
Semantic Plug and Play:
An Architecture Combining Linked Data and

Reconfigurable Hardware

Constantin Wanninger1,

Luca Alfano2, Martin Schörner3, Alwin Hoffmann4, Oliver Kosak5, Wolfgang Reif6

Institute for Software and Systesm Engineering

University of Augsburg

Augsburg, Germany

Email: {wanninger1, alfano2, schoerner3, hoffmann4, kosak5, reif6}@isse.de

Abstract—Through the mechanisms of the Semantic Web, it
is possible not only to describe web content syntactically but
also to relate it semantically. The properties and capabilities
of hardware, instead, are hidden in documents, code docu-
mentations, repository descriptions, etc. This paper presents
a methodology and architecture that can be used to describe
and relate the properties and capabilities of hardware. The
decentralized storage of the descriptions on a hardware adapter
allows the information to be evaluated at runtime. For domain-
specific applications a Model-Domain-Domainmodel Architecture
(MDDM) is presented so that code can also be executed at
runtime using these hardware descriptions. The architecture is
presented using a home automation system with single-board
computers and microcontrollers, in which sensors and actuators
can be exchanged and integrated.

I. INTRODUCTION

The origin of the Word Wide Web (WWW) is based on

the markup language HTML, the transfer protocol HTTP and

the resource description language URL [1]. A major weakness

of these technologies is that the information they provide is

not machine-readable and cannot be described explicitly. To

overcome this disadvantage 2006 Lee coined the term Linked
Data in a design note about the Semantic Web project [2].

Linked Data is interlinked structured data and built upon

standard web technologies such as RDF and URIs to enrich

the unstructured content of the WWW with semantic, machine

readable information with a best practice strategy.

This paper introduces Semantic Plug and Play, a method-

ology and architecture for distributing semantic annotations

to concrete hardware elements and using them domain-

independently in object-oriented programming languages. For

this purpose, a procedure is presented in which domain-

specific requirements can be defined in the code, which are

evaluated at run-time using the concrete hardware setup.

Thereby in particular the close connection between hard-

ware and software is to be loosened in order to support

e.g. configurability, expandability and modularity, which is

necessary for modular systems with physical configuration

This research was funded by the German Research Foundation (DFG),
grant number 402956354.

possibilities. In the architecture to be proposed, capabilities
and properties of the hardware are supposed to be abstracted

and provided at runtime by a distributed knowledge base. In

the object-oriented programming language instead capability

requirements are defined, which can be fulfilled at runtime

or require a reconfiguration of the hardware.

II. RELATED WORK

For plug and play strategies, Shanley et al. [3] set up an

architectural paradigm as early as 1995. The required drivers

of an externally connected hardware element are mapped via

IDs with a data storage existing on the operating system.

Generic drivers, like device classes in the USB protocol [4]

or in protocols like the Transducer Electronic Sheets [5]

can be used if the hardware elements are similar in their

characteristics. Another variant is to store the corresponding

drivers on the hardware element itself (e.g. USB Plug and

Play [4]). All mentioned variants are based on (generic) drivers

as interface between hardware and software, which have to be

connected either individually implemented (e.g. Kinect with

an SDK) or generically (e.g. USB-keyboard), without the

consideration of special characteristics.

The Industry 4.0 initiative encompasses the intermeshing

of modern information and communication technology in the

domain of industrial production. As a subgoal of Industry 4.0,

self-description mechanisms within the documentation of an

administrative asset shell are also defined [6] and taken up in

research [7], [8]. AutomationML [9], Semantic Web technolo-

gies [10] or the meta-model of the OPC-UA architecture [11]

are suggested as data structure for a self-description [6], [8].

The focus, however, is not on the concrete use of the self-

description in high-level programming languages but rather on

the (interdisciplinary) networking and information exchange of

the production cells and the provision of this information.

In addition to the predicted use in the industrial domain,

self-description through Semantic Web technologies is already

being used in domains where measured values play a major

role, such as geography or meterology [12], which can be seen

in the Linked Open Data Cloud [13]. Ontologies for measured

203

2021 IEEE 15th International Conference on Semantic Computing (ICSC)

values and their assignment to sensors and deployed platforms

like the Semantic Sensor Network Ontology (SSN) [14] can

be used to share measured values over the Semantic Web.

To our knowledge, an architecture for storing and using the

self-description in object-oriented programming languages at

runtime of modular sensors and actuators does not yet exist. In

earlier publications of our research group [15], [16], [17] the

foundation for this architecture was laid and shown in single

and multi robot systems.

III. SEMANTIC HARDWARE WEB

The following section is dedicated to the data model of self-

description of hardware elements, which is called Semantic

Hardware Web. Semantic Web technologies are used for

this, such as the Resource Description Framework (RDF)

and the Web Ontology Language (OWL). Previous existing

descriptions like SSN [14] are designed for sensors, and

are more suitable for describing measured values than actual

functionality. For easy categorization within capabilities and

properties, existing OWL ontologies can be enhanced with the

Semantic Hardware Web.

The main characteristic of the ontology is the division

between descriptive properties of hardware elements and the

executable capabilities (see fig. 1). Properties can be device

specific, such as the weight of a temperature sensor module,

but they can also describe capabilities in more detail, such

as the fact that the temperature sensor measures in degrees

Celsius. The granularity of the properties is explicitly not

firmly defined, since the sensor data and the necessary self-

descriptions are highly domain-specific. For example, a home

automation system requires only an average room temperature

value, whereas for geographic measurements [18] the accuracy

and latency of the sensor is essential. The different require-

ments of the domains also led to many models [12], [14],

which are not standardized in some places. The presented

Semantic Hardware Web Ontology on the other hand offers

only an abstract basis for descriptions, the essential new aspect

consists in the capabilities.

Fig. 1: The Semantic Hardware Web ontology with the most

important core concepts (white boxes), dependencies (arrows)

and constraints (arrow descriptions). The data types are indi-

cated in the gray boxes

Capabilities are actual operations that can be performed on

the hardware, such as the measure():float capability of the

temperature sensor. They can be triggered via commands (see

fig. 1) and used within the architecture of Semantic Plug and

Play. There are two types of commands, a send and a receive

command with different variables, where a capability has a

maximum of two commands. Variables can also be extended

with properties, e.g. to convert the usual code documentation

into a completely machine-readable form. Properties that can

change at runtime (as shown in a previous work [15]), such as

the current offset of a calibrated sensor can only be assigned

to a concrete sensor. The decentralized storage mechanisms of

the Semantic Web are ideally suited for storing instant-specific

descriptions on the hardware itself and linking them to generic

descriptions on the Internet.

IV. ARCHITECTURE

This section introduces the architecture behind Semantic

Plug and Play. Starting with the decentralized storage of the

Semantic Hardware Web up to the use of self-description in

object-oriented programming languages. In this section the

software components are in the foreground, the distribution

on real hardware is presented in section V afterwards. The

most important software components as shown in fig. 2 are the

semantic adapter, the semantic controller, and the Object

Oriented Design interface (OOD interface).

A. Semantic Adapter

The semantic adapter is an abstraction layer that unifies the

multitude of different devices. By implementing one of the

existing interfaces it offers further the functionality of adjacent

devices through its description to the outside world. However,

the semantic adapter does not provide an interface for high-

level languages. Therefore, another module is needed, which

has the task to bundle the self-descriptions of all semantic

adapters and make them available for high-level programming

languages.

B. Semantic Controller

Consisting of several components, the semantic controller

forms the bridge between the semantic adapters and an high-

level program (see fig. 2), that will utilize the hardware and its

Fig. 2: The distribution of the software artifacts of Semantic

Plug and Play to supported hardware nodes (microcontroller,

single board computer, etc.) with physical (UART, SPI, etc.)

and software interfaces (pycom, SPARQL, etc.).

204

description. The task of the semantic controller is to collect,

complete and provide the self-descriptions, to assign them to

the corresponding sensors and actuators, and to address the

communication between a high-level language and the used

hardware. Thus, semantic controller forms the final abstraction

layer and provides the end user interface, which is assumed

to be written in an object-oriented language with capabilities

and properties of the underlying physical devices.

C. OOD interface

The Object Oriented Design interface (OOD interface) is

a programming interface written in an object-oriented lan-

guage, which allows the use of physical devices and its self

description. The capabilities and properties of physical devices

are provided by classes within the OOD interface. These can

be instantiated at runtime depending on the domain prefer-

ence. On the other hand, a domain-specific implementation

can also make requests via capabilities or properties and

check at runtime whether the available hardware meets the

requirements. For example, if the temperature sensor needs

a certain latency for a specific measurement, this can be

defined as a requirement. This request is checked at runtime

and the result is communicated to the user. The functionality

behind requirements-based programming is hidden in a new

architecture, in which the domain of development is in focus

and not another generic solution needs to be established.

D. MDDM architecture

The above mentioned concepts of semantic adapter and

controller and the underlying self-description are based on

an architecture developed exclusively for semantic plug-and-

play, the Model-Domain-DomainModel (MDDM) architec-

ture which was derived from the MVVM pattern used for

GUI development [19]. Analogous to the MVVM-pattern, this

pattern uses data-bindings (see fig. 3) to link information from

self-descriptions to the functionality required in the domain,

in which the application logic is situated. In addition to

the application logic, the domain also hosts a mechanism

to request specific hardware capabilities. To accomplish this,

Fig. 3: The Model-Domain-DomainModel (MDDM) architec-

ture in a nutshell. The model stands for an overall graph

of all self-descriptions of the system, as well as the cor-

responding hardware connections. The domain on the other

hand wants to use hardware elements in its own structures

and has corresponding requirements. The mapping between

the requirements of the domain and the possibilities offered

by the current system takes place in the DomainModel.

requirements are passed to the DomainModel, which is used

to map them to capabilities and properties derived from the

model using SPARQL, a protocol for querying Semantic Web

data. The model, similar to the model from the MVVM-

pattern, offers its information in the form of an RDF-graph

to the DomainModel to be bound. After a successful match,

a JSON file with capability and property instances, as well

as the corresponding bindings are created and made available

to the domain. For example a temperature sensor, which

will be implemented by a semantic adapter, has one capa-

bility (measuring) and some properties. The domain requires

a temperature sensor that measures in degree celcius. This

requirement will be compared to the information gathered

by the semantic controller as soon as a semantic adapter

is connected to it. If it matches, the full data of the self-

description will be sent to the end user interface to connect

the software representation of the temperature sensor which

now can be used to generate measurements via bindings.

V. IMPLEMENTATION/REALIZATION

For the verification of the architecture presented in the previ-

ous section, the distribution of hardware nodes, the communi-

cation between different components as well as the mapping

procedure are described in this section. The deployment of

the components as well as the fundamental communication

between them are shown in fig. 2.

A. OOD-API

For realizing the OOD interface (see sec. IV) a software

called OOD-API is proposed. This software establishes a

connection via TCP to a semantic controller that provides the

capabilities and properties of the attached hardware devices.

The class structure of the API is based on the ontology of

the Semantic Hardware Web (see fig. 1) Central component is

the class device, which maintains the capabilities and acts as

a virtual representative of the real hardware. Capabilities can

be used to trigger send commands that initiate measurements,

for example. When a measurement is performed, a receive

command triggers an event that calls a predefined routine

(see “insert routine” in listing 1). Devices are initiated by

mapping the RDF-graph (using SPARQL) to requirements

which can be defined in the instantiating process of a device
(e.g. “temperature” in the constructor of the ts device).

t s = new Device (”temperature”) ;

t s . r e g i s t e r C a p a b i l i t y L i s t e n e r

(0 , (O b j e c t . . . o)−>{ insert routine }) ;

Listing 1: A (java-) lambda expression determining the behav-

ior on receiving a measurement.

B. Semantic Controller

The semantic controller is written in Python and handles

both RDF-graph and the management of the connected se-

mantic adapters. Further it communicates with the OOD-API

via TCP serving as middleware. It pipes down commands

(such as invoking a measurement) from the OOD-API by

205

addressing the right sensor/actuator and translating it to a form

understandable to the semantic adapter. To detect and analyze

a new physical device, the subgraph is requested, whereupon

a (JSON) serialization of the class device of the OOD-API, is

associated with information about the new device.

C. Semantic Adapter

This software is used on a microcontroller on which the

interfaces of the sensors or actuators are implemented. For the

communication between the Semantic Controller and Adapter,

a self-developed protocol called pycom is used to ensure

a fixed latency, a correct order of possible parameters (e.g.

measurement results) and an interrupt-based streaming of data.

To connect a sensor or actuator to the Semantic Adapter, the

physical interfaces of the microcontroller can be used (In the

example from fig. 2: UART, SPI and I2C). In the Semantic

Adapter, the custom interface must be converted to pycom. For

this purpose, appropriate C/C++ pycom libraries are available,

which also guarantee the storage and exchange of RDF graphs

on the microcontroller.

VI. PROOF OF CONCEPT

To illustrate the concepts implemented in the previous

section, a small experiment has been conducted using real

hardware with a variety of sensors and actuators. In this

experiment a home automation system was developed, which

controls actuators on the basis of sensor values. The semantic

controller distributed on a personal computer provides the

interface for the developer through the OOD-API. Different

sensors (soil, ultra sonic, air quality, temperature, motion) and

actuators (thermostat, display, lights) are connected to several

microcontrollers (ESP 8266, Arduino Nano and Uno), each

running an instance of Semantic Adapter. On this basis, both

automated rules, such as temperature-based heating control

when people are in the room, and suggestions via the display,

such as the air quality is poor, it must be ventilated, were

developed using requirements in Java. Developers can request

an overview of the connected hardware via the console to

define these requirements. The OOD-API can even be used

if hardware elements are replaced with ones with similar

capabilities and code can be written without knowledge of

the concrete hardware it is using.

VII. CONCLUSION

In this paper, mechanisms were presented to connect differ-

ent sensors and actuators, describe them semantically and use

them in high-level languages (like Java). By abstracting the

capabilities and properties, the direct implementation of the

hardware becomes independent from the process logic. The

development of more complex programs based on hardware

data (e.g. measured distance) and functions (e.g. driving a

robot) is greatly simplified by the developed framework. This

kind of abstract programming can be trend-setting, similar

to the ever increasing abstraction in programming languages,

such as the development of object-oriented languages.

In addition, the self-description necessary for this mecha-

nism enables the decentralized storage of this data, whereby

failure-prone interfaces, such as Internet connections, are not

absolutely necessary. This means that systems implementing

the framework can function in locations that do not have

an Internet connection. For example, the software for in

situ measurements during geography campaigns [18] could

be programmed in this way. By simply replacing faulty or

more current hardware while retaining the same process logic,

development and integration costs can also be saved and

maintainability improved.

REFERENCES

[1] The original proposal of the www. W3C Consortium. [Online].
Available: https://www.w3.org/History/1989/proposal.html

[2] T. B. Lee. W3C Consortium. [Online]. Available: https://www.w3.org/
DesignIssues/LinkedData.html

[3] T. Shanley, Plug and play system architecture. Addison-Wesley
Professional, 1995.

[4] D. Anderson, USB system architecture. Addison-Wesley Professional,
1997.

[5] J. E. Higuera and J. Polo, “Ieee 1451 standard in 6lowpan sensor net-
works using a compact physical-layer transducer electronic datasheet,”
IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 8,
pp. 2751–2758, 2011.

[6] Plattform Industrie 4.0, “Structure of the administration shell,” Apr.
2016. [Online]. Available: https://www.plattform-i40.de/I40/Redaktion/
EN/Downloads/Publikation/structure-of-the-administration-shell.html

[7] F. Palm and U. Epple, “openAAS - Die offene Entwicklung
der Verwaltungsschale,” in Automation 2017 : technology networks
processes, vol. 2293. VDI Verlag GmbH, 2017, pp. 103–104. [Online].
Available: https://publications.rwth-aachen.de/record/691900

[8] I. Grangel-González, L. Halilaj, G. Coskun et al., “Towards a
semantic administrative shell for industry 4.0 components,” in Semantic
Computing (ICSC), 2016 IEEE Tenth Intern. Conf. on. IEEE, 2016,
pp. 230–237. [Online]. Available: http://arxiv.org/pdf/1601.01556

[9] R. Drath, Datenaustausch in der Anlagenplanung mit AutomationML:
Integration von CAEX, PLCopen XML und COLLADA. Springer-Verlag,
2009.

[10] T. Berners-Lee, J. Hendler, O. Lassila et al., “The semantic web,”
Scientific american, vol. 284, no. 5, pp. 28–37, 2001.

[11] T. Hannelius, M. Salmenpera, and S. Kuikka, “Roadmap to adopting
opc ua,” in 2008 6th IEEE Int. Conf. on Industrial Informatics, 2008,
pp. 756–761.

[12] M. Dibley, H. Li, Y. Rezgui, and J. Miles, “An integrated framework
utilising software agent reasoning and ontology models for sensor based
building monitoring,” Journ. of Civil Engineering and Management,
vol. 21, no. 3, pp. 356–375, 2015.

[13] J. P. McCrae. The lod cloud. [Online]. Available: https://lod-cloud.net/
[14] “Semantic Sensor Network Ontology,” W3C, 2017. [Online]. Available:

https://www.w3.org/TR/vocab-ssn/
[15] C. Wanninger, C. Eymüller, A. Hoffmann et al., “Synthesising Capabil-

ities for Collective Adaptive Systems from Self-Descriptive Hardware
Devices - Bridging the Reality Gap,” in 8th Int. Symp. On Leveraging
Appl. of Formal Methods, Verification and Validation, Sept 2018.

[16] C. Eymüller, C. Wanninger, A. Hoffmann et al., “Semantic Plug and
Play – Self-Descriptive Modular Hardware for Robotic Applications,”
in International Journal of Semantic Computing (IJSC).

[17] O. Kosak, C. Wanninger, A. Hoffmann et al., “Multipotent systems:
Combining planning, self-organization, and reconfiguration in modular
robot ensembles,” Sensors, vol. 19, no. 1, 2018. [Online]. Available:
http://www.mdpi.com/1424-8220/19/1/17

[18] B. Wolf, C. Chwala, B. Fersch et al., “The scalex campaign:
Scale-crossing land surface and boundary layer processes in the
tereno-prealpine observatory,” Bulletin of the American Meteorological
Society, vol. 98, no. 6, pp. 1217–1234, 2017. [Online]. Available:
https://doi.org/10.1175/BAMS-D-15-00277.1

[19] A. Syromiatnikov and D. Weyns, “A journey through the land of model-
view-design patterns,” in 2014 IEEE/IFIP Conference on Software
Architecture, 2014, pp. 21–30.

206

