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Abstract: Accurate land use and cover data are essential for effective land-use planning, hydrological
modeling, and policy development. Since the Okavango Delta is a transboundary Ramsar site,
managing natural resources within the Okavango Basin is undoubtedly a complex issue. It is often
difficult to accurately map land use and cover using remote sensing in heterogeneous landscapes.
This study investigates the combined value of climate-based regionalization and integration of
spectral bands with spectral indices to enhance the accuracy of multi-temporal land use/cover
classification using deep learning and machine learning approaches. Two experiments were set up,
the first entailing the integration of spectral bands with spectral indices and the second involving the
combined integration of spectral indices and climate-based regionalization based on Koppen–Geiger
climate zones. Landsat 5 TM and Landsat 8 OLI images, machine learning classifiers (random
forest and extreme gradient boosting), and deep learning (neural network and deep neural network)
classifiers were used in this study. Supervised classification using a total of 5140 samples was
conducted for the years 1996, 2004, 2013, and 2020. Average overall accuracy and Kappa coefficients
were used to validate the results. The study found that the integration of spectral bands with indices
improves the accuracy of land use/cover classification using machine learning and deep learning.
Post-feature selection combinations yield higher accuracies in comparison to combinations of bands
and indices. A combined integration of spectral indices with bands and climate-based regionalization
did not significantly improve the accuracy of land use/cover classification consistently for all the
classifiers (p < 0.05). However, post-feature selection combinations and climate-based regionalization
significantly improved the accuracy for all classifiers investigated in this study. Findings of this study
will improve the reliability of land use/cover monitoring in complex heterogeneous TDBs.

Keywords: machine learning; ratio-based indices; orthogonal indices; Koppen–Geiger climate re-
gionalization; landscape change; remote sensing; landcover

1. Introduction

Unsustainable utilization of natural resources across drainage basins globally threat-
ens livelihoods and biodiversity. Changes in land use (defined as the function of surface
cover) and land cover (defined as the natural and artificial material covering the earth
surface) due to anthropogenic activities and climate change affect the supply and distri-
bution of ecosystem services (ES) across basins [1,2]. The situation is more complex for
transboundary basins (TDBs) because they provide ES to people across different nations.
The exploitation of provisioning services by different nations within TDBs is often not equal
due to variations in access to resources as a result of social and ecological structures [3,4].
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Furthermore, nations sharing resources could be associated with different climate and
biophysical systems, which intensify variation in the availability and distribution of ES and
resources [5,6]. This is further compounded by differences in legal frameworks, cultural
backgrounds, public attitudes, and historical environmental management practices, all
of which contribute to discordant resource utilization in TDBs [7,8]. Remote sensing is
central to producing land use/cover (LULC) information for effective land-use planning,
environmental monitoring, hydrological modeling, climate change mitigation, and natural
resource management of drainage basins [9–12]. However, the accuracy of LULC informa-
tion is often an issue due to the complexity of TDBs [13,14]. It is therefore advantageous to
continuously investigate robust approaches to improve the accuracy of LULC products to
enhance the monitoring of basins.

Remote sensing has been instrumental for mapping LULC change since the 1970s
because of its objectivity, cost-saving, and repetitive coverage over wide spatial and tempo-
ral scales [15–17]. Recently, there is growing availability of freely available satellite data
products and improved classification techniques. Such developments provide a good envi-
ronment to explore innovative mechanisms capable of improving the accuracy of LULC
products even under complex and heterogeneous landscapes, such as TDBs [18–20]. One of
the mechanisms to enhance LULC accuracy has been the integration of spectral bands with
spectral indices [21–23]. While spectral indices can improve LULC classification accuracy,
categories of spectral indices and their contributions to LULC classification vary. The
common categories include ratio-based (RBS) indices that are based on the ratio between
a pair of spectral bands [19] and orthogonal spectral (OS) indices that are based on the
existence of a hyperplane in spectral space in which bare soils of varying brightness will lie
with vegetation, increasing along the hyperplane [24,25]. OS indices have been reported to
perform better than RBS indices in previous studies [22]. While research on the integration
of spectral bands with indices in heterogeneous urban landscapes reported great potential
in discriminating features with improved accuracy compared to those based on spectral
bands only [23], the integration of spectral bands with spectral indices generally results
in large datasets (big data). This is often associated with an increase in feature dimen-
sionality that demands high computational power. Additionally, this results in problems
of imbalances between training samples and features, which causes the so-called “curse
of dimensionality” [26]. Obtaining large training samples to address the imbalances is
often a costly challenge. Instead, the use of feature selection techniques could help address
challenges associated with data sparsity.

Feature selection involves selecting a subset of important features to reduce data
dimensionality for building robust learning models [27,28]. Common feature selection tech-
niques include selection approach by a filter, semantic groups, wrappers, and embedded
methods [29,30]. Filter feature selection technique is a pre-processing step that involves
selecting a subset of features independent of the learning algorithm [31], whereas semantic
feature selection involves the selection of features according to their type, e.g., multispectral
bands, textural, topographic, and spectral indices [32]. The wrapper approach requires
one predetermined learning model that interacts with the original feature set to identify
the best feature subset [27]. Previous studies recommended the use of feature selection
by wrappers, mainly because they involve interaction between the learning algorithm
and feature subset search, which improves predictions [33,34]. Although the wrapper
approach is computationally intensive, its performance has been reported to be better
than other feature selection techniques in many studies [27,35,36]. Examples of wrappers
include recursive feature elimination [27], sequential feature selection [37], and genetic
algorithms [38]. Random forest-based recursive feature elimination (RF-RFE) has emerged
as potentially more accurate and robust than other wrapper techniques [33]. The use of
RFE coupled with segmentation (regionalization) of complex transboundary study sites
could enhance LULC classification accuracy.

Much literature has reported on the regionalization of heterogeneous landscapes
to reduce complexity and improve LULC classification accuracy [39,40]. However, a
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precise strategy to delineate regional boundaries when classifying LULC, particularly
for transboundary catchments, has not received much attention. Manis et al. [36] used
a mixed and phased approach to regionalize the southwestern part of the United States.
Their approach involved participatory collaborations with representatives from different
states, photo interpretation to identify major life zones from Landsat imagery, and the
use of geological parameters. They observed that geological factors controlling vegetation
will not always coincide with phenology and that human evaluation is often subjective
and biased, especially when dealing with large areas. In contrast, Kassawmar et al. [12]
successfully established the effectiveness of regionalization of a heterogeneous landscape
based on a combination of biophysical, socio-economic, and spectral factors. However, their
investigation was on a local scale (Ethiopian highlands). Assessing innovative strategies
for regionalization of complex, expansive, and heterogeneous TDBs is therefore important
for improved LULC mapping. This can be improved by the use of robust ML and deep
learning (DL) techniques.

ML and DL classifiers are popular in remote sensing due to their ability to use known
data (training samples) to classify large sets of imagery and to incorporate ancillary spatial
data [28,41,42]. Contrary to traditional parametric classifiers, they possess the capacity
to handle input variables that are not normally distributed [43]. The performance of DL
and ML classifiers have proven to be better than conventional parametric classifiers when
evaluating LULC change across different landscapes [41]. Deep learning classifiers are
a group of algorithms structured around the neural network architecture [42]. While
common deep learning techniques include the deep neural networks (DNN), convolutional
neural networks (CNN), and recurrent neural networks (RNN), common ML classifiers
for LULC mapping include the random forest (RF), extreme Gradient boosting (XGBoost),
k-nearest neighbor (k-NN), classification and regression trees (CART), and support vector
machine (SVM). Most studies have used ML and DL classifiers for LULC because of their
robustness [44–46]. However, there has been a recent surge of studies that have reported
DL classifiers to be superior. The performance of DL and ML classifiers vary with the
complexity of the landscape, time of analysis, and type of spectral data [47]. For example,
Abdi [44] compared the performances of RF, XGBoost, SVM, and DNN classifiers for land
use/cover classification using the Sentinel-2 multispectral imagery data. They found that
SVM yielded a high overall accuracy (OA), followed by XGBoost, RF, and DNN. On the
other hand, Li et al. [46] evaluated the performance of DNN, RF, SVM, and artificial neural
networks (ANN) for continent-wide landcover mapping. They established that the DNN
performed better than other classifiers (RF, SVM, ANN, MLC), with OA of about 78.99,
76.03, 77.74, and 77.86, respectively. Although there is overwhelming evidence that the
performance of ML and DL classifiers vary with landscape conditions, studies acknowledge
that the potential to fully utilize remote sensing as a reliable source on LULC change is
yet to be realized. The calibration of ML and DL classifiers using combinations of spectral
bands and spectral indices in regionalized study sites could yield better LULC results.

To date, there exists a paucity of literature on the combined significance of the inclu-
sion of spectral indices and climate-based regionalization in enhancing LULC classification
accuracy. Most studies that included spectral indices when mapping LULC simply incor-
porated them [48–50]. However, there are presently few studies that conducted rigorous
selection of the best combinations of spectral bands and indices prior to LULC classifica-
tion. The value of Koppen Geiger’s climate zones for improving the accuracy of LULC
classification is also missing from the literature. Yet the pressures, limitations, and priorities
that most natural resource managers face heavily rely on the availability of more reliable
LULC information. Addressing these gaps could facilitate reliable and sustainable natural
resource monitoring in complex and heterogeneous landscapes such as TDBs.

This study aimed to evaluate the significance of integrating spectral bands with
indices and climate-based regionalization on the accuracy of LULC based on ML and
DL classifiers. The specific objectives of this study were, firstly, to assess the value of
integrating spectral bands with spectral indices in relation to the accuracy of land cover



Remote Sens. 2021, 13, 5054 4 of 23

classification using ML and DL classifiers, secondly, to investigate the value of climate-
based regionalization to improve the accuracy of LULC classification within the Okavango
Basin, and thirdly, to assess the performance of ML and DL classifiers in climate-based
regionalization and inclusion of spectral indices. The setting of the study is a complex
heterogeneous transboundary basin, namely the Okavango Basin. The results of the
study are interpreted in the context of streamlining a robust LULC under a complex
transboundary environment. The methodology investigated here is envisaged to inform a
firm ground for regular production of LULC products for modeling the impact of landscape
change on the supply and distribution of natural resources within the Okavango Basin.
State of the art ML and DL classifiers that are known to be robust in LULC classification
are used in this study.

2. Materials and Methods
2.1. Study Site

The study is conducted in the Okavango drainage basin. The Okavango Basin is a
unique endorheic (internally draining) transboundary drainage basin (TDB) that covers
three countries, namely Angola, Namibia, and Botswana (Figure 1). The area covers
224,894.64 km2 and consists of three different climate systems; it is semi-arid in the southern
part, monsoon in the central, and tropical in the northern part [39]. The average annual
rainfall amount and distribution varies with the climate zone. However, it generally ranges
between 500 to 1400 mm. High rainfall amounts occur in the northern zone, which falls
within the subtropical highland zone (Cwb), and gradually decrease southwards, with low
rainfall amount received in the southern part, which falls in the semi-arid zone (Bsh). As
with rainfall, the average temperature varies widely as a factor of variation in topography
and seasonality of each climate zone, and the annual average temperature is 20 ◦C [51,52].
The area is rich in biodiversity of flora and fauna, which varies in distribution as a factor of
land use type [50]. The major river in this landscape is the Okavango River, which flows
from the Angolan highlands through Namibia and disappears in the Kalahari Desert of
Botswana, forming the pan-like shape of the acclaimed Okavango delta [53].

The Okavango Basin has experienced wars, droughts, floods, changes in land tenure,
and harmful land-use practices (for example illegal logging, overgrazing, and intensive
tillage) during the period between 1970 and 2020 [54–56]. The Angolan Civil War ended in
August 2002, leading to a post-war rebound in population and anthropogenic activities [57].

2.2. Methods

The methods section provides a comprehensive description of procedures that were
used in this study. Image acquisition and processing is described first (Section 2.2.1),
followed by procedures used in processing spectral features for this analysis (Section 2.2.2).
Descriptions of the collection of training and validation samples follow thereafter (Section 2.2.3),
and the experimental design of the study is given in Section 2.2.4. The experimental design
entails the integration of bands with spectral indices, the value of post-feature selection,
and the regionalization of the study site based on Koppen zones to enhance LULC accuracy.
These aspects were tested using state of the art ML and DL approaches.

2.2.1. Satellite Image Acquisition and Processing

Landsat 5 and Landsat 8 OLI images were used in this study. The images were sourced
from the Google Earth Engine (GEE) platform and were pre-processed to Tier 1 surface
reflectance. All the images were captured during the month of June for the years 1996, 2002,
2013, and 2020 (See details in Supplementary Materials Table S1). The temporal period
was chosen for two main reasons: (1) to capture changes in LULC of the period during
and after the Angolan civil war, and (2) the availability of cloud-free images. The month of
June was chosen because of the consistent availability of a complete set of image tiles for
the entire study area in the same month. Previous studies recommend the use of Sentinel
2 images over Landsat images [58]; however, this investigation used Landsat images since
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the chosen study period did not match the availability of Sentinel 2 images. The images
were already geometrically and atmospherically corrected. Cloud masking is performed
using the CFMASK algorithm to mask clouds and cloud shadows in GEE [54]. To minimize
variations in the temporal and spatial information of the images before LULC classification,
per band median composites for several images corresponding to different days in the
month of June of each year were produced following previous studies [59–61]. Median
composite images were exported from GEE for further analysis.
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2.2.2. Spectral Features

The spectral features used in the analysis comprise a combination of seven bands
(namely visible, near-infrared, short wave infrared, and thermal infrared), as well as RBS (8)
and OS (4) indices. For Landsat 5 bands 1, 2, 3, 4, 5, 6, and 7 were used, while bands 2, 3, 4, 5,
6, 7 and 10 were considered for Landsat 8. While the thermal bands were originally captured
with a resolution of 120 m and 100 m for Landsat 5 and 8, respectively, thermal bands
available on GEE’s Tier 1 surface reflectance collections are readily resampled using cubic
convolution to a 30 m resolution. RBS indices were produced from ratios between pairs of
spectral bands and OS indices were produced from the use of transformation coefficients
on multiple spectral bands. Using pre-processed image composites, eight RBS indices
and three OS indices were calculated in GEE. Although the literature is rich with spectral
indices that aid in the discrimination of LULC classes, in this study, the commonly used
RBS and OS indices were used to test their performances in enhancing LULC accuracy. The
RBS and OS indices used in this study are given in Tables 1 and 2, respectively. According
to Sturari et al. [62], the inclusion of an elevation layer in LULC analysis minimizes the
effects of topographic heterogeneity, hence, the Shuttle Radar Topographic Mission (SRTM)
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Digital Elevation Model (DEM) with a 30 m resolution was included in this analysis [63].
All spectral features were exported from GEE for further analysis.

Table 1. Ratio based spectral indices used in this study.

Name of Spectral Indices Formulae References

NDVI NIR−RED
NIR+RED [64]

NDBI SWIR1−NIR
SWIR1+NIR [59]

NDWI GREEN−NIR
GREEN+NIR [60]

MNDWI GREEN−SWIR1
GREEN+SWIR1 [61]

NDTI SWIR1−SWIR2
SWIR1+SWIR2 [65]

NDBal SWIR1−TIRS1
SWIR1+TIRS1 [66]

EVI 2.5
(

NIR−RED
NIR+6×RED−7.5×RED+1

)
[67]

SAVI 1.5
(

NIR−RED
NIR+RED

)
[68]

Table 2. Orthogonal spectral indices used in this study.

Landsat 5

Name of
Spectral
Indices

Transformation Coefficients References

(Blue)
Band 1

(Green)
Band 2

(Red)
Band 3

(NIR)
Band 4

(SWIR1)
Band 5

(SWIR2)
Band 7

[69]

BTCAP 0.2043 0.4158 0.5524 0.5741 0.3124 0.2303
GTCAP −0.1603 0.2819 −0.4934 0.7940 0.0002 0.1446
WTCAP 0.0315 0.2021 0.3102 0.1594 0.6806 0.6109

NTCAP −0.8242 −0.0849 0.4392 −0.0580 0.2012 −0.2768

Landsat 8

Name of
Spectral
Indices

Transformation Coefficients References

(Blue)
Band 2

(Green)
Band 3

(Red)
Band 4

(NIR)
Band 5

(SWIR1)
Band 6

(SWIR2)
Band 7

[70]

BTCAP 0.3029 0.2786 0.4733 0.5599 0.5080 0.1872
GTCAP 0.2941 0.2430 0.5424 0.7276 0.0713 0.1608
WTCAP 0.1511 0.1973 0.3283 0.3407 −0.7117 0.4559

NTCAP −0.8239 −0.0849 0.4396 −0.058 0.2013 −0.2773

2.2.3. Training and Validation Samples

Sample points include ground points sourced from organizations working in the
Okavango basin and additional points generated through visual analysis of very-high-
resolution images. Ground points were sourced from the Okavango River Basin Wa-
ter Commission (OKACOM) geodatabase and the National Geographic Okavango and
Wilderness Project (NGOWP). OKACOM was established by the riparian states of Angola,
Botswana, and Namibia to jointly manage the water resources of the Cubango-Okavango
River Basin. The commission contracted GIS specialists to conduct social and hydrological
surveys in the basin. The consultants used a random sampling technique to collect locations
of settlements, water bodies, woodlands, shrubland, and wetlands. These were used to
create samples for built-up, wetland, woodland, shrubland, and water classes. NGWOP
conducted surveys to explore the least known and the most accessible areas in the basin.
During their surveys, they navigated along river lines (as transects), taking geotagged
images of riverine vegetation. Their data helped to generate samples for water, grasslands,
woodlands, and wetlands. The total number of samples from these sources is 3420.
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Additional samples were collected using Google Earth by visual interpretation of
available Landsat and other high-resolution satellite imagery [71]. The stratified random
sampling based on the 2009 GLOBCOVER (as a stratum) was used to generate additional
samples [72]. To minimize sample imbalance per class, the minimum fifty sample rule
per class as advocated by Foody and Mathur [73] was adopted in this study. To avoid the
inclusion of points falling on areas that would have changed during the temporal period,
training data was overlaid on high-resolution imagery in Google Earth Pro and the time
slider was used to visually assess for consistency. Points that fell on areas with inconsistent
LULC were not included in the analysis. A total of 5140 samples were generated for eight
LULC classes, namely bare land, built-up land, bushland, forest/woodland, grassland,
cultivated land, water, and wetland, as summarized in Table 3. The LULC classes are
based on the Food and Agricultural Organization (FAO) Landcover Classification System
(LCCS) [74].

Table 3. A summary of the number of training and validation samples that were used in this study.

Number of Sample Points

LULC Class Ground Samples Photo-Interpreted Samples Class Total

bareland 420 242 662
builtup 612 116 728
water 524 156 680

cultivated 513 114 627
woodland 631 63 694
shrubland 212 482 694
grassland 194 321 515
wetland 314 226 540

Overall Total 3420 1720 5140

Before analysis, samples from different sources (ground samples and photo-interpreted
samples) were merged in Quantum GIS 2.14 Essen (www.qgis.com, accessed on 20 March
2020). The spatial distribution of overall samples is depicted in Figure 2.

2.2.4. Experimental Design

The study was designed to assess the value of integrating spectral bands with spectral
indices and the significance of climate-based regionalization on the accuracy of LULC
classification in a complex heterogeneous landscape. Two experiments were set. The first
experiment investigated the value of the inclusion of spectral indices and feature selection,
and the second assessed the value of climate-based regionalization on the accuracy of
LULC classification in the Okavango Basin The study was conducted using R-statistics.
The workflow of the study design is depicted in Figure 3.

The following sections give a detailed description of the methods.

2.2.5. Inclusion of Spectral Indices and Feature Selection

The analysis was run using combinations of seven spectral bands, eight RBS indices,
and three OS indices. The first analysis was run using spectral bands only, the second using
a combination of all spectral bands and spectral indices, and the third using a combination
of spectral bands and spectral indices following a feature selection. Random forest-based
recursive feature elimination (RF-RFE) was used for feature selection following recommen-
dations by [33]. RF-RFE uses the provided input features and the random forest classifier
to select the best combination of features based on feature importance [28,46]. To make
the best combination of features, the RF-RFE iterates over various feature combinations
through a repeated 10-cross validation and eliminates the least important features until the
most parsimonious model is identified [75]. In this study, the RF-RFE is tuned to repeatedly
iterate 30 times over 20 features (bands and spectral indices) based on the caret package in
R statistical software.

www.qgis.com
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2.2.6. Climate Based Study Area Regionalization

To evaluate the impact of climate-based regionalization on the accuracy of classification
methods, the analysis was conducted first using the whole study area and thereafter based
on the Koppen climate regions. Studies have reported that the performance of classifiers
varies with space and time [76,77]. The Okavango Basin consists of the following climate
zones, Cwa, Cwb, and Bsh Koppen zones (Figure 4).

2.2.7. LULC Classification Using Deep Learning and Machine Learning

Non-parametric DL and ML classifiers were used in this study. Two state-of-the-art
ML classifiers, namely RF and XGBoost, were implemented using the caret package, and
DL classifiers, namely neural network (Nnet) and DNN, were implemented using the caret
and H20 packages in R statistics, respectively.
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Machine Learning Classifiers

The RF classifier uses tree bagging to form an ensemble of trees by searching random
subspaces in the given features and then splitting the nodes by minimizing the correlation
between the trees [78]. The RF classifier has been widely used in landcover mapping [79–81].
Previous studies reported varying performance of the RF in different landscapes [82].
However, most studies claim that it is robust to overfitting and produces better accuracies
with high efficiency when working with high dimensional data [78]. The major input
parameters of the RF are the number of trees at each split (ntree) and the number of
variables randomly sampled as candidates at each split (mtry).

The Xgboost algorithm is based on the boosting ensemble technique [76]. It builds
on decision trees of weak learners that are combined into strong learners through an
iterative process of learning from an ensemble of trees built on subsets of data. The
models are weighted based on their performance and the ensemble model is built based
on the weighted sum of the base layers [77]. Xgboost has been used in LULC mapping of
numerous studies, in which it has outperformed the benchmark ML classifiers such as the
RF and SVM [79,83]. The major parameters of the Xgboost include the maximum number
of iterations (nround), maximum depth of a tree (max_depth), learning rate (eta), the
minimum relative improvement in squared error reduction for a split to happen (gamma),
and the minimum number of rows to assign to the terminal nodes (nodesize).

Deep Learning Classifiers

DL classifiers are based on neural networks [80]. They are biologically inspired
algorithms that make predictions using a concept similar to an animal brain and its inter-
connections [84,85]. The basic structure of a neural network is a network of input layers
that are connected to the output layer through hidden layers. This network of layers is
responsible for transforming input data to output data with the help of activations and
parameters. The weights on the nodes of each connection modify values at each neuron to
determine how the input values are translated to output values. Neural networks require
tuning, in which the tuning parameters and the number of layers involved make up the
different types of DL models. In this study, the neural network (Nnet) algorithm and DNN
are used.

The Nnet mimics a feed-forward neural network that uses the backpropagation algo-
rithm for training coupled with one hidden layer [86]. To calibrate the Nnet algorithm, there
are three important parameters required, namely the size, decay, and maxit, which control
the number of neurons in the hidden layer, the weight decay, and the maximum number
of iterations, respectively. Unlike the Nnet, the DNN uses a multi-layered feedforward
neural network which comprises more than three hidden layers [44]. Ideally, increasing
the number of hidden layers and neurons increases the potential to make predictions in
complex situations [87]. The key parameters for DNN include the activation function (acti-
vation), number of hidden layers (hidden), size of each hidden layer (number of neurons
per hidden layer), and the number of times to iterate (epoch). DL classifiers have shown
good results in previous landcover studies [88,89].

Parameter Tuning of DL and ML Classifiers

In this study, parameter tuning (hyper parameterization) was performed to select
the optimal parameters for each classifier. A repeated k-fold cross-validation technique
was used based on a randomized sampling of hyperparameters reported in previous
studies [90,91]. The optimization procedure was followed based on descriptions provided
by Abdi [44]. The RF, Xgboost and Nnet were run using the caret package [75] and the
DNN was run using the H2O package [85] in the R statistical software environment version
3.4.2 [92]. All computations were run on a Windows machine with 16 GB RAM and a Core
i7 CPU@ 2.40 GHz made by Dell in China. Table 4 summarizes the optimal parameters
that were determined for each classifier.
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Table 4. A summary of optimal parameters for ML and DL classifiers as determined from hyper-
parameterization.

Model Parameters Hyper-Parameter Values

RF
mtry 100
ntree 2

Xgboost

nrounds 500
maxdepth 7

eta 0.01
gamma 0.1

nodesize 2

Nnet
Size 70

learning rate 0.005
maxit 500

DNN

activation Rectifier
hidden layers 5

neurons per layer 200
epochs 300

LULC Classification

For classification, sample points were randomly split 50 times into training (70%) and
validation (30%) [93,94]. The classification was first run based on the whole study area and
thereafter on each Koppen climate region. The classifications were separately run using
three different combinations of bands and spectral indices as inputs per study site for the
years 1996, 2004, 2013, and 2020. Average accuracy measures (overall accuracy and Kappa)
were calculated from the model runs for each year. The results were then summarized for
each classifier.

2.2.8. Accuracy Assessments and Validation

From each model run, 30% of the samples were randomly chosen from the overall
sample set for validation. The validation samples were used to calculate overall accuracy
(OA) and the Kappa statistic (Kappa) evaluations metrices. The OA ranges from 0 to 100,
where 0 represents the lowest accuracy and 100 the highest, whereas Kappa ranges from
0 to 1, with 0 representing the lowest accuracy and 1 the highest accuracy [89]. Average
OA and Kappa were calculated from model results of the four time-steps, namely 1996,
2004, 2013, and 2020. This was repeated for different combinations of spectral bands and
indices under different study sites. The classification outputs were visually validated
with high-resolution images (See Supplementary Figure S1). The proportions test (χ2
test) described by Agresti [90] was implemented in R software. The χ2 test was used to
analyze the statistical difference in the performance of each classifier based on different
combinations of spectral bands and spectral indices. A p < 0.05 was used as the critical
level of significance.

3. Results
3.1. Integration of Spectral Indices to Spectral Bands

The results for the inclusion of spectral indices are given in Figure 5. Integrating
spectral indices to bands increases the accuracy of LULC classification. Feature selection
from combinations of bands and spectral indices further improves accuracy.
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DNN recorded the highest OA, followed by Xgboost, RF, and Nnet (Figure 5). The
average OA for inclusion of all spectral indices was 76.80, 84.35, 88.02, and 89.32 for
Nnet, RF, Xgboost, and DNN, respectively. Regarding combinations of spectral bands and
indices determined by feature selection (post-feature selection), the average OA was 81.24,
87.40, 90.12, and 91.68 for the Nnet, RF, Xgboost, and DNN, respectively. Improvement
in accuracy based on post-feature selection combinations was significant for the DNN,
RF, and Xgboost (p < 0.05); however, it was not significant for the Nnet. OA based on
the post-feature selection combinations was not significantly different from that based
on combinations of bands and all spectral indices (p > 0.05) for all the classifiers (see
Supplementary Table S2).

Overall, the highest OA of 91.68 (Kappa = 0.90) was from the DNN based on the
post-feature selection combination, which comprises an average of 13 features (See Supple-
mentary Table S6). The lowest OA of 70.65 (Kappa = 0.68) was also for the DNN based on
the bands only combination.

Overall, integration of bands and spectral indices appear to improve the accuracy of
LULC classification in the unregionalized study site and the improvement further increases
when implementing a feature selection. Although the integration with spectral indices
and feature selection improves the accuracy, the improvement was not significant for all
the classifiers. DL classifiers (DNN) generally yielded higher classification accuracies in
comparison to ML classifiers (RF and Xgboost).

3.2. Climate Based Regionalization
3.2.1. Bsh-Hot Semi-Arid Zone

Results for climate-based regionalization based on Koppen–Geiger climate zones are
depicted in Figures 6–8.
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For the Bsh hot semi-arid zone, the inclusion of spectral indices increased OA values
to 85.55, 87.32, 90.15, and 94.12 for Nnet, RF, Xgboost and DNN, respectively (Figure 7).
The kappa values were 0.84, 0.86, 0.88, and 0.92 for Nnet, RF, Xgboost, and DNN, respec-
tively. DNN recorded the highest OA, followed by Xgboost, RF, and Nnet. Integration of
bands with all spectral indices improved landcover classification significantly for the DNN
classifier in the Bsh climate zone (p < 0.05). However, the OA did not improve significantly
for the RF, Xgboost, and Nnet (p > 0.05). It can be seen that DL classifiers (DNN) benefited
more from the inclusion of all spectral indices (improvement in OA > 20) compared to ML
classifiers (Xgboost and RF); however, DL classifiers did not benefit as much from feature
selection as ML classifiers did.

Concerning combinations of spectral bands and indices following a feature selection
(post-feature selection) for the Bsh zone, OA values for Nnet, RF, Xgboost, and DNN
increased from 76.83 to 89.91, 78.17 to 91.80, 79.50 to 94.22, and 74.56 to 95.03, respectively
(Figure 8). DNN yielded the highest OA of 95.03 (Kappa = 0.93) using an average of
11 features (see Supplementary Table S7). Although post-feature selection combinations
significantly improved accuracy for all the classifiers (p < 0.05), their OA is not significantly
different from those using combinations of bands and all spectral indices (p > 0.05).

3.2.2. Cwa-Monsoon

As in the Bsh zone, the inclusion of spectral indices improved classification accuracy
under the Cwa Koppen zone (Figure 7). Based on the inclusion of all spectral indices for
the Cwa zone, OA accuracies increased from 75.61 to 84.58, 76.77 to 87.75, 77.47 to 91.69,
and 75.02 to 94.35 for the Nnet, RF, Xgboost, and DNN, respectively. Integrating bands
with spectral indices significantly improved the performance of the DNN and Xgboost
(p > 0.05); however, it did not significantly improve the accuracy of Nnet and RF.

With regards to post-feature selection combinations for the Cwa zone, OA values
increased to 88.65, 91.31, 94.41, and 95.29 for Nnet, RF, Xgboost, and DNN, respectively.
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The highest improvement was recorded based on the DNN from a combination of 10
features. In comparison to OA values from the bands only combination, the post-feature
selection combinations yielded significantly higher accuracy for all classifiers (p < 0.05).
However, OA values for post-feature selection combinations (based on 10 features) were
not significantly different from OA values for combinations of bands and all spectral
indices (p > 0.05). It can be seen that DL (DNN) classifiers did not benefit much from
feature selection (improvement in OA < 2).

3.2.3. Cwb-Sub-Tropical Highland

As with the Bsh and Cwa zones, the inclusion of all spectral indices for the Cwb
Koppen zone improved the accuracy (Figure 8). Integration of spectral indices with bands
increased OA from 73.62 to 87.33, 75.42 to 87.47, 76.73 to 91.55, and 74.24 to 95.51 for Nnet,
RF, Xgboost, and DNN, respectively. A similar pattern was observed when incorporating
post-feature selection combinations, in which the DNN recorded the highest accuracy
(OA = 96.04, Kappa = 0.95), followed by Xgboost (OA = 95.27, Kappa = 0.94), RF (OA = 91.81,
Kappa = 0.90), and Nnet (OA = 91.05, Kappa = 0.89). Although improvements in accuracy
following the inclusion of all spectral indices significantly improved the accuracy of most
classifiers (Nnet, Xgboost, and DNN), the improvement was not significant for the RF
classifier (p > 0.05). Unlike with the bands and all indices combination, incorporation of
the post-feature selection combination (based on 15 features) significantly improved the
accuracy of all the classifiers in the Cwb zone (p < 0.05). However, the OA values based
on the post-feature selection combination were not significantly different from that of the
bands and all indices combination for all the classifiers (p > 0.05).

In general, a combined inclusion of spectral indices and regionalization using climatic
zones increase the accuracy of LULC classification using DL and ML classifiers. Climate-
based regionalization and inclusion of spectral indices with bands did not statistically
improve the accuracy of LULC consistently for all the ML and DL classifiers investigated
in this study. However, climate-based regionalization and incorporation of post-feature
selection combinations significantly improved the accuracy of LULC consistently for all the
DL and ML classifiers used in this study. However, it was observed that the OA based on
incorporating bands and all spectral indices was not significantly different from that based
on the incorporation of post-feature selection combinations. This suggests that, although
there are benefits of feature selection to accuracy when compared to mere incorporation
of all features, the margin of benefit is slight. However, it appears that incorporating
an average of about 15 features (based on feature selection) is sufficient to dramatically
improve the accuracy of LULC more than what is achieved with a set of 20 features (bands
and all indices). Overall, DNN consistently outperformed Xgboost, RF, and Nnet.

4. Discussion

Results show that climate-based regionalization and integration of spectral bands with
indices improve the accuracy of LULC in the Okavango Basin. Additionally, incorporation
of feature selection to combinations of bands and indices further enhances the accuracy.
Statistical results show that the integration of indices and feature selection for unregion-
alized study areas does not significantly improve the performance of all the classifiers
consistently. However, regionalization based on Koppen zones significantly improves
LULC accuracy for all the classifiers. This is attributable to a reduction in spatiotemporal
variability as a result of climate regionalization. This observation is in line with previous
studies, which reported that spatiotemporal variability due to atmospheric conditions,
soil moisture, sun elevation, view angle, and topography causes the similarity of spectral
signatures of landcover types that are spectrally different [95,96].

Regionalization creates zones that have uniform ecological and spectral characteristics,
thereby controlling the sensitivity of spectral signatures to LULC variation in heteroge-
neous landscapes and enhancing the efficiency of classifiers [12]. Noormets [97] and
Richardson et al. [93], concurred that climate influences the phenology of vegetation cover
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and other ecosystem processes by driving the seasonality of albedo, surface roughness
length, canopy conductance, and fluxes of water. Since optical remote sensing depends
on reflectance, which is mainly influenced by phenology, regionalization based on climate
systems could enhance the distinguishing of LULC classes [12,98]. While regionalization
based on climate zones shows great potential in enhancing accuracy, intra-climate zone
heterogeneity could potentially compromise LULC accuracy. In this study, spectral indices
and feature selection in Koppen–Geiger regionalized study sites were integrated to further
refine the LULC classification. The effects of including spectral indices to enhance accu-
racy when mapping LULC have been reported before. Mushore et al. [23] evaluated the
inclusion of RBS indices when using the SVM on an urban landscape and found that the
inclusion of indices yielded an increase in OA from 82.65 to 89.33. Results for the current
study yielded higher accuracy values as compared to previous studies. OA values for the
DNN based on bands and all spectral indices in this study improved from 74.24 to 96.04.
This could be due to variation in the classifiers used, the number of training samples, and
the scale at which the study was conducted. Mushore et al. [23] used 840 training samples
on a study site with an extent of 94,000 ha. In this study, 5140 samples were used and the
extent of the study area was 22,489,464 ha based on the Nnet, RF, Xgboost, and DNN classi-
fiers. Notwithstanding that, their findings concurred with our findings that spectral indices
improve the definition of LULC classes by enhancing the separability of one class against
another. That said, Zeng et al. [99] assert that when spectral indices are used together with
spectral bands in LULC classification, they have little effect on accuracy, as the addition
of spectral indices only yielded a slight increase in OA, from 76.43 to 76.55. Their study
only used RBS indices without incorporating feature selection on an unregionalized local
study site using only the RF classifier. In this study, RF yielded higher accuracies, with OA
ranging between 72.62 and 87.75. The strength of this study rests in that it incorporated
regionalization, OS indices, and feature selection on a highly heterogeneous transboundary
basin. Although previous studies have separately reported the effect of regionalization and
incorporation of spectral indices in enhancing LULC maps [53,100], the combined effect
of regionalization based on climate zones, the inclusion of spectral indices, and feature
selection in a heterogeneous TDB is novel. This study is amongst the first to provide
evidence for the combined influence of climate-based regionalization and integration of
spectral bands with indices to enhance the accuracy of LULC maps in a TDB setting.

This research reveals that incorporation of feature selection improves accuracy more
than the mere inclusion of all indices in all study sites and classifiers investigated. This
finding agrees with previous studies, which reported that using feature selection has a
crucial impact on the improvement of LULC accuracy [101,102]. Unlike simply including
all features, feature selection helps to remove redundant features that tend to introduce
the problems of dimensionality and uncertainty in model performance [103,104]. Fea-
ture selection creates parsimonious models that have high predictive power even with
fewer variables. Although feature selection improves OA, in this study, OA of the post-
feature selection combinations was not statistically significant from that of bands and all
indices. This finding is in line with that of Georganos et al. [83], who observed that the
increase in accuracy (OA from 77.7 to 78.9) based on feature selection (using the RFE) for
the RF classifier was not significant. This is likely a result of RF having high predictive
accuracy and effectively deducing patterns from data owing to its bagging and random
algorithms [102,105,106]. Our findings for Xgboost are, however, contrary to those of
Georganos et al. [83], who reported a significant increase in accuracy following the incor-
poration of post-feature selection combinations. This could be because of the variation
in the number and type of features that they incorporated in their analysis as compared
to those of the current study. Their study used a total of 169 features that include band
descriptive statistics, gray level co-occurrence matrix (GLCM) for each spectral band, object
compactness, perimeter, area, fractal dimension, and spectral indices as the initial input to
the classification, whereas the current study only used 20 features of raw bands and spectral
indices. A wide array of features could provide a large pool from which feature selection
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algorithms can draw, resulting in a larger improvement in accuracy. Although their study
observed significant improvements in accuracy, their peak OA (79.8) was achieved using
more features (23). The current study used fewer features (15), but achieved better peak
OA (95.27).The strength of this study lies in the incorporation of combinations of RBS and
OS indices together with climate-based regionalization, which aids in distinguishing land
cover classes [21].

This study determined that DL classifiers (DNN) consistently yield more accurate
results than ML classifiers (Xgboost, RF). Furthermore, DNN outperformed its fellow DL
classifier (Nnet). This is likely as a result of the DNN having an effective way of deducing
patterns from data owing to its structured neural networks, which allow the hierarchical
flow of information from the input layers to output layers through hidden layers and
activation functions. This structure, coupled with the backpropagation of errors, allows
refinement of predictions before they are finally incorporated into the output [100]. Unlike
the Nnet classifier, DNN has an increased number of hidden layers and activation functions
that boosts model approximations through iterating various learning parameter values
when making predictions [102]. Unlike ML classifiers (Xgboost, RF), the DNN requires
intensive parameterization, which refines its performance [103]. The results of this study
are in line with those of Li et al. [46], who reported DNN to be superior in LULC accuracy
when compared to other ML classifiers (RF, SVM, and MLC). Abdi [44], however, reported
that the DNN was outperformed by the Xgboost and RF when evaluating the LULC of the
boreal landscape based on Sentinel 2 imagery. Abdi [44] tuned the DNN using the tanh
activator, which easily saturates and slows the DNN when input values are large [104].
This study has strength in that it used the rectifier activation, which can hold incremental
gradient descent because of its non-saturating function, thereby yielding higher accuracies
even with complex data [105].

With regards to ML classifiers, results of this study show the superiority of Xgboost
over the RF classifier. This is confirmed by previous literature, which reported that Xgboost
outperformed the RF classifier [107,108]. According to Georganoes et al. [107], Xgboost
performed 5% better than RF. Saini and Ghosh [108] reported that Xgboost outperformed RF
by 1%. The current study observed that Xgboost performed better in OA by 4%. Although
the level of difference in accuracy varies, most studies attribute the improved performance
of Xgboost to its use of a large number of tuning parameters as compared to that of
RF [108]. This is further enhanced by its use of an ensemble of trees, which incorporate
weaker learners to make final predictions [76]. Despite the fact that the findings of this
study are in line with previous work, the maximum accuracy values reported for Xgboost
in this study are better than those of previous studies (OA = 95.27). The results of the
present work demonstrate the superiority and strength of climate-based regionalization
coupled with rigorous integration of bands and indices in complex landscapes.

5. Conclusions

This study aimed to evaluate the significance of the integration of spectral indices
with bands and of climate-based regionalization for enhance the accuracy of LULC based
on Landsat imagery using ML and DL. The specific objectives of this study were, firstly,
to assess the value of integrating spectral bands with spectral indices on the accuracy of
land cover classification using ML and DL classifiers, secondly, to investigate the value
of climate-based regionalization to improve the accuracy of LULC classification within
the Okavango Basin, and thirdly, to assess the performance of ML and DL classifiers for
climate-based regionalization and inclusion of spectral indices. Inclusion of all indices and
combinations of post-feature selection were separately used for each analysis to assess their
performance in enhancing LULC mapping in a TDB. The DNN, Xgboost, Nnet, and RF
classifiers were used for LULC classification. Combinations of bands and all indices and
post-feature selection were then separately implemented for each climate zone to assess
the value of climate-based regionalization on LULC classification. The results show that:
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(1) Inclusion of spectral indices improves the accuracy of LULC mapping for both ML
and DL (with increase in OA > 5%);

(2) Conducting a feature selection when evaluating LULC classification further improves
accuracy as compared to mere inclusion of all spectral indices (with increase in
OA > 10%); however, the increase was not consistently significant for all the classifiers;

(3) Combined incorporation of post-feature selection combinations and climate-based
regionalization significantly improves LULC accuracy based on all DL and ML classi-
fiers (p < 0.05);

(4) DL classifiers performed better than ML classifiers in all study sites and combinations
of bands and spectral indices.

Based on findings from this study, it is concluded that spectral indices, feature selection,
and climate-based regionalization result in statistically more reliable results. Those who
wish to perform multitemporal analysis in heterogeneous landscapes using ML and DL
classifiers should also consider combining climate-based regionalization, the inclusion of
spectral indices, and feature selection based on RF-RFE. Additionally, preference should be
given to DL classifiers when analyzing LULC in complex environments.

Although this study answered an important question on the integration of spectral
indices and the influence of climate-based regionalization on the accuracy of LULC clas-
sification in a heterogeneous transboundary basin, there are some limitations associated
with it. The study could not test the effect of climate-based regionalization on other climate
zones outside of the Okavango Basin or the role of socioeconomic variables in delineating
regions. Future research should test the effect of climate-based regionalization on other
TDBs that have a different mix of climate zones using combinations, while at the same time
incorporating socioeconomic factors for the delineation of regions. Pixel-based supervised
classification based on the ML and DL classifiers was used in this study; further studies
should investigate the use of object-based and unsupervised classification. The use of
higher-resolution images and fusing data from different sensors is also advocated for
future investigations.
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proportional test (X2) results for pairwise comparison of the performance of different combinations
of spectral bands with spectral indices and post-feature selection combinations based on the Cwb
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