPF’s

listener API to perform all linearisability checking logic alongside, but external to JPF’s execution

of the SUT.

The listener API includes methods that can be called to receive on-the-fly notifications about the

model checker’s search and perform operations which alter the model checker’s traversal of the

search space. The external implementation uses the listener API to gain access to the model

checker’s search information and thus the data structure operation invocation and response events(

i.e. the concurrent history trace information). When a linearisation error is encountered, the listener

API allows interaction with the model checker to halt model checking execution, if configured to

do so. We will now describe the external checker’s use of these API calls for the linearisation point

and the automatic checking strategies.

50

Stellenbosch University https://scholar.sun.ac.za



3.3.2.1 External Implementation of the Linearisation Point Strategy

The following API calls are used for the external linearisation point checker implementation:

1. void methodEntered(VM vm, ThreadInfo currentThread, MethodInfo enteredMethod).

This method executes in the listener each time JPF executes an operation invocation event,

the time-ordered invocation information of each executed operation is used to keep a record

of all the operation invocations pertaining to the concurrent history trace.

We implement fixed linearisation points as method calls so that each time an invocation event

happens for this linearisation point method, the listener executes the relevant linearisability

checking logic. This logic includes the execution of the sequential oracle from the listener and

the comparison of the operation response values.

2. void methodExited(VM vm, ThreadInfo currentThread, MethodInfo exitedMethod).

This method executes in the listener each time JPF executes an operation response event,

the time-ordered response information of each executed operation is used to keep a record of

all the operation invocations pertaining to the concurrent history trace.

In the situation where a response event occurs for an operation that did not encounter a fixed

linearisation point, then the concurrent trace records are used to determine the non-fixed

linearisation points of this method by considering the fixed linearisation points of operations

in other threads. The linearisability of the operation is checked according to the determined

non-fixed linearisation points.

3. void stateBacktracked(Search search). This method executes in the listener each time

that JPF performs a state-backtrack operation. A result of the backtrack operation is that

JPF may backtrack concurrent history trace events which are contained in the listener’s trace

records. This method is used by the listener to revert any backtracked history trace events

and sequential oracle executions to align with that of state which JPF has backtracked to.

3.3.2.2 External Implementation of the Automatic Strategy

The following API calls are used for the external automatic checker implementation:

1. void methodEntered(VM vm, ThreadInfo currentThread, MethodInfo enteredMethod).

51

Stellenbosch University https://scholar.sun.ac.za



This method executes the same function as the first paragraph describing this method in

Section 3.3.2.1; it does not execute the functionality of the second paragraph, that is the

linearisation point logic.

2. void instructionExecuted(VM vm, ThreadInfo thread, Instruction nextInsn,

Instruction executedInsn). This method executes the same function as the first paragraph

describing this method in Section 3.3.2.1; it does not execute the functionality of the second

paragraph, that is the linearisation point logic.

3. void stateAdvanced(Search search). This method executes in the listener each time JPF

advances from some parent state to a child state. When this method executes for an advance

to an end-state, the listener uses the concurrent history trace records for the path till that

end state to perform linearisability checking of the trace history.

4. void stateBacktracked(Search search). This method executes the same function as de-

scribed in Section 3.3.2.1.

3.3.3 Internal and External Comparison

The internal and external implementations have three main differences: manual user requirements,

performance, and mechanisms for handling backtracking. We will now investigate each of these

differences.

The internal implementations require more user involvement than the external check-

ers. The internal implementations require a user with advanced knowledge to manually add the

correct code instrumentation for linearisability checking to the SUT; for algorithms of the automatic

strategy as well as algorithms with correctly placed linearisation points for the linearisation point

strategy. The external checker’s listener performs linearisability checking that generalises to all con-

figured algorithms for the automatic checking strategy, and to all algorithms with correctly placed

fixed linearisation points for the linearisation point strategy; without any further involvement from

the user.

Adding code instrumentation to the SUT translates to additional bytecode instructions, which

results in more interleavings and thus longer paths and a larger state space. The external checker

does not add any extra instrumentation to the SUT, apart from fixed linearisation point markers

52

Stellenbosch University https://scholar.sun.ac.za



for the linearisation point strategy, and thus the model checker’s search space size is not impacted

by the linearisability checking; we thus expect an improvement in performance for the

external implementation over the internal implementation.

For the internal implementation, the backtracking of any concurrent history records or sequential

oracle executions are handled by JPF’s VM which backtracks these linearisability logic elements

along with its backtrack of the SUT. The external implementations, however, keep these linearis-

ability logic elements in the listener which is not included in JPF’s VM state space. The external

checker thus implements mechanisms, for each backtrack of JPF, that revert the concurrent his-

tory records and sequential oracle execution to that which aligns to the state and position in the

concurrent history trace which JPF backtracked to. For each advance of JPF the concurrent histo-

ry/sequential oracle information in the listener is updated and for each backtrack the information is

reverted; ensuring the linearisability checking of each generated history tracked happens correctly.

3.4 SYMBOLIC CHECKING

The concrete model checkers, the internal as well as the external implementation of both the

linearisation point and the automatic checkers, were integrated into JPF. In this section we describe

the integration of the automatic strategy using the external implementation approach, into Symbolic

PathFinder (SPF).

Symbolic PathFinder (SPF) is a symbolic execution extension to JPF. It maintains the core utilities

of JPF, such as an exhaustive analysis of different thread interleavings, listener class utilities, state

matching, and partial order reduction techniques, but also adds the benefits of symbolic execution

and automatic test case generation offered by SPF. Symbolic symbols instead of concrete input

values are used to represent a range of arbitrary concrete inputs. The model checker uses the

symbols to generate all execution paths for all input value situations and thus explores all reachable

sections of the input program; maximising program path coverage. SPF also provides an automatic

test case generation mechanism which can be used to generate all possible test cases for a given

number of executing operations.

A Symbolic Linearisability Checker can check linearisability of a data structure over a range of input

values and test cases. This symbolic linearisability checking tool has both benefits and challenges,

53

Stellenbosch University https://scholar.sun.ac.za



which we will now discuss.

3.4.1 Benefits

A single run of the Symbolic Linearisability Checker is equivalent to multiple runs of

the Concrete Linearisability Checker. The symbolic checker’s use of symbolic execution and

automatic test case generation produces a much broader and more robust linearisability check than

concrete checking. There are three main reasons:

1. Program coverage is maximised, because all reachable sections of the SUT are executed by

way of symbolic execution. The symbolic checker explores and checks the linearisability of all

possible execution paths of the SUT for all input values of a given domain. This is possible

since the inputs are not bound to concrete values, as is the case with a concrete linearisability

checker; the inputs are expressed as symbolic values that represent a range of concrete values

for a given execution path.

2. Symbolic values can represent multiple domains, whilst the concrete checker verifies the pro-

gram over one domain at a time. The symbolic execution can check the behaviour of code

across input from potentially unbounded data domains. For example, the symbolic values

used throughout verification could represent domains of integer, double, and float.

3. The automatic test case generation results in the symbolic checker performing linearisability

checks for multiple test case inputs, i.e. ordered sequence of operations for each executing

thread, where the concrete checkers check linearisability for just one of these test cases.

The Symbolic Linearisability Checker eliminates the need for hand-crafted test cases.

The Symbolic checker requires a single integer value for each executing thread: the number of

operations to be executed on that thread, for example: Thread 1: 2 operations and

Thread 2: 1 operation. This is in contrast to the concrete checkers which require input of

an exact sequence of operations and parameter values for each executing thread, for example:

Thread 1: enqueue(1), enqueue(2) and Thread 2: dequeue().

The single test case of the concrete checker is on a higher level than ordinary testing – because

JPF will execute all the unique interleavings of the bytecode instructions for each thread and thus

systematically explore all the possible execution sequences reachable for the SUT on the specified

54

Stellenbosch University https://scholar.sun.ac.za



input, which eliminates the need for the programmer to manually create test cases for every possible

execution sequence – but it is still possible that the user misses a possible input configuration that

would have resulted in the finding of a linearisation error.

The hand-crafting of test cases resembles testing, it is possible that the user does not create a

test case for the exact situation in which the error arises. The single input value per thread for

the symbolic checker is used to generate and check all possible operation sequences and parameter

values for the number bound. The symbolic checker thus provides the most general and robust

linearisability check for the number bound.

The symbolic checker does not have the ’missed violation’ problem of the concrete

checker. The symbolic linearisability checker finds linearisability errors for data structures that

can hold multiple instances of the same value. As explained in Section 3.5.3, the concrete checkers

incorrectly determine that such a data structure is linearisable for certain test cases. Figure 3.10

depicts two concurrent histories for an existing error in the BuggyQueue algorithm. The histories

labeled “Concrete” and “Symbolic” were recorded by a concrete and a symbolic linearisability

checker of the BuggyQueue algorithm, respectively.

Figure 3.10: Symbolic Linearisability Checker. A duplicate-value concurrent history example
for the BuggyQueue data structure where the concrete checker incorrectly verifies its linearisability
and the symbolic checker correctly locates the linearisation error present and determines the con-
current history as not linearisable.

Both histories contain the error that thread-1’s dequeue operation returns the value enqueued

to the stack second, not first. The concurrent histories both show thread-1 execute a dequeue

operation and thread-2 execute two enqueue operations that overlap with the thread-1 operation.

55

Stellenbosch University https://scholar.sun.ac.za



Both enqueue operations put different instances of the value 2 into the queue, but for the symbolic

history, the symbols S1 and S2 have been assigned to the concrete input instances.

The concrete linearisability checkers do not identify the logical linearisability error in the history

because it considers only the concrete response value and not the instance of that value which

is being returned. The symbolic checker, however, considers the symbols S1 and S2 instead of

the concrete values and thus notices that the instance of the value being returned, S2, is actually

the one enqueued to the stack second; not correlating to the S1 instance returned by the correct

sequential specification.

Thus the symbolic linearisability checker correctly identifies the logical error where the concrete

checker misses it. This illustrates that the symbolic linearisability checker is able to handle some

situations with identical data-structure values while the concrete linearisability checker is only able

to handle situations for unique values.

3.4.2 Challenges

Path conditions can be unsolvable. The Symbolic Linearisability Checker uses a solver, at

different points in the symbolic model checking process, to find a solution to the current state’s

path condition constraints. If the path condition expression is unsolvable or overly complicated,

often the case with effective hash functions, then the off-the-shelf solver may either produce an error

or fall into an infinite loop; which prevents the linearisability checker from continuing execution.

One solution is to try different solvers, each with their own strengths and weaknesses, until one

can effectively solve the path condition; but this solution does not work when the path condition

is unsolvable. Pasareanu et al. proposes a mixed concrete-symbolic solving technique that uses

annotations to indicate to the model checker which methods should be executed concretely [28].

By executing methods that contain complex formulae concretely it is possible to eliminate certain

constraints from the path condition, such that it becomes a solvable expression.

Since annotations can only be added to methods within the SUT and hash functions are often

located in compiled libraries, to which we do not have writing access except through exorbitant

measures of run-time instrumentation of the compiled class’s code, this solution was not considered

viable and worth further investigation. At present, this problem is not solved.

56

Stellenbosch University https://scholar.sun.ac.za



Symbolic checking does not scale well. The symbolic checker does not scale with respect to

time, particularly when multiple threads are used. Checking a program with loops or recursive

behaviour using symbolic values can easily result in infinite loops and ultimately infinite execution

paths, which causes SPF to perform very poorly. To improve efficiency, SPF utilises state matching

to prevent re-computation of already explored branches and can be configured to backtrack at a

predefined maximum search depth. It should be noted that the setting of a depth limit introduces

the risk of missing linearisation errors due to premature path cut-offs and that even with these

features enabled, SPF still does not scale well; it is thus most effective for unit or sub-system level

testing.

The sequential oracle requires concrete values. Checking the validity of a linearisation is

challenging when working with symbolic input values. Symbolic values do not hold comparative

properties so they cannot be used for logical operations in the execution of the sequential oracle.

A constraint containing expression similar in nature to a path condition could be maintained for

the sequential oracle and a solver utilised, to determine representative concrete values to use when

executing the sequential oracle’s comparative operations.

A simpler solution is to define each symbolic variable as a tuple containing both a concrete value

(a representative from the range of possible concrete values) as well as the unique symbolic symbol

identifying it as different from another instance of the variable with the same concrete value. This

allows the sequential oracle to make comparative logic operations as well as allow the listener to

recognise the errors/violations missed by the concrete checker. This solution was chosen, even

though it necessitates instrumenting the sequential oracle class to allow for tuple manipulation.

3.4.3 Implementation of Symbolic Checkers

We have implemented an external automatic symbolic linearisability checker. The internal and

linearisation point symbolic checkers were not implemented for the following reasons:

• An internal symbolic checker implementation was found to be impractical. Preliminary results

for this checker showed severe scalability problems which renders it unusable. As an example,

the internal symbolic checker executed for 29 minutes over the BuggyQueue search space

where the external symbolic checker took 3 seconds for the same search space traversal. We

57

Stellenbosch University https://scholar.sun.ac.za



thus decided to abandon the internal symbolic implementation.

• A linearisation point symbolic checker has its challenges for integration with SPF because the

linearisation point linearisability checking strategy is not easily compatible with the symbolic

model checker’s state space traversal logic. It might, however, be beneficial for the symbolic

domain.

The symbolic checker requires, for most situations, a depth limit in order to execute within a

reasonable amount of time. The depth limit results in end-state cut offs, and the end states

are exactly where the automatic checking strategy does its linearisability checking. The depth

limit prevents many generated history paths to be traversed up until the depth limit but not

checked for linearisability by the automatic checking strategy because the end state is cut

off. The linearisability checking strategy performs on-the-fly linearisability comparisons and

thus would utilise all opportunities for linearisability checking up until the cut-off point in the

path, irrespective of whether or not the end state was cut-off. Thus the linearisation point

strategy would be beneficial over the automatic strategy for a badly scaling symbolic setting.

This checker was not implemented, but could be investigated in future work.

We will now elaborate on the implementation details for the external automatic symbolic linearis-

ability checker, the symbolic checker implemented in this thesis.

3.4.3.1 Listener API calls

The external implementations use a JPF listener and listener API calls to gain access to the model

checker’s search information, and then use the information to perform linearisability checking. We

will now describe the API calls utilised by the external hybrid and the external symbolic checkers

and the purposes for which they are used.

1. void methodEntered(VM vm, ThreadInfo currentThread, MethodInfo enteredMethod).

This method executes the same function as the first paragraph describing this method in Sec-

tion 3.3.2.1 but applied to SPF instead of JPF; it does not execute the functionality of the

second paragraph, that is the linearisation point logic.

2. void instructionExecuted(VM vm, ThreadInfo thread, Instruction nextInsn,

Instruction executedInsn). This method executes in the listener each time SPF executes

58

Stellenbosch University https://scholar.sun.ac.za



a operation response event, the time-ordered response information of each executed operation

is used to keep a record of all the operation invocations pertaining to the concurrent history

trace; each response value is recorded in the form of a symbolic identification key when

available, otherwise the concrete value is stored.

3. void stateAdvanced(Search search). This method executes in the listener each time SPF

advances from some parent state to a child state. For the situations where this method

executes for an advance to an end-state, the listener uses the concurrent history trace records

and the path condition of the end state to perform linearisability checking of the trace history.

In linearisability checking of the end state’s path history, the path condition is passed to a

solver which generates representative concrete values for the symbolic state variables; these

concrete values, along with their symbolic names, are then used to execute the sequential

oracle.

4. void stateBacktracked(Search search). This method executes the same function as the

first paragraph describing this method in Section 3.3.2.1 but applied to SPF instead of JPF.

3.4.3.2 Execution of the sequential oracle in a symbolic setting

SPF uses Choco as the default constraint solver, other solvers such as z3 can be configured instead

of Choco, in the configuration file of jpf file for each SUT.

Executing the sequential oracle in a symbolic setting poses a challenge due to the nature of symbols

not having the comparative properties of the concrete values they represent. The symbols cannot

be used as input parameters to the sequential oracle since the oracle’s operations may contain

comparative logic; for which symbolic values are not suitable.

As discussed under Section 3.4.2, one approach to solving this is to use a path condition for executing

the sequential oracle and a solver for generating concrete values where necessary. We have chosen

a simpler approach of grouping each symbol used as input to the sequential oracle along with a

concrete representative value found by using a solver. We then pass this tuple to the sequential

oracle and allow it to use the concrete values, but always group the symbol identifying the exact

instance of the value along with it in the Tuple.

Our chosen approach allows the execution of the sequential oracle so that the tuple response values

59

Stellenbosch University https://scholar.sun.ac.za



can be used for extracting the respective returned symbol for comparison to the concurrent history

operation’s symbolic response value.

3.4.3.3 Parameter and return type configuration capabilities:

The tool is currently able to handle no more than two parameter values for an operation in the

SUT with types of integer, double, or boolean. For running the tool it is necessary to configure the

parameter and return types for all method operations available to the SUT.

3.4.4 A Hybrid Checker

The symbolic linearisability checker uses automatic test case generation to generate and check all

possible test cases for a given number of operations executed per thread, and it uses symbolic

execution to check linearisability for all reachable program paths of those test cases. The Hybrid

Checker, a concrete-symbolic hybrid, uses symbolic execution to check linearisability of all reachable

program paths; but turns automatic test case generation off and instead checks linearisability of

just one particular user-specified test case.

Table 3.2 shows the different input requirements of the Concrete, Hybrid, and Symbolic Checkers.

The Concrete Checker performs linearisability checking for the particularly defined input test case:

the sequence of operations and argument values per thread. The Hybrid checker performs linearis-

ability checking for the particular defined sequence of operations per thread but instead of concrete

values, uses symbolic argument values and symbolic execution to check all reachable program paths

of the test case. The Symbolic Checker takes as input only a number of general operations per

thread. It performs linearisability checking for all possible operation sequences given the number of

operations per thread constraint and for each of these test cases then uses symbolic argument values

instead of concrete values; thus performing linearisability for all possible test cases and reachable

program paths for the input constraints.

Concrete Hybrid Symbolic

BuggyQueue
(unique value)

thr1: dequeue()
thr2: enqueue(8),
enqueue(9)

thr1: dequeue()
thr2: enqueue(sym),
enqueue(sym)

thr1: 1 operation
thr2: 2 operations

Table 3.2: Test suite of SUT algorithms and the operation-sequence test cases used for the concrete,
hybrid, and symbolic checkers.

60

Stellenbosch University https://scholar.sun.ac.za



We have described the design and implementation of the internal/external automatic/linearisation-

point concrete linearisability checkers, the automatic external symbolic checker, and the automatic

external hybrid checker. The completeness and soundness of these checkers, with respect to lin-

earisability, is discussed in the next section.

3.5 COMPLETENESS AND SOUNDNESS

Completeness and soundness with respect to linearisability analysis is defined here according to the

definitions and discussion provided by Pezzè and Young [31] and Meyer [25], respectively.

Definition 4. A linearisability analysis is complete if it always reports that a data structure is

linearisable when the data structure actually is linearisable (accepts all desirables) [31].

Thus, a linearisability analysis is complete if it accepts all linearisable data structures. The lin-

earisability checkers in this thesis are complete, because all caught violations are real violations

(never reports false alarms) and when no violations are detected, it reports that the data structure

is linearisable.

Definition 5. A linearisability analysis is sound if it reports that a data structure is linearisable

only when it actually is linearisable (accepts only desirables) [31].

Thus a linearisability analysis is sound if it accepts only linearisable data structures. If a linearisa-

tion error is present the linearisability analysis must find it to be considered sound (no violations

may be missed); otherwise it will report that the data structure is linearisable.

Soundness, in this thesis, is with respect to the input test case configured for the program execution.

Different factors can contribute towards compromising soundness of the linearisability checkers such

as a depth bound, conflicts in the hash function, model checking state-space optimisation techniques,

and unsolvable path conditions.

We first elaborate on JPF’s soundness-compromising state-space optimisation technique and present

a soundness guaranteeing solution to this problem, we discuss a problem with the concrete linearis-

ability checkers, which compromises soundness, and we then investigate soundness of the symbolic

linearisability checkers.

61

Stellenbosch University https://scholar.sun.ac.za



3.5.1 JPF’s state hashing optimisation causes unsoundness with respect to linearis-

ability

As we discussed in Section 2.1.4.2, JPF uses state hashing as an optimisation technique to alleviate

state space explosion. JPF’s state hashing introduces the possibility of the linearisability checker

missing errors because the optimisation could cause error containing paths to be cut-off. We

explained that JPF maintains a hashtable of all the states in its search space. Each hashed state

includes program information for the heap and thread-stack snapshots, but the hashing of these

program elements does not guarantee soundness with respect to linearisability. Each time a state is

re-encountered during JPF execution, the branch leading from that state is ignored because it was

explored when the state was first encountered, the branch is cut off. Different concurrent history

paths may lead to states that are equivalent in terms of the hash. This introduces the problem

that JPF considers different history paths as equivalent, and therefore could ignore exploration of

certain paths it considers re-encountered when in fact contains a previously unexplored concurrent

history trace that should be checked for linearisability.

An example of such a situation is shown in Figure 3.11 for the LockFreeList algorithm. The figure

shows two concurrent history traces generated by JPF, path 2 is generated after path 1. The

vertical blue dashed line shows the point during both history paths at which JPF would consider

the program state equivalent. We call this program state, State X; the data structure contains the

value of seven at State X. The trace labelled path 1 is linearisable, but the trace in path 2 is not

and contains an error for the false response value of the contains operation (depicted by the red

oval).

The order in which these two history paths are generated affects path cut-offs. Lets assume path one

is generated first, all five operations executed and the path’s concurrent history proven linearisable.

Later JPF begins to generate path two, but when it reaches State X it realises that it finds State X

in its hashtable and thus ignores any branches leading from this state; the model checker therefore

never generates the contains operation that would reveal the linearisation error and the error is not

picked up.

62

Stellenbosch University https://scholar.sun.ac.za



Figure 3.11: Soundness in JPF. An example showing two concurrent histories where, when
traversed by JPF in order, JPF makes an incorrect cut off of path 2 due to state hashing and
misses the linearisation error in the cut-off path. JPF hashes the history segments of both, from
start until the vertical-dotted-blue line, as equivalent. These two hashed segments are not equivalent
since they produce two different sets of linearisations. For an execution where JPF explored path 2
after path 1, then JPF will make an incorrect path cut-off and miss the linearisation error contained
in path 2.

63

Stellenbosch University https://scholar.sun.ac.za



3.5.2 A strategy to guarantee soundness with respect to linearisability of the input,

in JPF

One strategy to eliminate the unsoundness problem in JPF is to turn off the hashing optimisation.

Our experiments showed that the model checking search space produced by an unoptimised execu-

tion is significantly larger than that of an optimised execution; even small examples execute past

the timeout period and the tool is not usable.

A more efficient strategy is to add soundness guaranteeing code instrumentation to the SUT to

force JPF to keep the trace information at its states, and thus include the trace information in

the state hash, so that it will be able to differentiate all unique concurrent history paths. This

solution ensures that JPF generates paths for all unique concurrent history possibilities, and does

not skip any, while still utilising its hash optimisation technique to alleviate the state space explosion

problem of model checking.

Each time a concurrent history invocation or response event is traversed by JPF, the operation

name, argument(s), response value, and thread that executed the operation are included in an object

and pushed to a queue data structure; the queue maintains the time-ordering of the events and

the pushed object maintains all the uniqueness-related information about the event. An example

soundness instrumentation code fragment is shown below:

Soundness instrumentation method:

private void soundnessMarkerBeginMethod(String methodName, boolean responseValue) {

if (isSound) queue.add(new instructionForSoundness(methodName, responseValue,

(int)Thread.currentThread.getId()));

}

Each of the concrete linearisability checking tools can be configured to execute in either sound or

unsound mode. It is important to qualify that the soundness of an execution can be compromised

if a bad hash function is used, resulting in hash conflicts that cause incorrect path cut-offs.

3.5.3 Missed Violations of the Concrete Checkers

It was found that the concrete linearisability checkers sometimes missed violations for data struc-

tures that may contain multiple instances of the same value; that is the history is incorrectly verified

64

Stellenbosch University https://scholar.sun.ac.za



as linearisable where a linearisation error was actually present.

This problem of the concrete checkers does compromise soundness in that errors can be missed

for these duplicate-value situations. For purposes of this thesis we will refer to the sound concrete

checkers as such, excluding the mention of this behaviour, and not using examples for which this

behaviour will arise, when considering soundness of the linearisability checker executions.

An example of such a missed violation is when the BuggyQueue algorithm, that has a known bug

(see the test suite in Section 4.1), is checked for linearisability with input: Thread 1: dequeue()

and Thread 1: enqueue(2), enqueue(2). A concurrent history is shown in Figure 3.12, in this

history both enqueue operations put the value of two into the queue, we have identified each unique

instance of the value as 2A and 2B.

Figure 3.12: An example situation where the concrete checkers incorrectly verify lin-
earisability The example is for the BuggyQueue algorithm.

If only the concrete values 2 and 2 are compared, the concurrent history does correlate to the

execution of a correct sequential oracle, but if the instance of the value being returned is considered,

we see that the history contains an error in that the instance not at the front of the queue was

returned. Thus the logical error is not identified by the concrete checkers.

Section 3.4.1 explained that the Symbolic Linearisation Checker does not have this problem; al-

lowing linearisability checking of data structures for situations where the data structure contains

duplicate values.

3.5.4 Soundness in SPF

The symbolic and the hybrid linearisability checkers use SPF, the symbolic extension to the JPF

model checker. SPF switches off the hash optimisation used by JPF, the soundness problem de-

scribed for JPF does not apply to SPF. However, SPF is unsound due to symbolic execution’s

infinite looping behaviour and the possibility of unsolvable path conditions. For programs with

65

Stellenbosch University https://scholar.sun.ac.za



loops, the symbolic execution can generate an infinite sequence of interleavings; a depth limit is

necessary, all possible interleavings cannot be checked for linearisability and thus an error can be

missed. The solver used for SPF may encounter situations where a path condition is unsolvable,

SPF will either throw an error or ignore that path; in either of these situations a linearisability error

can be missed. However, up until the depth limit for those paths generated by SPF, the symbolic

and the hybrid linearisability checkers are sound.

3.6 THE JPF/SPF LINEARISABILITY CHECKING EXTENSION FRAME-

WORK

The concrete linearisability checkers are available as an extension to JPF called jpf-linearisable.

The symbolic checker and hybrid checker are available as aan extension to SPF called jpf-symb.

The extensions have all five test suite algorithms (see Section 4.1)) implemented; for jpf-linearisable

for both internal and external implementations.

3.6.1 jpf-linearisable

To add a new SUT to jpf-linearizable, the following files are required:

• The SUT object class included inside of the SUT wrapper Java class. This file should be

added to the “src/examples” directory.

• Code instrumentation must be added to the SUT for those respective checkers

that require it. A separate .java file must be used for the SUT to be tested using exter-

nal checking (un-instrumented SUT) and to be tested using internal checking (instrumented

SUT).

• A correct sequential specification of the SUT should be included in the “src/ex-

amples/sequentialExecutions” or the “src/main/za/ac/sun/jpf/linearizable/sequentialExecu-

tions” folders for the internal and external checker’s utility, respectively.

• A configuration file is required for each checker experiment; the configuration fields deter-

mine the test case and checker type for the experiment. The file has a .jpf extension and are

located in the “src/examples/” directory.

66

Stellenbosch University https://scholar.sun.ac.za



A run.sh file is provided in jpf, this file can be used to run test cases (for which config files have

been created) and toggle the execution settings. The following execution settings can be toggled

from within this run.sh file:

• Concrete Checker: “Automatic”, “AutomaticLazyRead”, “LinPoints”, “AutomaticHash”

“AutomaticLazyReadHash”.

• Implementation: “Internal”, “External”.

• SUT: “BuggyQueue”, “PairSnap”, “LockFreeSet”, “LockFreeList”, “SnarkDeque”.

• Soundness settings: “Sound”, “Unsound”.

The user can thus use these configurations to execute any combination of the listed settings and

execute their desired linearisability check on one of their own implemented non-blocking concurrent

data structures.

3.6.2 jpf-symb

To add a new SUT to jpf-symb, the following files are required:

• The SUT object .java class and a SUT driver .java class for that SUT. This file should be

added to the “src/examples/linearizability” directory.

• A correct sequential specification of the SUT should be included in the “src/main/gov-

/nana/jpf/symbc/linearizabilityListeners/sequentialExecutions” folder.

• A configuration file is required for each checker experiment; the configuration fields deter-

mine the test case and checker type for the experiment. The file has a .jpf extension and are

located in the “src/examples/linearizability” directory.

A run.sh file is provided in jpf, this file can be used to run test cases (for which config files have

been created) and toggle the execution settings. The following execution settings can be toggled

from within this run.sh file:

• SUT: “BuggyQueue”, “PairSnap”, “LockFreeSet”, “LockFreeList”, “SnarkDeque”.

• Symbolic Checker: “Hybrid”, “Symbolic”

• Number of generic operations per thread

67

Stellenbosch University https://scholar.sun.ac.za



• Depth limit

A user can thus use these configurations to choose any combination of the listed settings and execute

the chosen symbolic linearisability check on one of their own implemented non-blocking concurrent

data structures.

3.7 DESIGN AND IMPLEMENTATION CONCLUSIONS

The design of two linearisability checking strategies, called linearisation point strategy and auto-

matic strategy, have been described in this chapter; as well as two optimisation techniques for the

automatic strategy. There is two structurally different ways that each of these strategies can be

implemented, internally and externally. We have developed both internal and external concrete

checkers for each of the checking strategies. We presented the symbolic checker and a concrete-

symbolic hybrid checker for which there are only external implementations. The concrete linearis-

ability checkers use JPF, a concrete model checker, and the symbolic checkers use SPF, a symbolic

model checker. An unsoundness causing JPF optimisation was described and we proposed a sound-

ness guaranteeing solution to this problem. Finally, we described the jpf-linearisable and jpf-symb

tools and how they can be used. In the next chapter we will evaluate the efficiency, scalability, and

error finding ability of each of our implemented checkers.

68

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4

RESULTS AND ANALYSIS

In this chapter all of the checkers implemented for this thesis are evaluated and compared using the

same model checking framework and on the same hardware. The details of the system on which

the experiments were run and the checker’s manual input requirements are given in Section 4.1,

the checker’s efficiency results are shown in Section 4.2, scalability of the checkers discussed in

Section 4.3, and the error finding capability of each checker investigated in Section 4.4. The

checkers can be categorised into the following four types, they have either an internal or external

implementation and can run in either sound or unsound mode.

• Concrete Linearisation Point (Section 3.1).

• Concrete Automatic (Sections 3.2 and 3.2.1.1).

• Symbolic (Section 3.4)

• Hybrid (Section 3.4)

4.1 MACHINE SPECS AND CHECKER INPUTS USED FOR THE EXPER-

IMENTS IN THIS CHAPTER

All experiments were performed on a machine running Ubuntu 18.04.5 with 16GB RAM and an

Intel Core i7-8665U processor (4 cores, 8 threads).

All of the checkers require input of (a) a SUT which is the concurrent data structure implemented in

Java and (b) a correct sequential implementation of the SUT data structure, the sequential oracle.

The other input requirements are specific to the respective checker categories, they are shown in

Table 4.1.

The concrete checkers are the most user-intensive, they require (c) a user-specified test

case, which contains a sequence of operations for each executing thread, and the (d) user-specified

arguments for all operations in the test case. The concrete linearisation point checkers also require

(f) manual code instrumentation for user-specified linearisation points to be added in the SUT. The

internal concrete checkers require (g) manually added linearisability-checking code-instrumentation

69

Stellenbosch University https://scholar.sun.ac.za



(a)
SUT

(b)
Sequential

oracle

(c)
Sequence of
operations

in the test case
(per thread)

(d)
Argument values
for operations
in the test case
(per thread)

(e)
Number of

generic operations
in the test case
(per thread)

(f)
Manual code

instrumentation
for linearisation

points

(g)
Manual code

instrumentation
for linearisability
checking logic

Concrete (JPF)

Linearisation Point yes yes yes yes no yes
internal yes
external no

Automatic yes yes yes yes no no
internal yes
external no

Symbolic (SPF)

Symbolic
yes yes no no yes no no

Hybrid
yes yes yes no no no no

Table 4.1: Input specification for the different linearisability checker implementations:
(a) Concurrent data structure (SUT), (b) Sequential specification of the SUT (sequential oracle),
(c) Sequence of operations in the test case, for each executing thread, (d) Argument values for
the operations in the test case, (e) Number of generic operations to be executed by each thread in
the test case, (f) Manual code instrumentation for user-specified linearisation points added to the
SUT, and (g) Manual linearisability-checking-logic code instrumentation added to the SUT.

in the SUT. For the concrete internal automatic checkers, little user knowledge of the SUT is

required to add this correctly, but for the concrete internal linearisation point checkers an in-depth

understanding of the SUT is required to add this correctly.

The symbolic checker is the least user-intensive, it requires only (e) one user-specified

integer per executing thread; the integer defines the number of generic operations to be executed

by the thread. The symbolic checker uses the integer input value(s) to generate all possible test

cases, and generate argument values for the test case operations such that all reachable program

paths are explored; for the input number bound. The hybrid checker requires (c) a user-specified

test case, which contains a sequence of operations for each executing thread, but does not require

the arguments for all operations in the test case; instead it uses symbolic execution to generate

argument values such that all reachable program paths are explored.

The concrete checker’s usefulness in finding linearisability errors is constrained by the user’s ability

to hand-craft test cases in which errors are present. The symbolic checker performs lin-

earisability checking on all possible test cases and verifies the linearisability of a data

structure in general, constrained only by the number of operations to be executed by each thread.

The test suite used for experiments in this chapter includes the following five data structures

with six know linearisation errors: BuggyQueue [33] (1 linearisation error), LockFreeList [34] (2

linearisation errors), PairSnap [32] (1 linearisation error), SnarkDeque [7] (2 linearisation errors),

70

Stellenbosch University https://scholar.sun.ac.za



and LockFreeSet [39] (0 linearisation errors). For all experiments the maximum memory available

was set to 2048 MB and the maximum timeout period was set to 12 hours. The test suite and test

cases used for experiments in this chapter are shown in Table 4.2.

Concrete Hybrid Symbolic

BuggyQueue
(unique value)

thr1: dequeue()
thr2: enqueue(8),
enqueue(9)

thr1: dequeue()
thr2: enqueue(sym),
enqueue(sym)

thr1: 1 operation
thr2: 2 operations

BuggyQueue
(duplicate value)

thr1: remove(0)
thr2: add(8),
add(8)

thr1: dequeue()
thr2: enqueue(sym),
enqueue(sym)

thr1: 1 operation
thr2: 2 operations

LockFreeList
Bug1

thr1: add(5),
add(6),add(7),
remove(5),
remove(6)
thr2: remove(6)

thr1: add(sym),
add(sym),add(sym),
remove(sym),
remove(sym)
thr2: remove(sym)

thr1: 5 operations
thr2: 1 operation

LockFreeList
Bug2

thr1: add(5),
add(7),
remove(5),
contains(6)
thr2: add(6)

thr1: add(sym),
add(sym),
remove(sym),
contains(sym)
thr2: remove(sym)

thr1: 4 operations
thr2: 1 operation

PairSnap

thr1: write(1,101),
write(3,201),
write(1,301)
thr2: readPair(1,3)

thr1: write(sym, sym),
write(sym, sym),
write(sym, sym)
thr2: readPair(sym, sym)

thr1: 3 operations
thr2: 1 operation

SnarkDeque
Bug1

thr1: popRight(0)
thr2: pushRight(4),
pushRight(5),
popLeft(0)

thr1: popRight()
thr2: pushRight(sym),
pushRight(sym),
popLeft()

thr1: 1 operation
thr2: 3 operations

SnarkDeque
Bug2

thr1: popRight(0)
thr2: pushRight(6),
popLeft(0)

thr1: popRight()
thr2: pushRight(sym),
popLeft()

thr1: 1 operation
thr2: 2 operations

LockFreeSet
thr1: add(5),
add(5)
thr2: remove(5)

thr1: add(sym),
add(sym)
thr2: remove(sym)

thr1: 2 operations
thr2: 1 operation

Table 4.2: Test suite of SUT algorithms and the operation-sequence test cases used for the concrete,
hybrid, and symbolic checkers.

4.2 EFFICIENCY

In this section we evaluate and compare the resource-usage requirements of each of the checkers

for their execution of the the test suite algorithms, over the entire search space. The performance-

limiting factor of each checker is investigated and the effectiveness and overall benefit of the two

automatic checker optimisations determined.

71

Stellenbosch University https://scholar.sun.ac.za



4.2.1 Resource usage of the Concrete Checkers

The time, memory, and search space requirements of all the concrete checkers are compared in

this section. The resource usage of each checker’s execution is compared to that of the stand-alone

model checking execution, for a SUT, to determine the contribution of the model checker and the

linearisability checker, respectively, on each tool’s overall resource usage. There are eight different

concrete checkers: two different linearisability checking strategies are used: 1. Linearisation Point

Linearisability Checking, and 2. Automatic Linearisability Checking, each of the two strategies can

be implemented either internally or externally, and each implemented checker can run in either a

sound or an unsound mode.

The time and memory usage results for these experiments are shown in Table 4.3 and the model

checking search space information is shown in Table 4.4. Memory results include the number of

states created during the model checking execution and the maximum memory allocation necessary

for the search; maximum memory allocation is adjusted dynamically by JPF. The model checking

search space information shows the number of visited, backtracked, and end states for the execution

and the maximum depth reached during state space traversal. The search space size is shown to

be vastly different from algorithm to algorithm. This is because the base search space size is

determined by the number of bytecode instructions contained in the un-instrumented SUT i.e., the

size of the algorithm. Irrespective of which algorithm is tested, the comparative efficiency of the

checker types remains constant.

The analysis of the experiment data in Table 4.4 shows that there is a correlation between the

amount of code instrumentation included in the SUT and the execution time of the

checkers. The amount of code instrumentation added to the SUT and the execution time of the

linearisability checking for each checker, can be expressed in the following relation: Sound Inter-

nal Linearisation Point > Sound Internal Automatic > Sound External Automatic/Linearisation-

Point > Unsound Internal Linearisation Point > Unsound Internal Automatic > Unsound External

Automatic/Linearisation-Point. The influence of the amount of instrumentation, but also the kind

of instrumentation, on the checker’s resource usage will be analysed.

72

Stellenbosch University https://scholar.sun.ac.za



SUT
algorithm

Data
Format:

Lin. Checker turned off

stand-alone model checker
trace info. maintained

at model checker’s states

Unsound
(time: +-1s)

Sound
(time: +-10s)

Unsound
(time: +-10s)

Sound
(time: +-10s)

BuggyQueue
Time (seconds)

New States
Max Mem.(MB)

3.74
17,715

675

726
3,272,426

977

101
441,438

425

12,928
51,246,707

2,675

LockFreeList
Bug1

Time (seconds)
New States

Max Mem.(MB)

4.01
17,966

425

11,983
46,885,440

1,126

800
3,418,545

679

Memory
limit

reached

LockFreeList
Bug2

Time (seconds)
New States

Max Mem.(MB)

3.84
16,764

675

3,482
15,111,856

569

192
819,284

427

Memory
limit

reached

PairSnap
Time (seconds)

New States
Max Mem.(MB)

2.24
10,095

425

1,010
4,735,998

425

216
963,268

425

Memory
limit

reached

SnarkDeque
Bug1

Time (seconds)
New States

Max Mem.(MB)

3.56
15,253

425

1,918
7,178,784

425

353
1,510,982

676

Memory
limit

reached

SnarkDeque
Bug2

Time (seconds)
New States

Max Mem.(MB)

2.28
8,964
425

466
1,946,860

425

114
499,689

425

15,184
60,508,984

2,047

LockFreeSet
Time (seconds)

New States
Max Mem.(MB)

3.89
5,082
300

503
2,343,680

676

49
234,178

426

13,018
53,473,053

2,690

SUT
algorithm

Data
Format:

External
(lin. checker turned on)

Internal
(lin. checker turned on)

Unsound
(time +-1s)

Sound
(time +-10s)

Unsound
(time +-10s)

Sound
(time +-10s)

Aut. Lin. Point Aut. Lin. Point Aut. Lin. Point Aut. Lin. Point

BuggyQueue
Time (seconds)

New States
Max Mem.(MB)

5.11
17,715

675

4.38
17,563

425

776
3,272,426

674

780
3,224,768

676

106
441,438

425

5,941
14,498,966

680

14,970
51,246,707

2,675

Memory
limit

reached

LockFreeList
Bug1

Time (seconds)
New States

Max Mem.(MB)

5.76
17,966

425

4.46
17,946

425

12,268
46,885,440

1,126

12,155
44,970,952

1,069

885
3,418,545

679

4,329
12,753,166

698

Memory
limit

reached

Memory
limit

reached

LockFreeList
Bug2

Time (seconds)
New States

Max Mem.(MB)

5.44
16,764

676

4.10
16,754

426

3,895
15,111,856

739

3,789
14,698,304

751

208
819,284

427

1,080
2,138,151

679

Memory
limit

reached

Memory
limit

reached

PairSnap
Time (seconds)

New States
Max Mem.(MB)

3.19
10,095

676

2.25
10,077

424

1,056
4,735,998

674

1,080
3,978,630

676

229
963,268

425

4,320
11,836,968

758

Memory
limit

reached

Memory
limit

reached

SnarkDeque
Bug1

Time (seconds)
New States

Max Mem.(MB)

4.39
15,253

425

3.83
15,253

424

1,678
7,178,784

675

1,680
7,175,974

675

360
1,510,982

676

31,800
77,650,632

2,040

Memory
limit

reached

Memory
limit

reached

SnarkDeque
Bug2

Time (seconds)
New States

Max Mem.(MB)

3.32
8,964
425

2.36
8,986
424

435
1,946,860

676

450
1,915,213

674

121
499,689

425

5,926
17,986,678

682

16,650
60,508,984

2,047

Memory
limit

reached

LockFreeSet
Time (seconds)

New States
Max Mem.(MB)

1.29
5,082
300

3.94
5,082
300

541
2,343,680

676

540
2,343,680

676

52
234,178

426

210
655,330

678

14,100
53,473,053

2,690

Memory
limit

reached

Table 4.3: Concrete: Execution Time and Memory for Entire Search Space. The execu-
tion time, number of new states, and maximum memory statistics for each of the internal/external
sound/unsound linearisation-point/automatic/checker-turned-off concrete checker types for execu-
tion of the test suite over the entire search space.

73

Stellenbosch University https://scholar.sun.ac.za



SUT
algorithm

Data
Format:

Lin. Checker turned off

stand-alone model checker
trace info. maintained

at model checker’s states

Unsound Sound Unsound Sound

BuggyQueue

Visited:
Backtracked:

End:
Max Depth:

28,206
45,921

398
102

4,983,342
8,255,768
136,985

178

682,006
1,123,444

1,024
192

76,035,682
127,282,389

245,988
269

LockFreeList
Bug1

Visited:
Backtracked:

End:
Max Depth:

28,548
46,514

12
129

67,193,481
114,078,921

248,472
288

5,192,870
8,611,350

4,323
315

Memory
limit

reached

LockFreeList
Bug2

Visited:
Backtracked:

End:
Max Depth:

26,761
43,525

8
122

21,801,688
36,913,544

88,956
257

1,235,913
2,054,705

1,711
274

Memory
limit

reached

PairSnap

Visited:
Backtracked:

End:
Max Depth:

15,944
26,039

154
90

6,856,994
11,592,992
2,77,913

193

1,482,222
2,445,420

2,226
204

Memory
limit

reached

SnarkDeque
Bug1

Visited:
Backtracked:

End:
Max Depth:

23,735
38,988

350
118

10,519,554
17,698,338

392,300
214

2,333,332
3,844,014

2,862
234

Memory
limit

reached

SnarkDeque
Bug2

Visited:
Backtracked:

End:
Max Depth:

13,955
22,919

220
94

2,877,073
4,823,933

93,815
170

765,533
1,265,222

1,104
181

90,160,688
150,669,672

279,972
257

LockFreeSet

Visited:
Backtracked:

End:
Max Depth:

7,848
12,930

8
74

3,384,784
5,728,464

17,968
163

355,046
589,224

896
163

78,949,292
132,422,345

332,096
249

SUT
algorithm

Data
Format:

External
(lin. checker turned on)

Internal
(lin. checker turned on)

Unsound Sound Unsound Sound

Aut. Lin. Point Aut. Lin. Point Aut. Lin. Point Aut. Lin. Point

BuggyQueue

Visited:
Backtracked:

End:
Max Depth:

28,206
45,921

398
102

27,998
45,561

342
102

4,983,342
8,255,768
136,985

178

4,914,229
8,138,997
133,506

178

682,006
1,123,444

1,024
192

22,589,835
37,088,801

1,684
1,405

76,035,682
127,282,389

245,988
269

Memory
limit

reached

LockFreeList
Bug1

Visited:
Backtracked:

End:
Max Depth:

28,548
46,514

12
129

28,522
46,468

12
129

67,193,481
114,078,921

248,472
288

64,812,917
109,783,869

183,324
288

5,192,870
8,611,350

4,323
315

19,973,060
32,726,226

10,728
652

Memory
limit

reached

Memory
limit

reached

LockFreeList
Bug2

Visited:
Backtracked:

End:
Max Depth:

26,761
43,525

8
122

26,748
43,502

8
122

21,801,688
36,913,544

88,956
257

21,319,096
36,034,886

74,700
257

1,235,913
2,054,705

1,711
274

3,278,144
5,416,295

1,940
577

Memory
limit

reached

Memory
limit

reached

PairSnap

Visited:
Backtracked:

End:
Max Depth:

15,944
26,039

154
90

15,914
25,991

117
91

6,856,994
11,592,992

2,77,913
193

5,800,658
9,779,288
214,875

19

1,482,222
2,445,420

2,226
204

19,138,067
30,975,035

2,968
377

Memory
limit

reached

Memory
limit

reached

SnarkDeque
Bug1

Visited:
Backtracked:

End:
Max Depth:

23,735
38,988

350
118

23,735
38,988

350
118

10,519,554
17,698,338

392,300
214

10,514,946
17,690,920

392,250
214

2,333,332
3,844,014

2,862
234

122,197,714
199,848,346

6,688
1,730

Memory
limit

reached

Memory
limit

reached

SnarkDeque
Bug2

Visited:
Backtracked:

End:
Max Depth:

13,955
22,919

220
94

13,925
22,911

205
89

2,877,073
4,823,933

93,815
170

2,832,428
4,747,641

91,595
167

765,533
1,265,222

1,104
181

28,087,386
46,074,064

2,228
1,370

90,160,688
150,669,672

279,972
257

Memory
limit

reached

LockFreeSet

Visited:
Backtracked:

End:
Max Depth:

7,848
12,930

8
74

7,848
12,930

8
74

3,384,784
5,728,464

17,968
163

3,384,784
5,728,464

17,968
163

355,046
589,224

896
163

1,023,932
1,679,262

896
393

78,949,292
132,422,345

332,096
249

Memory
limit

reached

Table 4.4: Concrete: Search Space Statistics for Entire Search Space The number of
visited, backtracked, and end states and the max depth reached for each of the checker types for
execution on the test suite over the entire search space.

74

Stellenbosch University https://scholar.sun.ac.za



4.2.1.1 The effect of the code instrumentation on the model checker’s search space

The model checker’s search space size is influenced by the number of bytecode instructions included

in the SUT for two reasons: 1. for an increase in the number of bytecode instructions in the SUT,

the maximum depth reached and path length increases and 2. an increase in the number of bytecode

instructions in the SUT causes an increase in the number of bytecode interleavings.

Figures 4.1 and 4.2 visually illustrate the execution times of the concrete checkers for the Lock-

FreeSet SUT data of Table 4.3. The memory data follows the same trends as execution time because

the time to traverse a search space is directly proportional to the size of the search space.

Figure 4.1: Unsound Concrete Checkers:
Execution time results (from Table 4.3) for en-
tire search space traversal of the test suite Lock-
FreeSet algorithm.

Figure 4.2: Sound Concrete Checkers: Exe-
cution time results (from Table 4.3) for entire
search space traversal of the test suite Lock-
FreeSet algorithm.

4.2.1.1.1 Cost of including code instrumentation for soundness in the SUT To guar-

antee soundness of linearisability, code instrumentation is added to the SUT at positions targeted

at preventing JPF from making state-space optimising branch cut-offs. The code instrumentation

necessary for soundness, effects the execution time results for two reasons: First, as previously

mentioned, the instrumentation adds bytecode instructions to the SUT which increases the path

length and the number of interleavings in the search space; and a larger state space takes longer to

traverse. Second, the instrumentation prevents JPF from cutting off branches that contain concur-

rent history events, which would have otherwise been cut off, so that no linearisations are missed.

This also increases the state space. Figures 4.1 and 4.2 illustrate the cost of soundness, the axis

numbers show that the sound checkers generally take one or two orders of magnitude longer to

75

Stellenbosch University https://scholar.sun.ac.za



execute than the otherwise equivalent unsound executions.

4.2.1.1.2 Cost of including code instrumentation for linearisability checking logic in

the SUT The internal checkers require that the SUT is manually instrumented with linearisability

checking logic. The amount of instrumentation required for linearisability checking is large in

comparison to the other instrumentation requirements, thus its effect on the model checker’s search

space size and the tool’s overall execution time is significant. As shown in Figures 4.1 and 4.2, the

internal checkers consistently execute one or two orders of magnitude longer executions than their

corresponding external implementation. The increase in resource requirements for the internal

checkers is because the large amount of code instrumentation added to the SUT causes a large

model checking search space, which takes longer to traverse. Many of the internal sound checker

experiments reached the memory limit before completing their execution because of the combined

internal and soundness instrumentation causing a very large search space.

The external checkers do not require that the SUT is instrumented with linearisability checking

logic, and the benefit of this is evident in Table 4.3’s data which shows that the external checkers

create between one and three orders of magnitude less new states than the corresponding internal

checkers. Figures 4.1 and 4.2 show that the external checkers have an execution time practically

equivalent to the stand-alone model checking execution, and also show that the external checking

computation contributes an insignificant amount of time to the tool’s overall execution time.

4.2.1.1.3 Cost of including linearisation point code instrumentation in the SUT The

external linearisation point checkers only require linearisation points to be manually specified in

the SUT, no other instrumentation. The actual linearisability checking logic, executed when one

of the linearisation points are encountered during JPF’s search space traversal, is performed from

the external listener class. Figures 4.1 and 4.2 show that the small amount of code instrumenta-

tion required for linearisation point placement, combined with the insignificant computation time

required for the external linearisability checking logic, does not have any significant impact on the

overall execution time of the tool; there is an insignificant execution time difference between the

external linearisation point and the base model checking execution.

76

Stellenbosch University https://scholar.sun.ac.za



4.2.1.1.4 Cost of checking linearisability on-the-fly versus at the end-states, using

instrumentation in the SUT JPF makes use of a state-space optimisation technique called

Partial Order Reduction (POR). POR groups together sets of instructions that are allocated to a

single thread, and that do not affect anything outside of the thread itself, to execute within a single

transition and not interleave with the instructions of other threads.

The internal automatic checker performs linearisability checking logic only at program end states;

after all spawned threads have finished their execution, after the Thread.join operation completes for

Java, the main thread uses the concurrent history information maintained throughout the execution

of that path to perform linearisability checks. The main thread, as the only final executing thread,

does not affect anything outside of the thread itself and JPF groups together these instructions

into a single transition. Thus the bytecode instructions contributing to the automatic linearisability

checking computation do not contribute to any increase in bytecode interleavings or significant path

length increase for the search space.

The internal linearisation point checker uses each spawned thread to performs on-the-fly linearis-

ability checks which are able to affect other threads, thus the linearisability checking logic for this

checker contributes to an increase in possible interleavings and path length; resulting in larger

search space which takes longer to traverse. The data in Table 4.3 confirms this relation in that

the internal linearisation point checkers generally produce many more new states during execution,

compared to the internal automatic linearisation point checkers even though similar linearisability

checks are taking place.

In summary, there is not just a correlation between the amount of code instrumenta-

tion added to the SUT and the execution time but also the kind of instrumentation

used for each respective checker. We have investigated the impact that soundness instrumenta-

tion, linearisability checking logic instrumentation, linearisation-point specifying instrumentation,

and on-the-fly versus end-state instrumentation has on the execution time of the checkers.

4.2.1.2 Performance-limiting Factor of the Concrete Checkers

To determine the performance limiting factor of each checker, we performed two types of experi-

ments for each checker, the first where the linearisability checking logic is turned on and the second

77

Stellenbosch University https://scholar.sun.ac.za



where it is turned off; so that the resource usage requirements of stand-alone model checker and of

the linearisability checker components can be determined. The experiment result data is shown in

Tables 4.3 and 4.4 in the columns labeled with “Lin. Checker turned on/off”. The results will be

used to confirm/falsify the claims made by Vechev et al., Liu et al., and Doolan et al.

Figure 4.3 shows the execution time results of Table 4.3 for the external automatic and external

linearisation point checkers (the first two bar graphs from the left of the figure, displayed in green),

the internal linearisation point checker (the third and fourth bar charts from the left of the figure,

displayed in orange), and the internal automatic checker (the fifth, sixth, and seventh bar charts

from the left of the figure, displayed in red).

Figure 4.3: Concrete checker performance-limiting-factor. The execution time results used
are for the LockFreeSet algorithm; the data is available in Table 4.3. The results show the execution
time taken for the internal/external unsound automatic/linearisation-point checker types both with
and without linearisability logic included.

The internal linearisation point checker includes linearisability-checking-logic code instrumentation

in the SUT and as previously discussed, this instrumentation increases the search space size and

thus the total execution time of the tool. The execution of this checker with linearisability checking

turned off, that is the un-instrumented SUT, is shown in Figure 4.3 to take roughly five seconds,

78

Stellenbosch University https://scholar.sun.ac.za



the execution of the checker with linearisability checking turned on, that is the instrumented SUT,

takes roughly 210 seconds; a significant difference which illustrates that the amount of code

instrumentation added to the SUT is the performance limiting factor of the internal

linearisation point checker.

For the internal automatic checker, instead of just a basic on/off for linearisability checking we also

separate the instrumentation that maintains concurrent history information along the path from the

logic that performs linearisation generation and checking. We perform three experiments: 1. where

both history recording instrumentation and linearisation generation/checking instrumentation is

added to the SUT (linearisability checking turned on), 2. where history recording instrumentation

is included in the SUT but linearisation generation/checking logic is not, and 3. where no code

instrumentation is added to the SUT (linearisability checking is turned off). The experiment

results are shown as red bars in Figure 4.3. The results show similar execution times for the

fully instrumented checker, roughly 52 seconds, and the same checker but with the linearisation

generation and checking instrumentation excluded, roughly 49 seconds; a small difference but no

significant change. The experiment with all instrumentation excluded shows a significantly shorter

execution than the other two versions, roughly five seconds compared to 49 and 52 seconds. Thus

it is clear that the performance limiting factor of the internal automatic checker is the

concurrent-history-recording code instrumentation added to the SUT.

Various authors have made claims about the performance limiting factor of the internal automatic

checker. Vechev et al. and Doolan et al. claim that the performance limiting factor of their internal

automatic linearisability checker is the state space explosion caused by the code instrumentation

added to the SUT; in the words of Vechev et al. “every time we append an element into [sic]

the history, we introduce a new state” [39]. The results of our experiments confirm Vechev et

al.’s evaluation of the performance limiting factor. However, we have determined that it is more

specifically the concurrent-history-recording code instrumentation that is the performance limiting

factor.

Liu et al., however, describe the performance limiting factor for Vechev et al.’s checker to be the

linearisability checking computation, stating that the exponential worst-case time complexity of the

automatic linearisability checking process is the cause of the poor scaling; in their words referring

79

Stellenbosch University https://scholar.sun.ac.za



to Vechev et al.’s approach “Their approach needs to find a linearisable sequence for each history,

whose worst-case time is exponential in the length of the history, as it may have to try all possible

permutations of the history.” [23]. Our experiments falsify the claims made by Liu et al.; no

noticeable change in execution time was found with the instrumentation for linearisability checking

computation included or excluded.

Doolan et al. propose an external automatic checker that uses code instrumentation to output

concurrent history records to an external log, and then perform linearisability checking for the logged

histories using a tool external to the model checker’s execution. The only code instrumentation

added to the SUT is the logging instrumentation and because the history records are not kept in

the model checker’s search space, but output to an external log, the search space is not significantly

impacted by the required instrumentation and the performance limiting factor is eliminated. Their

experiment results showed that the optimised version executed about three times faster than the

ordinary checker version. They explained that due to an optimisation used by their model checker

(SPIN) their external checker is unsound; a sound implementation is proposed but left for future

work.

The external automatic checkers implemented in this thesis have improvements to the

external checker proposed by Doolan et al.; we do not require any code instrumentation added

to the SUT, and we have implemented the external checkers for both sound and unsound modes.

Furthermore we have extended the idea of an external checker to the linearisation point checking

strategy as well. We presented an external linearisation point checker which excludes all

linearisability checking logic from the SUT except the fixed linearisation point specifications.

The external checkers eliminate the performance limiting factor of the internal versions, the amount

of code instrumentation added to the SUT, and their externally computing linearisability checking

component contributes an insignificant amount of resource usage to the tool’s overall execution.

The result data in Table 4.3, displayed for the LockFreeSet SUT in Figure 4.3, thus show that the

execution times of the external checkers are effectively equivalent to those of the stand-alone model

checking search. The stand-alone model checking state-space generation is the external

checker’s performance-limiting factor.

80

Stellenbosch University https://scholar.sun.ac.za



4.2.2 Resource usage of the Symbolic Checkers

In this section the resource usage of the hybrid and the symbolic checkers is evaluated with respect

to execution time, memory usage, and the model-checking search space.

The time, memory usage, and model checking search space data of our experiments are shown

in Table 4.5. Memory is represented as the number of states created during the model checking

search and the maximum memory allocation necessary for the search; maximum memory allocation

is adjusted dynamically by JPF. The model-checking search space information shows the number

of visited, backtracked, and end states for the search and the maximum depth reached during

execution. A depth limit is chosen so that the experiments finish within a reasonable time; the

symbolic linearisability checker’s scalability is analysed in Section 4.3. Notice that the number of

visited states for all symbolic or hybrid experiments is zero, this is because the visited states field

represents the number of re-visited states and SPF does not use state hashing to re-visit states.

The data in

The execution time results for the concrete, hybrid, and symbolic checker experiments, in Table 4.5,

are illustrated in Figure 4.4. The data in the table, for the columns labeled “Concrete” and a depth

limit of 17, show that the execution time of the concrete checker for all SUTs is at most just over

one second; thus the yellow bars representing the concrete checker’s execution times are not visible

in Figure 4.4. The model-checking state space data in the table shows similar proportions to the

execution time results because the time to traverse the search space is proportional to the size of

the search space.

It is clear that the execution time of the concrete checker is consistently shorter than that of the

hybrid checker, which is consistently shorter than that of the symbolic checker. The concrete checker

explores a search space for a specific test case, including exact operations and argument values. The

hybrid checker explores a more generic search space for an exact test case, but generates argument

values for all reachable program paths. Finally, the symbolic checker explores an even more general

search space for all possible test cases and program paths given an integer constraint on the number

of operations per thread. The generality of each checker’s search can be expressed by the following

relation: Concrete ⊆ Hybrid ⊆ Symbolic. The key advantage of the symbolic checker is its

exhaustive search and ability to verify the linearisability of a data structure in general,

81

Stellenbosch University https://scholar.sun.ac.za



instead of for particular test cases. The symbolic checker, however, scales badly because of the

large search space size which takes longer to traverse. It is not practical to use the symbolic

checker unless a depth limit is imposed, see Section 4.3 for details on the symbolic checker’s

scalability.

Figure 4.4: Concrete, Hybrid, and Symbolic checker execution time comparison. The
results show the execution time for traversal of the entire search space, given a depth limit of 17, of
each of the test suite algorithm examples for both the Hybrid and the Symbolic checker types. The
concrete checker types complete their execution of all test suite algorithms in under one second,
thus the yellow bars for the concrete checker are not visible in the figure.

An internal and/or sound symbolic linearisability checker is impractical for our current

machine constraints. In Section 4.3 it is discussed that the external unsound hybrid and external

unsound symbolic checkers have scalability problems. In Section 4.2.1.2 it was discussed that the

internal/sound concrete checkers are significantly less efficient than their external/unsound concrete

counterparts, respectively. It is therefore expected that the external unsound hybrid/symbolic

checker, which already has scalability problems, will scale even more severely if executed in a sound

setting or for an internal implementation; for the same reasoning given in Section 4.2.1.2 for the

82

Stellenbosch University https://scholar.sun.ac.za



SUT
Algorithm

Data
Format:

Concrete
time: +-10s

Concrete
time: +-1s

Hybrid
time: +-5s

Symbolic
time: +-5s

Depth limit:
none 17 17 17

BuggyQueue

Time (seconds):
New States:

Max Mem. (MB):
Visited:

Backtracked:
End:

776
3,272,426

674
4,983,342
8,255,768
136,985

1.06
606
238
451

1,057
11

66
544,567

425
0

544,567
43,183

72
691,045

424
0

691,045
11,064

LockFreeList
Bug1

Time (seconds):
New States:

Max Mem. (MB):
Visited:

Backtracked:
End:

12,268
46,885,440

1,126
67,193,481

114,078,921
248,472

0.51
249
238
277
526
0

274
2,307,370

1,459
0

2,307,370
43,740

480
4,636,177

1,465
0

4,636,177
204,323

LockFreeList
Bug2

Time (seconds):
New States:

Max Mem. (MB):
Visited:

Backtracked:
End:

3,895
15,111,856

739
21,801,688
36,913,544

88,956

0.60
249
238
277
526
0

216
2,141,446

1,448
0

2,141,446
3,888

390
3,857,415

1,467
0

3,857,415
204,011

PairSnap

Time (seconds):
New States:

Max Mem. (MB):
Visited:

Backtracked:
End:

1,056
4,735,998

674
6,856,994
11,592,992
2,77,913

1,12
612
238
450

1,062
12

391
19,561,004

1,456
0

19,561,004
458,752

1,040
49,294,380

976
0

49,294,380
8,192

SnarkDeque
Bug1

Time (seconds):
New States:

Max Mem. (MB):
Visited:

Backtracked:
End:

1,678
7,178,784

675
10,519,554
17,698,338

392,300

0.84
598
238
448

2,046,
12

42
301,548

674
0

301,548
33,555

123
2,305,033

675
0

2,305,033
1,584

SnarkDeque
Bug2

Time (seconds):
New States:

Max Mem. (MB):
Visited:

Backtracked:
End:

435
1,946,860

676
2,877,073
4,823,933

93,815

0.94
597
238
450

2,047
11

25
170,062

424
0

170,062
22,344

118
2,231,852

675
0

2,231,852
1,530

LockFreeSet

Time (seconds):
New States:

Max Mem. (MB):
Visited:

Backtracked:
End:

541
2,343,680

676
3,384,784
5,728,464

17,968

0.56
249
238
277
526
0

12
151,000

976
0

151,000
7,579

29
483,008

675
0

483,008
15,445

Table 4.5: Concrete, Hybrid, Symbolic: Execution Time and Memory for Entire Search
Space. The execution time, number of new states, maximum memory, number of visited states,
number of backtracked states, and number of end states for the concrete, hybrid and symbolic
checkers, for execution on the test suite over the entire search space using no depth limit for the
concrete checker and then a depth limit of 17 for all checkers.

83

Stellenbosch University https://scholar.sun.ac.za



concrete checkers. A proof-of-concept internal symbolic checker was implemented to check the

BuggyQueue algorithm; the results showed that for even very small examples the execution time

requirements exceed the timeout period. Similarly the soundness-guaranteeing symbolic checker

implementation exceeded the timeout period for even small examples.

4.2.2.1 Performance-limiting Factor of the Symbolic Checkers

The performance limiting factor of the external concrete checkers is the stand-alone model checking

state-space generation process, and the performance limiting factor of the internal concrete checkers

is amount and type of code instrumentation added to the SUT; see Section 4.2.1.2. The symbolic

and hybrid checkers are external implementations, it is expected that their performance-limiting

factor would thus be the model checker’s execution; as for the concrete external checkers. The

symbolic linearisability checker and hybrid linearisability checker experiments with linearisability

checking turned on and turned off show practically equivalent time to traverse the search space. The

linearisability checking logic is thus shown to contribute an inconsequential amount of computation

time to the tool’s overall execution time; we conclude that the performance limiting factor of

the external symbolic checker is the stand-alone model checking state-space generation

process; just as for the external concrete checkers.

4.2.3 Optimisation techniques for the Concrete Automatic Checkers

The experiments in this section were performed to determine the effectiveness of the two different

automatic checking optimisation techniques implemented and also measure their ability to improve

the efficiency of the automatic linearisability checking tools.

• We do not expect that the lazy read optimisation to Vechev et al.’s automatic checking strat-

egy [38], proposed by Long et al. [24], will significantly improve the tool’s overall efficiency;

it focuses on the linearisability checking segment of the tool’s computation and as we showed

in Section 4.2.1.2, the linearisation checking segment is insignificant compared to the model

checking segment. Long et al. only reported experiment results on the efficiency benefits

of the optimisation on pre-generated linearisations and not on the impact of the lazy read

optimisation on the linearisability checking tool as a whole, which includes the state space

generation of the model checker.

84

Stellenbosch University https://scholar.sun.ac.za



• We also do not expect the hash optimisation that prevents re-computation of previously

checked but re-generated concurrent history paths, proposed in Section 3.2.1.2, to improve

the tool’s overall efficiency significantly because it too focuses on the linearisability checking

segment of the tool’s computation.

Experiments were run for the external (Tables 4.6 and 4.7) and internal (Tables 4.8 and 4.9)

implementations of the concrete automatic checker, over the entire search space for each of the

algorithms in the test suite. The “Time” columns for each table has a greater-than or smaller-than

sign associated with each entry in the table, this indicates if the optimised checker experiment

resulted in a benefit or a detriment to execution time when compared to the same experiment with

the optimisation turned off. Four different optimisation combinations were used:

1. Vanilla – Ordinary Concrete Automatic Checker execution with no optimisations.

2. Lazy Read – Only the lazy read optimisation described in Section 3.2.1.1 is included.

3. Hash – Only the hash optimisation described in Section 3.2.1.2 is included.

4. Hash and Lazy Read – Both the hash and lazy read optimisations are included.

4.2.3.1 Effectiveness of the Lazy Read optimisation

The lazy read optimisation aims to reduce the number of linearisations generated during the lin-

earisability checking process for each individual concurrent history. The “Number of generated

linearisations” results in each of the tables show that lazy read effectively reduced the num-

ber of generated linearisations in all experiments. For example, in Table 4.8 for the “Number

of generated linearisations” columns and the BuggyQueue SUT, the number of generated lineari-

sations is reduced from 2,804 to 1,816 for the Vanilla versus Lazy Read experiments, respectively.

85

Stellenbosch University https://scholar.sun.ac.za



E
x
te
rn

a
l
U
n
so

u
n
d
H
as
h
an

d
L
az
y
R
ea
d
O
p
ti
m
is
at
io
n
R
es
u
lt
s
fo
r
th
e
A
u
to
m
at
ic

C
h
ec
ke
r

T
im

e
(s
e
c
o
n
d
s)

sm
al
l
va
ri
an

ce
s
in

ti
m
e
o
cc
u
r

ex
p
er
im

en
t-
to
-e
x
p
er
im

en
t

N
u
m
b
e
r
o
f
g
e
n
e
ra

te
d

li
n
e
a
ri
sa

ti
o
n
s

N
u
m
b
e
r
o
f
c
o
n
c
u
rr
e
n
t
h
is
to

ri
e
s

ch
e
ck

e
d

fo
r
li
n
e
a
ri
sa

b
il
it
y

V
a
n
il
la

L
a
z
y
R
e
a
d

H
a
sh

L
a
z
y
R
e
a
d

a
n
d

H
a
sh

V
a
n
il
la

L
a
z
y
R
e
a
d

H
a
sh

L
a
z
y
R
e
a
d

a
n
d

H
a
sh

V
a
n
il
la

L
a
z
y
R
e
a
d

H
a
sh

L
a
z
y
R
e
a
d

a
n
d

H
a
sh

B
u
g
g
y
Q
u
e
u
e

4.
05

(>
)
4.
27

(<
)
3.
94

(>
)
4.
76

76
4

57
7

27
20

39
8

3
9
8

1
2

1
2

L
o
ck

F
re

e
L
is
t
B
u
g
1

5.
41

(<
)
5.
20

(>
)
5.
54

(>
)
6.
54

32
24

8
6

12
1
2

3
3

L
o
ck

F
re

e
L
is
t
B
u
g
2

4.
99

(>
)
5.
01

(>
)
5.
73

(>
)
5.
51

16
12

4
3

8
8

2
2

P
a
ir
S
n
a
p

2.
48

(>
)
2.
89

(>
)
3.
14

(>
)
4.
25

26
3

11
6

29
19

15
4

1
5
4

1
5

1
5

S
n
a
rk

D
e
q
u
e
B
u
g
1

4.
19

(<
)
4.
04

(>
)
4.
46

(<
)
4.
14

84
1

64
6

78
58

35
0

3
5
0

2
9

2
9

S
n
a
rk

D
e
q
u
e
B
u
g
2

3.
40

(>
)
3.
56

(>
)
3.
99

(<
)
3.
32

51
1

34
3

37
26

22
0

2
2
0

1
3

1
3

L
o
ck

F
re

e
S
e
t

1.
24

(>
)
1.
74

(>
)
1.
80

(>
)
2.
11

3
12

3
3

3
8

2
2

T
ab

le
4.
6:

E
x
ec
u
ti
on

ti
m
e,

n
u
m
b
er

of
ge
n
er
at
ed

li
n
ea
ri
sa
ti
on

s,
an

d
n
u
m
b
er

of
co
n
cu
rr
en
t
h
is
to
ry

p
a
th
s
ch
ec
ke
d
fo
r
li
n
ea
ri
sa
b
il
it
y

fo
r
th
e
e
x
te
rn

a
l
u
n
so

u
n
d
co
n
cr
et
e
au

to
m
at
ic

ch
ec
k
er

fo
r
ex
ec
u
ti
on

on
th
e
te
st

su
it
e
S
U
T
s
ov
er

th
e
en
ti
re

se
a
rc
h
sp
a
ce
.

E
x
te
rn

a
l
S
o
u
n
d
:
H
as
h
an

d
L
az
y
R
ea
d
O
p
ti
m
is
at
io
n
R
es
u
lt
s
fo
r
th
e
A
u
to
m
at
ic

C
h
ec
ke
r

T
im

e
(s
e
c
o
n
d
s)

sm
a
ll
va
ri
an

ce
s
in

ti
m
e
o
cc
u
r

ex
p
er
im

en
t-
to
-e
x
p
er
im

en
t

N
u
m
b
e
r
o
f
g
e
n
e
ra

te
d

li
n
e
a
ri
sa

ti
o
n
s

N
u
m
b
e
r
o
f
c
o
n
c
u
rr
e
n
t
h
is
to

ri
e
s

ch
e
ck

e
d

fo
r
li
n
e
a
ri
sa

b
il
it
y

V
a
n
il
la

L
a
z
y
R
e
a
d

H
a
sh

L
a
z
y
R
e
a
d

a
n
d

H
a
sh

V
a
n
il
la

L
a
z
y
R
e
a
d

H
a
sh

L
a
z
y
R
e
a
d

a
n
d

H
a
sh

V
a
n
il
la

L
a
z
y
R
e
a
d

H
a
sh

L
a
z
y
R
e
a
d

a
n
d

H
a
sh

B
u
g
g
y
Q
u
e
u
e

81
5

(<
)
81

0
(<

)
79

9
(<

)
77

4
30

5,
30

7
22

5,
65

4
69

55
13

6,
98

5
13

6,
98

5
27

27

L
o
ck

F
re

e
L
is
t
B
u
g
1

11
,7
97

(>
)
1
2,
31

7
(<

)
1
1,
65

4
(<

)
11

,7
61

85
7,
52

0
59

3,
95

2
56

2
35

0
24

8,
47

2
24

8,
47

2
13

0
13

0

L
o
ck

F
re

e
L
is
t
B
u
g
2

3,
70

9
(>

)
3,
83

0
(<

)
3,
68

6
(>

)
3,
72

9
26

7,
34

8
20

2,
02

0
25

5
19

9
88

,9
56

88
,9
56

73
73

P
a
ir
S
n
a
p

1,
11

4
(>

)
1,
12

7
(<

)
1,
08

6
(<

)
1,
08

3
66

4,
92

7
44

2,
09

8
14

0
92

27
7,
91

3
27

7,
91

3
48

48

S
n
a
rk

D
e
q
u
e
B
u
g
1

1,
65

6
(>

)
1,
71

8
(<

)
1,
62

6
(<

)
1,
60

2
99

4,
63

1
85

6,
10

9
18

8
14

8
39

2,
30

0
39

2,
30

0
60

60

S
n
a
rk

D
e
q
u
e
B
u
g
2

45
0

(<
)
44

9
(<

)
43

2
(<

)
44

4
22

0,
83

9
14

3,
67

5
77

49
93

,8
15

93
,8
15

31
31

L
o
ck

F
re

e
S
e
t

55
5

(<
)
55

4
(<

)
54

6
(<

)
54

4
43

,4
92

32
,0
56

77
53

17
,9
68

19
,9
68

31
31

T
ab

le
4.
7:

E
x
ec
u
ti
on

ti
m
e,

n
u
m
b
er

of
ge
n
er
at
ed

li
n
ea
ri
sa
ti
on

s,
an

d
n
u
m
b
er

of
co
n
cu
rr
en
t
h
is
to
ry

p
a
th
s
ch
ec
ke
d
fo
r
li
n
ea
ri
sa
b
il
it
y

fo
r
th
e
e
x
te
rn

a
l
so

u
n
d
co
n
cr
et
e
au

to
m
at
ic

ch
ec
ke
r
fo
r
ex
ec
u
ti
on

on
th
e
te
st

su
it
e
S
U
T
s
ov
er

th
e
en
ti
re

se
a
rc
h
sp
a
ce
.

86

Stellenbosch University https://scholar.sun.ac.za



In
te
rn

a
l
U
n
so

u
n
d
:
H
as
h
an

d
L
az
y
R
ea
d
O
p
ti
m
is
at
io
n
R
es
u
lt
s
fo
r
th
e
A
u
to
m
at
ic

C
h
ec
ke
r

T
im

e
(s
e
c
o
n
d
s)

sm
al
l
va
ri
an

ce
s
in

ti
m
e
o
cc
u
r

ex
p
er
im

en
t-
to
-e
x
p
er
im

en
t

N
u
m
b
e
r
o
f
g
e
n
e
ra

te
d

li
n
e
a
ri
sa

ti
o
n
s

N
u
m
b
e
r
o
f
c
o
n
c
u
rr
e
n
t
h
is
to

ri
e
s

ch
e
ck

e
d

fo
r
li
n
e
a
ri
sa

b
il
it
y

V
a
n
il
la

L
a
z
y
R
e
a
d

H
a
sh

L
a
z
y
R
e
a
d

a
n
d

H
a
sh

V
a
n
il
la

L
a
z
y
R
e
a
d

H
a
sh

L
a
z
y
R
e
a
d

a
n
d

H
a
sh

V
a
n
il
la

L
a
z
y
R
e
a
d

H
a
sh

L
a
z
y
R
e
a
d

a
n
d

H
a
sh

B
u
g
g
y
Q
u
e
u
e

11
0

(>
)
11
6

(>
)
11
1

(>
)
11
5

2,
80
4

1,
81
6

17
13

1,
02
4

1,
02
4

6
6

L
o
ck

F
re

e
L
is
t
B
u
g
1

89
9

(>
)
90
2

(<
)
86
3

(<
)
56
9

17
,9
93

7,
45
6

62
33

6,
46
4

6,
46
4

13
13

L
o
ck

F
re

e
L
is
t
B
u
g
2

20
9

(>
)
21
3

(<
)
19
9

(<
)
20
0

5,
23
8

3,
27
8

35
21

1,
94
0

1,
94
0

9
9

P
a
ir
S
n
a
p

23
2

(>
)
23
4

(<
)
22
6

(<
)
22
6

6,
86
4

3,
92
8

19
13

2,
25
6

2,
25
6

7
7

S
n
a
rk

D
e
q
u
e
B
u
g
1

37
1

(>
)
37
6

(<
)
36
2

(<
)
35
4

9,
85
6

7,
62
2

24
19

3,
02
4

3,
02
4

8
8

S
n
a
rk

D
e
q
u
e
B
u
g
2

12
2

(>
)
12
4

(<
)
12
0

(<
)
12
1

2,
89
2

1,
71
6

17
11

1,
10
4

1,
10
4

6
6

L
o
ck

F
re

e
S
e
t

56
2

(>
)
57
8

(<
)
52
3

(<
)
54
7

2,
28
4

1,
60
0

14
10

89
6

89
6

6
6

T
ab

le
4.
8:

E
x
ec
u
ti
on

ti
m
e,

n
u
m
b
er

of
ge
n
er
at
ed

li
n
ea
ri
sa
ti
on

s,
an

d
n
u
m
b
er

of
co
n
cu
rr
en
t
h
is
to
ry

p
a
th
s
ch
ec
ke
d
fo
r
li
n
ea
ri
sa
b
il
it
y

fo
r
th
e
in
te
rn

a
l
u
n
so

u
n
d
co
n
cr
et
e
au

to
m
at
ic

ch
ec
k
er

fo
r
ex
ec
u
ti
on

on
th
e
te
st

su
it
e
S
U
T
s
ov
er

th
e
en
ti
re

se
a
rc
h
sp
a
ce
.

In
te
rn

a
l
S
o
u
n
d
:
H
as
h
an

d
L
az
y
R
ea
d
O
p
ti
m
is
at
io
n
R
es
u
lt
s
fo
r
th
e
A
u
to
m
at
ic

C
h
ec
ke
r

T
im

e
(s
e
c
o
n
d
s)

sm
al
l
va
ri
an

ce
s
in

ti
m
e
o
cc
u
r

ex
p
er
im

en
t-
to
-e
x
p
er
im

en
t

N
u
m
b
e
r
o
f

g
e
n
e
ra

te
d

li
n
e
a
ri
sa

ti
o
n
s

N
u
m
b
e
r
o
f
c
o
n
c
u
rr
e
n
t
h
is
to

ri
e
s

ch
e
ck

e
d

fo
r
li
n
e
a
ri
sa

b
il
it
y

V
a
n
il
la

L
a
z
y
R
e
a
d

H
a
sh

L
a
z
y
R
e
a
d

a
n
d

H
a
sh

V
a
n
il
la

L
a
z
y
R
e
a
d

H
a
sh

L
a
z
y
R
e
a
d

a
n
d

H
a
sh

V
a
n
il
la

L
a
z
y
R
e
a
d

H
a
sh

L
a
z
y
R
e
a
d

a
n
d

H
a
sh

B
u
g
g
y
Q
u
e
u
e

14
,9
54

(<
)
14
,5
50

(<
)
14
,1
06

(<
)
14
,0
88

55
2,
27
6

39
1,
71
6

47
38

24
5
,9
8
8

2
4
5
,9
8
8

27
27

L
o
ck

F
re

e
L
is
t
B
u
g
1

ti
m
eo
u
t

ti
m
eo
u
t

ti
m
eo
u
t

L
o
ck

F
re

e
L
is
t
B
u
g
2

ti
m
eo
u
t

ti
m
eo
u
t

ti
m
eo
u
t

P
a
ir
S
n
a
p

ou
t
of

m
em

or
y

ou
t
of

m
em

or
y

ou
t
o
f
m
em

o
ry

S
n
a
rk

D
e
q
u
e
B
u
g
1

ou
t
of

m
em

or
y

ou
t
of

m
em

or
y

ou
t
o
f
m
em

o
ry

S
n
a
rk

D
e
q
u
e
B
u
g
2

15
,9
14

(>
)
16
,3
07

ou
t
of

m
em

or
y

ou
t
of

m
em

or
y

61
2,
46
8

39
9,
92
4

ou
t
of

m
em

or
y

ou
t
o
f

m
em

o
ry

27
9
,9
7
2

2
7
9
,9
7
2

ou
t
o
f

m
em

o
ry

o
u
t
o
f

m
em

o
ry

L
o
ck

F
re

e
S
e
t

14
,0
15

(>
)
14
,0
51

ou
t
of

m
em

or
y

ou
t
of

m
em

or
y

69
3,
00
8

51
3,
87
2

ou
t
of

m
em

or
y

ou
t
o
f

m
em

o
ry

33
2
,0
9
6

3
3
2
,0
9
6

ou
t
o
f

m
em

o
ry

o
u
t
o
f

m
em

o
ry

T
ab

le
4.
9:

E
x
ec
u
ti
on

ti
m
e,

n
u
m
b
er

of
ge
n
er
at
ed

li
n
ea
ri
sa
ti
on

s,
an

d
n
u
m
b
er

of
co
n
cu
rr
en
t
h
is
to
ry

p
a
th
s
ch
ec
ke
d
fo
r
li
n
ea
ri
sa
b
il
it
y

fo
r
th
e
in
te
rn

a
l
so

u
n
d
co
n
cr
et
e
au

to
m
at
ic

ch
ec
ke
r
fo
r
ex
ec
u
ti
on

on
th
e
te
st

su
it
e
S
U
T
s
ov
er

th
e
en
ti
re

se
a
rc
h
sp
a
ce
.

87

Stellenbosch University https://scholar.sun.ac.za



4.2.3.2 Effectiveness of the Hash optimisation

The model checker generates all possible bytecode interleavings for the SUT, but multiple byte-

code interleavings may reduce to the same concurrent history. The hash optimisation prevents

re-computation of already checked concurrent histories by maintaining a hashtable and ensuring

each unique concurrent history is only checked once during execution.

The “Number of concurrent histories checked for linearisability” results in each of the tables show

that the hash optimisation considerably reduced the number of histories checked, from thousands

to tens in the internal cases of Tables 4.8 and 4.9 and hundred to tens in the external cases of

Tables 4.6 and 4.7.

Interestingly, as a side-effect of reducing the number of histories checked, the hash optimisation

considerably reduces the overall number of linearisations generated during execution;

even more so than the lazy read optimisation that has as its main aim the reduction of

the number of generated linearisations. For example, in Table 4.8 for the “Number of generated

linearisations” columns and the BuggyQueue SUT, the number of generated linearisations is reduced

from 2,804 to just 17 for the Vanilla versus Lazy Read experiments, respectively; much more effective

than the 2,804 to 1,816 reduction of the lazy read optimisation.

4.2.3.3 Effects of the optimisations on the checker’s overall time efficiency

As expected, the table results show that neither the lazy read or the hash optimisation have

any significant impact on the overall execution time of the linearisability checking tools.

The optimisations focus on the linearisability checking component of the tool’s execution and not

the performance limiting factor, the model checking component.

The execution time results for all external experiments, shown in Tables 4.6 and 4.7, with and with-

out optimisations, have similar running times with no noticeable benefit for the optimised versions.

There does, however, seem to be a slight benefit for the hash optimisation on all experiments for

the external sound checkers, but the actual speed-up is inconsequential compared to overall running

time.

The “Time” columns of Tables 4.8 and 4.9 display the results for the internal unsound experiments,

and the results for the internal sound experiments that finished. The results show that the lazy read

88

Stellenbosch University https://scholar.sun.ac.za



optimisation is mostly disadvantageous to the tool’s overall execution time. For our experiments,

the computational overhead of the lazy read optimisation, included as code instrumentation in the

SUT, outweighs its benefit of generating fewer, but more complex, linearisations. The table results

also show that the hash optimisation results in a benefit to execution time for most experiments. As

discussed, the hash optimisation more effectively reduces the linearisability checking computation

than lazy read does, and our experiment results show that the computational saving from the

optimisation does outweigh the computation cost of the optimisation; but because it still does not

focus on the performance limiting factor of the tool, the benefit is not significant.

Long et al., who proposed lazy read, found a speed-up for their experiments, but they perform effi-

ciency experiments on pre-generated concurrent histories and thus do not test the efficiency benefit

on the overall tool but just the linearisability checking segment of the tool. Additionally, their

optimisation will perform better for experiments with large numbers of read operations, but our

experiments mostly contain write operations, minimising lazy read’s ability to improve efficiency;

see Section 3.2.1.1 for more details on the lazy read optimisation and the reason it will provide

more benefit in read-heavy situations.

4.2.4 Efficiency Conclusions

In this section the resource-usage requirements of the checkers was compared, the performance

limiting factor of each checker determined, and the effectiveness and benefit of the two automatic

checker optimisations evaluated.

The analysis showed that there is a correlation between the amount of code instrumentation in-

cluded in the SUT and the execution time of the checkers. Further investigation showed that

the execution time is not just influenced by the amount of instrumentation, but also the kind of

instrumentation used for each respective checker. The impact that soundness instrumentation,

linearisability checking logic instrumentation, linearisation-point specifying instrumentation, and

on-the-fly versus end-state instrumentation has on the execution time of the respective checkers

was evaluated.

The performance limiting factor of the internal linearisation point checker was determined to be the

code instrumentation added to the SUT. The performance limiting factor of the internal automatic

89

Stellenbosch University https://scholar.sun.ac.za



checker was shown to be specifically the concurrent-history-recording code instrumentation added

to the SUT. Finally, the performance limiting factor of both the concrete and symbolic external

checkers was determined to be the stand-alone model checking state-space generation process.

The key advantage of the symbolic checker is its exhaustive search and ability to verify the linearis-

ability of a data structure in general, instead of for particular test cases like the concrete checker.

However, the generality of the symbolic checker’s search causes it to scale badly. It was concluded

that the symbolic checker is not practical unless a depth limit is imposed.

It was clear from the experiment results that the lazy read and hash optimisations do not have any

significant impact on the overall execution time of the linearisability checking tools, despite effec-

tively reducing their aimed linearisability checking computation. This is because the optimisations

focus on the linearisability checking component of the tool’s execution and not the performance

limiting factor, the model checking component.

4.3 SCALABILITY

To determine the scalability of the concrete and symbolic checkers, experiments were performed on

the external checker implementations. The scalability of JPF and SPF are the direct performance

limiting factors of the external checkers. The performance limiting factors of the internal checkers

are the model checkers and the code instrumentation which adds more information to the model

checker’s search space. Thus the internal checkers will scale at least as badly as the external

implementations and worse for the code instrumentation added to the SUT.

Experiments were run for an increase in 1. the number of operations per thread, 2. the number

of executing threads, and 3. the depth limit while keeping the others constant. The experiments

for this section exclusively use the LockFreeSet test suite algorithm, which does not contain any

linearisation errors.

4.3.1 Scaling of the Concrete Checkers

Experiments were run to determine the external concrete checker’s scalability for one, two, and three

SUT threads and for each case the number of operations executed per thread was increased from 1

to 16. Table 4.10 shows the results in terms of the number of unique histories explored, execution

90

Stellenbosch University https://scholar.sun.ac.za



time for full state space exploration, and the number of end states reached during execution for

both sound and unsound execution settings. A “T” in the table denotes an experiment that timed

out before finishing traversal of the search space.

4.3.1.1 Unique histories generated and execution time:

For one thread, the number of unique histories remains constant for an increasing number of

operations per thread. This is an intuitive result because there is only one interleaving for a serial

program, irrespective of how many operations are in that program. The execution time increases

slightly for each step of increased number of operations. Each additional operation increases the

path length, and thus takes slightly longer to traverse than the step before; but because the program

is serial there is still only one interleaving to traverse so the execution time remains relatively short.

For two threads, the unsound experiments show an exponential increase in the number of unique

histories traversed and a corresponding exponential trend in the execution time of the tool. The

sound experiments show the same result but with a more drastic exponential trend that causes

the timeout limit to be reached for experiments with more than three operations per thread. The

reason the scaling of the two-thread example is so much worse than the serial example is because

the second thread allows the model checker to generate all interleavings, which is exponential in the

number of bytecode instructions. For each step that increases the number of operations, the number

of bytecode instructions increase and thus the number of interleavings which takes exponentially

longer to traverse; as shown in Table 4.10.

For three threads the sound checker times out on all experiments and the unsound checker times

out for six or more operations per thread. The addition of a third thread results in an even higher

exponential growth in interleavings, for the same number of operations, over the two or one thread

examples. It is clear that because the model checking concurrent history generation

process itself does not scale, and that this process is the performance limiting factor

of the external checkers, the checking tools also do not scale.

91

Stellenbosch University https://scholar.sun.ac.za



N
u
m
b
e
r
o
f

o
p
e
ra

ti
o
n
s

p
e
r
th

re
a
d

O
p
e
ra

ti
o
n
s
w
h
e
re

e
a
ch

[a
d
d
,r
e
m
o
v
e
]

p
a
ir

u
se
s
a
u
n
iq
u
e

p
a
ra

m
e
te
r
v
a
lu
e

(f
o
r
1
,
2
,
a
n
d

3
e
x
e
c
u
ti
n
g
th

re
a
d
s)

N
u
m
b
e
r
o
f

u
n
iq
u
e
h
is
to

ri
e
s

T
im

e
ta

k
e
n

to
c
o
m
p
u
te

(s
e
c
o
n
d
s)

N
u
m
b
e
r
o
f

e
n
d

st
a
te
s
re

a
ch

e
d

U
n
so

u
n
d

S
o
u
n
d

U
n
so

u
n
d

S
o
u
n
d

U
n
so

u
n
d

S
o
u
n
d

1
2

3
1

2
3

1
2

3
1

2
3

1
2

3
1

2
3

1
a
d
d
(p

a
ra

m
1
)

1
5

35
1

6
T

0.
21

1
39

0.
46

57
T

3
4

5
3

1,
39

2
T

2
a
d
d
(p

a
ra

m
1
),

re
m
o
v
e
(p

a
ra

m
1
)

1
2
1

40
8

1
70

T
0.
33

2
38

9
0.
69

17
,5
79

T
3

4
5

3
40

2,
87

2
T

4
[a
d
d
(p

a
ra

m
1
),

re
m
o
v
e
(p

a
ra

m
1
)]
×
2

1
9
7

7
78

1
1

T
T

0.
45

9
5,
57

0
1.
10

T
T

3
4

5
3

T
T

6
[a
d
d
(p

a
ra

m
1
),

re
m
o
v
e
(p

a
ra

m
1
)]
×
3

1
2
5
3

T
1

T
T

0.
54

23
T

1.
41

T
T

3
4

T
3

T
T

8
[a
d
d
(p

a
ra

m
1
),

re
m
o
v
e
(p

a
ra

m
1
)]
×
4

1
5
1
3

T
1

T
T

0.
69

53
T

1.
50

T
T

3
4

T
3

T
T

1
0

[a
d
d
(p

a
ra

m
1
),

re
m
o
v
e
(p

a
ra

m
1
)]
×
5

1
9
0
1

T
1

T
T

0.
81

97
T

1.
73

T
T

3
4

T
3

T
T

1
2

[a
d
d
(p

a
ra

m
1
),

re
m
o
v
e
(p

a
ra

m
1
)]
×
6

1
1
,4
4
1

T
1

T
T

0.
88

17
8

T
2.
09

T
T

3
4

T
3

T
T

1
4

[a
d
d
(p

a
ra

m
1
),

re
m
o
v
e
(p

a
ra

m
1
)]
×
7

1
2
,1
5
7

T
1

T
T

0.
89

33
8

T
2.
21

T
T

3
4

T
3

T
T

1
6

[a
d
d
(p

a
ra

m
1
),

re
m
o
v
e
(p

a
ra

m
1
)]
×
8

1
3
,0
7
3

T
1

T
T

0.
99

47
9

T
2.
79

T
T

3
4

T
3

T
T

T
ab

le
4.
10
:
E
x
te
rn

a
l
C
o
n
c
re

te
sc
a
li
n
g
re

su
lt
s
fo
r
a
n

in
c
re

a
se

in
th

e
n
u
m
b
e
r
o
f
o
p
e
ra

ti
o
n
s
e
x
e
c
u
te
d

p
e
r
th

re
a
d

fo
r

1
,
2
,
a
n
d

3
e
x
e
c
u
ti
n
g

th
re

a
d
s.

T
h
e
re
su
lt
s
sh
ow

th
e
n
u
m
b
er

of
ge
n
er
at
ed

u
n
iq
u
e
co
n
cu
rr
en
t
h
is
to
ri
es
,
ex
ec
u
ti
o
n
ti
m
e,

a
n
d

n
u
m
b
er

of
en
d
st
at
es

re
ac
h
ed

d
u
ri
n
g
ex
ec
u
ti
on

fo
r
ea
ch

of
th
e
th
e
ex
te
rn
al

u
n
so
u
n
d
/s
o
u
n
d
co
n
cr
et
e
ch
ec
ke
r
ty
p
es

fo
r
ex
ec
u
ti
o
n

of
th
e
L
o
ck
F
re
eS
et

al
go
ri
th
m

ov
er

th
e
en
ti
re

se
ar
ch

sp
ac
e.

T
h
e
“T

”
st
an

d
s
fo
r
ti
m
eo
u
t.

92

Stellenbosch University https://scholar.sun.ac.za



4.3.1.2 End states reached:

Interestingly, for the experiments in Table 4.10 which run two threads, the unsound checker reaches

only four distinct end states and the equivalent sound checker reaches an exponential number of

distinct end states. The instrumentation for soundness, added to the SUT, forces JPF to differenti-

ate between paths and create different end states for states it would otherwise consider equivalent;

thus the increase in end states for the sound experiments over the unsound experiments. For exam-

ple, the experiment data in Table 4.10 that runs two threads and uses two operations per thread

shows that the unsound checker explores 21 unique histories but for the same experiment the sound

checker explores 70 unique histories. This trend will generalise to the timed-out experiments but

are not shown because of the timeout. It is concluded that though neither the sound nor unsound

checkers scale, the unsound checkers are more scalable than the sound checker because

the unsound checker’s search space is a subset of the sound checker’s search space.

4.3.2 Scaling of the Symbolic Checker

Due to the exhaustive nature of the symbolic checker’s search, we expect the symbolic checker to

scale badly. Experiments were run to determine the external symbolic checker’s scalability for an

increasing number of 1. operations per thread, 2. executing threads, and 3. depth limit; where, for

each experiment, two of the three parameters remain constant with the third increased.

Combinatoric principles are used to determine the number of expected test cases generated by the

symbolic checker. We investigate two factors that affect the number of possible test cases: the

number of methods in the SUT, and the number of operations executing per thread.

4.3.2.1 Expected increase in the number of test cases and its effect on scalability

Each SUT has a number of methods which act on the data structure. For example a Queue data

structure has two methods types namely enqueue and dequeue, and a Set data structure has three

methods namely add, remove, and contains. Since the symbolic checker generates all possible

operation sequences for the SUT methods, the number of methods directly impacts the number of

possible test cases to be generated and tested.

Keeping the number of operations constant, say two operations executed by a single thread, and

93

Stellenbosch University https://scholar.sun.ac.za



Number of unique test cases
for a single threaded execution

Number of
operations to be
executed (N )

1 SUT
method

(1N)

2 SUT
methods

(2N)

3 SUT
methods

(3N)

1 1 2 3

2 1 4 9

4 1 16 81

6 1 64 729

8 1 256 6561

10 1 1024 59049

12 1 4096 531441

14 1 16384 4782969

16 1 65536 43046721

Table 4.11: Symbolic Checker: Data showing the exponential increase in the number of test
cases for a single thread execution of a SUT with 1/2/3 methods when the number of operations
for the thread to execute is increased

increasing the number of methods for example from one to six, we get the number of test cases

as 1, 4, 9, 16, 25, 36 etc. Thus there is an exponential increase in the number of test cases for

increased methods in the SUT. Letting the number of operations be slightly more, say 4 operations

executed by a single thread, the number of test case possibilities becomes 1, 16, 81, 256, 625,

and 1,296; thus the rate of the exponential trend for increased methods, is increased for increased

number of operations per thread. Thus an exponential increase in the number of test cases

is expected for an increasing number of methods in the SUT.

Table 4.11 shows scaled number of operations per thread results for SUT situations with one, two,

and three methods. It is evident that for 2 and 3 methods there is an exponential increase in the

number of test cases for an increasing number of operations per thread, the rate of exponential

growth is also shown to grow for increased number of methods. In summary, we expect an

exponential increase in test cases for an increasing number of operations per thread.

4.3.2.2 Actual increase in the number of test cases and its effect on scalability

We performed experiments for the symbolic checker using one thread and an increasing number

of operations: from one to sixteen. We performed these number-of-operation scaling experiments

for depth limit situations of fourteen, fifteen, sixteen, and seventeen. We did not perform experi-

94

Stellenbosch University https://scholar.sun.ac.za



ments for larger number of threads because a serial execution already necessitates a depth limit an

increased number of threads will only worsen the scalability by way of an exponential increase in

interleavings.

Table 4.12 shows the scalability results in terms of the number of unique histories explored, execu-

tion time for full state space exploration and the number of end states reached during execution,

for both sound and unsound execution settings.

Number of
operations
per thread

Number of
expected unique

histories for no depth
limit (excluding

different parameter
value options)

Number of unique
histories (inclusive of
cut-off histories and
different parameter

value options)

Time taken
to compute
(seconds)

Number of
end states reached

Depth limit: Depth limit: Depth limit:
14 15 16 17 14 15 16 17 14 15 16 17

1 2 2 2 2 2 0.15 0.15 0.19 0.18 17 17 17 17

2 4 6 6 6 6 0.24 0.29 0.27 0.25 69 76 83 91

4 16 70 70 70 70 0.72 0.87 1.08 0.94 932 1,312 1,696 2,080

6 64 378 524 696 792 1.22 122.48 843.06 2,644.05 516 1,282 3,032 6,812

8 256 532 884 1,422 2,174 1.32 122.58 843.51 2,765.61 86 268 750 2,018

10 1,024 558 964 1,638 2,732 1.28 122.66 843.65 2,771.33 6 32 102 346

12 4,096 560 970 1,668 2,828 1.29 122.68 843.58 2,765.87 0 2 6 36

14 16,384 560 970 1,670 2,834 1.31 122.51 843.49 2,766.52 0 0 0 2

16 65,536 560 970 1,670 2,834 1.32 122.54 843.55 2,765.90 0 0 0 0

Table 4.12: External Symbolic scaling results for an increase in the number of operations
executed per thread for 1 executing thread. The results show the number of generated unique
concurrent histories, execution time, and number of end states reached during execution for the
the external unsound symbolic checker types for execution of the LockFreeSet algorithm over the
entire search space.

As expected, the experiment results confirm an exponential increase in the number of

test cases as the number of operations per thread is increased. The data in the columns

labeled “unique histories” of Table 4.12 corresponds to the generated test cases but also includes the

different argument values for the test cases. Column 2 in Table 4.12 shows the number of expected

test cases, the “Number of unique histories” columns show the actual number of generated test

cases. Given an unbounded search space, the number of test cases and time taken to explore them,

would increase indefinitely for an increase in the number of operations per thread; but when using

a depth limit the search space size, and thus execution time, is bound. The effects of a depth limit

on the search space will now be considered.

95

Stellenbosch University https://scholar.sun.ac.za



4.3.2.3 The effect of a depth limit on the search space

Figure 4.5 shows a graph of the execution time results for the data in Table 4.12. For each

depth limit represented by a line graph there is an initial positive gradient indicating an increasing

execution time as the number of executing operations per thread increases, but then each line

reaches a plateau (at around six operations per thread) that remains constant for all larger number

of operations per thread.

Figure 4.6 shows that, for the same set of experiments, the number of end states initially increases

(until about six operations per thread) and then decreases gradually to zero end states (for test

cases with ten or more operations per thread) for all experiments. We thus conclude that path cut-

offs due to the depth limit are made for test cases with around five or more operations. Figure 4.5

shows us that the search space size remains constant from six operations per thread, because the

depth limit now causes the breadth and depth of the search space size to remain constant for

any increase in path length (caused by an increasing number of operations per thread); thus the

constant search space size takes constant time to traverse.

Figure 4.5: Symbolic checker execution
time for increasing number of operations
executed per thread. The experiments were
run for the LockFreeSet SUT where the num-
ber of operations per thread are increased and
situations for depth limits of 14, 15, 16, and 17
respectively; the data is taken from Table 4.12.

Figure 4.6: Symbolic checker number of end
states for increasing number of operations
executed per thread. The experiments were
run for the LockFreeSet SUT where the num-
ber of operations per thread are increased and
situations for depth limits of 14, 15, 16, and 17
respectively; the data is taken from Table 4.12.

96

Stellenbosch University https://scholar.sun.ac.za



Figure 4.7 shows that the depth limit affects the expected exponential growth in the number of

generated histories from about six operations per thread; six operations per thread is the point

where the depth limit starts cutting off end states in Figure 4.6. The path cut-offs result in the

number of generated histories reaching a plateau at around 10 operations per thread, where the

number of end states reach zero in Figure 4.6. However, the generality of the symbolic checker’s

search means that for the search space up until the depth limit, a large variety of histories are

generated by the model checker; and for each increase in the depth limit there is an exponential

increase in the number of generated histories.

Figure 4.7 shows the effect of the depth limit on the number of histories generated as the number of

operations for the test case increases. As discussed previously, without a depth limit the number of

generated histories will increase exponentially for each increase in number of operations per thread;

the depth limit prevents this from happening and results in a plateau from around ten operations

per thread.

Figure 4.7: Symbolic checker number
of unique concurrent histories generated
during execution for increasing number of
operations executed per thread. The ex-
periments were run for the LockFreeSet SUT
where the number of operations per thread are
increased for depth limits of 14, 15, 16, and 17
respectively; the data is taken from Table 4.12.

Figure 4.8: Symbolic checker execution
time results graph for increased depth
limit. The experiments were run on the Lock-
FreeSet SUT where the depth limit is increased
from 14 to 17 and the number of operations ex-
ecuted per thread kept constant at 16; the data
is taken from Table 4.12.

97

Stellenbosch University https://scholar.sun.ac.za



In summary, the depth limit constrains the number of histories generated and thus the execution

time of the symbolic checker. For an increase in the depth limit, there is an exponential

increase in the number of generated histories and also an exponential increase in the

execution time cost to traverse these histories.

4.3.3 Scalability Conclusions:

The model checking concurrent history generation process itself does not scale, and this process is

the performance limiting factor of the external checkers, thus the checking tools also do not scale.

The unsound concrete checker has scaling problems for larger number of executing threads but

is usable for one and two threads.

The sound concrete checker is only usable for one executing thread or two executing threads

with small numbers of operations executed per thread. This checker does however explore more

unique histories, for the same experiment, than its unsound counterpart and guarantees soundness

with respect to linearisability for its execution. The sound execution thus provides a higher quality

linearisability check than the unsound execution does, at the cost of a larger search space that takes

longer to traverse.

The symbolic checker has severe scaling problems which can be managed by imposing a depth

limit for the search. Although the depth limit prevents full state space traversal, this checker’s

ability to perform a very general search means that a large variety of histories are generated by the

model checker up until the depth limit.

4.4 ERROR FINDING

To determine the error finding ability of the different checkers, each linearisability checker was

executed on the test suite algorithms (Table 4.2) and results reported for the search space up until

the errors. Efficiency is considered in terms of execution time, memory usage, and search space

statistics up until the time of the first located error.

Table 4.13 shows the linearisation errors located by each checker and the time taken to locate the

errors. The located errors are shown as green tick marks and the missed errors as black crosses.

98

Stellenbosch University https://scholar.sun.ac.za



S
U
T

A
lg
o
ri
th

m
D
a
ta

F
o
rm

a
t:

C
o
n
c
re

te
H
y
b
ri
d

S
y
m
b
o
li
c

U
n
so

u
n
d

S
o
u
n
d

E
x
te
rn

a
l

(S
ou

n
d

ti
ll
d
ep
th

li
m
it
)

E
x
te
rn

a
l

(S
ou

n
d

ti
ll
d
ep
th

li
m
it
)

In
te
rn

a
l

E
x
te
rn

a
l

In
te
rn

a
l

E
x
te
rn

a
l

A
u
t.

L
in
.

P
o
in
t

A
u
t.

L
in
.

P
o
in
t

A
u
t.

L
in
.

P
o
in
t

A
u
t.

L
in
.

P
o
in
t

B
u
g
g
y
Q
u
e
u
e

(u
n
iq
u
e
-v
a
lu
e
)

F
ou

n
d
er
ro
r:

T
im

e
(s
ec
on

d
s)
:

✓

3
.7
8

✓

14
0.
72

✓

0.
45

✓

0.
36

✓

81
.1
7

✓

33
1.
82

✓

2.
52

✓

2.
36

✓

0.
56

✓

1.
09

B
u
g
g
y
Q
u
e
u
e

(d
u
p
li
c
a
te
-v
a
lu
e
)

F
ou

n
d
er
ro
r:

T
im

e
(s
ec
on

d
s)
:

✗
✗

✗
✗

✗
✗

✗
✗

✓

0.
56

✓

1.
09

L
o
ck

F
re

e
L
is
t

B
u
g
1

F
ou

n
d
er
ro
r:

T
im

e
(s
ec
on

d
s)
:

✓

6
.6
8

✓

0.
91

✗
✓

0.
53

✓

43
3.
6

✓

3.
77

✓

30
.3
8

✓

32
.4
6

ti
m
eo
u
t

ti
m
eo
u
t

L
o
ck

F
re

e
L
is
t

B
u
g
2

F
ou

n
d
er
ro
r:

T
im

e
(s
ec
on

d
s)
:

✓

6
.0
6

✓

0.
93

✗
✓

0.
49

✓

40
8.
95

✓

3.
59

✓

31
.1
9

✓

33
.4
8

ti
m
eo
u
t

ti
m
eo
u
t

P
a
ir
S
n
a
p

F
ou

n
d
er
ro
r:

T
im

e
(s
ec
on

d
s)
:

✓

0
.9
8

✓

0.
75

✓

0.
18

✓

0.
15

✓

7.
21

✓

3.
29

✓

1.
51

✓ 1.
6

✓

20
.4
7

✓

11
,6
44

S
n
a
rk

D
e
q
u
e

B
u
g
1

F
ou

n
d
er
ro
r:

T
im

e
(s
ec
on

d
s)
:

✓

8
.4
4

✓

1,
07

1.
1

✓

0.
42

✓

0.
43

✓

57
7.
06

m
em

or
y

li
m
it

re
ac
h
ed

✓

16
.0
4

✓

14
.6
3

✓

0.
98

B
u
g1

✓

3,
32

8.
62

S
n
a
rk

D
e
q
u
e

B
u
g
2

F
ou

n
d
er
ro
r:

T
im

e
(s
ec
on

d
s)
:

✓

3
.9
9

✓

16
9.
36

✓

0.
36

✓

0.
49

✓

76
.9
6

✓

38
55

.4
3

✓

2.
29

✓

2.
22

✓

0.
79

B
u
g2

✓

79
.4
3

T
ab

le
4.
13
:
L
in
e
a
ri
sa

b
il
it
y

e
rr
o
r
fi
n
d
in
g

a
b
il
it
y

fo
r
a
ll

ch
e
ck

e
r
ty

p
e
s.

T
h
e
re
su
lt
s
sh
ow

th
e
ex
ec
u
ti
o
n
ti
m
e
ta
ke
n
u
n
ti
l

th
e
er
ro
r
is

fo
u
n
d
fo
r
ea
ch

of
th
e
in
te
rn
al
/e
x
te
rn
al

so
u
n
d
/u

n
so
u
n
d
li
n
ea
ri
sa
ti
on

-p
oi
n
t/
a
u
to
m
a
ti
c
co
n
cr
et
e
ch
ec
ke
r
ty
p
es

a
n
d
th
e

ex
te
rn
al

u
n
so
u
n
d
au

to
m
at
ic

h
y
b
ri
d
an

d
sy
m
b
ol
ic

ch
ec
ke
r
ty
p
es
.
T
h
e
ta
b
le

u
se
s
gr
ee
n
ti
ck
s
to

d
en
o
te

er
ro
rs

th
a
t
w
er
e
su
cc
es
sf
u
ll
y

lo
ca
te
d
an

d
b
la
ck

cr
os
se
s
to

d
en
ot
e
er
ro
rs

th
at

w
er
e
n
ot

lo
ca
te
d
.

99

Stellenbosch University https://scholar.sun.ac.za



4.4.1 Error finding of the Concrete Checkers

4.4.1.1 Unsound Checkers:

Comparing the results in the columns labelled under “Unsound” and “Sound” of Table 4.13, for

the concrete checkers, it is clear that the unsound checkers execute in a fraction of the time

taken by the equivalent sound checker. The unsound checkers explore a subset of the search

space that the sound checkers do, thus less time is required to traverse the smaller search space.

The unsound linearisability checkers, however, do not guarantee soundness with respect to

linearisability, they can therefore miss linearisability errors entirely. The results in Table 4.13

illustrate an example of this behaviour: the columns under the headings “Concrete” and “Unsound”

show that unsound external automatic checker missing the two LockFreeList errors when and the

sound version of this checker locates it.

Surprisingly, despite being unsound, the other three unsound concrete checkers (external lineari-

sation point, internal automatic, and internal linearisation point) locate all test suite errors (see

columns 1, 2, and 4 under the “Unsound” label for concrete checkers); bar the duplicate-value

input which cannot be located by the concrete checkers (see Section 4.4.2 for details). These im-

plementations add code instrumentation to the SUT, which is different from the unsound external

automatic checker which does not add code instrumentation and does not find the two LockFreeList

errors. This instrumentation is not targeted at guaranteeing soundness but it has the side effect of,

for these examples, providing the model checker with enough information to resolve the soundness

problem.

In summary, the unsound concrete checkers find the linearisation errors most of the

time and execute in a fraction of the time taken by the sound checkers; but they do not guarantee

soundness and cannot be used to prove that an error is not present for the input situation.

4.4.1.2 Sound Checkers:

Since sound linearisability checking guarantees that if a linearisation error is present then the

checker will find it, it is not surprising that the experiment results show in the “Sound” columns

of Table 4.13 that all errors in our test suite are found by all of the concrete sound checkers;

bar the duplicate value case which concrete checkers cannot find (see Section 4.4.2 for details),

100

Stellenbosch University https://scholar.sun.ac.za



and experiments that did not finish. However, comparing the “Unsound” and the “Sound” result

columns, it is evident that there is a high execution time cost to guarantee soundness.

4.4.2 Error finding of the Symbolic Checker

The concrete checker’s usefulness in finding linearisability errors is constrained by the user’s ability

to hand-craft test cases in which errors are present. The symbolic checker performs linearisability

checking on all possible test cases and execution paths, constrained only by the number of operations

to be executed by each thread.

The symbolic checker verifies the linearisability of the data structure in general, but is only sound

until its depth limit. The error-finding results in Table 4.13 show, in the column labelled “Sym-

bolic”, that the symbolic checker was able to locate most of the test suite errors for

general input; despite its scalability problems and depth limit requirement. The ex-

periment results show two other error-finding benefits of the symbolic checker over the concrete

checker: the symbolic checker is able to locate linearisation errors in duplicate value situations, and

the automatic test case generation allows multiple errors to be found in one run.

4.4.2.1 Duplicate value handling Benefits

The concrete checkers can miss linearisation errors in situations where input causes the data struc-

ture to contains duplicate values at one point in time. The concrete checkers compare the concrete

response values of the SUT operations and the sequential oracle operations, but they do not con-

sider which instance of the concrete value is being returned by the operation. The symbolic checker

assigns unique symbols to each value in the SUT data structure, and it compares the symbol values

returned by the SUT operations and the sequential oracle operations; thus it is sensitive to the

instance of the concrete value being returned, not just the concrete value. See Section 3.5.3 for

an in depth discussion of the duplicate-value problem for the concrete checkers, details of how the

symbolic checker avoids this problem, and an example of a BuggyQueue SUT concurrent history

for which the symbolic checker finds the error but the concrete checker misses it. The error-finding

results in Table 4.13, see the column labelled “Symbolic”, illustrate that the symbolic checker

locates a duplicate-value error in the BuggyQueue SUT which all concrete checkers

miss.

101

Stellenbosch University https://scholar.sun.ac.za



4.4.2.2 Automatic test case generation allows multiple errors to be found in one run

The symbolic checker uses automatic test case generation to all possible test cases for the input

number of operations per thread. Thus it is able to find multiple linearisation errors during

a single run. The column labelled “Symbolic” in Table 4.13 shows that both SnarkDeque errors

were located during a run of the symbolic checker on general input. This is an example of the

symbolic checker’s usefulness in finding linearisation errors with little user input, where the errors

are not originally known.

4.4.3 Error finding of the Hybrid Checker

The hybrid checker was able to find most of the linearisation errors, the same errors found by the

symbolic checker; see the columns labelled “Hybrid” and ‘Symbolic” in Table 4.13.

The hybrid checker makes use of symbols instead of concrete values and thus is able to find the

duplicate value error that the concrete checkers miss. However, because it does not use

automatic test case generation, it is not able to find multiple errors in one run as the symbolic

checker can.

4.4.4 Error finding efficiency

In this section we compare the execution time taken by each checker up until they find the respective

linearisability errors. The memory usage and search space statistics for the linearisation error

finding executions can be found in Table C.1 of Appendix C. Figure 4.9, Figure 4.10, and Figure 4.11

show the execution time results for all internal concrete, external concrete, and symbolic checkers

given in Table 4.13, respectively.

For the cases where the unsound checkers do find the linearisation errors, they are

significantly more efficient at finding the errors than the equivalent sound checkers are.

Figures 4.9 and 4.10 illustrate that the unsound checker took tens of seconds and sound checker

took hundreds of seconds in the internal case, and that the unsound checker took seconds and the

sound checker took tens of seconds in the external case.

The external checkers find the errors consistently more efficiently than the internal

checkers do. This is expected since the external tools have been shown to be considerably more

102

Stellenbosch University https://scholar.sun.ac.za



Internal Concrete Checker Types: Sound linearisation point does not find SnarkDeque Bug1
and takes 3,855 seconds to find bug 2 (overflow after 1,250 seconds not shown in the figure); all

other errors found. Execution time results (from Table 4.13) for the time taken until the
respective linearisation error was found for each of the test suite SUTs.

Figure 4.9:

External Concrete Checker Types: Unsound Automatic does not find error for LockFreeList
Bug1 or Bug2. All other errors found. Execution time results (from Table 4.13) for the time

taken until the respective linearisation error was found for each of the test suite SUTs.

Figure 4.10:

103

Stellenbosch University https://scholar.sun.ac.za



Symbolic Checker Types: For the Symbolic Checker the SnarkDeque Bug1 took 3,328 seconds
and PairSnap took 11,644 seconds, overflow not shown in figure. Execution time results (from
Table 4.13) for the time taken until the respective linearisation error was found for each of the

test suite SUTs.

Figure 4.11:

efficient than their equivalent internal counterparts, see Section. Figures 4.9 and 4.10 show that

the external checkers took seconds and the internal checkers took tens of seconds in the unsound

case, and that the external checkers took tens of seconds and the internal checkers took hundreds

of seconds in the sound case.

Interestingly we have found that the symbolic checker’s are able to, for the right depth-

limit, find the linearisation errors in a reasonable amount of time. It is difficult to

determine the ‘sweet spot’ for the depth limit since too shallow will not ever reach the error and

too deep will result in too large a search space to even get to the error. An iterative-deepening

approach to error finding will likely yield the best error-finding results for this checker. Figure 4.11

shows that four out six errors were able to be found within our 12h timeout period.

The hybrid checker does not use automatic test case generation but generates argument values for

a user-specified test case such that all reachable paths of the test case are explored. The hybrid

checker thus finds the linearisation errors much quicker than the symbolic checker, but

it requires much more specified input and searches only one of the test cases generated

by the symbolic checker.

104

Stellenbosch University https://scholar.sun.ac.za



4.4.5 Depth until error

In this section the depth at which each error was found, and the maximum depth reached up

until the errors, is shown and the reasons for these results discussed. The depth results for the

error-finding experiments is shown in Table 4.14.

The depth of each error is normally very close to the maximum depth reached during execution,

three main factors contribute to this:

1. Applicable to all the concrete linearisation checkers: The concrete input situations are hand-

crafted for the exact linearisation error which is to be located, thus the input includes the

minimum number of operations necessary for the error to arise which implies that the error

will take place just short of the operation sequences ending. For this reason the results will

show the linearisation errors close to the depth limit.

2. Specific only to the automatic linearisability checkers: the linearisability checking segment of

the computation is performed at JPF’s end states and because the search tree is composed

of many different bytecode interleavings of the same bytecode instructions it follows that the

program end states will be at similar depths.

3. Specific only to the symbolic checkers: Since the symbolic checker suffers scalability problems,

a depth limit is imposed linearisability checking handle the search space size. An iterative

deepening approach to linearisation error finding was used because preliminary results indi-

cated that this was the most efficient way to locate errors for this checker; thus the linearisation

errors are often close to the imposed depth limit.

105

Stellenbosch University https://scholar.sun.ac.za



S
U
T

A
lg
o
ri
th

m
D
a
ta

F
o
rm

a
t:

C
o
n
c
re

te
C
h
e
ck

e
rs

S
y
m
b
o
li
c
C
h
e
ck

e
rs

U
n
so

u
n
d

S
o
u
n
d

E
x
te
rn

a
l
(U

n
so

u
n
d
)

In
te
rn

a
l

E
x
te
rn

a
l

In
te
rn

a
l

E
x
te
rn

a
l

A
u
t.

L
in
.

P
o
in
t

A
u
t.

L
in
.

P
o
in
t

A
u
t.

L
in
.

P
o
in
t

A
u
t.

L
in
.

P
o
in
t

H
y
b
ri
d

S
y
m
b
o
li
c

B
u
g
g
y
Q
u
e
u
e

(u
n
iq
u
e
-k
e
y
)

D
ep
th

of
er
ro
r:

M
ax

D
ep
th
:

16
6

18
1

42
6

1
,0
64

63 63
72 77

22
1

25
4

47
1

1,
12
9

11
11
6

11
0

11
6

33 33
22 22

B
u
g
g
y
Q
u
e
u
e

(d
u
p
li
c
a
te
-k
e
y
)

D
ep
th

of
er
ro
r:

M
ax

D
ep
th
:

✗
✗

✗
✗

✗
✗

✗
✗

33 33
22 22

L
o
ck

F
re

e
L
is
t

B
u
g
1

D
ep
th

of
er
ro
r:

M
ax

D
ep
th
:

27
4

29
7

25
4

36
3

✗
11
4

11
9

39
4

41
8

36
8

49
9

26
1

27
1

15
8

27
1

ti
m
eo
u
t

ti
m
eo
u
t

L
o
ck

F
re

e
L
is
t

B
u
g
2

D
ep
th

of
er
ro
r:

M
ax

D
ep
th
:

22
8

23
4

20
7

30
1

✗
97

10
2

32
7

35
2

30
0

41
6

22
1

23
1

17
0

23
1

ti
m
eo
u
t

ti
m
eo
u
t

P
a
ir
S
n
a
p

D
ep
th

of
er
ro
r:

M
ax

D
ep
th
:

16
9

18
7

17
9

18
7

23 25
19 27

24
7

28
2

25
7

28
2

55 67
51 67

22 22
25 25

S
n
a
rk

D
e
q
u
e

B
u
g
1

D
ep
th

of
er
ro
r:

M
ax

D
ep
th
:

18
4

21
3

1
,1
16

1
,5
92

35 45
33 41

26
0

30
8

m
em

or
y

li
m
it

re
ac
h
ed

83
10
7

77 10
7

21 21

B
u
g1
:
25 32

B
u
g2
:
32 32

S
n
a
rk

D
e
q
u
e

B
u
g
2

D
ep
th

of
er
ro
r:

M
ax

D
ep
th
:

14
6

16
1

57
1

1
,0
61

47 48
31 40

20
1

23
3

61
6

1,
18
1

95 99
84 99

29 29

B
u
g1
:
25 32

B
u
g2
:
32 32

T
ab

le
4.
14
:
D
e
p
th

a
t
w
h
ic
h

e
a
ch

e
rr
o
r
w
a
s
fo
u
n
d

a
n
d

m
a
x

d
e
p
th

ti
ll

th
e
e
rr
o
r.

T
h
e
re
su
lt
s
sh
ow

th
e
d
ep
th

a
t
w
h
ic
h

th
e
fi
rs
t
li
n
ea
ri
sa
ti
on

er
ro
r
w
as

fo
u
n
d
,
fo
r
ea
ch

al
go
ri
th
m
-c
h
ec
ke
r
co
m
b
in
at
io
n
,
an

d
th
e
m
a
x
im

u
m

d
ep
th

re
a
ch
ed

u
n
ti
l
th
a
t
er
ro
r

w
as

fo
u
n
d
;
fo
r
ex
ec
u
ti
on

on
th
e
te
st

su
it
e
S
U
T
s
u
n
ti
l
th
e
er
ro
r.

106

Stellenbosch University https://scholar.sun.ac.za



4.5 ERROR FINDING CONCLUSIONS

In this section we investigated the error-finding ability, and efficiency in finding those errors, of all

the checkers.

The analysis for the concrete checkers showed that the sound concrete checkers were able to find

all the linearisation errors but at a high execution time cost for the guarantee of soundness. The

unsound concrete checkers were shown to execute in a fraction of the time taken by the correspond-

ing sound checkers, and were able to find the linearisation errors most of the time; although they

cannot be used guarantee soundness with respect to linearisability. The external checkers were

also found to be consistently more efficient at error finding than the equivalent internal checkers.

Results that correlate to their relative efficiency over the entire search space.

The symbolic checker was able to locate most of the test suite errors for general input, despite its

scalability problems and depth limit requirement. The symbolic checker was shown to have two

benefits, other than general input, in linearisability error-finding: 1. the symbolic checker is able

to find errors which the concrete checkers miss for input situations that cause the data structure to

contain duplicate values at one time, and 2. the symbolic checker is able to find multiple errors in

one run because it checks linearisability for all possible test cases and execution paths. The symbolic

checkers were able to, for the right depth-limit, find the linearisation errors in a reasonable amount

of time despite the checker’s scalability problems. An iterative deepening approach to error finding

was found the most useful in finding the test suite errors.

107

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

In this thesis we investigated various strategies for checking linearisability of non-blocking concur-

rent data structures using model checking as a basis.

Linearisability checking was integrated into the Java PathFinder (JPF) model checker by imple-

menting the existing strategies reported in the literature. The design and implementation details of

the linearisation point and automatic checking strategies have been discussed as well as the details

of our proposed improvements and extensions. Soundness was discussed in detail and the lineari-

sation checkers were implemented such that they can run in a mode that guarantees soundness or

a mode that does not guarantee soundness.

We further proposed a symbolic strategy for checking linearisability using the Symbolic PathFinder

model checker. Two versions were presented: 1. a Symbolic Linearisability Checker that makes

use of symbolic execution and automatic test case generation to check all program paths for all

operation sequence possibilities, for a given number of operations per thread, and 2. a Hybrid

(concrete-symbolic) Linearisability Checker that uses symbolic execution, but not automatic test

case generation, to check all program paths for a user-specified operation sequence.

Finally, extensive experiments of all our implementations of existing techniques and the new ap-

proaches proposed in this thesis were performed, in the same model checking framework and were

run on the same hardware, to compare their relative strengths and weaknesses in user-requirements,

efficiency, scalability, and error finding ability. Our findings, for all experiments on the same system

hardware and model checking framework, were as follows.

5.1.1 Efficiency

The analysis showed that the main factor contributing to the efficiency of the linearisation

checkers is the amount and type of code instrumentation added to the SUT. Model

checking suffers from the state explosion problem and code instrumentation adds information to

the SUT, which results in an increase of the model checker’s search space and thus exacerbates the

108

Stellenbosch University https://scholar.sun.ac.za



scaling problem. The internal checkers add the largest amount of code instrumentation to the SUT,

including all linearisability checking logic into the model checker’s search space. Thus, as expected,

the internal checkers were shown to perform longer executions than the external checkers. The

external checkers do not require linearisability checking logic in the SUT, which excludes the extra

linearisability checking state information from the model checker’s search space and thus eliminate

the main performance-limiting factor of the internal checkers.

As expected, the linearisability checkers execute significantly longer searches when running in sound

mode than when running in unsound mode. The soundness instrumentation, not only adds informa-

tion to the model checker’s search space but also prevents JPF’s state-space-handling optimisation

techniques from performing certain branch cut-offs during execution. The guarantee of soundness

therefore, comes at an expensive execution time cost.

The external checkers do not require code instrumentation and add an insignificant

amount of resource usage to the verification process. It was clear from our results that the

external checker executions were equivalent in time to a purely model checker’s execution where

linearisability checking was turned off. We thus conclude that the linearisability checking logic

contributes an insignificant amount of time and space resource usage compared to that of the

model checker. The Symbolic Checkers are external and thus, similarly to the external concrete

checkers, their only performance limiting factor is the symbolic model checker’s execution.

The symbolic linearisability checker is more automatic, but more resource intensive

than the hybrid linearisability checker. The Symbolic Checker uses both automatic test case

generation and symbolic execution to generate all possible test cases, that is sequences of operations

for a give number of operations per thread, and generate argument values such that all possible

program paths of the test cases are explored. The Hybrid Checker uses only symbolic execution

and generates the argument values for all the reachable program paths but for one particularly

user-defined test case, that is sequence of operations for each executing thread. Thus, the search

space of the hybrid checker is a subset of that of the symbolic checker’s and, as expected, the

hybrid checker executes much shorter than the symbolic checker on input for the same number of

operations per thread.

Analysis of the lazy read optimisation, proposed by Long et al [24], and the hash optimisation,

109

Stellenbosch University https://scholar.sun.ac.za



proposed in Chapter 3, showed no noticeable benefit of the automatic checking strategy

optimisations to the overall execution times of the automatic checkers. The experiment results,

with and without optimisations, have similar execution times except the hash optimisation which

shows a slight benefit for all external sound experiments and internal sound experiments that

finished. These optimisations focus on optimising the linearisability checking component of the

tool’s execution, not the performance limiting factor which is the model checking component; thus

it is not surprising that there is no noticeable benefit for the optimised experiments.

5.1.2 Scalability

It was shown that the scalability of the linearisability checkers is dominated by the

scalability of the model checkers that they use: Java PathFinder and Symbolic PathFinder.

The external unsound concrete checkers are the most scalable. The unsound linearisability checkers

explore only a subset of the search space explored by their sound counterparts. The internal checkers

include extra linearisability state information which exacerbates the state explosion problem. The

symbolic checker has severe scaling problems which can be managed by imposing a depth limit

for the search. Although the depth limit prevents full state space traversal, this checker’s ability to

perform a very general search means that a large variety of histories are generated by the model

checker up until the depth limit. This checker was found to be most effective for linearisability

error finding when an iterative deepening approach is applied.

5.1.3 Input

The checkers require input of a SUT which is the concurrent data structure implemented in Java

and a correct sequential implementation of the SUT data structure, the sequential oracle.

The concrete checkers are user-intensive, they require a user-specified test case which contains a

sequence of operations for each executing thread, and the user-specified arguments for all operations

in the test case. The concrete checker’s usefulness in finding linearisability errors is constrained by

the user’s ability to hand-craft test cases in which errors are present.

The symbolic checker performs linearisability checking on all possible test cases and verifies the

linearisability of a data structure in general, constrained only by the number of operations to be

executed by each thread. The symbolic checker requires only one user-specified integer per executing

110

Stellenbosch University https://scholar.sun.ac.za



thread; the integer defines the number of generic operations to be executed by the thread. The

symbolic checker uses the integer input value(s) to generate all possible test cases, and generate

argument values for the test case operations such that all reachable program paths are explored;

for the input number bound.

The hybrid checker requires a user-specified test case, which contains a sequence of operations for

each executing thread, but does not require the arguments for all operations in the test case; instead

it uses symbolic execution to generate argument values such that all reachable program paths are

explored.

5.1.4 Concrete Checkers

We found that although the unsound checkers do not guarantee that each error present

will be found, in general they find most of the linearisation errors. Thus these two tools

can be used in complementary ways: 1. If an error cannot be found within a reasonable amount

of time using the sound checker, the unsound checker can be used to find most errors in a shorter

execution time. 2. If the unsound checker completes its execution and does not find any errors then

the sound checker can be used to either find an error that the unsound checker misses or guarantee

the linearisability of the data structure.

We found that the unsound checkers which include code instrumentation in the SUT

for purposes other than soundness were able to find errors that the un-instrumented

unsound checkers missed. Although this instrumentation is not targeted at soundness and thus

these checkers cannot be used to guarantee soundness, the instrumentation supplies the model

checker with enough information to prevent at least some cut-offs, made by JPF’s state-space

handling optimisations, which could contain the otherwise cut-off error-containing histories and in

our case do; thus the errors are found by these unsound versions.

5.1.5 Symbolic Checkers

One symbolic execution is equivalent to multiple concrete executions. The symbolic

linearisability checker found, for example, both of the SnarkDeque, one of the test suite algorithms,

linearisation errors in one run with only the input of the number of operations to execute per

thread. To find these same two errors with the concrete checkers, input of the exact test case for

111

Stellenbosch University https://scholar.sun.ac.za



each respective linearisation error and a separate run for each test case is required. This illustrates

the benefit of the symbolic checker’s automatic test case generation, which generates all possible

operation sequences, and symbolic execution, which generates argument values for exploration of

all program paths.

The symbolic checker can find errors in cases that the concrete checker cannot. For

example, the Symbolic Linearisability Checker found a linearisation error in the BuggyQueue al-

gorithm, for a case that was missed by the Concrete Linearisability Checker. For a case in which

an operation returns an incorrect response variable but the value of the variable happens to be

the same as the correct response value then the concrete checker will not identify the error. The

symbolic checker executes using symbols instead of concrete variable values, thus each variable is

completely unique to the symbolic checker even if its value is not unique. The symbolic checker

would thus pick up on the linearisation error in the case of an incorrect variable with the correct

value operation response.

For example, the BuggyQueue algorithm has a linearisation error where it incorrectly returns the

variable not at the front of the Queue. If the incorrectly returned variable happens to be the same

value as the variable at the front of the queue then the concrete checker will evaluate the response

value as correct when it is not. The symbolic checker, however, will correctly identify the variable

returned as the variable not at the front of the queue, irrespective of response value, and locate the

error.

5.2 FINAL COMMENTS

In this thesis we have provided a thorough evaluation and comparison of the different linearisation

checkers and we have shown the results for our symbolic linearisability checker, the major novel

contribution in this thesis. We have shown that the symbolic checking tool, although has scaling

problems, is effective at linearisation error finding in a reasonable amount of time for most situations,

provides a very general, high quality and robust linearisability check by way of its general search

and ability to handle duplicate value situations where the concrete checker is not, and it eliminates

the the user-intensive task of hand-crafting input situations for a test suite by way of its automatic

test case generation and symbolic execution that exhaustively explores all possible test cases and

112

Stellenbosch University https://scholar.sun.ac.za



reachable program paths. An iterative deepening approach was found to be the most useful method

of error finding given our machine constraints and for more powerful hardware this checker could

be an effective tool for linearisability checking of non-blocking concurrent data structures.

5.3 FUTURE WORK

In future work we would like to extend the Symbolic Linearisability Checker to automatically

extract the sequential specification for a data structure and extend functionality so that it will

work for more parameter and return types than are currently supported. We would also like to

extend the linearisability checking tools to be able to check multiple non-blocking concurrent data

structures in a program, in a single run.

It was found that linearisation point checking is not easily compatible with SPF’s framework,

but we would like to develop a Symbolic Linearisation Point Checker for its benefit in on-the-fly

linearisability checks instead of end-state checking as for the automatic strategy; the on-the-fly

checks will be especially advantageous in the badly scaling symbolic setting where end states are

often cut off by the depth limit.

Pasareanu and Rungta have noted the scalability problems of SPF and considered parallelising

SPF for future research [27]. Considering the linearisability checking benefits of a more scalable

symbolic model checker, and our preliminary results which show most errors found on general input

with the scaling problems, we would like to implement parallelising mechanisms for SPF’s model

checking search and run the linearisability checking tool using better hardware.

113

Stellenbosch University https://scholar.sun.ac.za



Bibliography

[1] Juan Alemany and Edward W Felten. “Performance issues in non-blocking synchronization

on shared-memory multiprocessors”. In: Proceedings of the eleventh annual ACM symposium

on Principles of distributed computing. 1992, pp. 125–134.

[2] Saswat Anand, Corina S Păsăreanu, and Willem Visser. “JPF–SE: A symbolic execution

extension to java pathfinder”. In: International conference on tools and algorithms for the

construction and analysis of systems. Springer. 2007, pp. 134–138.

[3] Greg Barnes. “A method for implementing lock-free shared-data structures”. In: Proceedings

of the fifth annual ACM symposium on Parallel algorithms and architectures. 1993, pp. 261–

270.

[4] Sebastian Burckhardt et al. “Line-up: a complete and automatic linearizability checker”. In:

Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and

Implementation. 2010, pp. 330–340.

[5] CFSerializer (JPF API). https://wuyongzheng.github.io/jpfdoc/gov/nasa/jpf/vm/

serialize/CFSerializer.html. Accessed: 2021-07-01.

[6] Edmund M Clarke Jr et al. Model checking. MIT press, 2018.

[7] David L Detlefs et al. “Even better DCAS-based concurrent deques”. In: International Sym-

posium on Distributed Computing. Springer. 2000, pp. 59–73.

[8] Brijesh Dongol and John Derrick. “Verifying linearisability: A comparative survey”. In: ACM

Computing Surveys (CSUR) 48.2 (2015), pp. 1–43.

[9] Patrick Doolan et al. “Improving the scalability of automatic linearizability checking in

SPIN”. In: International Conference on Formal Engineering Methods. Springer. 2017, pp. 105–

121.

[10] Tayfun Elmas, Serdar Tasiran, and Shaz Qadeer. “Vyrd: verifying concurrent programs by

runtime refinement-violation detection”. In: ACM SIGPLAN Notices 40.6 (2005), pp. 27–37.

[11] Cormac Flanagan. “Verifying commit-atomicity using model-checking”. In: International SPIN

Workshop on Model Checking of Software. Springer. 2004, pp. 252–266.

114

Stellenbosch University https://scholar.sun.ac.za



[12] David Friggens. “On the Use of Model Checking for the Bounded and Unbounded Verification

of Nonblocking Concurrent Data Structures”. In: (2013).

[13] Maurice Herlihy. A methodology for implementing highly concurrent data objects. Cambridge

Research Laboratory, Digital Equipment Corporation, 1991.

[14] Maurice P Herlihy and Jeannette M Wing. “Axioms for concurrent objects”. In: Proceedings

of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming languages.

1987, pp. 13–26.

[15] Maurice P Herlihy and Jeannette M Wing. “Linearizability: A correctness condition for con-

current objects”. In: ACM Transactions on Programming Languages and Systems (TOPLAS)

12.3 (1990), pp. 463–492.

[16] Java PathFinder. https://github.com/javapathfinder/jpf-core/wiki/Testing-vs.-

Model-Checking. Accessed: 2021-07-01.

[17] JenkinsStateSet (JPF API). https://wuyongzheng.github.io/jpfdoc/gov/nasa/jpf/vm/

JenkinsStateSet.html. Accessed: 2021-07-01.

[18] JPF-Core Wiki: Partial Order Reduction. https://github.com/javapathfinder/jpf-

core/wiki/Partial-Order-Reduction.

[19] Sarfraz Khurshid, Corina S Păsăreanu, and Willem Visser. “Generalized symbolic execution

for model checking and testing”. In: International Conference on Tools and Algorithms for

the Construction and Analysis of Systems. Springer. 2003, pp. 553–568.

[20] James C King. “Symbolic execution and program testing”. In: Communications of the ACM

19.7 (1976), pp. 385–394.

[21] Anthony LaMarca. “A performance evaluation of lock-free synchronization protocols”. In:

Proceedings of the thirteenth annual ACM symposium on Principles of distributed computing.

1994, pp. 130–140.

[22] Hongjin Liang and Xinyu Feng. “Modular verification of linearizability with non-fixed lin-

earization points”. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation. 2013, pp. 459–470.

115

Stellenbosch University https://scholar.sun.ac.za



[23] Yang Liu et al. “Model checking linearizability via refinement”. In: International Symposium

on Formal Methods. Springer. 2009, pp. 321–337.

[24] Zhenyue Long and Yu Zhang. “Checking linearizability with fine-grained traces”. In: Proceed-

ings of the 31st Annual ACM Symposium on Applied Computing. 2016, pp. 1394–1400.

[25] Bertrand Meyer. Soundness and Completeness: With Precision. Apr. 2019. url: https :

//cacm.acm.org/blogs/blog- cacm/236068- soundness- and- completeness- with-

precision/fulltext.

[26] Madanlal Musuvathi et al. “Finding and Reproducing Heisenbugs in Concurrent Programs.”

In: OSDI. Vol. 8. 2008. 2008.

[27] Corina S Păsăreanu and Neha Rungta. “Symbolic PathFinder: symbolic execution of Java

bytecode”. In: Proceedings of the IEEE/ACM international conference on Automated software

engineering. 2010, pp. 179–180.

[28] Corina S Păsăreanu, Neha Rungta, and Willem Visser. “Symbolic execution with mixed

concrete-symbolic solving”. In: Proceedings of the 2011 International Symposium on Software

Testing and Analysis. 2011, pp. 34–44.

[29] Corina S Păsăreanu and Willem Visser. “Verification of Java programs using symbolic ex-

ecution and invariant generation”. In: International SPIN Workshop on Model Checking of

Software. Springer. 2004, pp. 164–181.

[30] Corina S Păsăreanu et al. “Symbolic PathFinder: integrating symbolic execution with model

checking for Java bytecode analysis”. In:Automated Software Engineering 20.3 (2013), pp. 391–

425.

[31] Mauro Pezze and Michal Young. Software testing and analysis: process, principles, and tech-

niques. John Wiley & Sons, 2008.

[32] Shaz Qadeer, Ali Sezgin, and Serdar Tasiran. “Back and forth: Prophecy variables for static

verification of concurrent programs”. In: Tech. Rep. MSR-TR-2009-142 (2009).

[33] Chien-Hua Shann, Ting-Lu Huang, and Cheng Chen. “A practical nonblocking queue algo-

rithm using compare-and-swap”. In: Proceedings Seventh International Conference on Parallel

and Distributed Systems (Cat. No. PR00568). IEEE. 2000, pp. 470–475.

116

Stellenbosch University https://scholar.sun.ac.za



[34] Maurice Herlihy. Nir Shavit. The Art of Multiprocessor Programming, Revised Reprint. Mor-

gan Kaufmann Publishers, 2012.

[35] Jun Sun et al. “PAT: Towards flexible verification under fairness”. In: International conference

on computer aided verification. Springer. 2009, pp. 709–714.

[36] Oleg Travkin, Annika Mütze, and Heike Wehrheim. “SPIN as a linearizability checker under

weak memory models”. In: Haifa Verification Conference. Springer. 2013, pp. 311–326.

[37] Viktor Vafeiadis. Modular fine-grained concurrency verification. Tech. rep. University of Cam-

bridge, Computer Laboratory, 2008.

[38] Martin Vechev and Eran Yahav. “Deriving linearizable fine-grained concurrent objects”. In:

Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 2008, pp. 125–135.

[39] Martin Vechev, Eran Yahav, and Greta Yorsh. “Experience with model checking lineariz-

ability”. In: International SPIN Workshop on Model Checking of Software. Springer. 2009,

pp. 261–278.

117

Stellenbosch University https://scholar.sun.ac.za



118

Stellenbosch University https://scholar.sun.ac.za



APPENDIX A

CONCURRENT HISTORY EXAMPLES

A.1 CONCURRENT HISTORY GENERATION POSSIBILITIES FOR THE

LOCKFREELIST ALGORITHM ON A PARTICULAR INPUT EXAM-

PLE

Figure A.1: Diagram depicting the 31 possible concurrent histories for the LockFreeSet
SUT input specification of thread one execution two add(5) operations and thread two executing a
remove(5) operation. The different possible operation event orderings are shown in different colours
for each concurrent history and the corresponding response values of each operation, for a particular
colour-coded ordering, shown as a ‘t’ or ‘f’ value above the coloured circle which indicates the point
at which the event occurred; a ‘t’ refers to a true response value and a ‘f’ refers to a false response
value. The cumulative number of concurrent history operations are shown in a rectangular box to
the left of the concurrent history.

119

Stellenbosch University https://scholar.sun.ac.za



A.2 LINEARISATION-ERROR-CONTAINING CONCURRENTHISTORYDI-

AGRAMS FOR THE BUGGYQUEUE, SNARKDEQUE, LOCKFREEL-

IST, AND PAIRSNAP ALGORITHMS

Figure A.2: A linearisation error containing concurrent history for the BuggyQueue
algorithm where the dequeue operation of one thread is interrupted by two enqueue operations of
a different thread; resulting in the incorrect return of a value not from the front of the queue.

Figure A.3: A linearisation error containing concurrent history for the LockFreeList
algorithm (bug1) where overlapping remove(5) and remove(6) operations result in the 5 value
correctly removed but the 6 value still present in the data structure; as illustrated by the successful
contains(6) operation which executes after the response events of the overlapping operations.

120

Stellenbosch University https://scholar.sun.ac.za



Figure A.4: A linearisation error containing concurrent history for the LockFreeList
algorithm (bug2) where overlapping successful remove(5) and successful add(6) operations result
in the value of 5 correctly removed but the value of 6 not added to the list data structure; illustrated
by the unsuccessful contains(6) operation which executes after the response events of the two
overlapping operations.

Figure A.5: A linearisation error containing concurrent history for the SnarkDeque
algorithm (bug1) that causes a pop operation to return empty when the queue is not empty.

Figure A.6: A linearisation error containing concurrent history for the SnarkDeque
algorithm (Bug2) that contains an ABA=type error resulting in two pop operations returning
the same value.

121

Stellenbosch University https://scholar.sun.ac.za



Figure A.7: A linearisation error containing concurrent history for the PairSnap algo-
rithm that causes the readPair operation to incorrectly return false when the two memory locations
read contain non-null contents.

A.3 NON-FIXED LINEARISATION POINT EXAMPLES FOR AN UNSUC-

CESSFUL ADD, AN UNSUCCESSFUL CONTAINS, AND A SUCCESS-

FUL CONTAINS OPERATION OF THE LOCKFREESET DATA STRUC-

TURE.

Figure A.8: An example of a concurrent history where thread 2 contains an add op-
eration with non-fixed linearization points. The example shows, as illustrated by the line
segment, the segments of thread 2’s operation which represent the add(5) operation returning false;
the areas in between these demarcated segments would result in the add(5) operation returning
true.

122

Stellenbosch University https://scholar.sun.ac.za



Figure A.9: An example of a concurrent history where thread 2 contains a contains
operation with non-fixed linearization points. The example shows, as illustrated by the line
segment, the segments of thread 2’s operation which represent the contains(5) operation returning
false; the areas in between these demarcated segments would result in the contains(5) operation
returning true.

Figure A.10: An example of a concurrent history where thread 2 contains a true re-
turning contains operation operation with non-fixed linearization points. The example
shows, as illustrated by the line segment, the segments of thread 2’s operation which represent the
contains(5) operation returning true; the areas in between these demarcated segments would result
in the contains(5) operation returning false.

123

Stellenbosch University https://scholar.sun.ac.za



APPENDIX B

JAVA CODE

B.1 BUGGYQUEUE JAVA CLASS (SUT)

public class BuggyQueue {

int NullForInt = Integer.MIN_VALUE;

AtomicInteger FRONT = new AtomicInteger(0);

AtomicInteger REAR = new AtomicInteger(0);

AtomicReferenceArray Q_atomic;

int L = 4;

Node[] Q = new Node[L];

public BuggyQueue() {

for (int i = 0; i < L; i++) {

Q[i] = new Node(NullForInt, 0, true);

}

Q_atomic = new AtomicReferenceArray(Q);

}

/** return true if success, else false */

public boolean enqueue(int itemEnq) {

int rear;

Node x;

boolean resultFound = false;

do {

do {

rear = REAR.get();

x = (Node) Q_atomic.get(rear%L);

} while ((rear != REAR.get()

|| rear == FRONT.get()+L));

if (x.getIntIsNull()) {

if (Q_atomic.compareAndSet(rear%L, x,

new Node(itemEnq, x.counter+1,

false)))

{

REAR.compareAndSet(rear, rear+1);

resultFound = true;

}

} else {

REAR.compareAndSet(rear, rear+1);

}

} while (!resultFound);

return true;

}

/** return value if success else -1 */

public int dequeue() {

int front;

Node x;

boolean resultFound = false;

int result = -1;

do {

do {

front = FRONT.get();

x = (Node) Q_atomic.get(front%L);

} while ((front != FRONT.get()

|| front == REAR.get()));

if (!x.getIntIsNull()) {

if (Q_atomic.compareAndSet(front%L, x,

new Node(NullForInt, x.counter+1,

true)))

{

124

Stellenbosch University https://scholar.sun.ac.za



FRONT.compareAndSet(front, front+1);

result = x.val;

resultFound = true;

}

} else {

FRONT.compareAndSet(front, front+1);

}

} while (!resultFound);

return result;

}

private static class Node {

private int val;

private int counter;

private boolean intIsNull;

public Node(int val, int counter,

boolean intIsNull) {

this.val = val;

this.counter = counter;

this.intIsNull = intIsNull;

}

public void setVal(int val) {

this.val = val;

}

public void setCounter(int counter) {

this.counter = counter;

}

public void setIntIsNull(boolean intIsNull){

this.intIsNull = intIsNull;

}

public int getVal() {

return this.val;

}

public int getCounter() {

return this.counter;

}

public boolean getIntIsNull() {

return intIsNull;

}

}

}

B.2 LOCKFREESET JAVA CLASS (SUT)

class LockFreeSet {

private final Object lock = new Object();

private volatile Entry head;

/** Return the location of key in the set

(where it is or should be added) */

private void locate(EntryLocationHolder loc,

int key) {

loc.pred = null;

loc.curr = head;

while ((loc.curr != null)

&& (loc.curr.key < key)) {

125

Stellenbosch University https://scholar.sun.ac.za



loc.pred = loc.curr;

loc.curr = loc.curr.next;

}

}

/** Returns true if key is in the set and

false if key is not in the set */

public boolean contains(int key) {

EntryLocationHolder loc =

new EntryLocationHolder();

locate(loc, key);

return ((loc.curr != null)

&& (loc.curr.key == key));

}

/** Add an entry (with the key field set

to key) to the set */

public boolean add(int key) {

EntryLocationHolder loc =

new EntryLocationHolder();

Entry entry;

boolean success = false;

boolean alreadyAdded = false;

do {

locate(loc, key);

if ((loc.curr != null)

&& (loc.curr.key == key)) {

// possibly by another thread since locate

alreadyAdded = true;

} else {

entry = new Entry(key);

entry.next = loc.curr;

synchronized (lock) {

if ((loc.pred != null)

&& (loc.pred.next == loc.curr)

&& !loc.pred.marked) {

loc.pred.next = entry;

success = true;

} else if ((head == loc.curr) &&

(head == null || (!head.marked))) {

/** another thread has not added an entry

at loc.pred.next (or head)

or marked it for deletion */

head = entry;

success = true;

}

}

}

} while (!success && !alreadyAdded);

return success;

}

/** Remove the entry

(with the key field equal to key)

from the set */

public boolean remove(int key) {

boolean success = false;

boolean alreadyRemoved = false;

EntryLocationHolder loc =

new EntryLocationHolder();

do {

locate(loc, key);

if ((loc.curr == null)

|| loc.curr.key != key) {

// possibly by another thread since locate

alreadyRemoved = true;

126

Stellenbosch University https://scholar.sun.ac.za



} else {

loc.curr.marked = true;

synchronized (lock) {

if ((loc.pred != null)

&& (!loc.pred.marked

&& (loc.pred.next == loc.curr))) {

loc.pred.next = loc.curr.next;

success = true;

} else if (head == loc.curr) {

head = loc.curr.next;

success = true;

}

/** if no other thread marked pred

for deletion or added another entry

before curr since locate */

}

}

} while (!success && !alreadyRemoved);

return success;

}

// An entry in the Set

static class Entry {

int key;

boolean marked;

Entry next;

// Constructor

Entry(int key_val) {

key = key_val;

marked = false;

}

}

/** Used by locate to return the

field(s) required by add, remove, etc. */

static class EntryLocationHolder {

volatile Entry pred;

volatile Entry curr;

}

}

B.3 PSEUDOCODE FOR JPF’S DEPTH-FIRST-SEARCH MODEL CHECK-

ING TRAVERSAL

def JavaPathFinderDFS:

def DFS:

while searchNotCompleted()

if isEndState() or !isNewState()

then backtrackState()

and listenerClass.stateBacktracked()

endif

if hashUnexploredChildren()

then advanceToUnexploredChildState()

and listenerClass.stateAdvanced:()

endif

endWhile

def advanceToUnexploredChildState:

forEach getInstructionsForNextTransition()

then executeInstruction()

127

Stellenbosch University https://scholar.sun.ac.za



and if methodInvocation()

then listenerClass.methodEntered()

else if methodResponseEvent()

then listenerClass.methodExited()

endif

endForEach

B.4 PSEUDOCODE FOR AUTOMATIC LINEARISABILITY CHECKING

USING JPF’S LISTENER CLASS

def ListenerClass:

/** define a structure to store the

ordered events of operation

invacation and response events

for a concurrent history path */

def concurrentHistoryRecord

/** Instantiate instance of

the sequential oracle */

def seqOracle

def stateAdvanced:

if isEndState()

then doLinearisabilityCheck(

concurrentHistoryRecord)

endif

def stateBacktracked:

if backtrackedPastOperationEvent()

then restorePreviousSequential-

OracleState()

and restorePreviousConcurrentHistory-

RecordState()

endif

def methodEntered:

if MethodInvocationForSUTOperation()

then storeInformationAboutInvocation-

EventInconcurrentHistoryRecord()

endif

def methodExited:

if MethodResponseForSUTOperation()

then storeInformationAboutResponse-

EventInconcurrentHistoryRecord()

endif

def doLinearisabilityCheck:

generateSequentialWitnesses-

OfConcurrentHistory()

TestEachConcurrentHistory()

def TestEachConcurrentHistory():

forEach concurrent history:

if concurrentHistoryIsLinearisable()

then continue

else stopSearch() and

throwLinearisationError()

endif

endForEach

128

Stellenbosch University https://scholar.sun.ac.za



APPENDIX C

EXPERIMENT RESULTS

C.1 ERROR FINDING

Data Format:

NewStates

Max Memory (MB)

Internal Checker Implementations External Checker Implementations

Automatic LinPoint Automatic LinPoint Automatic LinPoint Hybrid Symbolic Automatic LinPoint

Unsound Sound Unsound Sound

+- 1s +- 5s +-5s +-5s +- 1s +-1s +-1s +-1s +-1s +-1s

BuggyQueue

(unique-value)

14,715

426

541,147

679

387,561

677

1,155,102

680

314

238

309

238 1,935

238

2,802

238

6,522

425

6,505

425

BuggyQueue

(duplicate-value)
not found not found not found not found not found not found not found not found

LockFreeList

Bug1

23,928

427

1,254

238

1,876,390

678

9,182

678 not found

887

238 timeout timeout

146,603

425

146,218

1,178

LockFreeList

Bug2

22,427

425

1,113

238

1,853,882

678

8,329

678 not found

845

238 timeout timeout

150,575

678

150,196

675

PairSnap

1,962

238

1,051

238

24,202

425

9,337

425

57

238

57

238

807,308

1,456
622,840,540

1,456

3,498

300

3,497

425

SnarkDeque

Bug1

35,539

425
4,432,644

684

2,725,592

550
Memory limit

reached

459

238

490

238

2,184,943

675

41,514,040

675

70,449

675

71,301

675

SnarkDeque

Bug2

15,316

425

724,078

681

369,503

426

15,370,242

683

302

238

329

238

1,820

238

1,075,311

1,175

6,001

425

5,993

425

Table C.1: Execution Time and Memory until error is found

129

Stellenbosch University https://scholar.sun.ac.za




