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Abstract

Hepatocellular carcinomas (HCCs) usually arise from chronic liver disease (CLD). Pre-cancerous 

cells in chronically inflamed environments may be 'epigenetically primed', sensitising them to 

oncogenic transformation. We investigated whether epigenetic priming in CLD may affect HCC 

outcomes by influencing the genomic and transcriptomic landscapes of HCC. Analysis of DNA 

methylation arrays in ten paired CLD-HCC identified 339 shared dysregulated CpG sites and 18 

shared differentially methylated regions compared to healthy livers. These regions were 

associated with dysregulated expression of genes with relevance in HCC, including Ubiquitin D 

(UBD), Cytochrome P450 Family 2 Subfamily C Member 19 (CYP2C19) and O-6-Methylguanine-

DNA Methyltransferase (MGMT). Methylation changes were recapitulated in an independent 

cohort of nine paired CLD-HCC. High CLD methylation score, defined using the 124 dysregulated 

CpGs in CLD and HCC in both cohorts, was associated with poor survival, increased somatic 

genetic alterations, and TP53 mutations in two independent HCC cohorts. Oncogenic 

transcriptional and methylation dysregulation is evident in CLD and compounded in HCC. 

Epigenetic priming in CLD sculpts the transcriptional landscape of HCC and creates an 

environment favouring the acquisition of genetic alterations, suggesting that the extent of 

epigenetic priming in CLD could influence disease outcome. 
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1. Introduction
Hepatocellular carcinoma (HCC) typically arises in the context of chronic inflammation and tissue 

necrosis.[1] Viral infections, excessive alcohol consumption, ingestion of aflatoxin B1 and 

nonalcoholic fatty liver disease (NAFLD) are all well-defined causes of chronic liver disease 

(CLD) and risk factors for HCC development.[2] Regardless of the aetiology, 

hepatocarcinogenesis usually occurs as a multistep progression from the healthy liver to fibrosis, 

cirrhosis, and ultimately HCC; a process which relies heavily on changes in the tissue 

microenvironment and the accumulation of epi/genetic alterations in the hepatocytes and stellate 

cells.[3–5]

The concept of epigenetic priming has been proposed in other cancers emerging from chronic 

health conditions or environmental factors, such as obesity in colon cancer or cigarette smoke in 

lung cancer.[6,7] In this model, pre-cancerous cells assume a new, epigenetically defined identity 

which sensitises them to oncogenic transformation. Similar to these cancers, HCC arises from a 

background of chronic disease. Indeed, epigenetic dysregulation was initially reported in CLD, 

with hypermethylation of the promoters of tumour suppressors such as RASSF1A, APC and 

CDKN2A.[8–10] These studies demonstrated that select epigenetic alterations that exist in HCC 

are also present in CLD, suggesting that they may contribute to disease initiation and/or 

progression. Subsequently, DNA methylation changes in non-alcoholic fatty liver disease have 

been associated with aberrant gene expression in non-tumoural tissue, while genome-wide 

analysis of methylation patterns have revealed the extent of epigenetic dysregulation in 

precancerous nodules.[8,11,12] The prognostic utility of  DNA methylation patterns in HCC, 

following tumourigenesis, has also been demonstrated, and particular DNA methylation 

signatures have recently been linked to specific driver gene alterations.[13,14]

This literature points to critical roles for epigenetic changes acquired during CLD in the initial 

emergence of HCC, and for those acquired during HCC on disease progression. However, the 

impact on the transcriptional and genetic landscapes of HCC, and prognostic utility of genome-

wide DNA methylation changes acquired specifically during CLD remains unexplored. Here we 

identify genome-wide DNA methylation changes acquired in non-tumoural CLD tissue, associated 

with distinct transcriptional and genetic landscapes in tumour samples. Using the results obtained 

from these analyses we developed a score that may have prognostic value in HCC. 

2. Materials and MethodsA
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2.1 Patients and samples

For the discovery cohort, ten patients with HCC were diagnosed at the University Hospital Basel 

and were prospectively recruited for this study after written informed consent. HCC biopsies, 

concomitant chronic liver disease (CLD) biopsies and peripheral blood leukocytes were collected 

from the HCC patients (Fig. S1 and Table S1A). 

From each patient undergoing a diagnostic liver biopsy, two ultrasound-guided core needle 

biopsies of the primary tumor and two biopsies from the CLD tissue and whole blood were 

collected at diagnosis at the same time. Of the two biopsies taken from the primary tumor and 

from CLD tissue, one was processed and embedded in paraffin for clinical purposes and the 

other one was snap-frozen and stored at −80°C for research purposes. 10mL of whole blood was 

collected and processed immediately for the isolation of peripheral blood leukocytes (‘buffy coat’). 

All biopsies were histologically characterized by two hepatopathologists (CE and LMT) to confirm 

the initial diagnosis of HCC.[15] the study was performed in accordance with the Declaration of 

Helsinki and the approval for the use of these samples has been granted by the ethics committee 

(Protocol Number EKNZ 2014-099).

For the validation cohort, 9 patients with HCC and concomitant CLD diagnosed at the Hospital 

Clinic, Barcelona or Mount Sinai, New York were prospectively recruited after written informed 

consent (Protocol Number 2010/5896 (IRB Hospital Clinic, Barcelona), Fig. S1 and Table S1A). 

As controls for methylation array profiling, healthy livers from two patients with colorectal cancer 

metastatic to the liver (University Hospital Basel, Protocol Number EKNZ 2014-099) and 

histologically normal tissues from ten patients undergoing hepatic resection due to non-cancer 

related diseases (Protocol Number 2010/5896 (IRB Hospital Clinic, Barcelona)) were used. As 

controls for transcriptomic analysis, liver biopsies with normal histology obtained from 15 patients 

without HCC and with normal liver values were used (University Hospital Basel, Protocol Number 

EKNZ 2014-099, Fig. S1). 

For all patients in the discovery and validation cohorts, the clinical staging was determined 

according to the Barcelona Clinic Liver Cancer staging system.[16] Sex and age of the patients, 

clinical diagnosis, underlying liver disease (hepatitis B/C infection, alcoholic liver disease, non-

alcoholic fatty liver disease) were retrieved from clinical files (Table S1A).
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The samples encompassed the diverse backgrounds of HCC; of the 10 patients, 5 were 

diagnosed with alcohol-related HCC, 3 with HBV/HCV-related HCC, and 2 NAFLD-related HCC 

(Table S1A). Our discovery cohort of ten patients largely consisted of early-stage tumors (70% 

BCLC stages 0-A) with non-multinodular HCC (70% < 2 nodules). Using the data generated from 

these samples we investigated how transcriptional changes might drive disease progression. 

2.2 Nucleic Acid extraction 

Genomic DNA and total RNA from biopsies from the discovery cohort were extracted using the 

ZR-Duet DNA and RNA MiniPrep Plus kit (Zymo Research) following the manufacturer’s 

instructions. Prior to extraction, biopsies were crushed in liquid nitrogen to facilitate lysis. 

Extracted DNA was quantified using the Qubit Fluorometer (Invitrogen).[17] DNA from peripheral 

blood leukocytes (‘buffy coat’) was extracted using the DNeasy Blood and Tissue Kit (Qiagen) 

according to the manufacturer’s instructions. For the validation cohort DNA was extracted using 

Char-geSwitch genomic DNA Mini Tissue kit  (Invitrogen) following the manufacturer’s 

instructions.[8]

2.3 Exome sequencing and analysis

Whole-exome capture was performed using the SureSelectXT Clinical Research Exome (Agilent) 

platform according to the manufacturer’s guidelines (Fig. S1). Sequencing was performed on an 

Illumina HiSeq 2500 at the Genomics Facility Basel according to the manufacturer’s guidelines. 

Paired-end 101-bp reads were generated. Reads obtained were aligned to the reference human 

genome GRCh38 using Burrows-Wheeler Aligner (BWA, v0.7.12).[18] Local realignment, 

duplicate removal, and base quality adjustment were performed using the Genome Analysis 

Toolkit (GATK, v3.6) and Picard (http://broadinstitute.github.io/picard/).[19] Somatic single 

nucleotide variants (SNVs) and small insertions and deletions (indels) were detected using 

MuTect (v1.1.4) and Strelka (v1.0.15), respectively.[20,21] We filtered out SNVs and indels 

outside of the target regions, those with a variant allelic fraction (VAF) of <1% and/or those 

supported by <3 reads. We also excluded variants for which the tumor VAF was <5 times that of 

the paired non-tumor VAF. We further excluded variants identified in at least two of a panel of 123 

non-tumor samples, including the non-tumor samples included in the current study, captured and 

sequenced using the same protocols using the artifact detection mode of MuTect implemented in 

GATK. To account for the presence of somatic mutations that may be present below the limit of A
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sensitivity of somatic mutation callers, we used GATK Unified Genotyper to interrogate the 

positions of all unique mutations in all samples from a given patient to define the presence of 

additional mutations. Variants identified by this genotyping step supported by a minimum of 2 

reads are annotated as "Genotyped". Hotspot missense mutations were annotated using the 

published resources.[22,23]

Allele-specific copy number alterations were identified using FACETS (v0.5.6), which performs 

joint segmentation of the total and allelic copy ratios and infers purity, ploidy, and allele-specific 

copy number states.[24] Copy number states were collapsed to the gene level using the median 

values to coding gene resolution based on all coding genes retrieved from the Ensembl (release 

GRCh37.p13). Genes with total copy number greater than gene-level median ploidy were 

considered gains; greater than ploidy + 4, amplifications; less than ploidy, losses; and total copy 

number of 0, homozygous deletions. Somatic mutations associated with the loss of the wild-type 

allele (i.e., loss of heterozygosity [LOH]) were identified as those for which the lesser (minor) copy 

number state at the locus was 0. All mutations on chromosome X in male patients were 

considered to be associated with LOH.[25]

 

2.4 RNA sequencing and analysis
200 ng total RNA was used for RNA-seq library prep with the TruSeq Stranded Total RNA Library 

Prep Kit with Ribo-Zero Gold (Illumina) according to manufacturer’s specifications (Fig. S1). 
Sequencing was performed on an Illumina HiSeq 2500 using v4 SBS chemistry at the Genomics 

Facility Basel according to the manufacturer’s guidelines. Sequence reads were aligned to the 

human reference genome GRCh37 by STAR using the two-pass approach.[26] Transcript 

quantification was performed using RSEM.[27] Genes without >10 counts in at least 2 samples 

were discarded. Counts were normalized using the median of ratios method from the DESeq2 

package in R version 3.6.1 (R Core Team (2019). R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/).

Comparisons of the intra-group variation, defined as the within-group pairwise euclidean distance 

based on their principal components, were performed using Wilcoxon tests. Differential 

expression analysis was performed using the wald test in DESeq2.[28] Genes with |logFC| > 1.5 

and FDR < 0.05 were considered differentially expressed. Gene set enrichment analysis was 

performed using the fgsea package using Hallmark gene sets, with genes ranked based on the t 

statistic from DESeq2.[28,29]A
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2.5 Methylation profiling and analysis

Methylation profiling was performed using Infinium® MethylationEPIC BeadChips and Infinium® 

HumanMethylation450 BeadChip (Illumina) on the discovery and validation cohorts, respectively 

(Fig. S1). After whole-genome amplification and enzymatic fragmentation, the samples were 

hybridized to the BeadChips and scanning was conducted with the Illumina iScan. Idat files were 

exported and analyzed using the minfi package in R.[30] All arrays were reduced to probes 

present on both the HumanMethylation 450 and MethylationEPIC BeadChips, as 10/12 normal 

samples, those from Barcelona, were analysed on the HumanMethylation 450 BeadChip. Probes 

associated with SNPs, on the sex chromosomes or with a detection P value > 0.01 in any sample 

were removed prior to analysis. Data were normalised using the Noob algorithm from the minfi 

package.[30] Probes were annotated using the IlluminaHumanMethylation450kanno package in 

Bioconductor. 

Principal component analysis was performed using the top 500 most variable CpG sites. 

Comparisons of the intra-group variation, defined as the within-group pairwise euclidean distance 

based on their principal components, were performed using Wilcoxon tests. Comparisons of the 

inter-group variation, as measured by pairwise euclidean distance based on their principal 

components between samples of different groups, were performed using Wilcoxon tests. Probe-

level differential methylation analysis was performed for 42,925 CpG sites using limma. Probes 

with |logFC| > 1.5 and FDR < 0.05 were considered differentially methylated. Differentially 

methylated regions (DMRs) were called using DMRcate using the parameters ‘lambda=500, 

C=5’.[31–33] DMRs with mean change in B value > |15%| and FDR < 0.05 were considered 

differentially methylated. DMRs were annotated using the annotateTranscripts function from the 

bumphunter and the TxDb.Hsapiens.UCSC.hg19.knownGene packages from Bioconductor.[34]

To assess the relationship between DMRs and methyl-binding domain proteins and repressive 

histone modifications we downloaded ENCODE ChIP-seq data for ZBTB38, ZBTB4 and Histone 

3 Lysine 27 trimethylation,[35] and intersected these with the DMRs using bedtools.[36]

2.6 Downloading and annotation of the TCGA cohort

DNA methylation, gene expression, mutation and survival data for 430 HCC samples were 

downloaded from TCGA using the TCGAbiolinks package in R on 28th July 2020.[37,38] Copy A
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number alteration data was downloaded from TCGA Firehose (Broad Institute TCGA Genome 

Data Analysis Center (2016): Firehose VERSION run. Broad Institute of MIT and Harvard. 

doi:10.7908/C11G0KM9). Assessment of the presence or absence of cholestasis, Mallory bodies, 

tumor-infiltrating lymphocytes, vessel infiltration, and necrotic areas was performed as previously 

described.[39] TCGA samples were reduced to the 368 for which complete DNA methylation 

data, survival data and histological annotation were available.

2.7 Development of CLD DNA methylation (CLDme) prognostic score

124 probes were DM in CLD and HCC in both the discovery and validation cohorts; after 

removing 15/124 probes with NA values in the TCGA dataset an elastic net Cox regression model 

was built using the remaining 109 probes and overall survival as the response variable. Elastic 

net regression is a regularization method that balances the trade-off between bias and variance 

using L1 and L2 regularisation parameters.[40] These are combined into a single parameter, 

lambda, in the implementation of elastic net regression in the glmnet R package.[41] The optimal 

value for lambda was selected using the training set and 10-fold cross validation using the 

cv.glmnet function from the glmnet package.[41] The model was built on a training set consisting 

of a randomly selected 70% (n=257) of the 368 TCGA HCC samples. A fixed seed was used in 

order to ensure reproducibility. The remaining 30% (n=111) samples were reserved for testing. 

Samples were classified as CLDme score high or low based on the median score of samples in 

the TCGA training set after defining the optimal value for lambda. Differences in survival between 

CLDme High/Low groups were compared using the log-rank test, adjusted for disease history and 

stage (the only factors significantly associated with survival).

2.8 Analysis of TCGA samples stratified by CLDme score

To compare the gene expression profiles between CLDme High and Low samples, differential 

gene expression analysis was performed using 362 TCGA samples for which DNA methylation, 

transcriptomic and clinical information were available. Differential gene expression analysis was 

performed using the wald test in DESeq2.[28] Comparisons of numbers of mutations, and copy 

number alterations between CLDme High and Low samples were carried out using Wilcoxon 

tests on the 306 and 364 TCGA samples for which clinical, DNA methylation, and mutation/copy 

number data were available, respectively. Comparison of lymphocyte invasion between CLDme 

High/Low groups was carried out using the histological annotation as described previously. A
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ImmuneScores for each TCGA sample were downloaded from https://xcell.ucsf.edu/ and 

compared between CLDme High/Low groups.[42]

2.9 Immunohistochemistry

Immunohistochemical staining was performed on a Benchmark immunohistochemistry staining 

system (Bond, Leica) with BOND polymer refine detection solution for DAB, using anti-MGMT 

(1:800, abcam ab39253) primary antibody as substrate as previously described.[43] Images were 

acquired using an Olympus BX46 microscope as previously described. MGMT immunoreactivity 

was scored semi-quantitatively by multiplying the proportion of MGMT positive cells (%) and the 

staining intensity (0 = none; 1 = weak; 2 = intermediate; 3 = strong). Statistical comparison was 

performed using paired Wilcoxon test.

3. Results

3.1 Transcriptional alterations present in HCC are detectable in CLD tissue

To identify transcriptional alterations in diseased liver tissues which progressed to HCC, we 

performed RNA-sequencing on needle biopsies from ten HCC tissue and matched adjacent 

chronic liver disease (CLD) tissue, along with 15 healthy liver samples against which CLD and 

HCC transcriptional profiles were compared (Fig. S1). Unsupervised analysis of gene expression 

data showed that normal and HCC samples form distinct clusters (Fig. 1A), with CLD tissues 

clustering closer to the normal tissues than HCCs. This was reflected in unsupervised consensus 

clustering which showed normal and HCC clustering separately, with CLD tissues split between 

these two clusters (Fig. S2). Differential gene expression analysis detected a significant overlap 

between transcriptional alterations in CLD and HCC when compared to normal samples. 

978/1,269 (77.1%) and 697/996 (70.0%) genes down- and upregulated, respectively, in CLD 

were also differentially expressed in HCC (both P < 0.0001, hypergeometric tests, Fig. 1B, 
Tables S1B-S1D, Fig. S3). HCCs, however, acquired a further 1,562 and 1,818 genes down- 

and upregulated respectively. Furthermore, the change in expression of the 1,675 genes showing 

DE in both CLD and HCC was significantly amplified in HCC compared to CLD (P < 2.22e-16, 

paired Wilcoxon test, Fig. 1C).  
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Pathway analysis of the dysregulated genes show upregulation of epithelial-to-mesenchymal 

transition (EMT)-related genes in CLD and HCC (Fig. 1D), consistent with the tissue regeneration 

and fibrogenic processes occurring during CLD.[29] Interestingly, cancer-related pathways, such 

as cell cycle (MYC targets V1) and MTORC1 signaling, were also upregulated in both HCC and 

CLD samples, suggesting that these pathways may already be transcriptionally dysregulated in 

the pre-cancerous lesion. The magnitude of upregulation of these pathways was greater in the 

HCCs than in the CLDs, highlighting the progressive nature of these changes. By contrast, we 

also found upregulation of DNA repair and mitotic spindle pathways and downregulation of the 

xenobiotic and bile acid metabolism in HCC samples, but not the CLD samples (Fig. 1D). 

Conversely, we found significant alteration of the complement and interferon gamma response 

pathways in the CLD samples but not the HCC. 

To determine whether the transcriptional alterations observed in CLD were driven by somatic 

genetic alterations we performed whole exome sequencing on the matched CLD and HCC 

samples (Fig. S1). We detected at least one somatic mutation in the most commonly mutated 

genes in HCC[44] and substantial copy number alterations in 9/10 HCCs (Fig. S4, Tables S1E, 
S1F). However, except for one low confidence mutation in APOB in the CLD from patient 6, we 

found no evidence for shared mutations in the commonly mutated genes or copy number 

alterations between CLD and HCC samples from the same patient. 

Together these data demonstrate the significant accumulation of cancer-associated 

transcriptional changes in CLD, which are compounded in HCC, and suggest that the aberrant 

transcriptional landscape of HCC may start developing during CLD independent of genetic 

alterations.

3.2 DNA methylation alterations in HCC are detectable in CLD

Given that cancer-associated transcriptional changes in CLD do not appear to be underpinned by 

genomic changes frequently observed in HCC, we asked whether epigenetic alterations may help 

explain the transition towards HCC. In support of this hypothesis, we found progressive loss of 

expression of MAT1A (CLD q = 0.02, Log2FC = -0.80, HCC q = 1.43e-11, Log2FC = -2.14, Tables 
S1B, S1C), which catalyses synthesis of the universal methyl donor S-adenosylmethionine, as 

previously reported in cirrhotic livers.[45] As the loss of S-adenosylmethionine availability 
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suggests the potential for epigenetic reprogramming, we subjected the same 10 pairs of CLD and 

HCC, and 12 normal liver samples to methylation profiling (Fig. S1).

Principal component (PC) analysis of the methylation profiles reflected the findings from the 

transcriptional analysis; CLD/normal livers were separated from HCCs on PC1 but CLDs were 

separated from normal livers by PC3 (Fig. 2A, Fig. S5A), reflecting a recent study showing a 

gradient of methylation changes spanning the progression from health liver to HCC.[46] We 

identified 54,888 differential methylated (DM, |log2FC| > 1.5, q < 0.05) CpG sites in the HCC 

samples compared to normal tissue, the majority of which (46,669, 85%) were hypomethylated 

(Fig. 2B,  Table S1G), consistent with the phenomenon of genome-wide hypomethylation in 

cancer cells.[47,48] Differential methylation was observed at CpGs associated with P14 and 

RASSF1A, previously shown to be aberrantly methylated in HCC (Fig. S5B).[49–51] In the CLD 

samples, we detected 586 DM CpGs compared to normal liver (Fig. 2C, Table S1H). Of these, 

339 CpGs, associated with 222 genes, were also DM in the HCC samples, representing a highly 

significant overlap (P < 0.0001, hypergeometric test, Fig. 2C, Fig. S6, Table S1I). Importantly, as 

with the genes which were DE in both CLD and HCC, the 339 CpG sites DM in both CLD and 

HCC compared to normal showed significantly larger methylation changes in HCC than CLD (P < 

2.22e-16, paired Wilcoxon test, Fig. 2D). Compared to HCC, a greater proportion of the 

methylation changes observed in CLD had the potential to regulate gene expression. In HCC 

samples, 53.5% DM CpG sites were hypomethylated and in Open Sea regions (> 4 kb from a 

CpG island), compared to 21.5% in CLD samples. On the other hand, DM CpGs in CLD samples 

were enriched in CpG island and shore regions (< 2 kb from a CpG island) compared to HCC (P 

= 0.016, OR = 1.36, Fisher’s exact test, Fig. 2E), which could suggest that methylation alterations 

in CLD have proportionally greater effect on transcriptional regulation than those in HCC.

Given that DMRs have been shown to be more strongly linked to gene expression than 

methylation changes at single CpG sites,[52] we further identified differentially methylated regions 

(DMR), regions of adjacent CpG sites showing significantly altered methylation (mean change in 

B value > |0.15|, q  < 0.05) in CLD and HCCs.[31] As with the probe-level analysis, we detected 

substantially more DMRs in the HCC samples than the CLD samples, compared to the normal 

(11,582 and 121 respectively). Intersecting these regions identified 67 DMRs, containing 262 

CpGs, showing altered methylation in both CLD and HCC samples (Fig. 2F).

Our data demonstrate the extent of epigenetic changes in CLD, and that many of those changes 

are amplified in HCC. As genetic alterations typically observed in HCC were not detected in CLD, A
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while HCC-associated methylation changes were evident, this suggests the aberrant methylome 

of HCC may, in part, have emerged before tumourigenesis.

3.3 DNA methylation changes in CLD sculpt the transcriptional landscape of HCC

To determine how the DNA methylation changes observed in CLD and HCC shape their 

transcriptional profiles, we interrogated the 67 DMRs to search for those associated with DE 

genes (|log2FC| > 1.5, q < 0.05).  We therefore removed candidate DMRs for which we did not 

have gene expression data, those which could not be associated with a gene promoter, i.e., 

annotated as ‘downstream’, and those whose change in methylation was not reflected in a 

significant change in gene expression, in the expected direction. This filtering left 18 regions DM 

in both CLDs and HCCs associated with DE genes (Fig. 3A and Tables S1J, S1K). The genes 

affected by the epigenetic priming occurring in CLD included hypermethylated regions associated 

with the cytochrome P450 family gene CYP2C19 and tuberin sclerosis complex 2 (TSC2), both 

downregulated in the CLD and HCC samples and reported to be lost in HCC with implications for 

prognosis.[53,54] As an exploratory analysis to further demonstrate the relevance of these 

regions in the epigenetic regulation of gene expression, we found methyl binding domain protein 

(ZBTB4 and ZBTB38) and H3K27me3 peaks from a previously published study overlapped with 

the DMRs associated with HDAC11, SYT8, and TLDC2 [35] suggesting MBD proteins may 

interact with the identified DMRs (Fig. S7). We also identified a hypermethylated DMR within 

intron 3 of MGMT, containing the CpG site cg07554771 (CLD log2FC = 2.89, q = 0.02, HCC 

log2FC = 3.25, q = 0.0002; Fig. 3B, top), hypermethylation of which is correlated with MGMT 

repression in NAFLD and HCC.[11] Furthermore, an additional DMR was detected in the HCC 

samples, containing the CpG site cg00639517, hypermethylation of which is also correlated with 

loss of MGMT expression (Fig. S8).[11] The hypermethylation of MGMT was concomitant with a 

loss of MGMT expression in CLD and HCC (CLD log2FC = -0.99, q = 0.007, HCC log2FC = -

1.80, q = 9.04e-8; Fig. 3B, bottom). Corroborating the progressive loss of MGMT expression in 

HCC progression, MGMT immunohistochemical analysis of an independent set of 12 matched 

CLD and HCC samples showed significant reduction of MGMT expression in HCC compared to 

matched CLD samples (P = 0.03, Wilcoxon test, Fig. 3C). 

While studies on DNA methylation in CLD progression have mainly focussed on hypermethylation 

and silencing of tumour suppressor genes, 13 of the 18 identified DMRs showed hypomethylation 

and upregulation in the CLD and HCC samples compared to normal liver (Fig. 3A). These A
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included the promoters of UBD (FAT10), a ubiquitin-like modifier, the calponin TAGLN2, both 

implicated in the progression of HCC, and BAIAP2L2 coding for Insulin Receptor Tyrosine Kinase 

substrate, associated with actin remodelling and promoting HCC proliferation.[55–57] 

With the changes in DMRs reflected in gene expression changes in CLD and HCC, our findings 

demonstrate the potential for epigenetic priming in CLD, not only to influence tumourigenesis as 

has been extensively reported, but also to sculpt the transcriptional landscape of the subsequent 

HCC.

3.4 CLD-associated DNA methylation changes distinguish CLD and HCC from normal 
livers across cohorts

To rule out the possibility that the DNA methylation changes we detected in CLD were  cohort-

specific, we analysed the DNA methylation data from an independent validation cohort of 9 pairs 

of CLD and HCC samples (Fig. S1). Principal component analysis of the validation cohort using 

the B values of the 51 CpG sites in the 18 DE-gene associated DMRs identified in both CLD and 

HCC in the discovery cohort (Fig. 3A) separated the normal samples from the CLD and HCC 

samples (Fig. 4A). 

Differential methylation analysis of the samples in the validation cohort identified 2,970 and 

86,473 DM CpG sites in the CLD and HCC respectively (|log2FC| > 1.5, q < 0.05, compared to 

normal livers). As in the discovery cohort, the overlap of 1,268 DM CpG sites in both CLD and 

HCC in the validation cohort was highly significant (P < 0.0001, hypergeometric test; Fig. 4B). 
These CpG sites included those identified in genes already reported in the discovery cohort such 

as in MGMT (Fig. S9). Importantly, the overlap between the set of shared DM CpG sites 

identified in both cohorts (124 CpG sites) was also highly significant (P < 0.0001, hypergeometric 

test, Fig. 4B). The consistency of the observed methylation changes was also conserved at the 

DMR level where 8 of 18 identified CLD-HCC DMRs, associated with DE genes in the discovery 

cohort, were shared with the validation cohort (Fig. 4C). Fig. 4D shows the change in methylation 

between normal, and CLD and HCC samples at a representative gene promoter; UBD, found to 

be upregulated in the discovery cohort, concomitant with loss of methylation at its promoter. This 

was also observed in the validation cohort. 
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Together these data suggest that specific epigenetic changes, with the potential to influence gene 

expression, occur consistently in CLD and are maintained in HCC. 

3.5 Epigenetic priming in CLD creates a permissive environment for the accumulation of 
somatic mutations in HCC 

Next, we assessed whether the methylation state of the 124 DM CpG sites in both CLD and HCC 

samples in both datasets was of clinical relevance, using methylation, clinical and survival data of 

368 HCCs from The Cancer Genome Atlas (TCGA).[38] We randomly split the TCGA dataset 

70:30 into training (n=257) and testing (n=111) set and, after removing 15 CpG sites with missing 

values, we trained an elastic net regression model using the remaining 109 CpG sites to define a  

“CLD Methylation (CLDme)” score for each sample (Methods, Fig. 5A and  Table S1L). A 

multivariate Cox proportional hazards model, adjusted for disease history and stage (the only 

factors significantly associated with survival,  Table S1M), showed a high CLDme score to be an 

independent predictor of poor survival in the test set of 111 TCGA samples (Fig. 5B, log-rank P = 

5e-07, HR = 7.97). We confirmed our findings using an independent dataset of 241 patients[8] and 

showed that a high CLDme score was again significantly associated with survival independent of 

disease history and stage (log-rank P = 0.001, HR = 1.28; Fig. 5C).

We next sought to determine whether the CLDme score was associated with genetic and 

transcriptomic alterations. Using the entire TCGA cohort, a differential expression analysis 

between CLDme High and Low samples found 8/18 genes associated with DMRs in the initial 

discovery samples were DE between CLDme High and Low samples (q < 0.05, DESeq2 Wald 

test; Fig. S10A). On the genetic level, we found that the CLDme High samples had significantly 

more mutations than the CLDme Low samples (P = 0.0015, Wilcoxon test; Fig. 5D). As mutations 

in TP53 define a class of HCCs with poor prognosis,[58] we further asked whether CLDme was 

associated with TP53 mutations. We found that TP53 mutations were significantly enriched 

among CLDme High samples (44.5% vs 29% in CLDme Low, P = 0.0065, OR = 1.94, Fisher’s 

exact test, Fig. 5E). Similarly, we observed that CLDme High samples showed significantly higher 

copy number changes than CLDme Low samples (P = 0.0001, Wilcoxon test; Fig. 5F). 

Together these data suggest epigenetic priming in CLD may have roles in HCC that go beyond a 

role in tumourigenesis. By shaping the transcriptional landscape of HCC and creating a more 
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permissive environment for the acquisition of genetic alterations, aberrant methylation patterns in 

CLD may influence HCC outcome.

4. Discussion 

In this proof-of-concept study we demonstrate the extent of epigenetic and associated 

transcriptomic changes occurring in the progression from normal tissue, to CLD and HCC. We 

show that methylation changes acquired during CLD may not only have a role in tumourigenesis, 

but also sculpt the transcriptional landscape of the subsequent HCC, with implications for disease 

outcomes. We detected significant hypermethylation affecting genes previously reported to be 

aberrantly methylated and silenced, and incorporated in HCC prognostic scores e.g. RASSF1A, 

APC and P14.[8,9,59–62] However, here, using two cohorts, we expand upon these by showing 

the extent and impact of DNA methylation changes in CLD is more far-reaching than has 

previously been reported, affecting genes for which aberrant methylation has not, to our 

knowledge, been reported in CLD e.g. CYP2C19, TSC2 and TAGLN2. Firstly, we showed that 

genes reported to be upregulated and, in some cases, to promote HCC progression, such as 

HDAC11, UBD (FAT10) and TAGLN2,[55,63,64] are hypomethylated in CLD samples, suggesting 

these prognostically relevant epigenetic and transcriptional changes may arise before HCC has 

developed. Secondly, we showed that high CLDme score was associated with higher levels of 

TP53 alterations, a poor prognostic indicator,[58] suggesting epigenetic changes acquired during 

CLD may be permissive for genetic alterations with the potential to influence HCC prognosis. 

While derived from DNA methylation changes initially detected in a small dataset, we validated 

the prognostic relevance of our model in two independent cohorts of HCC patients.

Our results reflect the recently proposed 'epigenetic priming' model, whereby epigenetic changes 

induced by chronic exposure to cigarette smoke were shown to sensitise cells to an oncogenic 

KRAS mutation by promoting EMT in lung cancer, or the epigenomic alterations driven by obesity 

were detectable in pre-cancerous colonic epithelium.[7,65] Importantly, while many of the genes 

affected by epigenetic priming are not necessarily cancer drivers, in the case of 

hypomethylated/upregulated genes such as UBD and CREB5, these genes have been linked to 

prognosis and disease outcome.[54,66,67] We therefore hypothesise that epigenetic priming 

during CLD may have implications for HCC prognosis through two possible mechanisms; by 

sculpting the transcriptional landscape of the emergent HCC, and by creating a permissive 

environment for the acquisition of genetic alterations affecting genes such as TP53 that 

influences outcome.[68]A
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RNA-seq analysis revealed the nature of transcriptional reprogramming during the progression 

from CLD to HCC. First, we observed increased expression of immune gene sets in the CLD 

samples but not the HCC samples. CLD is characterised by the continued expression of 

cytokines and recruitment of immune cells to the liver.[69] However, during progression to HCC 

there is a shift towards a suppressive immune environment allowing the growth of cancer 

cells.[70] Secondly, in keeping with the tissue regeneration and fibrogenic processes occurring 

during CLD,[71] we found enrichment for genes associated with EMT in CLD samples. Beyond 

this, we also found gene sets, such as E2F and MYC targets are upregulated in CLD as well as 

HCC in a progressive manner. Indeed, the upregulation of E2F targets has been reported to 

define a subclass of HCC.[72,73] Thus tumorigenic transcriptional programmes may already be 

activated in CLD.

Our genome-wide evaluation of epigenetic dysregulation in matched CLD and HCC revealed that 

some of the epigenetic alterations in HCC are already detectable in CLD and are associated with 

transcriptional dysregulation. Of note, we found that DM CpG sites in CLD more frequently 

affected CpG islands and shores than those in HCC, suggesting that the methylation alterations 

in CLD may have a greater effect on transcriptional regulation than those in HCC. On the other 

hand, we also hypothesise that metabolic perturbations on the transcriptional level, such as 

MAT1A loss, may contribute to the epigenetic reprogramming. MAT1A loss results in reduced S-

adenosylmethionine (SAM) synthesis which is a feature of both cirrhosis and HCC that leads to 

global hypomethylation in rat livers during hepatocarcinogenesis, and is associated with 

increased proliferation in human liver cancer cells.[74,75] Our results support a model of 

epigenetic priming occurring in CLD prior to the development of HCC and, more interestingly, that 

the influence of epigenetic priming in CLD may go beyond a role in tumorigenesis as it has the 

potential to create a transcriptional environment that influences disease outcomes. 

Expanding upon previous work on epigenetic changes in CLD and HCC,[9,59] here we show that 

methylation changes acquired during CLD associate with outcome and genetic alterations in 

HCC. Notably, we detected hypermethylation of CpG sites within the O-6 methylguanine DNA 

repair gene MGMT, concomitant with its downregulation in CLD and HCC. Loss of MGMT permits 

liver cancer development in vivo, but recent studies have variably found links and no link between 

MGMT methylation and HCC risk.[76–79] As MGMT is the sole enzyme responsible for O-6 

methylguanine repair, its hypermethylation-induced silencing, initiated during CLD, may result in 

increased rates of mutation. Indeed, loss of MGMT has been associated with TP53 mutations in A
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HCC.[78] Loss of MGMT expression, associated with methylation of its promoter, defines a 

subset of HCCs [78] and has been reported in tumour-adjacent tissue from HCC patients, 

however this loss of expression was without associated promoter hypermethylation as measured 

using methylation-specific PCR.[80] In conjunction with our data showing the hypermethylation of 

non-promoter CpGs in MGMT, which have been shown to correlate with MGMT expression in 

NAFLD, this may imply the loss of expression of MGMT in HCC may be initiated by non-promoter 

methylation changes acquired during CLD, which become ‘locked-in’ by promoter methylation, as 

has been reported in HCC.[11,78]. Future work will focus on defining whether MGMT loss is more 

associated with tumour emergence, or progression. 

The effect of epigenetic changes on the genetic landscapes of HCC is further illustrated by the 

association between CLDme score and the overall tumor mutational burden and TP53 mutations 

in HCC, suggesting that the epigenetic state when a driver gene mutation occurs may influence 

outcome. Indeed, despite the small cohorts used to discover CLD-associated methylation 

changes, we showed that the prognostic relevance of the detected changes was consistent in two 

large-scale cohorts. We also noted that the prognostic relevance of the CLDme score is not 

purely a result of altered levels of immune infiltration given the lack of association between 

CLDme score and the presence of lymphocytes or the 'ImmuneScore' as defined by xCell in the 

TCGA cohort (Fig. S10B-D). Between the two cohorts, we also observed that the difference in 

survival between CLDme high and CLDme low patients was less pronounced than in the TCGA. 

We posit that this discrepancy may be due to differences in the ethnicity of the patients included 

in the two cohorts. The TCGA is composed of 43% Asian patients, while the validation cohort was 

collected in Spain, France and the United States so is likely to have a lower proportion of Asian 

patients. Secondly, the validation cohort had median AFP levels of 51, whereas the TCGA had a 

median value of 15. Elevated AFP is associated with the CpG island methylator phenotype in 

HCC so this may also impact the methylomes of patients in the validation cohort, affecting the 

accuracy of prediction.[68]  

Other studies have shown the potential for methylation changes at specific gene promoters to 

predict hepatocarcinogenesis.[9] Therefore, an obvious extension of the work presented is to ask 

whether the CLD-associated methylation signature may have predictive as well as prognostic 

potential. To test the feasibility of this we performed the same array profiling on CLD tissue from 

six patients with decompensated liver disease, and had advanced CLD for > 10 years without 

HCC development. With this small cohort we were able to detect a trend (P = 0.059) towards 

lower CLDme score in non-progressing CLD, compared to HCC-associated CLD (Fig. S11). A
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While this remains to be validated in a larger cohort, these preliminary data indicate that a lack of 

this epigenetic dysregulation may be associated with a reduced risk of HCC emergence. While 

there was a strong inverse correlation between the methylation status of the identified DMRs and 

the expression of their associated genes, for genes such as CYP2C19 and TLDC2 the change in 

expression was disproportionate to the change in methylation. This observation may point to roles 

for other epigenetic mechanisms, such as altered patterns of histone modifications and chromatin 

organisation, in transcriptional regulation of these genes and in the progression of CLD to HCC. 

Indeed, ongoing research is focussed on the notion of the reversibility of changes to histone 

modifications occurring in the CLD-HCC transition, and other groups have shown the 

susceptibility of epigenetic reprogramming (H3K27ac in particular) to therapeutic intervention to 

prevent the onset of HCC in mice.[81]

5. Conclusions
In summary, we have shown that CLD and HCC samples from the same patient share broad 

transcriptional and epigenetic alterations which are compounded in HCC. Our results highlight 

how methylation changes in CLD may help not only to create a transcriptional landscape 

favourable for HCC emergence, but that the influence of these changes may extend to 

consequences for disease outcomes. The development of the CLDme score demonstrates that 

epigenetic changes occurring in CLD, and affecting both genes previously reported to be 

aberrantly methylated in CLD, as well as those we identify here, can be leveraged to predict HCC 

outcomes. Future studies will focus on identifying DNA methylation changes that may help 

identify CLD that would progress to HCC. 
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Figure Legends

Fig. 1: Oncogenic transcriptional alterations in CLD are compounded in HCC. A) Principal 

component analysis 15 healthy liver and 10 paired CLD and HCC samples. B) Venn diagrams of 

down- and upregulated genes in CLD and HCC compared to normal (|log2FC| > 1.5 and q < 

0.05). C) T statistics (absolute values) of 1,675 DE genes in both CLD and HCC compared to 

normal livers. DE: |log2FC| > 1.5, q < 0.05. P computed from paired Wilcoxon tests. D) Hallmark 

pathways with significaxnt enrichment in CLD, HCC or both from gene set enrichment analysis 

are shown (GSEA; P < 0.05). CLD: chronic liver disease; HCC: Hepatocellular carcinoma; DE: 

differentially expressed.

Fig. 2: DNA methylation alterations in HCC are detectable in CLD. A) Principal component 

(PC) analysis of 12 healthy liver samples, and ten paired CLD and HCC samples, showing PC1 

and PC3. B,C) Differential methylation analysis (-log10(q) against log2 fold-change (M value)) 

comparing CLD (B) and HCC (C) to healthy livers. Significant CpG sites (|log2 fold change| > 1.5, 

q < 0.05) are coloured according to the legend. D) T statistics (absolute values) of 339 

differentially methylated CpG sites in both CLD and HCC compared to normal livers. DM: 

|log2FC| > 1.5, q < 0.05. P computed from paired Wilcoxon tests. E) Distribution of differentially 

methylated CpG sites (DMPs) according to their genomic features, detected in 10 CLD, 10 HCC 

compared to 12 normal livers. F) Venn diagram showing intersection of DMRs called in CLD and 

HCC samples compared to normal livers. PC: Principal component; CLD: chronic liver disease; 

HCC: Hepatocellular carcinoma; DM: differentially methylated; DMP: differentially methylated 

probes; DMR: differentially methylated region.

Fig. 3: Gene expression and DNA methylation changes define the transition from CLD to 
HCC. A) Heatmaps of methylation and gene expression at differentially expressed genes 

associated with DMRs (|mean change in methylation B value| > 0.15 and FDR < 0.05). Dot plots 

showing mean change in B value (methylation) and log2 fold change (gene expression) between 

CLD (n=10) and normal (n=12) and HCC (n=10) and normal (n=12). B) cg07554771 methylation 

and MGMT expression from 10 paired CLD (n=10) and HCC samples (n=10). P values computed 

from limma (methylation) and DESeq2 (gene expression). C) Representative 

immunohistochemistry images from two paired CLD and HCC biopsies stained with anti-MGMT 

antibody and MGMT protein expression IHC scores from 12 paired CLD and HCC samples 

(paired Wilcoxon test). Scale bar 20µm and 100µm. DMR: differentially methylated region; CLD: 

chronic liver disease; HCC: Hepatocellular carcinoma.A
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Fig. 4: DNA methylation alterations in CLD and HCC are conserved across cohorts. A) 

Principal component analysis of 12 healthy liver samples, and nine paired CLD and HCC samples 

from validation cohort, based on B values from the 51 CpG sites in the 18 DMRs associated with 

DE genes in the discovery cohort. B) Venn diagrams showing overlap between DM CpG sites in 

CLD and HCC in the discovery and validation cohorts, and the overlap between CLD-HCC DM 

CpG sites across cohorts. C) Heatmap of methylation across normal, CLD and HCC samples at 8 

differentially expressed genes associated with DMRs in HCC and CLD samples across both 

cohorts. Dot plot on right shows mean difference in B values between CLD and normal and HCC 

and normal. D) Track plots showing B values at two CLD-HCC overlapping DMRs in UBD in 

validation and discovery cohorts. DNAse hypersensitivity sites are denoted in the bottom tracks 

with ENSEMBL gene annotation. CLD: chronic liver disease; HCC: Hepatocellular carcinoma; 

DMR: differentially methylated region; DE: differentially expressed;  DM: differentially methylated; 

DMR: differentially methylated region.

Fig. 5: Implications of epigenetic priming in CLD on HCC. A) The approach used to select 

CpG sites for elastic net regression using TCGA data. B-C) Kaplan Meier plots of survival 

probability in the TCGA test set (B, n=111) and in an external validation cohort (C, n=246), 

stratified into High/Low CLDme score. Logrank P value adjusted for disease stage and history. D) 

Number of somatic mutations in TCGA samples stratified by CLDme score (163 High, 142 Low). 

Violin plots show distributions of mutations per sample. Boxplot shows the mean and interquartile 

range. Whiskers show the range of the data up to 1.5 x IQR. Samples outside this range are 

plotted as points. P value computed from Wilcoxon test. E) Barplot showing percentage of 

samples with TP53 mutation types, stratified by CLDme (178 CLDme High, 183 CLDme Low). F) 

Extent of copy number alterations in TCGA samples stratified by CLDme score (178 CLDme 

High, 183 CLDme Low). Violin plots, boxplots and statistics as for D. TCGA: The Cancer Genome 

Atlas; CLDme: chronic liver disease methylation; IQR: inter quartile range.
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Supplementary Figure Legends

Fig. S1: Schematic summarising the origin of samples used for methylation, transcriptomic, WES, 

and IHC analysis. WES: Whole exome sequencing; IHC: immunohistochemistry.

Fig. S2: Heatmap showing gene expression of top 500 most variably expressed genes across 

normal livers, CLDs and HCCs. Most variable genes were determined based on standard 

deviation across all samples. Dendrogram determined by consensus clustering (k means).  Each 

row is a gene, and heatmap colours show z scaled, normalised expression.  CLD: chronic liver 

disease; HCC: Hepatocellular carcinoma.

Fig. S3: Heatmap showing expression of genes differentially expressed in CLD, HCC or both, 

compared to normal livers. Each row is a gene, and heatmap colours show z scaled, normalised 

expression. CLD: chronic liver disease; HCC: Hepatocellular carcinoma.

Fig. S4: Genetic alterations detected in HCC are not present in matched CLD samples.  Genetic 

alterations are not detectable in tumour-adjacent cirrhotic tissue. A) Summary of coding 

mutations in CLD and HCC samples from ten patients, affecting 20 frequently altered genes in 

HCC. The effects of the somatic alterations are color-coded according to the legend. B) Summary 

of copy number alterations affecting 20 genes showing frequent CNA in HCC. Samples are 

annotated with fibrosis stage (CLD samples) and HCC samples with Edmondson and BCLC 

stage. C) Representative genome-wide copy number plot (Patient 9). CLD: chronic liver disease; 

HCC: Hepatocellular carcinoma; CNA: copy number alteration.

Fig. S5:  DNA methylation in CLD, HCC, and normal liver. A) Normal liver and CLD samples are 

separated from HCC samples by PC1. B) Hypermethylation of CpG sites associated with 

RASSF1A and P14 in HCC. B values for 12 normal livers and 10 paired CLD and HCC samples.  

P values from moderated t-test, limma. CLD: chronic liver disease; HCC: Hepatocellular 

carcinoma;

Fig. S6: Venn diagram of CpG sites showing differential methylation in CLD and HCCs compared 

to normals. Sites are split according to the direction of methylation change. CLD: chronic liver 

disease; HCC: Hepatocellular carcinoma;
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Fig. S7: Overlap between methyl-binding domain protein ChIP-seq data and CLD-HCC DMRs. 

CLD: chronic liver disease; HCC: Hepatocellular carcinoma; DMR: Differentially methylated 

region.

Fig. S8: Differentially methylated regions in CLD and HCC samples, compared to normal livers. 

Track plot of DMRs in MGMT shared between CLD and HCC and gained in HCC. DMRs were 

called by DMRcate with an FDR < 0.05 and change in B > |0.15|. CpG sites correlated with 

MGMT expression in Murphy et al. are highlighted. CLD: chronic liver disease; HCC: 

Hepatocellular carcinoma; DMR: Differentially methylated region; FDR: False discovery rate.

Fig. S9: Methylation changes in MGMT in CLD and HCC are conserved across cohorts. MGMT is 

hypermethylated in CLD and HCC compared to healthy livers. Methylation of cg07554771 in 12 

healthy livers and 10 CLD and HCC pairs (discovery cohort) and a further 9 CLD - HCC pairs in 

the validation cohort. Wilcoxon Test. CLD: chronic liver disease; HCC: Hepatocellular carcinoma.

Fig. S10: Characterisation of CLDme High and Low TCGA samples. A) Volcano plot showing 

results of differential gene expression analysis comparing CLDme High to CLDme low tumours. 

18 genes showing DE and associated with DMRs in the initial discovery samples are labelled. 

Dashed line shows significance threshold P < 0.05, DESeq2 Wald test. B)  High and Low CLDme 

score TCGA samples show no difference in ImmuneScore. ImmuneScore was calculated for 

each sample as the sum of 11 cell types (‘B-cells', 'CD4+T-cells', 'CD8+ T-cells' , 'DC', 

'Eosinophils', 'Macrophages', 'Monocytes', 'Mast cells', 'Neutrophils' and 'NK cells') calculated by 

xCell using the expression data for 360 TCGA samples. Wilcoxon test ns = non-significant. C) 

Percentage of TCGA samples, stratified by CLDme score, with and without lymphocyte invasion. 

D) CLDme score in TCGA samples with and without lymphocyte invasion. Wilcoxon test. TCGA: 

The Cancer Genome Atlas; CLDme: chronic liver disease methylation; DE: Differentially 

expressed; DMR: differentially methylated region; CLDme: chronic liver disease methylation.

Fig. S11: CLDme scores in HCC, CLD, and non-progressing CLD (NPC). CLDme scores were 

generated for an additional 6 CLD patients with CLD for > 10 years, without HCC development, 

and compared with the CLD and HCC samples used throughout the study. Beta values were 

median centred before score generation to minimise cross-array batch effects. HCC n = 19, CLD 

n =19, NPC = 6. Wilcoxon Test. CLD: chronic liver disease; HCC: Hepatocellular carcinoma; 

CLDme: chronic liver disease methylation; NPC; non-progressing CLD
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Supplementary Information

Supplementary Table Legends

Table S1:

Sheet A: Cohort overview

Sheet B: Differential gene expression - CLD - Normal

Sheet C: Differential gene expression - HCC - Normal

Sheet D: Genes DE in CLD and HCC compared to Normal

Sheet E: Coding alternations in CLD and HCC pairs

Sheet F: Copy number alterations in CLD and HCC pairs

Sheet G: CpG sites DM in CLD compared to Normal

Sheet H: CpG sites DM in HCC compared to Normal

Sheet I: CpG sites DM in both CLD and HCC compared to Normal 

Sheet J: DMRs in both CLD and HCC compared to Normal, associated with DE genes

Sheet K: CpG sites falling in DMRs from Table J

Sheet L: Annotation of 109 probes used in prognostic model

Sheet M: Univariate analysis of clinical features and survival in TCGA HCC cohort

Supplementary Figure Legends

Fig. S1: Schematic summarising the origin of samples used for methylation, transcriptomic, WES, 

and IHC analysis. 

Fig. S2: Heatmap showing gene expression of top 500 most variably expressed genes across 

normal livers, CLDs and HCCs. 

Fig. S3: Heatmap showing expression of genes differentially expressed in CLD, HCC or both, 

compared to normal livers. 

Fig. S4: Genetic alterations detected in HCC are not present in matched CLD samples.  

Fig. S5:  DNA methylation in CLD, HCC, and normal liver. A
cc

ep
te

d 
A

rt
ic

le



Molecular Oncology (2020) © 2020 The Authors. Published by FEBS Press and John Wiley & 
Sons Ltd.

Fig. S6: Venn diagram of CpG sites showing differential methylation in CLD and HCCs compared 

to normals. 

Fig. S7: Overlap between methyl-binding domain protein ChIP-seq data and CLD-HCC DMRs. 

Fig. S8: Differentially methylated regions in CLD and HCC samples, compared to normal livers. 

Fig. S9: Methylation changes in MGMT in CLD and HCC are conserved across cohorts. 

Fig. S10: Characterisation of CLDme High and Low TCGA samples.

Fig. S11: CLDme scores in HCC, CLD, and non-progressing CLD (NPC). 
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