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Abstract

Tsetse flies are a species of bloodsucking flies in the housefly family, that are only found in
Africa. They cause animal and human African trypanosomiasis (AAT and HAT), commonly
referred to as nagana and sleeping sickness. Effective tsetse fly eradication requires area-wide
control, which means understanding the population dynamics of the tsetse flies in an area.
Among the factors that entomologists believe to be critical to this understanding, fly size and
fly wing shape are considered most important. Fly size can be deduced by calculating the
distance between specific landmarks on a wing. The South African Centre for Epidemiological
Modelling and Analysis (SACEMA) conducts research into tsetse fly population management
and have a database of wings. To use landmarks on the wings for biological deductions about
the tsetse flies in the area, researchers will need to manually annotate individual images of the
wings by marking the important landmarks by hand, which is slow and error-prone.

The purpose of this research is to assess the feasibility of automating the process of landmark
detection in tsetse fly wing images using machine learning algorithms with a limited dataset.
Extensive research has been done into automatic landmark detection. Particular focus has been
given to detection of human body parts but there are a number of notable cases of animal
landmark detection. Convolutional neural networks (CNNs) have been used as backbone ar-
chitectures for most state-of-the-art detection systems. We compare the performance of fully
convolutional networks (FCNs) against conventional LeNet style CNNs for the regression task
of landmark detection in a fly wing image. The FCN accepts an image input and returns a
segmentation mask as output. A Gaussian function is used to convert the response coordinate
pairs into heat maps, which are combined to form a segmentation mask. After model training
the heat maps produced by the FCN model are converted back to coordinate pairs using a
weighted average method.

Three types of models were trained: a baseline artificial neural network (ANN), LeNet style
CNNs and FCNs. The ANN model had a root mean square error (RMSE) of 282.62 pixels and
mean absolute error (MAE) of 181.33 pixels. The best LeNet model, LeNet3 with dropout,
had an RMSE of 53.58 and MAE of 41.05. The best FCN model FCN8 with batch size 32 and
Adam optimization, had an RMSE of 1.12 and MAE of 0.88. All trained models were best at
predicting landmark points 5, 8 and 10 and struggled to predict landmark points 1, 4 and 6.

The results indicate that machine learning models can be used to automatically and accurately
detect landmark points on tsetse fly wing images. Furthermore, for our limited dataset FCNs
outperform conventional LeNet style CNNs.
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Opsomming

Tsetsevlieë is ’n spesie bloedsuiende vlieë in die huisvliegfamilie, wat slegs in Afrika voorkom.
Hulle veroorsaak meestal dierlike en menslike Afrika-trypanosomiasis, ook bekend as nagana en
slaapsiekte. Effektiewe uitroei van tsetsevlieë benodig beheer van ’n hele gebied, wat beteken
dat die bevolkingsdinamika van die tsetsevlieë in ’n gebied verstaan word. Onder die faktore
wat vir entomoloë van kritieke belang is vir hierdie begrip, is die grootte van die vlieg en
vliegvlerkvorm van die belangrikste. Vlieggrootte kan afgelei word deur die afstand tussen spe-
sifieke landmerke op ’n vlerk. Die Suid-Afrikaanse Sentrum vir Epidemiologiese Modellering en
Analise (SACEMA) doen navorsing oor die bestuur van tsetsevliegpopulasies en het ’n databasis
van vlerke. Om landmerke op die vlerke te gebruik vir biologiese afleidings oor die tsetsevlieë in
die omgewing, sal navorsers individuele beelde van vlerke moet annoteer deur die belangrike
landmerke met die hand te merk, wat stadig en foutief kan wees.

Die doel van hierdie navorsing is om die uitvoerbaarheid van die outomatisering van land-
merkopsporing in tsetsevliegvlerkbeelde, met behulp van masjienleeralgoritmes op ’n beperkte
datastel, te ondersoek. ’n Uitgebreide ondersoek is gedoen na outomatiese opsporing van land-
merke. Spesifieke fokus is gegee aan die opsporing van menslike liggaamsdele, maar daar is ’n
aantal gevalle van landmerkopsporing in diere. Konvolusionele neurale netwerke (CNN’s) word
as ruggraat-argitektuur vir die meeste moderne opsporingstelsels gebruik. Ons vergelyk die
prestasie van volledig-konvolusionele netwerke (FCN’s) teen konvensionele LeNet-styl CNN’s,
vir die regressietaak van landmerkopsporing in ’n vliegvlerkbeeld. Die FCN aanvaar ’n beeld
as toevoer en gee ’n segmenteringsmasker as uitvoer. ’n Gaussiese funksie word gebruik om
die responskoördinate om te skakel na hittebeelde, wat saamgevoeg word om ’n segmenterings-
masker te vorm. Na modelafrigting word die hittekaarte wat deur die FCN-model vervaardig
word, omgeskakel na koördinaatpare met behulp van ’n geweegde gemiddeldes.

Drie soorte modelle is afgerig: ’n basiese kunsmatige neurale netwerk (ANN), LeNet-styl CNN’s
en FCN’s. Die ANN-model het ’n wortel-gemiddelde vierkantfout (RMSE) van 282.62 piksels
en gemiddelde absolute fout (MAE) van 181.33 piksels. Die beste LeNet-model, LeNet3 met
uitval, het ’n RMSE van 53.58 en MAE van 41.05 gehad. Die beste FCN-model, FCN8 met
groepgrootte 32 en Adam-optimering, het ’n RMSE van 1.12 en MAE van 0.88 gehad. Alle
afgerigte modelle het landmerke 5, 8 en 10 die beste vind, en gesukkel om landmerkpunte 1, 4
en 6 te vind.

Die resultate dui aan dat masjienleermodelle outomaties en akkuraat gebruik kan word om
landmerkpunte op tsetsevliegvlerkbeelde op te spoor. Verder, vir ons beperkte datastel het
FCN’s beter presteer as konvensionele LeNet-styl CNN’s.
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1 Introduction

Tsetse flies are a species of bloodsucking flies in the housefly (Muscidae) family, that are only
found in Africa. They cause animal and human African trypanosomiasis (AAT and HAT), com-
monly referred to as nagana and sleeping sickness, respectively. AAT is transmitted through the
bite of a tsetse fly and causes infected animals to experience high fevers, anaemia and weakness
which ultimately lead to fertility and milk production issues and sometimes death. Domestic
animals such as cattle, horses, sheep and goats are most affected by AAT. In Sub-Saharan Africa
the agricultural sector has recorded an estimated $3 billion of animal productivity losses as a
result of AAT. HAT is transmitted when tsetse flies bite humans and an estimated 1.59 million
lives have been lost due to ill health, disability or early death from this disease [68, 107, 15].

The large threat that tsetse flies pose on human and animal life means that control of these
species is crucial. There are a number of methods being used to control the spread of AAT,
including the use of trypanocidal drug compounds which are used both prophylactically (for
prevention) or curatively (for cure), the promotion of breeding livestock that are trypanotolerant
(able to withstand the effects of the disease) and finally the eradication of the tsetse fly which
is the transmission vector. The drug compounds and the promotion of trypanotolerant animals
are not always effective due to the increased drug resistance of the AAT parasite. As such,
eradication of the tsetse fly is considered the preferred way of managing the disease.

Effective tsetse fly eradication requires area-wide control, which means understanding the biol-
ogy of the tsetse flies in an area and making the controls biologically relevant, as well as ensuring
that isolated tsetse populations are targeted. Without these considerations, re-invasion is likely
to occur.

Medical entomology is a field of medicine interested in distinguishing species and detecting those
species even in places where they may not be expected. Among the factors that entomologists
believe to be critical to understanding the biology of tsetse flies in an area, fly size and fly wing
shape are considered most important.

According to Mbewe et al. [68] and Hargrove et al. [41], fly size can be deduced using certain
wing length measurements. In Figure 1 the distance between A and B as well as the distance
between C and D can be used to estimate the size of the fly. In this thesis we will refer to points
A, B, C, D and other points where the fly veins intersect as landmark points.
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Figure 1: Right facing tsetse fly wing with landmarks A, B, C and D, and the different landmark
distances that can be used to estimate the fly size [68].

1.1 Research motivation

The South African Centre for Epidemiological Modelling and Analysis (SACEMA) conducts
research into tsetse fly population management. To that end, SACEMA has collected thousands
of wings and has taken photographs of a subset of these wings to form a database for research
purposes. Figure 2 shows four examples each of left facing and right facing wing images from the
SACEMA database. To use these images and landmarks on the wings for biological deductions
about the tsetse flies in the area, researchers need to manually annotate the images by marking
the important landmarks by hand. Annotating landmark points manually is a slow error-prone
process which might significantly delay research efforts.

Figure 2: Four left-facing and four right-facing wing images from the SACEMA database.

A landmark detection algorithm can be trained using machine learning to receive an image and
automatically detect (or localize) the landmarks of interest, which would be a first step in the
process of measuring fly size using wing lengths. After these landmarks are found, distances
between them can be calculated which will help us to estimate the size of the fly from which the
wing was obtained. This speeds up the research timeline and frees up researchers to do more
important research work.
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1.2 Literature review

A fair amount of research has been conducted in the computer vision community over the last few
decades on landmark detection [38, 77]. For many important computer vision applications, such
as human body pose estimation, 3D visualization and face recognition, the accurate detection
of meaningful landmarks or key points forms an important precursor [122].

We consider some of the most popular landmark detection tasks that have been researched,
focusing on human as well as animal body parts.

1.2.1 Detection of human body parts

The detection of human body parts has been widely researched, with researchers looking at
topics that include hand tracking [45, 25], gesture recognition [24], facial expression recognition
[51], face identity verification [106, 102], eye gaze tracking [126, 70], hand keypoint localization,
facial keypoint detection [2] as well as human pose estimation [73].

The challenge of detecting facial landmarks is that facial features may vary greatly from one
image to another due to differences in individuals’ appearances. Facial features may also be
affected by other physical factors such as face position, viewing angle, illumination and contrast.

Facial keypoint detection

The aim of facial keypoint detection algorithms is to automatically locate pre-defined key land-
marks in facial images or videos. The types of algorithms and the detection problems these can
solve have evolved over time.

Initial research work was aimed at working with very distinct and well-defined facial images, in
an attempt to remove any kind of variation. This later evolved to deal with several variation
categories that were still relatively controlled. For example, subjects in facial images that were
collected for these controlled conditions could only face one direction and their expression had
to be the same. Variations arose from the fact that the model was trained on different faces
and the lighting on the images varied slightly. More recent research has focused on what has
been termed “in-the-wild” conditions, where the types of facial images used to train models
have different head poses, the images are illuminated differently, and the facial expressions also
vary.

The first facial keypoint detection methods were based on active appearance models (AAMs)
[29, 22, 86]. Variants of this approach focused on improving fitting algorithms [67, 6, 27, 43, 92]
and feature representation by using more robust image features [44, 47]. The next wave of
solutions was regression-based [23, 118, 103, 127] that directly map from image feature space to
landmark locations, and have been found to perform better than PCA based AAM models and
their variants [122, 115]. Of all the regression-based methods, the cascaded regression methods
(CRMs) [18, 84, 55, 117] seem to be the most widely used.

Recent work in facial keypoint detection has focused on deep learning-based approaches with
the use of convolutional neural networks (CNNs). Longpre et al. [66] experimented with LeNet
style, VGG style and weighted ensembles of the two model types. Naimish et al. [2] used
LeNet style CNNs and solved the keypoint recognition problem by building a separate CNN
for every facial keypoint. Cascaded CNNs and recurrent neural networks (RNNs) have also
been used [101] where three CNN levels are cascaded to make coarse to fine predictions. This
focus on deep learning networks is largely due to the end-to-end nature of training deep neural
networks, i.e. human supervision is not required for feature transformation design [111], which
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has significantly improved performance over the hand-crafted features that previous methods
utilized [122, 86].

Human body pose estimation

Another widely studied area that incorporates landmark detection on human body parts is the
area of human body pose estimation. The aim of human body pose estimation algorithms is to
automatically identify key locations on the human body in an image or video, such as joints and
body parts of interest to a particular application. Tracking the pose and limb positions of the
human body is a key building block for tasks such as action classification and body movement
prediction, and is a fundamental tool in the human-computer interaction and animation fields
[73, 8].

Early research into human body pose estimation made use of models called pictorial struc-
tures [49, 82]. In pictorial structures, spatial correlations of body parts are presented as tree-
structured graphical models. When the limbs are fully visible these models are highly successful,
but performance declines when limbs are occluded. Early research also made use of hand-crafted
features such as the histogram of oriented gradients (HOG) features, edges, colour histograms
and contours [119, 110]. These models performed well on the datasets and scenarios they were
designed for but failed to generalize to new datasets [30].

More recent human pose estimation systems have used CNNs as architectural building blocks.
For example, Fan et al. [84] used a region-based CNN (R-CNN) as the main building block, with
a dual source CNN model (DS-CNN) that uses both the full body appearance and the holistic
view of the local body part as model inputs. VGG [98] is a popular backbone architecture
and was used by Wei et al. [113] to design a sequential convolutional network architecture that
operates on belief maps from preceding stages. Su et al. [100] presented a technique called
cascade feature aggregation (CFA), which cascades a number of hourglass networks for robust
human pose estimation. They largely made use of ResNet-50 [42], Resnet-101 and Resnet-152 as
backbone architectures. This strategy led to significant improvements on standard benchmark
datasets [91, 4].

Research has moved away from single body human pose estimation in controlled environments
to multi-person human pose estimation in the wild. Approaches in this area can be classified
into bottom-up and top-down approaches. Bottom-up approaches [75, 80] first detect all the
landmarks of every person in an image and then group these landmarks in a way that helps to
identify the individuals in the image. Top-down methods [79, 104] first detect bounding boxes
and then predict the human body landmarks in each box [48].

1.2.2 Detection of animal landmarks

The detection of landmarks in animal images has not been as extensively researched for various
types of animals. Bird part localization [19], fine-grained classification as well as the topic of
animal re-identification are some of the more popular research areas.

Fine-grained image classification

The bird part localization problem is commonly addressed to solve a particular instance of the
problem of visual fine-grained classification. While general classification seeks to find distinc-
tions between different categories of classes, e.g. dogs vs cats, fine-grained categorization goes
a level deeper to find distinctions between different subclasses, e.g. British Shorthair vs Persian
cats [125]. Fine-grained image classification approaches in the deep learning literature can be

9

Stellenbosch University https://scholar.sun.ac.za



classified into those that use (1) end-to-end deep neural networks for fine-grained classification,
(2) deep neural networks to extract features that make part localization easier, (3) an ensemble
of neural networks to differentiate fine-grained classes that are highly similar, and (4) visual
attention to distinguish between image regions most useful for classification.

According to Zhao et al. [128], state-of-the-art CNNs such as AlexNet, VGG and GoogLeNet
can be adopted for fine-grained image classification.

Where there may be abstruse differences in individual object body parts, semantic part local-
ization can be utilized to isolate these differences and help facilitate fine-grained classification.
Berg et al. [11], Liu et al. [62], Yang et al. [120] and Gavves et al. [34] are examples of approaches
where semantic part localization is used in this manner.

The approach that uses an ensemble of neural networks to differentiate fine-grained classes
that are highly similar involves the use of multiple neural networks to create one combined
architecture that will improve performance. Some examples are subset feature learning networks
[34], a mixture of deep CNNs also known as MixDCNN [35], CNN trees [112] and multiple
granularity CNNs [109].

Instead of compressing whole images into fixed representations, the attention system makes
it possible for a neural network to highlight features dynamically and can be used as part of
fine-grained image classification systems. Examples of this includes two-level attention [116],
attention for fine-grained categorization (AFGC) [96], fully convolutional network (FCN) at-
tention [64], and diversified visual attentions [129]. RNNs, FCNs and CNNs are used as base
architectures for attention fine-grained categorization, FCN attention and diversified visual at-
tention, respectively.

Animal re-identification

Animal re-identification (re-ID) is an instance level recognition and retrieval problem where the
aim is to distinguish individual animals and to recognize these animals upon re-occurrence [71].

Where animal re-ID is concerned, landmark points are used as extra training inputs together
with the input image to create stronger and more specific embeddings, using for example archi-
tectures such as ResNet50 with weights pretrained on ImageNet [71].

Early approaches to solving the animal re-ID problem involved humans manually recording
the location of unique animal characteristics and then saving those in a database and looking
through the database to find animals with the highest number of similarities for re-ID.

More recently, Freytag et al. [32] investigated the effectiveness of using a combination of the
BVLC AlexNet and VGG-face CNN architectures with bilinear pooling feature processing.
Brust et al. [17] used the BVLC AlexNet architecture with bilinear pooling and YOLO object
detection to create a ranked list of re-ID proposals. A combination of the YOLO object detection
method, the ResNet50 architecture and an SVM classifier was used to localize elephant heads
in [86], and a custom Siamese CNN was used in [67].

Research in animal re-ID has moved to algorithms that are able to quickly adapt to and make
predictions on new images that the algorithm was not trained on, using techniques such as
one-shot learning [5], generative adversarial networks [63], domain adaptation [130], and unsu-
pervised methods [121, 16].
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1.2.3 Summary

Of all the landmark detection tasks mentioned above, detecting landmarks of interest on tsetse
fly wings shares a number of properties with the facial key point detection problem. Our
dataset is made up of static images of wings where the main differences between wing images
come from the biological differences in individual wings, positioning of the wings in the images
and illumination. Similarly, for facial landmark datasets, for example those in [66, 2], the main
differences in individual face image landmarks result from the differences between individuals,
illumination as well as the position of the face in the image. Besides the differences, the input
dataset provided for our work more closely resembles the input used in the facial keypoint
detection problems addressed in [66, 2] which is a combination of images and their landmark
coordinates.

Human pose estimation, like our research problem, is a regression problem. It is a different
problem because of the added connections between the landmarks which form part of the output
required for this task. The fine-grained categorization and animal re-ID problems differ in that
they are classification tasks.

FCNs are state-of-the-art models for image segmentation problems and use spatial information
when computing predictions. We will explore whether various FCN architectures can outperform
CNN architectures on our particular problem. FCNs also allow input images of any size which
would be more applicable to real-world scenarios. The deconvolution layers in FCN architectures
increase the scale of the prediction data and the skip connections enable more robust training
[129].

1.3 Data collection method

The tsetse flies that feature in our dataset were collected from Rekomitjie Research Station,
Zambezi Valley, Zimbabwe. The Rekomitjie station is situated in Mana Pools National Park,
which, combined with the Sapi, Hurungwe and Chewore Safari areas, covers about 10, 000 square
kilometres. The image data used in this thesis comes from a subset of data that was collected
from an 11-year study conducted between September 1988 and December 1999 [39].

Two main devices were used in that study:

1. stationary mechanical “epsilon” traps [72] baited with artificial host-odour, and

2. vehicle-mounted electric target, made up of an electrocuting grid, one metre tall and two
metres long [108], mounted on the back of an open pickup truck [40].

Once the flies were captured, they were transferred to a laboratory and placed in individual
75×25 mm plastic tubes, under a black cloth to reduce the flies’ activity. Female flies underwent
a process of ovarian dissection developed specifically for tsetse flies [93, 94].

Wings of sampled flies were affixed with transparent sticky tape to a dissection record form and
images of individual wings were taken, which led to our image dataset.

1.4 Dataset description

In this study we make use of a dataset that consists of a total of 2424 tsetse fly wing images. 1053
of these images contain left-facing wings, while 1371 contain right-facing wing images. Each of
the images is colour and represented by a 1280× 1024× 3 pixel matrix. Each pixel entry is an
integer between 0 and 255 on the RGB scale, representing the red, green and blue intensities of
each of the 1280×1024 pixels. For each of the images, annotations with eleven (x, y) coordinate
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points were manually recorded for all the landmarks on the wing. These manual annotations
will be used for training and testing purposes. Figure 3 provides two examples of tsetse fly wing
images from the dataset, with their annotated landmark points.

Figure 3: Examples of left-facing and right-facing tsetse fly wing images, with annotations.

Figure 4 is an example of a right facing wing with its annotations. The order of the annotation
points is illustrated by the numbers on top of each point. This order is maintained for all images
in our dataset. Each landmark point n in Figure 4 corresponds to coordinate (xn, yn) in the
annotations.

Figure 4: Right-facing tsetse fly wing with annotations and the numbering convention.

1.5 Aims and objectives

The purpose of this research is to assess the feasibility of automating the process of landmark
detection using machine learning algorithms for a limited dataset. To do this we will compare the
performance of FCNs against conventional CNNs for the regression task of landmark detection
in the tsetse fly wing image dataset. Concretely, our aim is to adapt the facial keypoint detection
techniques used in [66, 2] for our problem.

The objectives of this study are to:
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� review previous methods used in landmark detection, for both human and animal body
parts;

� construct and test a simple artificial neural network (ANN) model that takes our input
image data and returns landmark coordinates, and investigate model performance;

� construct and test LeNet style CNN models that take our input image data and return
landmark coordinates, and investigate model performance;

� construct and test FCN models that take our input image data and return landmark
coordinates, and investigate model performance.

1.6 Thesis layout

The rest of this thesis is organized as follows. Chapter 2 provides background information on
artificial intelligence, machine learning and computer vision required for this research. Chapter
3 describes the model architectures, the software specifications, our parameter search approach,
the metrics we used to evaluate models as well as the pre-processing methods used. Chapter
4 describes the models we trained and the test results we obtained. Chapter 5 provides a
conclusion of the work and gives suggestions for future work.
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2 Background

This chapter is organized into four sections. Section 2.1 defines machine learning and what
it means for a model to learn. It also looks at three high level categories for machine learn-
ing algorithms and two popular machine learning tasks. Section 2.2 discusses artificial neural
networks (ANNs) and how these loosely mimic the human brain. This section also looks at
activation functions, giving a few common examples. The multi-layer perceptron (MLP) and
its three neuron types and a look into the neural network training process is also expanded
upon. Section 2.3.1 focuses on convolutional neural networks (CNNs), giving an explanation of
the convolution operation and expanding on different CNN layers. Finally, Section 2.4 provides
a brief history of fully convolutional networks (FCNs), how CNNs can be converted to FCNs
and the FCN architectures presented by Long et al. [65].

2.1 Machine learning

The field of machine learning focuses on the creation of algorithms that use data to build predic-
tive models. This field is primarily concerned with the question of how to design these models
such that they automatically improve with new data. Machine learning is multi-disciplinary
and draws on principles and concepts from a number of fields, namely statistics, artificial in-
telligence, philosophy, information theory, biology, cognitive science, computational complexity,
and control theory [37]. While many theoretical problems can be formulated exactly, real world
problems are often difficult to formulate exactly. Machine learning has emerged as a useful
tool for modelling such real world problems. Classical computer algorithms are explicitly pro-
grammed by a human to perform a particular task, while with machine learning, a portion of
the human contribution is replaced by a learning algorithm [37].

The aim of a machine learning task is to find (to learn) a function, f : X → Y , that maps
an input domain X of data onto an output domain Y of possible predictions. The form of the
function f varies depending on the type of model and learning algorithm being used [69, 9].

2.1.1 Learning

Mitchell [9] defines learning in the following way:

“A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T, as measured by P , improves with
experience E.”

For machine learning algorithms, the dataset we provide is what we call the experience. This
dataset contains a number of examples that are used to train the algorithm. If the machine
learning task is classification, the accuracy of the algorithm, i.e. the proportion of times the
algorithm correctly predicts the output, is used as the performance measure P . This value P
tells us quantitatively how a particular machine learning algorithm is performing for a given
dataset [9].
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2.1.2 Classification of machine learning algorithms

The material presented in this section was adapted from Goodfellow et al. [37].

The dataset available for training is a key component of machine learning and is an important
determinant of the category of learning that can be performed on the data. Machine learning
algorithms can be largely classified into three categories: supervised learning, unsupervised
learning and reinforcement learning.

Supervised learning systems make use of labelled datasets containing pairs (x, y), where
x represents a data point and y the corresponding true prediction (or label) for x. During
training, the learning algorithm is given examples that have been labelled by humans. For
example, in the object detection task we use training images where humans have marked the
locations and classes of relevant objects. After learning from the examples, the algorithm should
have the ability to predict the location and classes for images not yet encountered. During the
training process, the algorithm uses the given input-output pairs to estimate the relationship
between x and y in order to predict future input-output observations, by minimizing errors
(wrong predictions) as much as possible.

Unsupervised learning uses unlabelled datasets. During training the system investigates
and establishes similarities between different objects and in that way derives structure from the
unlabelled data. In the case of supervised learning, the system is learning from a “teacher”,
while an unsupervised learning algorithm attempts to learn important features of a dataset
on its own. A common example of unsupervised learning is clustering. In more recent years,
unsupervised learning algorithms have been used in supervised learning tasks during the data
pre-processing phase as a tool to more quickly discover key features and useful representations
of the data.

Reinforcement learning systems are reward-based systems for an algorithm whose objective
is to map states to actions, i.e. the algorithm is rewarded for making certain actions (“good
decisions”) and there are negative consequences associated with certain other actions (“bad
decisions”).

2.1.3 Machine learning tasks

Machine learning can be used to solve a wide variety of tasks. Regression and classification
are two of the most popular machine learning tasks. For a regression problem, the model
approximates the relationship between the independent input variables in order to successfully
predict a continuous output. Classification tasks are those where the model is required to
categorize the input data into discrete output classes [57].

2.2 Artificial neural networks

The neuron is the basic building block of the human brain. The neuron in Figure 5 has some
key features, namely the dendrites, the soma, the axon and the axon terminal.

� The dendrites are cell receptors responsible for receiving communication from other cells
into the cell body. The connection between the neuron that sends the signal and the
neuron that receives the signal is known as the synapse. The synapse determines how
much of the signal that is being sent by the sender neuron is received by the receiver
neuron (the strength of the signal).
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� The soma, which is also referred to as the cell body, is the spherical part of the neuron
which contains the nucleus.

� The axons are cell transmitters, and are responsible for sending communication from the
cell nucleus to the axon terminals.

� The axon terminals connect to the dendrites of other nuclei and are the points of contact
through which signals are transmitted.

Figure 5: Biological neuron [87].

On average, the human brain has about 100 billion of these neurons, each of which may be
connected to as many as 10,000 other neurons that pass signals to each other using up to
approximately 1,000 trillion synaptic connections. This is equivalent, by some estimates, to a
trillion bits per second processor computer [124].

According to Bataineh [7], artificial neural networks (ANNs) are biologically inspired systems
meant to simulate the computational approach of the human brain. These systems have been
developed and derived to have a function loosely similar to the human brain by memorizing
and learning various tasks. Neural networks are trained to learn behaviour and to apply that
behaviour in the future, in new scenarios. These ANNs typically consist of thousands of inter-
connected neurons, arranged as multiple layers stacked on top of each other. Artificial neurons
are the basic computational building blocks, their structure ensures that ANNs are able to
perform complex tasks and can be applied in a variety of areas [3].

The key features of the artificial neuron, shown in Figure 6, have been inspired by the neuron
in the human brain shown in Figure 5.

� Lines w0x0, w1x1 and w2x2 are analogous to a neuron’s dendrites. xi is an input to the
neuron and receives information from other neurons, while wi is the connection weight
which represents the synapse strength.

� The combination of inputs from other neurons come together in the cell body as shown
in the following expression: ∑

wixi + b. (2.1)

In this expression, b represents the bias of the neuron which, from a biological view
point, can be seen as the threshold at which the neuron will fire. The neuron performs
a predefined action on the combined inputs through a function f , which is known as the
activation function, to create the resulting output:

f

(∑
i

wixi + b

)
. (2.2)
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Figure 6: Artificial neuron [52].

The activation function f can be linear or nonlinear, but a nonlinear, monotonically
increasing, continuously differentiable function is often chosen in practice. The reason
for this is that though it might be easier to work with a linear function, most real world
problems require nonlinear mappings. The monotonic and differentiable qualities of the
activation function assist during the training phase and help ensure that convergence
towards an optimal solution is possible.

� The transformed signal in the output axon is what the neuron will be communicating to
other neurons in the network.

As a collective, a group of neurons in multiple layers can efficiently learn a wide variety of
mappings in order to perform a wide variety of tasks.

Activation functions

The activation function determines the output of the neuron by performing a transformation
on a linear combination of the inputs, and can be used to determine whether or not a neuron
should fire [76]. There are a few commonly used activation functions that have proven to work
for problems similar to the ones we will investigate.

(a) Logistic function

The S-shaped sigmoid function, an example of which can be seen in Figure 7 (a), is one of the
most common activation functions in artificial neural networks. This function is monotonically
increasing and exhibits both linear and nonlinear behaviours [97, 60].

The logistic function given by

σ(x) =
1

1 + e−x
(2.3)

is an example of a sigmoid function and maps the interval (−∞,∞) to the bounded range (0, 1).
Using this activation function, neurons whose input value x is close to either ∞ or −∞ result
in a very small change in output values. This is because the gradient of the logistic function
at extreme values is very low, which can be an issue during the training process as smaller
gradients slow down learning. The function also contains an exponential which means that the
process of obtaining gradients from such a function can be computationally expensive.
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(b) Hyperbolic tangent function

The hyperbolic tangent function is given by

tanh(x) =
ex − e−x

ex + e−x
. (2.4)

This is another example of a sigmoid function which maps the interval (−∞,∞) to the bounded
region (−1, 1). It is linked to the logistic function above by the transformation: tanh(x) =
2σ(2x)− 1.

Unlike the logistic function, the hyperbolic tangent function is rotationally symmetric around
the origin and because of the larger range it provides stronger gradients when x is close to zero.
For these reasons, the hyperbolic tangent activation function is often preferred over the logistic
activation function. However, similar to the logistic function this function can saturate which
may slow down learning [60, 26]. An example of the hyperbolic tangent function can be seen in
Figure 7 (b).

(c) Rectified linear unit (ReLU) function

In recent years, ReLU has become one of the most popular activation functions. Neural networks
that use this activation function train several times faster than neural networks that use the
other activation functions [57]. A reason for the quick training time might be because ReLU
is a simple piecewise linear function while tanh(x) and σ(x) involve operations that are more
computationally expensive.

The rectified linear unit is given by

r(x) = max(0, x) =

{
x, x > 0,
0, otherwise.

(2.5)

A notable weakness of ReLU is that for all x < 0 the gradient of the function is zero. Neurons
that result in a zero gradient are ‘dead’ as far as training is concerned for that specific input.
For a full neural network the situation of dead neurons can be avoided through careful weight
initialization and hyperparameter tuning. An example of the ReLU function can be seen in
Figure 7 (c).

(d) Leaky ReLU

The leaky ReLU activation function is defined as

r(x) =

{
x, x > 0,
αx, x ≤ 0,

(2.6)

where α is a small positive constant. A modification of standard ReLU, this has all the ad-
vantages of ReLU but also attempts to fix the problem of ‘dead’ neurons that standard ReLU
experiences. Instead of the function being 0 for all values less than 0, leaky ReLU has a small
positive slope.

(e) Softmax

The softmax activation function is given by

sk(x) =
exk∑K
i=1 e

xi
, k = 1, 2, . . . ,K. (2.7)

This is a generalization of the sigmoid activation function which is typically used for multi-class
classification problems with K distinct classes, where K > 2.
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Figure 7: Activation functions [26].

Multi-layer perceptrons

Several ANN models have been proposed over the years with multi-layer perceptrons (MLP),
Hopfield networks and Kohonen’s self-organizing networks being among the most popular [123].
Of these three models, we will focus on the MLP model.

An MLP is made up of three neuron types.

1. Input neurons form an input vector whose primary role is to encode information about the
external environment. Input neurons do not perform any transformation of the information
but only pass on the received information to subsequent neurons. Because of this, we can
think of them as having the identity activation function, f(x) = x. An MLP typically has
one input layer.

2. Output neurons receive information from the preceding neurons and transform it to fit into a
desired output structure. The output neurons produce the final values of the neural network.
An MLP typically has one output layer.

3. Hidden neurons are the key elements in a neural network. They receive a signal from pre-
ceding neurons, which may be either input neurons or another layer of hidden neurons. The
signal is then processed according to (2.2). The output is passed onto subsequent neurons,
which may be either another layer of hidden neurons, or output neurons. An MLP can have
one or several hidden layers. The more hidden layers a network has, the deeper the network
is said to be.

Figure 8 is an example of a simple MLP with one input layer, two hidden layers and one output
layer.

There are two schools of thought as far as calculating the number of layers of neural networks
is concerned. When performing this calculation, one of them includes the input layer in the
count, while the other does not. In this thesis we will only include the layers that modify the
data, i.e. we will exclude the input layer from the count. We will consider the input layer as
layer 0 and we will call the output layer L.

Neural network architecture

When constructing a neural network the first thing one must consider is the architecture, i.e.
how many neurons to include in the input, output, and hidden layers as well as the number of
hidden layers that should be included. Deciding on the number of input and output neurons
is relatively easy as the input neurons are determined by the number of input features that
will be used in the problem set and the output neurons are determined by the expected output
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Figure 8: A neural network with three input neurons, two hidden layers made up of four neurons
each and one output layer with one neuron [52].

dimensions. For example, if the network is expected to produce a binary answer of either 0 or
1, it can be deduced that this network would only need one output neuron. A tougher problem
is deciding the number of neurons that need to be included in the hidden layers as well as the
number of hidden layers to include. In practice, one would need to train a few networks and
look at the number of hidden neurons and layers that give the smallest generalization error to
answer this question [3].

The objective function

The majority of machine learning algorithms involve the minimization or maximization of a
chosen function g(v) by changing v. This is what is referred to as optimization. The function
g(v) that we wish to optimize is known as the objective function. When the objective function
is being minimized it can also be referred to as a cost function, a loss function or an error
function [37]. In this thesis we will refer to our objective function as a loss function.

In the context of machine learning most of the functions that we have to optimize may not be
convex. A convex function is a bowl-shaped function that has only one global minimum (lowest
point of the entire function) and no local minima (a point where the function g(v) is lower than
all the points close to v but that is not the lowest point of the entire function). We rather need
to optimize functions that may have several local minima and saddle points (critical points that
are neither minima nor maxima) that are surrounded by flat sections on the function space. In
practice we settle for the lowest value of g(v) that we can find, but this value may not necessarily
be minimal by any formal definition [37].

Training a neural network consists of the following four main steps:

1. weight initialization;

2. forward propagation;

3. loss function calculation;

4. weight update through gradient descent.

Steps 2 to 4 are repeated until we converge to either a global or a local minimum for the loss
function (or some other stopping condition is met).
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Step 1: Model weight initialization

The weights chosen to initialize a model affect the training outcome. As such, initializing the
weights correctly is an important step in creating neural networks [37].

Initializing all weights as 0 or any other constant creates symmetries. For two hidden units that
are connected to the same inputs, have the same activation functions and are initialized the
same, the model will constantly update these units in the same way. These two hidden units
will learn the same features throughout model training [37, 54].

Weight initialization is in general dependent on the chosen activation function. Random ini-
tializations break the symmetries that would arise from constant initializations. Activation
functions such as sigmoid and tanh tend to saturate for very high or very low values, therefore
initializing the weights too low or too high could slow down learning. Another issue that may
arise from making the weights too large is the problem of exploding gradients. This is where
gradients get larger and larger with each training iteration [10], which may result in divergence.
In the case of a sigmoid or tanh activation function, making the weights too small may lead to
a problem known as vanishing gradients, where gradients get smaller with each iteration, which
will also slow down learning significantly and may, in extreme cases, stop learning. Activations
such as ReLU saturate in only one direction and are therefore more robust against the vanishing
gradients problem.

Step 2: Forward propagation

During the forward pass, information is passed through the network from the input layer to
the output layer, and the network calculates the output of each neuron in each layer and that
output is then used as input for subsequent layers.

Concretely, for every neuron j in layer l (with the exception of input neurons), the output y
(l)
j

is computed from the previous layer’s output signals y
(l−1)
j as follows:

sj =

ml∑
i=1

w
(l)
ij y

(l−1)
i , (2.8)

y
(l)
j = f(sj). (2.9)

If we let y(l−1) ={y(l−1)j } denote the vector of inputs in layer l, s(l) = {s(l)j } the vector of

activations in layer l, and W (l) the weights of all (i, j) connection pairs received in layer l, then
the feed-forward algorithm can be summarized as follows:

i. let y(0) be a vector of the model inputs

ii. let ŷ be the vector of corresponding outputs

iii. for (l in 1, 2, ..., L) do:

s(l) = W (l)y(l−1)

y(l) = f(s(l))

iv. end for

v. ŷ = y(L)
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Step 3: Loss function calculation

Loss functions help us understand how well the network is mapping the given inputs to the
target outputs.

The mean squared error, also known as the L2 loss function, is the most common regression
loss function and is represented by the formula:

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (2.10)

where yi is the true response value for the ith observation, and ŷi is the regression model’s
prediction for the ith observation. The MSE is the squared difference between the regression
model’s prediction and the true response values. The closer the predictions from the regression
model are to the true response values, the lower the MSE value.

Because differences are squared, the MSE penalizes observations with large differences much
more than the advantage it gives to those observations that are close to the true response value.

Alternatively, the mean absolute error, also known as the L1 loss, is given by the formula:

MAE =
1

n

n∑
i=1

|yi − ŷi|. (2.11)

This loss calculates the mean absolute difference between the response values predicted by the
regression model and the true response values. The closer these values are to each other, the
lower the MAE. The MAE is more robust to outliers than the MSE and is preferred as a loss
function for regression tasks with datasets that contain outliers.

Step 4: Weight update through gradient descent

The gradient descent method can be explained in the context of a landscape with peaks and
valleys. Depending on how the weights are initialized, we start at a certain point on the
landscape. We use the loss function to determine how far we are from our target and use
gradient descent to iteratively move us to the lowest point we can get to on the landscape. It is
at the lowest point where our model will be closest to the target and the loss will be minimized.

Concretely, assume we have a function y = f(x), where x and y are real numbers. The derivative
of this function, denoted by dy

dx , gives the slope at the point x. This derivative tells us how a
small change in the input, x, would change the output, y. For example, assuming that ε is a
small positive number, f(x− ε sign(f ′(x))) is less than f(x) for a small ε. We know then that
moving the value of x with a small step whose sign is opposite that of the gradient would result
in a reduction in f(x), which is our objective [37]. For the gradient descent method to find a
true minimum, f(x) must be a sufficiently smooth convex function.

Gradient descent uses the following update rule:

W (t+ 1) = W (t)− η∂E(W )

∂W
, (2.12)

where η is a small positive number that is referred to as the learning rate. The learning rate
is the step size and it determines how much of the gradient will be used to update the model
weights at each learning step. It is important that we choose the learning rate correctly. We
need to ensure that we do not make the number too small that training takes so long that
convergence becomes infeasible. On the other hand, making the learning rate large, which
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would make the rate of convergence faster, may lead to divergence, as this could mean steps so
large that the minimum point may be overshot entirely [60, 89].

Below are a number of popular gradient descent algorithms.

1. Adaptive gradient descent (AdaGrad)

The AdaGrad algorithm uses the information it has learned about the geometry of the data
that it observed in past iterations to ensure that the gradient based updates are more informed.
Parameters that are associated with features that occur frequently are given lower learning rates
while parameters that are associated with features that are infrequent are given higher learning
rates [28, 89]. This adaptation of the gradient descent method ensures that the model also
takes notice of comparatively rare features that are predictive. To achieve this, AdaGrad makes
use of a different learning rate for every weight in W at every time step t, and the following
equations for its updates:

G(t) = G(t− 1) +

(
∂E

∂W

)2

, (2.13)

W (t+ 1) = W (t)− η√
G(t) + ε

∂E

∂W
, (2.14)

where G(t) ∈ Rd×d is a diagonal matrix where each diagonal element (i, i) is the sum of the
squares of the gradients with respect to Wi [28].

2. The root mean square propagation (RMSProp) optimizer

RMSProp is an unpublished algorithm that is widely used. It is a generalization of RProp
(resilient propagation), a technique for learning rate acceleration that was created exclusively
for batch gradient descent [85], to widen the scope and ensure that it can be used with mini-
batch gradient descent.

The RProp algorithm was proposed for the purpose of remedying AdaGrad’s flaw of having
learning rates that diminish too quickly. As previously mentioned, small learning rates might
make training to convergence infeasible. The learning rule for RMSProp is given by the following
two equations, where

(
∂E
∂W

)
= gt:

E[g2]t = γE[g2]t−1 + (1− γ)g2t , (2.15)

W (t+ 1) = W (t)− η√
E[g2]t + ε

gt. (2.16)

Hinton suggests γ to be set to 0.9, while a good default value for the learning rate η is 0.001
[89].

3. Adaptive moment estimation (Adam)

The Adam optimization technique was proposed by Kingma and Ba [56] and is one of the
most popular optimization techniques in the deep learning field. It was designed to combine
the advantages of AdaGrad and RMSProp, to create a technique that works well with sparse
gradients as well as for online and non-stationary settings. Adam dynamically stores the moving
average of past gradients in a variable N(t), as well as the moving average of past squared
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gradients in a variable U(t). Adam uses the following sets of equations as its update rule:

N(t) = φ1N(t− 1) + (1− φ1)
∂E

∂W
, (2.17)

U(t) = φ2U(t− 1) + (1− φ2)
(
∂E

∂W

)2

, (2.18)

N̂(t) =
N(t)

1− φ1(t)
, (2.19)

Û(t) =
U(t)

1− φ2(t)
, (2.20)

W (t+ 1) = W (t)− η√
Û(t) + ε

N̂(t). (2.21)

Kingma and Ba propose default values of 0.001 for η, 0.9 for φ1, 0.999 for φ2, and 10−8 for ε
[56].

Gradient descent variants

There are three main variants of gradient descent, which differ due to the amount of data that
each of these uses to calculate the gradient [60].

1. Batch gradient descent, also known as vanilla gradient descent, calculates the gradient of the
loss function for the weight parameters, W , and updates the weights of the model after going
through the entire training dataset of N samples. The update rule for this variant is:

W (t+ 1) = W (t)− η∂E(W )

∂W
. (2.22)

2. Stochastic gradient descent (SGD) calculates and updates the gradient for a single sample
(x(i), y(i)) uniform randomly chosen from the dataset. The update rule for this variant is:

W (t+ 1) = W (t)− η∂E(W,x(i), y(i))

∂W
. (2.23)

3. Mini-batch gradient descent calculates and updates the gradients for a mini-batch of size n,
randomly chosen from the dataset, where 1 < n < N . The update rule for this variant is:

W (t+ 1) = W (t)− η∂E(W,x(i:i+n), y(i:i+n))

∂W
. (2.24)

Backpropagation

The idea of the backpropagation algorithm is to repeatedly apply the chain rule to calculate
the effect of each weight in the network on a loss function. Once the values and signs of the
partial derivative are obtained, the gradient is used in the update rule to be applied to each
weight [85].

To explain the backpropagation algorithm we make use of a small example network.

We will be using matrix notation in this explanation. Let W (L) be the matrix of weights
corresponding to layer L in our network, x a vector of inputs, b(L) the vector of biases, z(L) a
vector that is a linear combination of x, W and b, and f an activation function.

The input layer itself makes up the first set of activations i.e. xi = a
(0)
i for all i.
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The activation a(1) at the first layer (L = 1) is calculated by taking the weight matrix W (1) in
this layer, multiplying that with the input vector x for this layer, adding the bias b(1) for this
layer and putting the result through the activation function f :

z(1) = W (1)x + b(1),

a(1) = f(z(1)).

The same procedure can be applied for all activation functions in subsequent layers, up to the
final output layer:

z(l) = W (l)a(l−1) + b(l),

a(l) = f(z(l)).

The steps above constitute the forward pass. After the forward pass we use the loss function E
to calculate how far off the predicted value s is from the desired output, y. The backpropagation
algorithm adjusts the weights repeatedly, with the aim of minimizing the difference between the
model prediction and the desired output. To achieve this, the chain rule is used to calculate
gradients. For a single weight, the gradient is

∂E

∂w
(l)
jk

=
∂E

∂z
(l)
j

.
∂z

(l)
j

∂w
(l)
jk

. (2.25)

Recall that

z
(l)
j =

m∑
k=1

w
(l)
jka

(l−1)
k + b

(l)
j , (2.26)

where m is the number of neurons in layer l.

Then
∂z

(l)
j

∂w
(l)
jk

= a
(l−1)
k , (2.27)

which implies that
∂E

∂w
(l)
jk

=
∂E

∂z
(l)
j

a
(l−1)
k . (2.28)

A similar set of equations can be applied for b
(l)
j . The gradient then allows us to optimize the

model’s parameters using one of the gradient descent variants that have been outlined above.

Training terms

An epoch is one complete presentation cycle of a chosen dataset that is to be learned by a
model. This consists of the forward and the backward pass.

The batch size is the number of examples that are presented to the model in one step of mini-
batch gradient descent.
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Model performance

Generalization is defined as the ability to perform well on previously unobserved inputs [37] and
is what we hope the machine learning models will do well. According to Goodfellow et al. [37],
underfitting and overfitting are the two main problems for machine learning and a model that
either underfits or overfits is said to not generalize well and therefore performs poorly. When a
model is unable to obtain a sufficiently small error on the training set we say the model underfits
the data. This problem can arise if the model has too few hidden layers. The opposite problem
is when the model gets to know the training data so well, and learns the detail and the noise
of the training data such that the model struggles to model any new data. In this case, we say
that the model has overfit the training data, and this can be caused by too many layers in the
model’s architecture [3, 37].

Regularization

In an effort to avoid overfitting, the concept of regularization was introduced. The aim of
regularization is to discourage a model from learning the noise from a dataset by putting in
measures that encourage model generalization. A few regularization techniques are discussed
below.

1. L1 regularization

The L1 regularization technique works by using a penalty term which encourages the model
to minimize the absolute sum of the parameter values. L1 regularization is best used in cases
where the user believes that several of the features used in the model should be ignored, because
it has been observed to drive parameters down to zero [74].

The loss function can be adjusted to incorporate regularization using the equation below:

Ereg = E + λ

M∑
k=1

|wk|, (2.29)

where λ is a parameter that controls how important the regularization term is to the overall
loss that will be minimized, and M is the number of weights [74].

2. L2 regularization

L2 regularization also works by using a penalty term. This penalty term encourages the model
to minimize the sum of the squares of the parameter values [74].

The loss function can be adjusted to incorporate L2 regularization using the following equation:

Ereg = E + λ
M∑
k=1

(wk)2. (2.30)

3. Early stopping

The early stopping regularization technique can be explained using the following training steps.

Step 1: Split training data into training and validation set.

Step 2: Use only the training set when training, and the validation set to evaluate the error
once in a while (e.g. after every sixth epoch).
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Step 3: Terminate training as soon as the error in the validation set is higher than what it was
in previous checks. In Figure 9, the early stopping point is the optimal number of epochs that
would provide the lowest training loss before an increase in validation loss is observed.

Step 4: The weights of the network obtained from the previous run should be used as the
training results [83].

Figure 9: Early stopping [36].

4. Dropout

Dropout is a regularization technique proposed by Srivastava et al. [99]. During training dropout
is achieved by keeping a neuron active with probability p, or setting the unit (as well as its
incoming and outgoing connections) to zero which temporarily removes the neuron from the
network. In Figure 10, (a) is an example of neuron connections for a standard neural network
iteration, and (b) is an example of neuron connections with the dropout regularization technique
applied.

This means that there is a high likelihood that the combination of neurons used for network
training changes with each iteration, which helps to reduce overfitting and to improve the
model’s ability to generalize.

This technique is only applied when training a neural network, and not when testing the per-
formance of the network.
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Figure 10: Dropout [99].

5. Batch normalization

Batch normalization is a regularization technique developed by Ioffe and Szegedy [46]. This
regularization technique normalizes the output of previous layers by subtracting the batch mean
from each output value and dividing the result by the batch standard deviation, in an effort to
make the neural network more stable. The normalized output serves as input for the following
layer. Figure 11 illustrates how this normalization is performed.

The shift in activation output that results from this calculation might mean that the weights
may no longer be optimal. To minimize the loss function, stochastic gradient descent may undo
the normalization. To prevent this from happening, batch normalization includes two trainable
parameters in each layer. As such, the normalized output is divided by γ (a standard deviation
parameter) and has β (a mean parameter) added to it. This means that to denormalize the
inputs in an effort to make the weights optimal, stochastic gradient descent can only change β
and γ.

Networks that use batch normalization can be considerably more robust to bad initialization
[53].

Figure 11: Batch normalization [46].
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2.3 Convolutional neural networks

Convolutional neural networks (CNNs) are a type of artificial neural network, loosely inspired
by the visual cortex of mammals. The visual cortex is the part of the brain that plays a key
role in the reception and processing of visual information.

A CNN uses a mathematical operation called convolution, which is a specialized linear function.
Put simply, CNNs are artificial neural networks that use the convolution operation instead of
full matrix multiplication in one or more of their layers [37].

2.3.1 Convolution

To better understand convolution, consider two finite discrete 1-dimensional functions f and g.
The convolution of these two functions is defined as:

(f ∗ g)(n) =
M∑

m=−M
f(n−m)g(m). (2.31)

Within the above, f (the first argument) is commonly referred to as the input and g (the second
argument) as the kernel or filter. The resulting output is then referred to as a feature map [52].

For the purpose of dealing with image data, we use convolutions over more than one dimension.
When performing convolutions on a 2-dimensional image f , we would also want to use a 2-
dimensional kernel g, and the above equation would be modified as follows:

(f ∗ g)(i, j) =
∑
m

∑
n

f(i−m, j − n)g(m,n). (2.32)

The convolution operation can be used in image processing to extract different features from
an image. Figure 12 is an example of a hand-crafted convolutional filter g being used to detect
horizontal edges in an image f .

Figure 12: A convolution filter to detect horizontal edges in an input image [105].

An image is a matrix of numbers, and it would seem reasonable to take such a matrix, flatten
it into an array and feed it into an ANN. There are two reasons why this might not work well.

Firstly, consider the images from the MNIST dataset [61] where the input size of images are
28× 28 = 784. Suppose we use two hidden layers made up of 100 neurons each and an output
with one neuron. For this shallow ANN that accepts very small input images, the number
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of training parameters is already over 80,000, which becomes computationally expensive to
train over. Using the same neural network architecture with a basic VGA colour image of size
640× 480× 3, we would have over 900,000 input parameters and the network would have over
90 million parameters to train. If we were to make this network deeper the parameters would
increase even further, quickly making training computationally infeasible.

Secondly, ANNs ignore the structure of the input. The input of an ANN can be received in any
order and, after training, the model outcome would not be affected. Images however have strong
local structures, as pixels that are close to each other tend to be highly correlated. Flattening
the image pixels for complex images that have location-based pixel dependencies would mean
that the resulting ANN would be unable to directly exploit those dependencies.

By applying 2-dimensional filters, CNNs can capture spatial dependencies in an image and
provide some amount of invariance to shift, scale and distortion through three fundamental
principles: local receptive fields, shared weights, and spatial subsampling [59].

1. Local receptive fields

Images have a strong 2-dimensional local structure. Because CNNs restrict the receptive fields
of hidden neurons to be local, through the architectural design, they force the extraction of
local features [59].

2. Shared weights

Rumelhart et al. [90] describe weight sharing as a situation where a single weight or parameter
controls several connections, i.e. requiring that the connection strengths of different edges be
equal [58]. By applying equality constraints to filter weights, we ensure the following:

� filters that are used on input images extract the same features in different areas of the
input [59];

� important information relating to the geometry and topology of the task is expressed [59];

� the network is able to automatically achieve shift and scale invariance;

� the number of parameters that the model needs to learn is significantly reduced.

3. Temporal subsampling

Subsampling in CNNs is mainly used to make the model more robust against noise and small
distortions [95]. Subsampling achieves this objective by reducing the resolution of the fea-
ture map, which in turn decreases the precision with which the model encodes the position of
distinguishing features and how sensitive the output is to small distortions [59].

2.3.2 CNN layers

CNNs consist of three main kinds of layers:

1. convolutional layers, which are responsible for performing discrete 2-dimensional convolution
operations on their inputs using a set of filters and further applying nonlinear activations to
the output;

2. pooling layers, which perform the function of summarizing neurons for the purpose of reduc-
ing the size of their input [95];

3. fully connected layers, which take the input that has been convoluted and pooled and map
it to the expected output dimension.
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Convolutional layers

Convolutional layers are key to the architecture of a CNN and give this type of network its name.
During training the convolution operation is computed on the layer input and a trainable filter is
used to produce a modified version of the input. A feature map is a 2-dimensional arrangement
of neurons, where all neurons in one feature map have input weight sharing constraints, i.e.
they must all share one set of weights and a bias. The weight matrix used to produce a given
feature map is what we referred to as the trainable filter.

ANNs have inputs that are presented as columns while the inputs of CNNs are represented
as neurons with a rectangular structure. We construct the trainable filter that is used in
the convolution operation to have a smaller dimension than the input. The filter is shifted
systematically across the image region by region and a convolution is computed at each region.
The region that the filter covers at each convolution instance is referred to as the receptive field.

The number of filters used determines the number of feature maps that will be created from a
given input. The size of each filter as well as the number of filters that will be utilized in the
layer are hyperparameters that must be chosen prior to training.

Pooling layers

The objective of the pooling layers is to make the model robust to, for example, the position
of an object in the picture (i.e. spatial invariance) by decreasing the resolution of the feature
maps.

The pooling operation is performed on each feature map from the previous layer, creating a
pooled feature map which is often much smaller than the original. The size of the pooling layer
can also be considered a hyperparameter of the model.

We evaluate two different pooling operations: max pooling and average pooling, using a set of
examples.

Given a 4× 4 input and a 2× 2 pooling filter with a stride of 2, the max pooling and average
pooling operations create new feature maps, as illustrated in Figure 13 and Figure 14.

Max pooling

For each 2 × 2 filter region represented by the different colours in our 4 × 4 single depth slice,
we take the maximum value of that region and create a new output matrix where each element
is the maximum of a region in the original input.

Figure 13: An example of max pooling applied to a 4× 4 input.
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Average pooling

In the case of average pooling the resulting output feature map is created by taking the average
value of a region and creating a new output matrix where each element is the average of a region
in the original input.

Figure 14: An example of average pooling applied to a 4× 4 input.

Both sub-sampling operations result in a feature map that has lower resolution than its input
[95].

Fully connected layers

In fully connected layers all the neurons in the current layers are connected to all the activations
in previous layers. Figure 15 is an illustration of how fully connected layers connect two 2× 2
feature maps to output neurons.

Figure 15: Illustration of a fully connected layer. Two subsampled feature maps of dimension
2× 2 have each of their neurons connected to every neuron in the output [26].

A typical CNN architecture is shown in Figure 16. Fully connected layers are often used as
the last few layers of a CNN to map all the features extracted from previous convolution and
pooling layers to the target output [58].
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Figure 16: Typical CNN architecture [81].

Other CNN hyperparameters

Stride

The filter stride is the size of the steps taken between two convolutions that are next to each
other. As illustrated by the example in Figure 17, this hyperparameter influences the number
of convolutions performed [52].

Figure 17: The image on the left shows the convolution operation performed on an input using
a stride of 1 while the image on the right shows the convolution operation performed on an
input using a stride of 2 [52].

Padding

Padding, which is also referred to as input padding, involves changing the resolution or size of
the input by adding artificial borders. Figure 18 shows examples of input padding techniques.

Neural network frameworks detail three types of input padding: ‘same’, ‘valid’ and ‘full’.

� Same padding adds padding to the input in a way that ensures that the resulting feature
map is the same size as the input.

� Valid padding adds no artificial padding to the input image and the convolution operation
is conducted on the input as-is. The resulting feature map will be smaller than the original
input.

� Full padding involves padding the input image such that the resulting feature map is

33

Stellenbosch University https://scholar.sun.ac.za



larger in size than the original input. This framework is not used much in practice and is
included here for the sake of completeness [114, 52].

Figure 18: Examples of input padding techniques. The white squares on the bottom represent
the original input while the black squares represent input padding. The squares in the top layer
are convolution outputs using a filter of size three represented by the red, green and blue lines
[114].

2.4 Fully convolutional networks

More commonly known by their abbreviation, FCNs (fully convolutional networks) were first
presented by Long et al. [65] where they took common CNN architectures such as AlexNet, which
are made up of convolutional and fully connected layers, and converted them into architectures
that contain only convolutional layers. To do this conversion, they used the principle that fully
connected layers can be re-interpreted as convolutional layers.

To explain this principle, consider the AlexNet architecture in Figure 19. C1 to C5 are convolu-
tional layers, while FC6 to FC8 are fully connected layers. This architecture will be considered
an FCN when all its layers are convolutional layers. We will therefore look at converting the
fully connected layers, FC6 to FC8, to convolutional layers.

Figure 19: A simplified version of the AlexNet CNN architecture [21].

To convert FC6 to a convolutional layer, C6, we first need to consider its input which is of
size 256 × 6 × 6, due to a pooling layer which down-samples C5 from size 256 × 13 × 13 to
256 × 6 × 6. We use the number of neurons in FC6, 4096, as the number of feature maps in
our new convolutional layer, C6. Each kernel of C6 needs to cover the entire input of FC6,
and as such we will have kernels of size 256 × 6 × 6. The full weight matrix for C6 will be
4096×256×6×6, and using the same activation function used for FC6 we run the convolution
between the input and the filters to get a result of size 4096 × 1 × 1. This convolutional layer
can be used to replace FC6.
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We follow the same process to create the convolutional layer C7 which will replace FC7. The
input for FC7 has size 4096 × 1 × 1, and as such the convolutional layer C7 will have kernels
of size 1× 1 with 4096 channels, and feature maps of size 4096× 1× 1.

Next we move on to the softmax output layer, FC8, which for the AlexNet architecture cor-
responds to a classification task with 1000 classes. This will be replaced with a convolutional
softmax layer C8, which will receive and input of size 4096× 1× 1, use 1× 1 kernels with 4096
channels and will output 1000× 1× 1 sized feature maps.

Replacing FC6, FC7 and FC8 with C6, C7 and C8 results in an architecture that is equivalent
to the original CNN without the size restrictions. Because fully convolutional layers do not
contain fully connected layers, they are able to accept input images of any size large enough for
valid convolutions to be performed across the architecture. While conventional CNNs produce
single labels as outputs, the output of an FCN is a full map that can be the same size as the
input image.

Skip connections

The first fully convolutional networks were created by simply implementing the process above,
i.e. converting all fully connected layers to convolutional layers. The resulting output can be
good at detecting the coarse elements of an image but not very good at detecting finer details.

Skip connections take the output from one layer, skip at least one layer in the network, and
feed that output to another layer in the neural network [78]. Long et al. [65] explored the use of
skip connections which combine the coarse detailed information of higher layers with the finer
details of lower layers. These skip connections allow layers to capture both the global and the
local image information, and can produce segmentation maps that are more refined.

Deconvolution

For a typical CNN architecture, the resulting classification is obtained from a down-sampled
version of the original image, whereas for image segmentation, the output needs to be the same
size as the input image. Therefore, after the initial down-sampling, we also need up-sampling
layers and this process of up-sampling feature maps is often referred to as deconvolution or
fractionally strided convolution. If we assume that a convolution has stride s, then the de-
convolution operation will have stride 1/s which essentially reverses the convolution operation
[65].

FCN architectures

FCN-32, FCN-16 and FCN-8, as shown in Figure 20, are variants of the FCN architecture
created by Long et al. [65] whose differences lie mainly in the spatial precision of their outputs.
These differences are a result of the variations in both the final convolution stride and the skip
connections that create the output segmentation maps.

1. FCN-32: For this architecture a segmentation map is directly produced from conv7, using
a deconvolution layer with 64 × 64 and stride 32. The softmax activation function is then
applied over the feature maps produced by the deconvolution layer, resulting in the output
labelled FCN-32s.

2. FCN-16: For this architecture, conv7 is up-sampled by a factor of 2 using a deconvolution
layer with 4× 4 filters and a stride of 2, and summed with pool4. This summation is further
up-sampled using a deconvolution layer with 32 × 32 filters and a stride of 16. Similar to
FCN-32, the softmax activation function is applied over the feature maps, creating the output
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labelled FCN-16.

3. FCN-8: For this architecture, conv7 is up-sampled by a factor of 4, pool4 is up-sampled
by a factor of 2 and summed with pool3. This summation is further up-sampled using a
deconvolution layer with a stride of 8. Similar to the FCN-32 and the FCN-16 architectures,
the softmax activation function is applied over the feature maps and the final output is
labelled FCN-16.

Figure 20: FCN-32, FCN-16 and FCN-8 architectures [65].

The U-Net architecture

The U-Net model is made up of what is termed a ‘contracting’ and an ‘expansion’ path [88].
The contracting path is on the left (input) side of the architecture and is made up of five encoder
blocks. Four of the five encoder blocks follow the conventional CNN architecture and consist
of two 3 × 3 unpadded convolutions, a max pooling operation with a stride of 2 which is used
for down-sampling and the ReLU activation function. The number of filters used are doubled
at each down-sampling step. The fifth encoder block is made up of two 3× 3 convolutions and
the ReLU activation function.

The expansion path is on the right (output) side and is made up of four decoder blocks. The
decoder blocks are made up of 2×2 deconvolutional layers with a stride of 2. These deconvolution
operations upsample the feature map at every step. The deconvolutions have a stride of 2 and
are followed by a concatenation function that concatenates the deconvolution step with the
corresponding convolutional function from the contracting path. The ‘copy and crop’ grey
arrows in Figure 21 show this concatenation. This is followed by two 3 × 3 convolutions with
the ReLU activation function.

A 1× 1 convolution is used in the final layer to map the feature vector to the number of output
classes.
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Figure 21: Example of the U-Net architecture for a 32 × 32 image input. The blue boxes are
multiple filter feature maps and the numbers of filters are on top of the boxes. The white boxes
represent features that were copied. The arrows are operations as indicated in the legend [88].
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3 Landmark detection

This chapter is divided into five sections. Section 3.1 describes the architectures of the models
that were trained for this research. Section 3.2 details the software used to train models. Section
3.3 discusses the parameter search that was conducted and gives an overview of the parameters
that were tuned during model training. Section 3.4 defines the evaluation metrics we used, and
Section 3.5 describes the pre-processing steps followed for each model that we trained.

3.1 Model architectures

The following architectures were experimented on in this research.

1. ANN

A three-layer ANN model made up of an input, a hidden layer (500 neurons) and an output
layer was used as a baseline. The model input is a 320 × 320 greyscale image, flattened to a
single vector, and the output is a 22-dimensional vector containing (x, y) coordinates for each of
the 11 landmarks. The model incorporated the ReLU activation function, and was trained with
the stochastic gradient descent (SGD) optimizer with a learning rate of 0.0001 and momentum
of 0.9. The mean square error (MSE) was used as a loss function.

2. CNN

Various LeNet style architectures with dropout and batch normalization were trained, the best
of which was a model with three 3×3 convolutional layers, three 2×2 average pooling layers, two
500-neuron and one 84-neuron fully connected layers, and six dropout layers (p = 0.1). Each of
the three convolutional layers was followed by an average pooling layer, ReLU activation and a
dropout layer. The fully connected layers were followed by ReLU activation and dropout layers.

3. FCN

A U-Net style fully convolutional model and a number of FCN8 models were trained. The
U-Net model has the same architecture as the one described in Section 2.4. The FCN model
architectures are the same as the architecture explained in Section 2.4. During training the
batch size and the optimizer were tuned on the validation dataset to improve performance, and
the FCN8 model with the Adam optimizer and a batch size of 32 was the best of the FCN
models.

3.2 Software implementation

All data pre-processing was done in a Python Jupyter Notebook running on a CPU.

All neural network models used in this research were built in Python using the Keras application
program interface (API) [20] and the TensorFlow library [1].

Model training for the ANN and CNN models was conducted using the free GPU resources
provided by Google Colab [14].
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The FCN models required more computational power and were trained on Google Cloud Plat-
form’s AI Notebook instance [13] on two Nvidia Tesla K80 GPUs.

3.3 Parameter search

Neural networks can be difficult to design due to the number of hyperparameters that need to
be set. For a standard neural network, parameters such as the number of hidden layers, the
number of nodes in each hidden layer, the learning rate and the optimizer need to be set. For
more complex architectures like the CNN and FCN architectures that are used in this research
the number of hyperparameters increases as filter sizes, stride lengths, padding and number of
convolutions are added to the list.

Training and evaluating all possible hyperparameter combinations is infeasible. As such, a
few values were considered for each hyperparameter. Hyperparameter optimization for neural
networks is still an active area of research and there are more effective ways of exploring and
using hyperparameters for model training [12].

For this research standard LeNet, U-Net and FCN architectures were adopted and the param-
eters that were tuned were the optimizer, batch size, and the application of regularization.
Where dropout was applied, the dropout rate was also tuned.

3.4 Evaluation metrics

The work in this section references material from [33]. To assess how well our trained models fit
our test data, we consider two regression metrics namely the root mean square error (RMSE)
and the mean absolute error (MAE).

Root mean square error

To explain the root mean squared error we start with the mean squared error which is given by
the formula:

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (3.1)

where ŷi is the prediction that the model gives for the ith observation, yi is the true output
value of that observation, and n is the number of observations.

The MSE calculates the squared difference between the response values predicted by the regres-
sion model and the true response values. The closer the predictions from the regression model
are to the true response values, the lower the MSE value. Because differences are squared, the
MSE penalizes observations with large differences much more than the advantage it gives to
those observations that are close to the true response value.

The root mean squared error (RMSE) is the square root of the MSE and has the same unit of
measurement as the predicted variable.

Mean absolute error

The mean absolute error is given by the formula:

MAE =
1

n

n∑
i=1

|yi − ŷi|. (3.2)
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This statistic calculates the absolute difference between the response values predicted by the
regression model and the true response values. The closer these values are to each other, the
lower the MAE value. The MAE is more robust to outliers than the RMSE.

3.5 Data pre-processing

The RGB images were resized from their original 1280 × 1024 resolution to 320 × 320, and
converted to greyscale, decreasing the number of input parameters for each image from 1280×
1024×3 = 3932160 to 320×320 = 102400. Figure 22 is an example of a resized greyscale image.

We then created a classification algorithm to detect whether a wing was right or left facing, and
to ultimately flip all left facing images so that all images in the dataset are right facing. This
was done to increase the training images for our model while making the landmark detection
problem slightly less complex.

Figure 22: Resized greyscale tsetse fly wing image.

After these pre-processing steps the dataset was split randomly into training, validation and
test data, using a 60:20:20 split (approximately). Table 1 shows the size of each set.

Images

Train set 1452
Validation set 484

Test set 484

Table 1: Sizes of training, validation and test datasets.

3.5.1 ANN model

Input variable

For the ANN model the image pixels were normalized so that all values are in the range (0, 1)
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and flattened in order to transform the 320×320 pixel matrix into a 102400-dimensional vector.
The final training matrix for the simple ANN model has the shape (1452, 102400).

Response variable

The target outputs were standardized to ensure that all response variable values range between
(−1, 1). The final training response variable has the shape (1452, 22).

3.5.2 CNN model

Input variable

Image pixels were normalized and the images were reshaped to (320,320,1). The 1 in this case
is the channel element, indicating that the images are greyscale. The final training matrix for
the CNN models has the shape (1452, 320, 320, 1).

Response variable

The target outputs were standardized to ensure that all response variable values range between
(−1, 1). The final training response variable has the shape (1452, 22).

3.5.3 FCN model

Input variable

The image data was pre-processed the same as it was for CNNs. The pixels for each image were
normalized, ensuring pixel values lie in the range (0,1), and the final training matrix shape for
the FCN models was (1452, 320, 320, 1).

Response variable

Pre-processing for the target outputs was more involved. FCNs are traditionally used for seg-
mentation and the response variables for segmentation problems are usually images that are
made up of single channel per-pixel classification values, commonly referred to as image seg-
mentation masks [50]. Image segmentation masks group pixels using the objects in an image.
All pixels in one object are assigned the same value and are considered one class. An example
of an image and its segmentation mask is shown in Figure 23. Here the classes identified for the
image are person, purse, plants/grass, sidewalk and building/structures. Each of these classes
have associated pixel values and the semantic label is a representation of the segmentation mask
that will be used during training. In practice the segmentation mask can have the same number
of pixels and dimensions as the input image.
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Figure 23: Image segmentation input image and an example low resolution segmentation mask
[50].

Similar to how we handle categorical variables, the semantic labels need to be one-hot encoded
as a pre-processing step. This means that the segmentation mask in Figure 23 with five classes
needs to be converted to five segmentation masks, where each mask only contains non-zero
values for one class and all other pixel values are 0. An example of this is shown in Figure 24.

Figure 24: An example of how to one-hot encode the semantic labels displayed in Figure 23
[50].

Figure 25 is an example of a low resolution representation of an image from our dataset with
its semantic labels. In our case each of the 11 landmarks represents a class. We have used a
white space to represent unclassified pixels to help make the image clearer.
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Figure 25: Input image and an example low resolution segmentation mask. The white areas are
unclassified and have a pixel value of 0.

Converting coordinate points to segmentation masks

We need to convert the target response coordinates into a semantic mask format, as illustrated
in Figure 23. We will treat each of the 11 coordinate pairs (x, y) as a class and convert each
point into a heat map using the Gaussian function. We transform each coordinate point into a
heat map of size 320 × 320, which corresponds to the size of the input image. Figure 26 gives
an example of the conversion of coordinate pair (4, 4) in an 8× 8 image into a heat map of size
8× 8. The Gaussian function was used for this conversion and calculations were performed at
each coordinate point in a window around the point (4, 4).

We demonstrate below how we calculated the pixel value at point (3, 3) when generating the
heat map centred at (4, 4) for an 8× 8 image. In this case we have (x0, y0) = (4, 4) and we have
chosen a standard deviation σ of 0.6. The value for pixel (3,3) is calculated as follows:

pixel(x,y) = exp

[
−(x− x0)2 + (y − y0)2

2σ2

]
× 255 (3.3)

∴ pixel(3,3) = 15.3 (3.4)

The Gaussian exponential returns a result in the range (0, 1) which we multiply by the constant
value 255 to ensure the answer is on the pixel scale. As shown in Figure 26, through this
calculation the point coordinate (4,4) is transformed into a heat map.
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Figure 26: A simple example demonstrating how the coordinate point (4,4) can be converted
to a heat map using the Gaussian function.

These calculations are carried out for each of the 11 landmark annotations on each one of the
images in the dataset, and 11 heat maps are generated for each image. Figure 27 shows three
example images and the 11 heat maps that were generated for each annotated landmark point
on each image. A σ value of 15 was chosen to generate the heat maps, based on how small
we wanted the illuminated part of the heat maps to be. A better way might be to make σ a
hyperparameter that can be optimized during model training and validation.

Figure 27: Three example images from our training set with 11 heat maps generated from the
11 landmark annotations for each image.

The above procedure was used to convert the training response variable from (1452, 22) into a
(1452, 320, 320, 11) matrix.
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4 Results and discussion

This chapter is divided into three sections for the three model architectures that were investi-
gated. Section 4.1 gives a high-level overview of the model architecture and training results for
the ANN model which was used as our baseline. Section 4.2 gives an overview of the various
LeNet style CNN architectures that were trained, the training results for the best models, the
methods explored to prevent overfitting as well as the results associated with these methods.
Section 4.3 details our FCN post-processing approach, as well as the various FCN models that
were trained and their results.

4.1 Model A: ANN

4.1.1 Architecture

To create a baseline we started with a simple ANN model with one hidden layer. The input
layer of this model accepts a 320 × 320 greyscale image, the hidden layer has 500 nodes with
the ReLU activation function, and the output layer has 22 nodes that are aligned with the 11
landmarks. The SGD optimizer with a learning rate of 0.0001 and momentum of 0.9 was used,
and the mean square error (MSE) was used as the training loss function. We further split the
training data using the 80:20 split, where 1162 of the dataset images were used for training and
the remaining 290 were used for validation during training. This is our baseline model.

4.1.2 Model training and results

Test set results for this simple ANN network are as follows: RMSE = 282.62, MAE = 181.33.

Figure 28 (a) shows the training and validation loss functions for this model. The model was
trained on a GPU enabled Colab instance, for a training time of approximately 3 minutes. It
reached a validation loss of 0.0332 and a training loss of 0.0171. The gap between the training
loss and the validation loss suggests that the model is overfitting slightly, which means it is not
generalizing well. Figure 28 (b) superimposes model predictions onto example images from the
test set, demonstrating model fit results.
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(a) ANN training and validation loss by training
epoch.

(b) ANN model performance results on
example test images.

Figure 28: ANN model training and validation loss, and performance on example test images.

Figure 29 displays the mean absolute error between the true (x, y) coordinates and the landmark
locations predicted by the ANN model for the 484 test images. Overall, the ANN model
struggled to fit x variables more than to fit the y variables, i.e. the average absolute error
between the predicted values and the true values was much higher for x variables than it was
for the y variables. This might be because of the extra compression that we had to do on the
x axis to convert the image from a rectangular (1280 × 1024) to a square (320 × 320) image.
The model was the worst at predicting the (x6, y6) pair with a mean absolute error of 574.71
for x6 and 89.92 for y6. It was best at predicting (x5, y5) with a mean absolute error of 92.41
and 49.38 for x5 and y5 respectively. The landmark point corresponding to y5 is typically more
pronounced and located in a higher contrast part of the image than the other landmarks, which
may be the reason why the model was much better at predicting this point overall, while the
lines marking the (x6, y6) pair are difficult even for the human eye to localize.

Figure 29: Mean absolute difference between the true annotations and the landmark coordinates
predicted by the ANN model, over the 484 test images.

The landmarks of interest from an entomology perspective, from those illustrated in Figure 1,
are the coordinate pairs (x1, y1), (x6, y6), (x7, y7) and (x10, y10). The coordinate pair (x1, y1)
was amongst the pairs the model struggled the most to predict with mean absolute errors of
435.40 and 57.70 for x1 and y1 respectively. The (x7, y7) pair had a mean absolute error of 186.17
and 56.16 for x7 and y7 respectively. For the (x10, y10) coordinate pair the mean absolute error
between the true coordinates and the ANN model predictions were 78.69 and 68.62 for x10 and
y10 respectively, which was the second best coordinate pair predictions for this model.
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4.2 Model B: CNN

4.2.1 LeNet models

LeNet style architectures typically have a number of convolutional layers, followed by maxi-
mum or average pooling layers, and then fully connected layers as the last few layers of the
network. Our model architectures were modelled after the standard LeNet architecture [59].
We experimented with a number of convolutional layers, training LeNet3, LeNet4 and LeNet5
models whose architectures are shown in Figure 30. In an effort to avoid overfitting we added
dropout as a regularization technique, and further added batch normalization. We found that
batch normalization did not improve RMSE or MAE for the validation set, in any of the CNN
models, and as a result this regularization technique was excluded from our final models. Fig-
ure 30 provides a detailed description of the top three LeNet architectures we experimented
with. (a) describes the 3-layer LeNet with dropout and (b) describes LeNet4 and LeNet5. In
Figure 30 (b) all layers 0 to 13 form part of the LeNet5 architecture and to obtain the LeNet4
architecture, layers 9 to 10 are to be excluded.

Figure 30: LeNet style architectures that were experimented with.

The results for the top three performing LeNet architectures based on the RMSE and MAE
from our validation set are shown in Table 2.

Model Optimizer Training loss Validation loss RMSE MAE

LeNet3 + dropout Adam 0.00079 0.0009 53.5810 41.0500
LeNet4 Adam 0.00139 0.0098 54.3842 41.9449
LeNet5 Adam 0.00197 0.0098 54.7572 42.4231

Table 2: Training results from the three best performing LeNet models. RMSE and MAE are
measured on the validation set.
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The LeNet3 model with dropout performed best. This model was trained using the Adam
optimizer, no padding, the ReLU activation function for nonlinearity, and mean squared error
(MSE) was used as the loss function. To ensure that we minimized training time and avoid
overfitting, the early stopping technique was used to determine the number of training epochs.

4.2.2 Model training and results

Training and validation loss over number of epochs, as well as model performance on example
test images for the LeNet3 model with dropout are shown in Figure 31 (a) and (b). This
model was trained on a GPU enabled Colab Notebook for approximately 8 minutes. The
validation loss started out as unstable in the beginning of training, then decreased sharply until
it was lower than the training loss. Around the 60-epoch mark, the training loss became lower
than the validation loss and the latter stabilized at around 0.008145. Model predictions were
superimposed onto test images, and results for some of the best and worst performing images
are shown in Figure 31 (b).

(a) LeNet3 + dropout training and validation loss
by training epoch.

(b) LeNet3 + dropout performance results
on example test images.

Figure 31: LeNet3 + dropout training and validation loss, and example results when predictions
are superimposed on test images.

For the four example images shown in Figure 31 (b) the model best fits image number 3. This
might be because the wing is not folded and is well centred in the image frame. The image with
the worst fit is image 2. The wing in image 2 is folded and its shape slightly distorted, and the
model was unable to detect the landmarks on that wing.
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Figure 32 displays the mean absolute error between the true (x, y) coordinates and the landmark
locations predicted by the LeNet3 model with dropout for the 484 test images. The model was
the worst at predicting the (x6, y6) pair with a mean absolute difference of 44.93 for x6 and
50.19 for y6. It was best at predicting (x10, y10) pair with a mean absolute difference of 37.98
for x10 and 35.26 for y10. The landmark point corresponding to (x10, y10) is more pronounced
and is located in a higher contrast part of the image than the other landmark points, which
may be the reason why the model was much better at predicting this point overall, while the
lines marking the (x6, y6) pair would be difficult even for a human labeller to locate accurately.

Figure 32: Mean absolute difference between the true annotations and the landmark coordinates
predicted by the LeNet model with dropout, over the 484 test images.

From an entomology perspective, we look at the coordinate pairs of interest (x1, y1), (x6, y6),
(x7, y7) and (x10, y10). The coordinate pair (x1, y1) was amongst the pairs the model struggled
most to predict with mean absolute errors of 44.44 and 44.61 for x1 and y1 respectively. The
(x6, y6) pair had the worst mean absolute error for this model. (x7, y7) had a mean absolute
difference of 38.78 and 37.44 for x7 and y7 respectively, which was among the best mean absolute
errors for this model. For the (x10, y10) coordinate pair the mean absolute error between the true
(x, y) coordinates and the model predictions were the best for this LeNet model with dropout.

The model overfits the training data, and the resulting predictions for different images are very
similar, with individual predictions between images only differing by a few decimals. This means
that while the model may do well on this particular dataset, it will not generalize well to other
datasets where the wings are positioned differently in the images.

We proceed with additional experiments that might help the model to better generalize. We
consider common methods that have been shown to reduce overfitting and help improve model
performance. We look at the following methods:

� getting more training data;

� increasing the dropout rate.

4.2.3 Getting more training data

We created more training examples by translating all the images in the training dataset by a
predefined number of pixels. We created copies of all the training images that were translated
10 pixels up, 10 pixels down, 10 pixels left and 10 pixels right; we renamed the images and
translated the training annotations accordingly. Figure 33 shows an example of the translated
images with their annotations.
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Figure 33: Four example images showing the additional images that we created by translating
an image from the dataset 10 pixels up, 10 pixels to the right, 10 pixels to the left and 10 pixels
down.

We used a combination of the original images and the translated images to create a new,
augmented training dataset. Table 3 lists the number of images in our augmented training
dataset.

Translation Data examples count

No translation (original images) 1452
Left translated 363

Right translated 363
Translated upwards 363

Translated downwards 363

Total 2904

Table 3: The data composition for the augmented training set that includes translated images.

Figure 34 (a) shows the training and validation loss over epochs when training the LeNet3 +
dropout model with the larger dataset. It shows that the model was once again attempting
to overfit the training data when early stopping kicked in. This model was trained on a GPU
enabled Colab Notebook for approximately 6 minutes. The model did not fit the data as well
as the original LeNet3 + dropout model, as can be seen in the four examples in Figure 34 (b).
Like the LeNet3 + dropout, this model overfits the data and has lower RMSE and MAE values
of 54.23 and 41.69 respectively.
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(a) Training and validation loss for the LeNet3 +
dropout model trained on the larger dataset that
includes translated images.

(b) Performance of the LeNet3 + dropout
model trained on the larger dataset, on
example test images.

Figure 34: LeNet3 + dropout training and validation loss, and example results when predictions
are superimposed on test images, for the larger dataset.

Figure 35 displays the mean absolute error between the true (x, y) coordinates and the landmark
locations predicted by the LeNet3 model with dropout trained on the larger dataset for the 484
test images. While this model performed worst overall, it was good at predicting the (x8, y8)
coordinate pair and the y5 variable with mean absolute errors of 38.53 for x8, 36.38 for y8 and
35.52 for y5.

Figure 35: Mean absolute difference between the true annotations and the landmark coordinates
predicted by the LeNet model with dropout trained on a larger dataset, over the 484 test images.

From an entomology perspective, we looked at the coordinate pairs of interest (x1, y1), (x6, y6),
(x7, y7) and (x10, y10). x1 and y6 showed the worst mean absolute errors of 46.53 and 50.27
respectively. The pairs (x7, y7) and (x10, y10) had some of the best mean absolute errors of
39.05 for x7, 37.45 for y7, 39.60 for x10 and 35.54 for y10. As stated previously the positioning
and thickness of the veins that intersect to create landmark point 10 makes it easier to identify
while the faint appearance of the veins associated with landmark point 6 makes it difficult even
for the human eye to localize.

Because increasing the training examples did not improve model performance, we maintain
after this experiment that the LeNet3 model with dropout, trained on the original 1452 training
images, is still our best model and further experiments will be conducted on that model.
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Our next experiment involves an increase of the dropout rate in a further attempt to reduce
the model from overfitting.

4.2.4 Increasing dropout rate

In an attempt to stop the model overfitting, we increased the dropout rate from 0.1 to 0.5 at each
layer of the LeNet3 architecture. This model was trained on a GPU enabled Colab Notebook
for approximately 8 minutes. Training and validation loss for this model are displayed in Figure
36 (a). The resulting model did not overfit the data, however the model performed slightly
poorer on the test data. The RMSE for this model was 65.46 and the MAE was 52.71. This
indicates that increasing the dropout rate decreased model performance. The performance of
the model can also be seen by how it fits the example test images in Figure 36 (b).

(a) Training and validation loss of LeNet3 with in-
creased dropout, by training epoch.

(b) LeNet3 with increased dropout perfor-
mance results on example test images.

Figure 36: LeNet3 with increased dropout training and validation loss, and example results
when predictions are superimposed on test images.

Figure 37 displays the mean absolute error between the true (x, y) coordinates and the landmark
locations predicted by the LeNet3 model with increased dropout for the 484 test images. Overall
the model was worst at predicting the coordinate pair (x1, y1) with mean absolute error of 61.60
and 54.12 for x1 and y1 respectively. The (x8, y8) coordinate pair had some of the best mean
absolute errors of 41.00 for x8 and 45.64 for y8. The y8 variable was surpassed only by y10 which
had the best mean absolute error of 44.16 over the 484 test images.

Figure 37: Mean absolute difference between the true annotations and the landmark coordinates
predicted by the LeNet model with increased dropout, over the 484 test images.

From an entomology perspective, we look at the coordinate pairs of interest (x1, y1), (x6, y6),
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(x7, y7) and (x10, y10). The model was worst at predicting the coordinate pair (x1, y1). This
might be because there are a lot of veins in the region where (x1, y1) is positioned, making this
point difficult to locate. The variables x6, y6, x7, y7 and x10 had mean absolute error values
of 45.58, 53.50, 42.15, 44.02 and 46.06 respectively. y10 had the best mean absolute error value
for the y variables of 44.16.

In the real world the model’s ability to generalize to new contexts would weigh heavier than
how well the model is fitting the validation set while training. However, given that RMSE and
MAE are what we are using to assess the models, we still maintain that the LeNet3 model with
0.1 dropout rate is the best due to its RMSE and MAE values.

4.3 Model C: FCN

The standard FCN8 architecture described in Section 2.4 is used as the model architecture. All
the models in this section used same padding, max pooling, the ReLU activation function and
the MSE loss function. We experimented with the batch size and the optimizer.

4.3.1 Post-processing

The FCN model outputs 11 heat maps for an input image. To calculate the RMSE for this
model, we need to convert these heat maps to (x, y) coordinates. Figure 38 is an example output
of a test image with the predicted and the true heat maps for each of the 11 landmark points.

Figure 38: An example of the heat maps predicted by one of the FCN8 models (Adam optimizer
and a batch size of 32), and the true heat maps.

The simplest way to convert a heat map to a coordinate pair would be to find the (x, y)
coordinates that correspond to the largest pixel value, and use that as the final answer. The
problem is that the coordinates we would get with this method will be integer values while the
true coordinate values are not necessarily integer values.

We may instead use a weighted average of a neighbourhood around the highest pixel value as
our final (x, y) coordinates. Here we would need to decide on the number of neighbouring pixels
to consider when calculating the weighted average. Our goal is to find the (x, y) coordinates
that minimize RMSE on the validation set. We therefore chose a set of numbers to test with,
which we will refer to as N . We decided to limit the size of N , and we chose squares of numbers
between 1 and 9, that is N = {1, 4, 9, 16, 25, 36, 49, 81}.

To find the best value for N , we perform the following:
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1. retrieve the true (x, y) coordinates of the landmarks in images from the validation set;

2. for each n in N :

calculated the RMSE between the true (x, y) coordinates and the (x, y) coordinates for the
true heat maps that we generated (see Section 3.5.3), using n as the number of neighbouring
pixels to use in the weighted average calculation;

3. finally, compare RMSE values and choose the n that returns the lowest RMSE value.

This final value of n was used in our weighted average calculation to convert our heat maps into
(x, y) coordinate point predictions for the test dataset.

We demonstrate below how we calculate the weighted average and show that the final coordinate
points that are derived from a weighted average calculation for non-integer coordinate points is
likely to yield a lower RMSE score than defaulting to the highest pixel value point.

To do this we will consider the example in Figure 39. We assume the true coordinate point
is (3.8,4.4), and we will use two approaches, the simple approach and the weighted average
approach, to convert the heat map to (x, y) coordinates. We will calculate the RMSE for the
resulting coordinate points to illustrate the advantage of using weighted averages when working
with coordinate points that are non-integer.

Figure 39: Example FCN8 prediction heat map for an 8× 8 image.
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Simple approach

When using the simple method on the example heat map in Figure 39, we look for the high-
est pixel value in the image. As illustrated in Figure 40, the highest pixel value is 255 and
corresponds to the coordinate pair (4,4).

The RMSE for this method is approximately 0.32.

Figure 40: Example heat map and an illustration of the simple method resulting in a final
coordinate pair of (4,4).

Weighted average approach

For the weighted average approach, we start by choosing n, the number of neighbouring pixels
that will be included in the weighted average calculation. For this example, we set n = 9. This
implies that all non-zero pixel values will be used in the weighted average calculation.

To convert the pixel values to coordinate points using the weighted average approach we do the
following:

� Step 1: A sum of the n pixel values is calculated. The sum of the n pixel values in our
example is 629.7.

� Step 2: Each of the n pixel values is divided by the sum (629.7) to create the weight for
each pixel value.

Figure 41 illustrates the pixel value weights, highlighting x = 5 and y = 5 to show the
values that will be added to form the final weight for each coordinate point and the
associated coordinate points. The coordinate points and their final weights are shown in
Figure 42.

� Step 3: The (x, y) coordinate pair is calculated as the sum product of the point coordinates
and their weights.

The resulting coordinate pair for this method is (3.73265, 4.20671). The RMSE for this coor-
dinate pair is approximately 0.14.
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Figure 41: Example heat map illustrating pixel value weights and the corresponding coordinate
points whose weight they contribute to. This example only highlights how the pixel value
weights contribute towards the weights of x = 5 and y = 5.

Figure 42: Coordinate points for x and y and their weights.

4.3.2 Model training and results

The training loss, validation loss, RMSE and MAE for the models are shown in Table 4. The
FCN8 model with a batch size of 32 that used the Adam optimizer returned the best RMSE of
1.12 and MAE of 0.88.

Training and validation losses for this model are shown in Figure 43 (a). This model was
trained on two Nvidia Tesla K80 GPUs for approximately 72 minutes. Both the training loss
and validation loss started off very low, shot up at around epoch 10 and started decreasing as
training progressed until epoch 100 where the final training and validation losses were recorded
as 0.0051 and 0.0082 respectively. The validation and training losses were close to each other
throughout training and the model does not seem to overfit.

Model Optimizer Batch size Training loss Validation loss RMSE MAE

FCN8 RMSprop 5 0.0093 0.0013 1.78 1.25
FCN8 RMSprop 32 0.0356 0.0373 2.15 1.66
FCN8 Adam 32 0.0051 0.0082 1.12 0.88
U-Net Adam 32 0.4655 0.4657 8.87 7.22

Table 4: Top four FCN model training results.

56

Stellenbosch University https://scholar.sun.ac.za



Example prediction results from the FCN8 model trained with Adam and a batch size of 32 are
shown in Figure 43 (b). Unlike the LeNet models, this model was able to accurately predict the
landmarks on wings that are centred and not folded, as well as for those images whose wings
are slightly distorted. This is evidenced by how well the model located the landmarks for image
number 2 in Figure 43 (b).

(a) Training and validation loss over epochs of the
FCN8 model with batch size 32 and the Adam opti-
mizer.

(b) FCN8 model with batch size 32 and
Adam performance results on example
test images.

Figure 43: FCN8 model with batch size 32 and Adam training and validation loss, and example
results when predictions are superimposed on test images.

Figure 44 displays the mean absolute error between the true (x, y) coordinates and the landmark
locations predicted by the FCN8 model with batch size 32 and Adam for the 484 test images.
Overall the FCN8 model with a batch size of 32 and Adam optimizer predicted the annotations
for the 484 test examples near perfectly. The model struggled the most with the prediction
of the coordinate pair (x4, y4) with mean absolute error values of 2.41 and 4.70 for x4 and y4
respectively. The coordinate pair (x8, y8) was the best prediction pair with mean absolute error
values of 0.82 and 0.65 for x8 and y8 respectively, while x10 had the best mean absolute error
value of 0.78 for all predicted x variables.

Figure 44: Mean absolute difference between the true annotations and the landmark coordinates
predicted by the FCN8 model with batch size 32 and Adam, over the 484 test images.

From an entomology perspective, we look at the coordinate pairs of interest (x1, y1), (x6, y6),
(x7, y7) and (x10, y10). The coordinate pair (x6, y6) displayed the second worst mean absolute
errors with values of 2.22 and 4.04 for x6 and y6 respectively. The variables x1, y1, x7, y7 and
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y10 had mean absolute error values of 0.90, 0.98, 0.95, 0.70 and 0.85 respectively. The model’s
best mean absolute error was for x10.
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5 Conclusion

The aim of this research was to compare the performance of FCN architectures against con-
ventional CNN architectures for the regression task of detecting landmarks on tsetse fly wing
images with a limited dataset. Landmarks are points where the wing veins intersect, and de-
tecting these points is a first step towards using the wing images to estimate fly size. Once the
landmarks are located, distances between them can be used to answer questions in the field of
entomology where fly size and fly shape play a major role.

5.1 Summary

To tackle this research we started by exploring the approach that Longpre et al. [66] used for
facial key point detection. Detecting landmarks of interest on tsetse fly wing images shares a
number of properties with the facial key point detection problem. Our dataset is made up of
static images of wings where the main differences between wing images come from biological
differences in individual wings, positioning of the wings in the images and illumination. Sim-
ilarly, for facial landmark datasets in [66], the main differences in individual landmarks result
from the differences between individuals, illumination as well as the position of the face in the
image. Besides the differences, the training data provided for our work more closely resembles
the input used in the facial keypoint detection problems addressed in [66] which is a combina-
tion of images and annotated landmark coordinates. Finally, the results that Longre et al. [66]
obtained with such a small dataset are promising and a good place to start.

We constructed a simple ANN model with three layers: an input layer, a 500-node hidden layer
and an output layer. This baseline model gave us an RMSE of 282.62 and MAE of 181.33. A
MAE analysis at a variable level revealed that the model was the worst at predicting the (x6, y6)
coordinate pair with MAE values of 574.71 for x6 and 89.92 for y6. The best mean absolute
error values for this model were for the coordinate pair (x5, y5) with values of 92.41 for x5 and
49.38 for y5.

Next we trained various LeNet architectures, which we called LeNet3, LeNet4 and LeNet5.
These models where trained with and without regularization such as dropout and batch nor-
malization. The LeNet style model that performed the best for the data was LeNet3 with
dropout rate of 0.1 which had an RMSE of 53.58 and MAE of 41.05. However, the model
overfit the data. The MAE analysis for this model revealed that it was the worst at predicting
the coordinate pair (x6, y6) with MAE values of 44.93 for x6 and 50.19 for y6. The coordinate
pair (x10, y10) showed the best MAE values of 37.98 for x10 and 35.26 for y10.

To reduce overfitting, we used data augmentation techniques that artificially increase the train-
ing data. To achieve this, we translated the training images 10 pixels up, 10 pixels down, 10
pixels to the left and 10 pixels to the right creating a training dataset that was twice the size
of the original dataset made up of both the original images and the translated images. We
trained the LeNet3 architecture with 0.1 dropout on this new dataset and obtained an RMSE
of 54.23 and MAE of 41.69 respectively. This was a worse model than the LeNet3 model that
was trained on the original dataset. An MAE analysis revealed that the model was the worst at
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predicting variables x1 and y6 with MAE values of 46.53 and 50.27 respectively. The coordinate
pair (x8, y8) and the variable y5 showed the best MAE values of 38.53, 36.38 and 35.52 for x8,
y8 and y5 respectively.

For our second attempt at reducing overfitting, we used the LeNet3 model architecture increas-
ing the dropout rate from 0.1 to 0.5. This model did not overfit and had a RMSE of 65.46 and
MAE of 52.71, making this a worse model still. The MAE analysis revealed that the coordinate
pair (x1, y1) displayed the worst MAE values of 61.60 and 54.12 for x1 and y1 respectively. The
best MAE values were for the coordinate pair (x8, y8) and the variable y10 with values of 41.00,
45.64 and 44.16 for x8, y8 and y10 respectively.

While a model’s ability to generalize is important in the real world, we conclude that based on
the RMSE and MAE values the LeNet3 model that used the original training examples with a
dropout of 0.1 is the best LeNet model.

We went on to train three FCN8 models and a U-Net model. To train these models we trans-
formed our true response variables from coordinate points into heat maps using the Gaussian
function. A post-processing step to convert the predicted heat maps back to coordinate points
was also added. The best FCN model we trained was the FCN8 model that had a batch size
of 32 and used the Adam optimizer. The RMSE and MAE for this model were 1.12 and 0.88
respectively. A MAE analysis revealed that the coordinate pair (x4, y4) displayed the worst
MAE values of 2.41 and 4.70 for x4 and y4 respectively. The best MAE values were for the
coordinate pair (x8, y8) and the variable y10 with values of 0.82, 0.65 and 0.78 for x8, y8 and
y10 respectively.

The FCN models required significantly more computational resources and training time than
was used to train the LeNet models. The LeNet models took on average just over 7 minutes
to train on a GPU enabled Colab Notebook while the FCN model took 72 minutes to train on
two Nvidia Tesla K80 GPUs.

CNNs were chosen for this research because of how widely they have been used to obtain
state-of-the-art results in landmark detection tasks. The flexibility of FCNs on input image
size is attractive for real world application and given their state-of-the-art performance on
segmentation tasks we wanted to understand how well these models would perform if they were
adapted for landmark detection.

Basing our model performance on RMSE and MAE leads us to conclude that the FCN model
performance for this dataset is significantly better than the performance of any of the CNN
models. All FCN models had RMSE and MAE that were better than any CNN model that
we trained. We can therefore conclude that for a dataset like ours, where training resources
are available, the dataset is limited and time is not a major constraint, training a landmark
detection model using an FCN is the recommended approach.

Overall these results indicate that machine learning models can be used to automatically and
accurately detect landmark points on tsetse fly wing images. The ability to automatically
annotate landmarks on tsetse fly images will help us avail a large database of images and their
landmarks, that can be studied for research into tsetse fly control measures at a fraction of the
time it would take researchers to annotate the images manually.

5.2 Limitations and future work

The number of training examples that were used in this research was a limitation for our CNN
model training. CNNs require a lot more training data to train for accurate results and as
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such one might want to investigate whether adding more training examples might give us a
better LeNet style CNN model. Given that resource and time requirements to train LeNet style
CNN models are generally lower than that required to train FCNs, this would be a worthwhile
approach to investigate for users that have hardware and time constraints.

From an entomology perspective, there might be particular interest in those landmarks that
are currently used to estimate fly size, as shown in Figure 1. The models struggled to pre-
dict landmarks A and B which are associated with the coordinate pairs (x6, y6) and (x1, y1)
respectively, but were much better at predicting the landmarks C and D which are associated
with coordinate pairs (x10, y10) and (x7, y7) respectively. We could explore the idea of building
models to only detect the two coordinate pairs (x7,y7) and (x10, y10), given our limited dataset.
Making the task simpler might help improve model results and focusing on these coordinate
pairs that we have gotten favourable results from might be a good approach.

Image pre-processing techniques for the CNN models can be explored, such as changing the
contrast of the images to further highlight the intersections and landmarks on the images.
Furthermore, other CNN model architectures such as the common VGG architecture which was
explored in [66] and ensemble models can be looked at. We can also try a transfer learning
approach by using weights pre-trained on much larger datasets, and retraining the last layers
of the network to improve CNN model results.

The models we have built still require researchers to trap flies, remove wings and take individual
photographs of each captured fly. These images are located at roughly the same place in the
image and are for the most part images that are flat on the image surface. A next phase in this
research could be building models that can locate fly wing landmarks in the wild. These could
be models that can annotate images even when their positioning might be distorted or occluded
in some way. This would mean that researchers would have greater freedom when taking and
preparing image datasets.
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